AN EFFECTIVE CLOSING LEMMA FOR UNIPOTENT FLOWS
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ABSTRACT. We prove an effective closing lemma for unipotent flows on quo-
tients of perfect real groups. This work is largely motivated by recent devel-
opments in effective unipotent dynamics.
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1. INTRODUCTION

An important and active research direction in homogeneous dynamics is the
quantitative theory of unipotent flows, in particular their equidistribution proper-
ties. The starting point of almost any approach to quantitative equidistribution or
density statements is a closing lemma: consider the trajectory of a one-parameter
unipotent subgroup u;.xz in a quotient space G/T'. Suppose for some (or many)
t; which are well separated, we have that the u,,.z are close to each other. In
what sense and under what conditions can we say that u;,.z are in general position
with respect to one another? And if not, what does this tell us about the original
point z?

Such issues played a central role already in the pioneering works of G.A. Margulis
(G.M.) and of Dani and G.M. on the Oppenheim Conjecture (see e.g. [5]) and in
more quantitative forms e.g. in the works by Einsiedler, Venkatesh, and G.M. in [7]
and E.L. and G.M. in [14]. More recently, such a closing lemma was used by two of
us (E.L. and A.M.) in [15] and with Zhiren Wang in [17]. Similar statements were
also used by Lei Yang in [27].

The present article seems to us to be of independent interest, but the main
impetus to its writing is that it plays an important role in a forthcoming work
of A'W. [26]. Loosely, the main result of [26] says that a sequence of periodic
orbits of a semisimple group (say H), inside a quotient T'\ G, becomes effectively
equidistributed as the volume of the periodic orbit tends to infinity unless there
is an obvious obstruction to this. The result of [20] gives an effective version of
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(a special case of) a qualitative result by Mozes and N.S. [22]. It extends the
work of Einsiedler, G.M., and Venkatesh [7], where a similar result was shown but
under the additional requirement that the centralizer of H in G is finite. As in [7],
the equidistribution result in [26] requires that G be a semisimple algebraic group
defined over QQ, and I' a congruence lattice as it relies on the deep spectral theory
available for such quotient spaces I\ G, and more importantly their homogeneous
subspaces.

Originally, a closing lemma similar to the one we present here was an ingredient
in a yet unpublished work of four of us (the four first-named authors), giving an
effective density result for one-parameter unipotent flows (albeit with very poor
rates) on arithmetic quotients; another ingredient of that project was an effective
avoidance principle that appeared separately (and also seems to us to be of inde-
pendent interest) by the first four named authors in [16]. We also use the results of
[16] in this paper. For simplicity of the exposition, we limit ourselves to quotients
of real groups.

Let G < SLy be a perfect Q-group, let G = G(R) be its group of real points,
and let g = Lie(G) be its Lie algebra. Let I' < GNSLx(Z) be a lattice in G, and let
X =T\ G. Finally, we fix a one-parameter unipotent subgroup U = {u; : t € R}
of G and consider the action of this group on X.

At a crucial point in the argument in [26] (as well as in the unpublished work of
the first four authors mentioned above), one aims to understand whether or not a
unipotent orbit can spend a lot of time close to a local orbit of some Lie subgroup
of G, say with corresponding Lie algebra ) < g. Note that no further information
on the b is provided; in particular, as opposed to the setting in [7], the Lie algebra
h might not be semisimple.

The following is a slightly more precise formulation of the question we consider
here. Suppose that x € X is a point and T > 0 is a time parameter such that there
is a subset £ C [0,T] of sufficiently large measure so that for all s,t € £

(11) TUs = TULGst

where gs; € G is a displacement of bounded (or at least controlled) size which
normalizes the given Lie subalgebra h < g up to an error of, say, T~'. Of course,
if b is a Lie ideal (or very close to a Lie ideal), this scenario yields no information
on the initial point 2. Otherwise, we wish to say that z (and in fact the whole
unipotent orbit for time T') remains close to a periodic orbit of a proper subgroup
of G of ‘low complexity’.

We turn to an exact formulation of our main theorems. As in [16], we define
H to be the (countable) family of connected Q-subgroups of SLy whose radical is
unipotent. We say that M < SLy is of class H if M € H. For any M € H we
put M = M(R) and also write M € H. We assume throughout the article that
G € H; in fact, in the statement of the main theorem, we assume G is perfect
(i.e. G =[G, G]), though this is not used in much of the argument.

We fix once and for all a Euclidean norm || - || on Maty (R), which induces a norm
on sl (R) and on SLy(R). We write || - || also for the induced norms on exterior
products of sy (R). For g € SLy(R) we let

9l = max{]lgll, llg7"I1}-



AN EFFECTIVE CLOSING LEMMA FOR UNIPOTENT FLOWS 3

For 7 > 0 let
X,={Tge X: min |[Ad(g) ‘o] > 7}
{Lg Oves() [Ad(g) | =7}

These are compact subsets of X, and any compact subset of X is contained in X,
for some 7 > 0.

Let g(Z) = gNsln(Z), and let rad(g) denote the radical of g. Recall that U is a
one-parameter unipotent subgroup of G; we write U = {u; = exp(tz) : t € R} for a
nilpotent unit vector z € g.

Let M € H be a non-trivial proper subgroup of G and define

Vi = /\dim(M)g, oM = /\dim(M)Ad.

The representation pjs is defined over Q and the lattice /\dim(M) g(Z) is T-invariant.
For simplicity, we often write g.v = pps(g)w for the action of g € G on v € V). Let
vy € Vi be a primitive integral vector corresponding to the Lie algebra of M; that
is, o) is one the two shortest non-zero integral vectors in the line AY™(M) Lie(M).
So, for any v € T, v.op = tv,p1,-1. We write g € G+ nar(g) = pa(g~*)oum for
the (right-)orbit map at zps. The height of M is defined to be ht(M) = ||zas])-

For any Lie subalgebra ) < g (not necessarily defined over Q) we write vy for
the point it defines in the projective space P(A4™(")g). For any 0 < r < dim(g)
we equip P(A"g) with the Fubini-Study metric d(-,-) where the distance d(z, w) of
two points 2, w € P(A"g) is the angle between the corresponding lines in A"g. If
the lines  and w are represented by pure wedges v A ... A v, and wy A ... A w,,

respectively, for orthonormal collections of vectors vy, ...,v, and wy,...,w,, then
(1.2) sup |l Awp A Aw,| < d(v,w) < sup |lv; Awg A Aw,|.
: 1<i<r 1<i<r

Theorem 1.1. Suppose that G is perfect. There exist constants Ay, Ay > 1 de-
pending only on N, and FE > 0 depending on N,G,T" with the following property.
Let h < g be a (proper) subalgebra so that h + rad(g) is not a proper Lie ideal of g.
Let 7 € (0,1), T >0, and R > 0 with T > R > Er~". Letz =Tg € X, be a
point.

Suppose that there exists a measurable subset & C [—T,T| with the following
properties:

(a) |€| > TR~/ A1,
(b) For any s,t € & there exists ys € I with

Hufsg_l’ystgut” é Rl/Alv
d(u—sg_17stgut~;/ha E}b) < R_l-
Then one of the following is true:

(1) There exists a nontrivial proper subgroup M € H so that the following hold
for allt € [-T,T):

2z (gue)|| < R™2,
||z A TIM(Qut)II < T—1/A2 pAz.

(2) There exist a nontrivial proper normal subgroup M <G of class H contain-
ing the radical of G with

|z A oar|| < R7Y/42,
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We also obtain an analogous version for multidimensional unipotent groups.
We follow the setup of [16, §2.9]. Let U < G be a unipotent subgroup and let
u be its Lie algebra. We fix a basis By of u consisting of unit vectors and set
By(0,0) = {>_.cp, a:2: |as| < 3} for § > 0 as well as By (e) = exp(By(0,1)).

Let A: u — u be an R-diagonalizable expanding linear map (all eigenvalues
have absolute value > 1). For any k € Z and any u = exp(z) € U, we set
Ak (u) = exp(A¥(z)). We note that A\x o Ay = A\py¢. We shall assume that there
exists kg € N such that for every integer k > ko,

(1.3) exp (Me—ko (Bu(0,1))) exp (Ag—1(Bu(0,1))) C exp (Ax(By(0,1))).

Since the exponential map exp : u — U pushes the Lebesgue measure on u to a
Haar measure, denoted by | - |, on U, for any measurable B C U and k € Z,

(1.4) I\e(B)] = | det(N)||B.

The expanding map A could, for instance, be given by an expanding automor-
phism of u. Another example is given by expanding the different partial quotients
in the lower central series of u with suitable rates; see [16, §2.9].

To avoid cumbersome statements, we suppose throughout that any constant that
is allowed to depend on N and ht(G) is also (implicitly) allowed to depend on ||Al],

— A1 (B
||)‘ 1”? w = |det()\)‘, and k().

The following is our main theorem in this more general setting.

Theorem 1.2. Suppose that G is perfect. There exist constants Az, Ay > 1 de-
pending only on N, and E > 0 depending on N,G,T" with the following property.
Let h < g be a (proper) subalgebra so that h + rad(g) is not a proper Lie ideal of g.
Let 7 € (0,1), k €N, and R > 0 withe®* > R > B, Letx =Tg € X, be a
point.
Suppose that there exists a measurable subset € C By(e) with the following

properties:

(a) |E| > R~V 43,

(b) For any u,u’ € € there exists v € T with

1M ()~ g™ g Ae(u)]| < RV,
d(As(w) " g™ g Ak (u). o, 5) < R
Then one of the following is true:

(1) There exist a nontrivial proper subgroup M € H so that the following hold
for all w € By (e):

lar (g ()| < R,

1.5 _
0 2By Iz A mar (ghe(w))|| < e”*/ 4R
z€By

(2) There exist a nontrivial proper normal subgroup M € H containing the
radical of G with
max ||z A opg || < RV A4,
zEBy
It is worthwhile noting that the assumptions of the theorem and the conclusion
in (1.5) only depend on the point x and not the choice of its representative g: The
element hy, v := A\, (u) "1g~1ygAx(u') appearing in the assumption (b) is such that
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Ak (vw) = xAg(u)hy,; and the choice of the subgroup M in Option (1) of the
conclusion depends on g, and replacing g by 71 ¢ for some ; € I' exchanges M for
7 M.

This paper is structured as follows. In §2, we establish various facts pertaining
to Q-groups generated by lattice elements. In §3, we show that a Lie algebra b
as in the main theorems cannot be ‘almost’ invariant under a generating set of G
consisting of ‘small’ lattice elements. In §4, we finally prove Theorem 1.2 crucially
using the results from [16].

Conventions. Given S,T > 0 we write S < T when S < ¢T for a constant ¢ > 0
depending only on N and S <, T when ¢ > 0 is allowed to depend additionally on
an object a. It will also be useful to denote by * a constant placeholder allowed to
depend only on N so that S < T* if there is A = A(N) > 0 with S < T4. We use
throughout the article constants A, that are only allowed to depend on N and are
typically larger than 1.

2. HEIGHTS OF GROUPS GENERATED BY LATTICE ELEMENTS

2.1. Chevalley representations for groups of class H. The following is a clas-
sical theorem of Chevalley (see for instance [1, Ch. II, Thm. 5.1] or [2, Prop. 2.4]).

Theorem 2.1. Suppose that M < SLy is a subgroup. Then there exists a rational
representation p : SLy — SL(W) and a non-zero vector w € W such that

M= {ge€SLn : p(9)w A w = 0}.
If M is defined over Q, one can find p and w also defined over Q.

In the following, we shall call such a pair (p, w) a Chevalley pair for M; for such
a pair, we will call p the Chevalley representation and w the Chevalley vector. The
following proposition allows us to control the height of the Chevalley vector w as
well as the occurring representations p when M € H.

Proposition 2.2 (Chevalley representations and heights). There exists a finite
collection P = P(N) = {p : SLN — SLaim(p)} of integral' representations of SLy
and constants As > 0 and ¢; > 1 depending only on N with the following property.

Let M < SLy be a Q-subgroup of class H. Then there exists p € P and a vector
w € Z9™0) satisfying

¢ Tht(M) Y45 < ||w|| < ¢ ht(M)“s
so that (p, w) is Chevalley pair for M.

It is easy to see that Proposition 2.2 cannot be true for all connected Q-groups.
Indeed, the proposition implies a uniform bound on the minimal degree of poly-
nomials defining subgroups of class H. Such a bound cannot exist for arbitrary
@Q-subgroups. For example, one can take the subtori T; of the diagonal torus
A < SLj3 given by the additional equation zoy = ;.

To prove Proposition 2.2, we start with the aforementioned uniform degree
bound.

Here, we call a rational representation p : SLy — SLj, integral if the coefficients of the polyno-
mials defining p are integers, and in particular p(SLy(Z)) C SLmn(Z).



6 E. LINDENSTRAUSS, G. MARGULIS, A. MOHAMMADI, N. SHAH, AND A. WIESER

Lemma 2.3 (Degree bound). There exists an integer d > 1 depending only on N
so that any connected Q-subgroup M < SLy of class H is defined (as a subvariety
of Maty ) by rational polynomials of degree at most d.

In particular, there exists a finite collection P' = P'(N) of integral representa-
tions of SLy such that for any connected subgroup M < SLy of class H there exists
p€P and w e 290 so that (p, w) is a Chevalley pair for M.

Proof. Assuming the degree bound has been established, the second part of the
lemma can be deduced as follows. Let I C Q[Maty] be the ideal of polynomials
vanishing on M and let I; C I be the subset of polynomials of degree at most d.
The regular representation of SLy on the space of all polynomials V; on SLy with
degree at most d satisfies that the stabilizer of I; is M. The statement of the lemma
follows by taking the representation of SLy on the dim(/;)-th exterior product of
V4. We also remark that the representation p obtained in this manner satisfies that
the entries of p(g) are polynomials of degree <y 1 in the entries of g.

It remains to prove the first part of the lemma, and in fact, it suffices to verify
that claim over the algebraic closure. Indeed, let f be a polynomial vanishing on M
and let A be the finite-dimensional vector space over Q generated by the coefficients
of f. Then f can be written as f = ). o;f; where {«;} is a basis of A and the
polynomials f; are rational and of degree at most deg(f). By linear independence
and Zariski density of M(Q) € M (cf. [1, Ch. 5, Cor. 18.3]), the polynomials f;
also vanish on M.

We have reduced the lemma to the claim that any Q-subgroup M with radical
equal to its unipotent radical may be defined by polynomials of degree < 1.
Suppose first that M is semisimple. The representation theory of semisimple Lie
algebras (see e.g. [12]) shows that for any semisimple Lie algebra §j the number of
SLy (Q)-orbits of homomorphisms h — sly defined over Q is finite. In particular,
there are finitely many SLy(Q)-conjugacy classes of subgroups with Lie algebra
isomorphic to Lie(M). Moreover, there are finitely many isomorphism classes of
semisimple Lie algebras of dimension at most dim(SLy). This shows the claim for
semisimple subgroups.

If the subgroup M is unipotent, it is conjugate to a subgroup of the group of
upper triangular unipotent matrices U < SLy. Subgroups of U correspond to
subalgebras of Lie(U) via the logarithm map. As subalgebras can be defined by
linear equations, subgroups of U can be defined by equations with degree bounded
by the degree of the logarithm map (which is N — 1).

Suppose now that M is general. As the unipotent case has already been es-
tablished, let (7, w) be a Chevalley pair for the unipotent radical Uy of M. In

particular, k = dim(7) <y 1. Let W C @k be the subspace of vectors fixed by
Uy under 7; by changing basis (over Q) we may suppose that W = (e, ..., e,).
Thus, 7(M) can be viewed as a semisimple subgroup of GL,. after restricting to .
By the already proven statement for semisimple subgroups, 7(M) can be defined
by polynomials equations of degree < 1, and by the pullback, the same holds for
M. O

Proof of Proposition 2.2. Let M < SLy be a Q-subgroup of class H and let (p, w)
be a Chevalley pair for M as constructed in Lemma 2.3. Note that we have no

control on the size of w at this point. Let W  Qd™(#) be the subspace of vectors
fixed under M(Q).
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For a more explicit description, let o1, ..., v, be a Q-basis of m < sly consisting
of integral vectors with ||z;|| < ht(IM)* (using Minkowski’s second theorem). Then

W = {«' € Q" : Dp(v;)w' = 0 for all i}.

Then W has height ht(W) < ht(M)*. Thus, there is a basis w1, . .., waimw) of W
consisting of integral vectors with ||=;| < ht(M)*. If g € SLy satisfies p(g)w; = w;
for every i then p(g)w = w (since w € W) and hence g € M.

Let W = @4™MW) Qdim() where @¥™"W) zdim() is the set of integer points
in W and the Euclidean norm on W is the direct sum of the Euclidean norms
in the factors. Let j be the representation of SLy on W obtained from p. The
integral vector w = w; @ ... ® waim(w) satisfies ||w| < ht(M)* and M = {g €
SLy : p(g)w = w} by the observations above. This proves the upper bound in the
proposition. For the lower bound, notice that m = {v € sly : Dp(v)w = 0} implies
ht(m) < ||@||*. This concludes the proof. O

2.2. A bound on the number of the connected components. There is no
general bound on the number of connected components of Q-subgroup M < SLy.
For example, one may view for every £ € N the group of k-th roots of unity as
Q-subgroups of the multiplicative group G,,,. These finite groups contain very few
rational points, and the following holds true.

Lemma 2.4. Let M C SLy be a Q-subgroup with M(Q) C M Zariski-dense. Then
M:M°] <y 1
where MP° is the identity component of M.

The proof utilizes the subgroup M defined in [16]: the largest subgroup of M
of class H. Note that M™ is a normal subgroup of M. We also use the following
simple lemma.

Lemma 2.5. Let T < SLy be a non-trivial torus. The centralizer of T is connected
and reductive. Moreover, the center of the centralizer has at most On(1) connected
components and the identity component is a torus.

Proof. Without loss of generality, we assume that T is contained in the diagonal
subgroup A. Let y;; for 1 < i # j < N be the roots of A given by x;;(a) = %
Let Q be the (possibly empty) set of roots which are trivial on T and let C =
Nyea ker(x) D T. After permutation, we may assume that there are 1 =ip < iy <

. < i = N such that
C={a€A:a;=ajjforall iy <i,j <ipi1 where k' <k}.

A simple calculation shows that the centralizer L of C is the subgroup of block
matrices consisting of blocks of size i1 X i1, (ia — 41) X (i2 — 41) and so on. In
particular, L is reductive and connected. The roots outside the diagonal blocks
that define L are non-trivial on T by construction; hence, the centralizer of T is L.
Lastly, note that the center C of L is isomorphic to

{(xla ce ’xk) : x’il . .x;‘:@_ik71 _ 1}

Clearly, this variety has at most Opn(1) connected components, and the identity
component is a torus. O
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Proof of Lemma 2./. Assume first that M is trivial. By classical work of Minkowski
[20] (see also e.g. [L1, 24]), the cardinality of finite subgroups of GL,,(Q) is uni-
formly bounded in terms of m. (The simple bound of 3™" follows from the fact that
the kernel of GL,,(Z) — GL,,(Z/37Z) is torsion-free.) In particular, |M(Q)| < 1
and so the claim in this case follows from Zariski-density of M(Q) in M.

Suppose now that T = M?° is a non-trivial Q-torus. There are finitely many
automorphisms T — T obtained through conjugation by elements in SLy, and
the number of such automorphisms is bounded in terms of dim(T). Indeed, the
normalizer of T contains the centralizer of T with finite index [1, p. 117] and acts
on the group of Q-characters of T with kernel the centralizer of T. The group
of characters is isomorphic to Z4™(T) and so by the bound on the order of finite
subgroups of GLgim(1)(Q) (discussed at the beginning of the proof) the above claim
holds. Any element of M defines an automorphism of T and, after switching to a
subgroup of index < 1, we may suppose that M acts trivially on T. Equivalently,
M is contained in the centralizer L of T which is reductive by Lemma 2.5.

Let p be the adjoint representation of L. The image of M under p is a finite
subgroup equal to p(M(Q)) by Zariski density. As in the first case where M° was
trivial, this implies that |p(M(Q))| <y 1. We may thus replace M by the kernel
of p|m so that M is contained in the center C of L. We may further assume that
M c C° by Lemma 2.5.

Let F/Q be a Galois extension splitting the torus C°. Note that [F': Q] <y 1
since C° < SLy. If x is an F-character on C° with x|t = id, then x(M(Q)) C F* is
a finite subgroup. Necessarily, x(M(Q)) consists of roots of unity in F. The degree
of a primitive root of unity in F is controlled by [F: Q] and hence |x(M(Q))| <y 1.
We apply this discussion to a minimal generating set of F-characters for C°/T to
obtain a morphism ¢ : C° — G defined over F with kernel T and |¢p(M)| < 1
where r = dim(C®) — dim(T). This proves the lemma when M° is a Q-torus.

Turning to the general case, let (p, w) be a Chevalley pair for the group M as
found in Lemma 2.3. Considering the M*-fixed vectors under p, we obtain (by re-
striction) a representation p’ : Nygn — SL,, defined over Q where m < dim(p) and
ker(p') = M*. To conclude the proof, it suffices to show that [p'(M) : p'(M°)] <
1. But p/(M°) is a (possibly trivial) Q-torus and p/(M)(Q) D p/(M(Q)) is dense
in p/(M) so the already proven special cases imply the lemma. O

2.3. Q-groups generated by lattice elements. If v € SLy(K) for K a number
field we define the height of y to be ht(y) = [[, max{1, |7i;|»} where v runs over all
places of K. For v € SLy(Q) thisdefinition reduces to ht(y) = mmax(|y;;|), where
m € Qso is minimal such that mvy € Maty (Z).

Proposition 2.6. There exists Ag > 0 depending on N with the following property.
Let v1, ..., € SLy(Q) with ht(v;) < T for all i and consider the Q-subgroup

M= <’71,. .. ,’Yk>z < SLN
Then ht(M™M) < T4,

We will reduce Proposition 2.6 to the case where M is connected. To that end,
we will apply Lemma 2.4, which implies the following by a standard argument.
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Lemma 2.7. There exists A7 > 0 and kg € N depending only on N with the
following property. Let T > 2 and v1,. .., € SLy(Q) with ht(v;) < T. Set

M= (1, %) -
Then there exist k' < kok and 0y, ..., mw € SLy(Q) with ht(n;) < T47 and

MO = <n1a'~'777k’>z‘

Proof. We begin with an elementary observation: If F is a finite group and S is a
generating set of F containing 1, then there exists ¢ < |F| with S = F. Indeed, as
1 € S we have an ascending sequence S C S? C 8% C ... and there must be some
¢ < |F| with 8 = S+, But in that case, S¢ is invariant under multiplication by S
and, as S is a generating set, S¢ = F. We apply this discussion to F = M/M?°. In
view of Lemma 2.4 we may replace the generating set S = {v1,...,7%} and assume
that any coset of M in M is represented by some element of the generating set.

We fix representives id = ¢y, ¢a, ..., c; € S of each coset where I = [M : M?] <
1. Forany 1 <i< T and 1< j <k write

(2.1) CiYj = M Chy;

for some k;; < I and m;; € M°(Q). In particular, 7; = myjcy,,. Note that
(||| << T

We claim that the elements m;; generate a dense subgroup of M?: By con-
struction the group A = (y1,...,7) N M%(Q) is dense in M°. For any word
w = j, -7, € A successive applications of (2.1) show that w is a word in the
elements m;; which concludes the claim and hence the lemma. [l

Proof of Proposition 2.6. By Lemma 2.7, we may assume without loss of generality
that M is connected.

CASE 1: H-GROUPS. Suppose that M is a group of class H. Let V; be the space
of polynomials on Maty of degree at most d and let I; C V; be the subspace of
such polynomials vanishing on M. Here, we take d € N to be the degree bound
obtained in Lemma 2.3. It suffices now to show that ht(I;) < T™*. Set 79 = id
for convenience and assume without loss of generality that the generating set is
invariant under inversion. For any m > 1, consider the following linear map:

S Va = QED"p s (i, 70,00 o
By construction,
ker(¢1) D ker(¢2) D ker(ds) D ...

Let m < dim(Vy) be minimal such that ker(¢,,) = ker(¢n,41). We claim ker(¢,,) is
invariant under the action of 71, ..., v,. Indeed let p € ker(¢,,) = ker(¢,,+1), then
for any word w of length m in {7;}, we have

i-p(w) = p(wy;) = 0.

This implies ker(¢,,) is invariant under (vyi,...,7x), hence, ker(¢,,) = ker(¢m+e¢)
for all £ > 0. In particular,

ker(¢m) = () ker(¢).

>1

The above and Zariski-density of (71,...,vk) implies that ker(¢,,) = I4.
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Note, however, that since m < dim(Vy), the subspace ker(¢,,) has height < T*,
so the proposition follows in this case.

CASE 2: GENERAL GROUPS. To simplify the discussion, we apply the (multi-
plicative) Jordan decomposition — see [1, §4]. For each ~; write y; = iy = viys
where ! is unipotent and ~; is semisimple. Moreover, vi*,v¢ € M(Q) and, us-
ing the fact that ~}*,7; may be expressed as polynomials in 7; depending on the
coeflicients of the characteristic polynomial, we have ht(v*) < T* and ht(yf) <« T*.

Consider the subgoup of M defined as the Zariski closure of the group generated
by all commutators [v;,7;] and all unipotent elements ~}*. We claim it is equal to
M*. By what we have already proved this will show ht(M™) < T*.

To prove this remaining claim, let S; = {[vi,7;],7;*} and define inductively

Sey1 =SeU{[vi, 8] i < ks € S}

Moreover, we let M, be the Zariski-closure of the group generated by S,. By
construction, M; C My C ... and by Lemma 2.4 there exists £ bounded by some
constant depending only on N with My,; = M,. Then My is normal in M as we
have

visvy = s slsTh € Mopy = M.

for any s € Sy and any j < k. By construction, My is contained in M™ since
any character on M is trivial when restricted to M,. Moreover, note that the
connected group M/My is a torus. Indeed, it is abelian as v;v; My = ;v My
for all 7,7, and it is the Zariski closure of the group generated by the semisimple
elements v; M, = v¥M,. This shows that M, = M. The proposition now follows
from Case 1 applied to M,. ([

3. ALMOST INVARIANT LIE ALGEBRAS

The following proposition shows that a Lie algebra which is ‘almost invariant’
under the action of G via the adjoint representation is close to an ideal. Later in
the section, the separation of ideals in the semisimple case will further restrict the
options for such a Lie algebra.

Proposition 3.1. There exists Ag > 0 and co > 1 depending only on N with
the following property. Let G < SLy be a Q-subgroup of class H. Let h < g be
a subalgebra, let R > 0, and 6 € (0,1). Suppose that ~v1,...,v € I' satisfy the
following:

(a) |vll <R foralli=1,... k.

(b) For alli=1,...,k we have d(v;.75, 7) < 9.

(¢) The group generated by v1,. ..,k is Zariski-dense in G.
Then one of the following holds:

(1) 6 > coht(G)~As R=4s.

(2) There exists a Lie ideal b’ < g with dim(h) = dim(b’) and

A(2y, 2) < 645,

The proof uses a variant of Lojasiewiecz’s inequality [18]. Lojasiewiecz’s inequal-
ity generally asserts that a point with a small value for a real analytic function must
be close to its zero locus (see also [19, Thm. 4.1]). Here, we shall use an effective
version of this statement for polynomials (in view of the effective dependency on
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the height of G in Proposition 3.1). The height of a polynomial f € Z[x1, ..., x,]
is the maximum of its coefficients in absolute value.

Theorem 3.2 (Solernd [25]). For any d € N, there exists A(d) > 1 with the
following property.

Let h > 1 and let f1,..., fr € Z]x1,..., 2] have degree at most d and height at
most h. Let V. C R"™ be the zero locus of f1,..., f-. Then for w € R"

min{1,d(w,V)} <4 (1 + ||wHOO)A(d)hA(d) max |fi(w)|1/A(d)7

where d(w, V) = inf ey d(w,v), so if V=10, then d(w,V) = co.

Proof. When V is non-empty, the statement follows directly from [25, Thm. 7]. So
suppose that V' is empty. Let y be an auxiliary variable and consider the variety
V c R™! cut out by the equations yfi(x1,...,z,) = 0. Since V is empty, Vis
equal to the subspace {y = 0}. Applying [25, Thm. 7] for the variety V and the
point (w, 1) € R"*! for w € R™ we obtain

1=d((w,1),V) < (14 [lwlloc)™h* max [f;(w)["

1<i<lr
and the theorem follows. O
The above theorem extends the work of Brownawell [3], who proved the analo-
gous result over C. We remark that it may also be established using Greenberg’s
approach [9, 10] as communicated privately to authors by W. Kim and P. Yang;
see also [16, Appendix A] for a related discussion.
Proof of Proposition 3.1. Fix an orthonormal basis w, ..., wy, of h with respect to

a Euclidean norm on sl (R). By the assumption (a) of the proposition, we have
max([|Ad(7)ll, [Ad(v:) ) < Jnil" < R*.

Using the assumption (b) and the definition of the Fubini-Study metric (see (1.2)),

we have for every i < k and £ < h

Ad(vi) we

IAd(y)ae A awn Ao A an|| < R*|| - 222
[Ad (i) we

Nwi N...\Nw H
(3.1) ' g

< R*6.

We apply Theorem 3.2 to the variety V of tuples (w], ..., w},) € g" with Ad(y;)w)A
wiA...ANwj, = 0foralli,l and [w) , w; |Awj A...Awj, =0 for all £1, 5. Therefore,
from (3.1), and since [wp,, we,| A wi A ... Ay =0 for all £y, f2, we get

min{1,d((wi, ..., w), V)} < ht(G)*R*5*.

Suppose that Option (1) of the conclusion of the proposition does not hold. Then
§ <ht(G)"AR~4/C for some large A,C > 0 and, in particular,

d((wry ...y wp), V) < 0%

Thus, there exists (w],...,w},) € V with [|wy — w)|| < §* for every £. By con-
struction, the subalgebra b’ spanned by =i, ..., w}, is Ad(y;)-invariant for every ¢
and hence, by the Zariski-density assumption (c) of the proposition, b’ is Ad(G)-
invariant. In other words, b’ is a Lie ideal, and Option (2) of the conclusion of the
proposition follows. O
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The following lemma asserts that in the semisimple case, a Lie algebra cannot
be too close to an ideal unless it is an ideal itself.

Lemma 3.3. There exist Ag > 0 and c3 > 0 depending only on N with the following
property. Suppose that g is semisimple and that by is a Lie subalgebra of g for which
there exists a Lie ideal ' <1 g with dim(h) = dim(h’) and

d(2y, 2) < csht(G) ™.
Then h = b and, in particular, b is a Lie ideal.

Proof. We prove the analogous stronger statement for complex subalgebras of g®C.

We begin by bringing g into a ‘simpler’ form (similarly to the proof of Lemma 2.3).
By the representation theory of semisimple Lie algebras (see e.g. [12]), there are
finitely many SLy (Q)-conjugacy classes of embeddings of any semisimple Q-Lie al-
gebra into sly. Also, there are finitely many Q-isomorphism classes of semisimple
Lie algebras that embed into sly. In particular, there exists a finite list g1, ..., g
of subalgebras of sl (which can be taken defined over Q) such that any Lie algebra

g as in the lemma is conjugate to some g; over Q. The variety
{9 € SLy : Ad(g9)g = g:}

is hence non-empty. In view of [23, Prop. 65] there must exist g € SLy(Q) of height
< ht(G)* such that Ad(g)g = g;. In particular, |g| < ht(G)*. Considering the Lie
algebra Ad(g)h, the above discussion hence reduces the lemma to the case g = g;,
and we may ignore the dependency on the height of G from now on.

Now suppose that d(zy, 75/) < § for some 6 > 0. Write g = b’ & h” for another
ideal h” and «’, 7" for the respective projections onto b’, h”". We have for any w € b

I7" ()| = lI7"(w) — wl| < 6%]|]|

by assumption. In particular, 7’|y is an isomorphism for § sufficiently small. The Lie
algebra homomorphism ¢ = 7" o (7|y) ™' : b’ — b” then satisfies ||¢(w)| < 6*||w||.
We wish to show that ¢ = 0 unless § is not small.

So suppose there is a simple factor s of ' ® C with ¢|s # 0. In particular, ¢|s is
injective. Let w € s be any unit vector, A an eigenvalue for the ad(w)-action on s,
and u € s non-zero with [w, u] = Au. Then

IMlle()ll = [|[¢(w), p(]]| < llé(w)lllo()]]

and so || < 0* since ¢(u) # 0. Since there are only finitely many ideals s, this is
a contradiction if ¢ is sufficiently small. |

The following upgrades Proposition 3.1 to the situation considered in Theo-
rem 1.2.

Proposition 3.4. There exists A1g > 0 and ¢y > 1 depending only on N with the
following property. Let G < SLy be a perfect Q-subgroup. Let h < g be a proper
subalgebra such that § + rad(g) is not a proper Lie ideal of g. Let R > 1, and
0 €(0,1). Suppose that v1,...,v € T satisfy the following:

(a) |vl| < R foralli=1,... k.

(b) Foralli=1,...,k we have d(v;.vy, 75) < 9.

(c) The group generated by y1,...,7vk is Zariski-dense in G.
Then § > c;ht(G)~ A0 R=Aw0,
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We use the following observation about perfect groups to prove the proposition.

Lemma 3.5. Suppose that g is perfect and that h < g is a Lie ideal which contains
a Levi subalgebra of g. Then h = g.

Proof. Let up = rad(g) > u; = [ug,up] > ua = [ug,u1] > ... be the lower central
series of the (nilpotent) radical of g. As b contains a Levi subalgebra, h + 1y = g.
Moreover, if h + u; = g then as b is an ideal

g=1[g,0] = [0 0] + [us, b] + [wi, us] C b+ iy

and so the claim follows by induction. O

Proof of Proposition 3.4. By Proposition 3.1 we may either reach the desired con-
clusion, or there exists a Lie ideal b’ < g with dim(h’) = dim(h) and d(zp, 25) <
§'/4s In particular, the projections of b, b’ to g/rad(g) are at distance < ht(G)*5*.
In view of Lemma 3.3 either ¢ > ht(G)™™ (in which case we again conclude) or
the projections of h,h’ to g/rad(g) agree. In the latter case, by assumption on b
the projection of § is not a proper ideal and so h and b’ surject onto g/rad(g). In
particular, §’ contains a Levi subalgebra. By Lemma 3.5 we have §’ = g and so
h = g which is a contradiction. ([l

4. PROOF OF THEOREM 1.2

In the following, we let 7 € (0,1) and let x = I'g € X,. Furthermore, we fix
k € N and R > 1, where we assume that R < e¥ and R > C7—4 for some large
constants C, A to be determined in the course of the proof, where A is allowed
to depend on N and C is allowed to depend on N,G,I". Moreover, a proper Lie
subalgebra b < g is given with the property that bh+rad(g) is not a proper Lie ideal
of g.

We suppose that there exists a measurable subset £ C By (e) with the following:

(A1) |€] > R™".

(A2) For any u,w € & there exists v € I' with

[Ae(w) " tg™ yghi(u)]| < R,
d(Ak(w) g yg A (u).2p, ) < R

Here, a small k > 0, depending only on N, will be determined during the proof;
and we will choose A large enough so that kA > 2kg, and hence R* > e?o where
ko is as in (1.3).

Throughout the proof, we will use the notation from the introduction.

The main step in the proof of Theorem 1.2 (namely Proposition 4.2 below)
consists of showing that there is a ‘large’ set of points in By(e) for which the
associated point along the orbit through x is not ‘Diophantine’ (cf. [16, Def. 3.1])
in a specific sense. We then apply the main theorem of [16].

4.1. Visits to cusp neighborhoods. We first shrink £ slightly to control the
height in the cusp. To that end, one wishes to apply non-divergence results for
unipotent flows — see, for instance, the papers [4, 6, 13]. We will use the following
effective version of the non-divergence theorem proven in [16].

Theorem 4.1 ([16, Theorem 6.3]). There exist a constant A;; > 0 depending
on N and a constant Cy > 0 depending polynomially on ht(G) with the following

property.
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For any g€ G, n € (0,1/2), and k > 1 at least one the following holds:
(1) We have
[{u € Bu(e) : TgAr(u) € X, }| < Cint/ .
(2) There exists a non-trivial proper subgroup M € H such that for allu € By (e)
Imar(gAe ()| < Cilgl gt/ e,
max [z A 1 (gAk(u)l] < Crlgl !/ et A
z€By

Moreover, M = N% for some unipotent subgroup U < G where Ny is the
normalizer of U.

By [16, Lemma 2.8], there exists F' > 0 (depending only on N) and Fg > 0
depending on the geometry of I'\G so that for any y € X, we can find gy € G with
T'go =y and

(4.1) lgo] < Egr F:

see also [21] for more precise statements.
Applying Theorem 4.1 with n = R=4411%
sentative g € G of = as in (4.1) we have

{u € By(e) : xhp(u) & Xp-aa,,0}] < R

, our given point z € X, and a repre-

or Option (2) of Theorem 4.1 holds. In the latter case Option (1) of the conclusion
of Theorem 1.2 holds, because due to our assumption that R > 77* we have
lg| < Eqm~F < R*. Recall here that, in view of the comment after Theorem 1.2,
it is enough to verify the conclusion of Theorem 1.2 for any choice of a representative
g of x.

In particular, we assume from now on — after discarding a subset of £ of size at
most R~2%F — that the following holds:

(A3) For any u € £ we have xAp(u) € Xp-1a,;x~.

4.2. A large set of non-Diophantine points. Assume that £ is such that (A1),
(A2), and (A3) hold for some x > 0 (fixed, but small). We further fix some
6 € (0,1), to be determined in the course of the proof, with §4™(G)+1 > x Set

(4.2) l; = |9 S+ og(R)|, fori=0,...,dim(G) + 1.

Note that £;41 > [071|4;, and 2kg < £y < ... < Laim(G)+1 < k. The aim of this
subsection is to prove the following claim that plays a key role in the proof of
Theorem 1.2.

Proposition 4.2. For any D > 1 there exist k,0 € (0,1) and A2 > 1 (depending
only on N,D), and a measurable subset & C & with |&)| > |€] and with the
following property: for any w € &, there exists i € {0,...,dim(G)} and a proper
Q-subgroup L < G of class H such that

InL (gAk(w))|| < e,

4.3 _ Dl Ay
(4.3) max |2 Az (ghs ()] < e~ DBz,
z€BU

The rest of the subsection is dedicated to the proof of Proposition 4.2. As before,
0, k are fixed small constants to be determined during the proof.
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4.2.1. A set of good density points. The following technical lemma constructs the
desired subset & of points with good density simultaneously for all scales ¢;.

Lemma 4.3. There ezists a measurable subset & C € with |&| > |E| such that
for everyi=0,...,dim(G) + 1 and every w € & we have

. |Ae; (Bu(e))|
(4.4) Hu € & : Mg(u) € A(w)Ag,(Bu(e))} > \5\W
as well as
(4.5) {u € By(e) : A(w)Ae, (u) € A (E)} > €]

Proof. In the following, we will use the fact that for all £ > 1, Ay(+) scales the Haar
measure on U by a constant factor (indeed, the Haar measure on U corresponds to
the Lebesgue measure on the Lie algebra u via the exponential map).

We construct by downward induction on ¢ subsets & so that &; satisfies the
lemma for all ¢ > 4. For i = dim(G) + 1, let U’ C By(e) be a maximal subset
such that the translates A\ (u)Ary,,, )11 —2k (Bu(€)) for u € U' are pairwise disjoint,
where kg > 0 is as in (1.3). Then

(4.6) Me(Bu(€) C | M)Ay ss—ko (Bu(e)),
uel’
where the multiplicity of the covering is < 1. In particular, we have
| Ak (Bu(e))l
|)\Edim(G)+1 (Bu(e))l .
Let U C U’ be the subset of points u for which

|)‘7€(5) N Ak(u))‘fdim(c)-#l*ko( ( ))

H#U' =

> 1
=2 (Al
> ‘5||)\[dim(G)+1 (BU(B))|a
where we used |€] = |\, (E)|/|Ak(Bu(e))] in the second inequality. Set
Eaim@)+1 ={v € E:Fuell st. \(u) € Ak (WA iy o1 —ko (Bu (€)) }-

Then, by (4.6) and the first inequality in (4.7), |A\x(Eaim(a)+1)] = 3| Ak(€E)], and
hence [Eqim(a)+1] = %\8| Moreover, if w € Eqim(a)+1 and u € U is such that
)\k(w) S )‘k(u)Afdim(GHl—ko (BU(B)), then by (13)

(4.7)

(4.8) )\k(u)Aedim(G)i»l*kO (Bu(e)) C )‘k(w))‘fdim(c>+1 (Bu(e)).
Thus by (4.8) and (4.7), we have
(4.9) Ak (E) O AR (W) Atgyiaysr (Bu(€))] > €l Mgy (Bu(e))]

which implies (4.4); recall that Ay scales the Haar measure by a constant factor.
Since the Haar measure is left invariant, (4.9) also implies that for w € Eqim(c)+1

Xk () T AR (E) N Aegiyan (BU ()] > [El Aty 11 (Bu ()]

and so (4.5) holds for i = dim(G) + 1; recall again that Ay, q,,, scales the Haar
measure by a constant factor.

We iterate the above construction using at the i-th step the set &1 constructed
in the previous step instead of £. This constructs a set & with the desired proper-
ties, and so yields the lemma. O
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4.2.2. Constructing a group of class H. We fix w € & till we complete the
proof of Proposition 4.2.
Let vy € T" be such that for

(4.10) 9o = Yog Ak (w), we have [go| < R*",

which is possible in view of (4.1) and (A3). By (A2), and inserting go = yogAx(w),
for any u € € we pick v, € I' with

(4.11) 65 o)~ M) < R,
(4.12) (g0 "rugo e (w) ™ A (u). g, 2) < R
To simplify notation, we set

(4.13) Gu = g0 Yugork(w) " Ng(w).

For 0 < i < dim(QG), let

(4.14) E ={u €& : A\p(u) € Mg(w)As, (Bu(e))}
Then &) C & C .... For any u € & we have

(4.15) Iyl < et

for some A;3 > 0 by (4.10), (4.11), and that R* < efo < ef. We set

M, = (u i u € €0y,
In the following, we first collect some properties of the subgroups M;.
Lemma 4.4. For every 0 < i < dim(G), the subgroup M; < G is proper.

To prove Lemma 4.4, we use the following lemma, which essentially asserts that
b is almost U-normalized.

Lemma 4.5. If 0 is sufficiently small depending only on N, for all u € By(e),
d(N g 10g(ry| (1) 2, 7) < R4
Proof of Lemma 4.5. Let £ = [0log(R)] (note that £ = £4im(g) by (4.2)) and set
F'={ue By(e) : A\(w) e(u) € A\ (E)}.
Then, for each u € F’, we have a unique v’ € £ such that
(4.16) Ak(w)Ae(u) = A (u)

By (4.5), we have |F'| > |&|, since w € &.

As the number of lattice elements v € I' < SL(N,Z) with ||v| < e3¢ is < e*,
it follows from (4.15) that there exists a subset F C F’ of measure |F| > |E|e™**
on which the map u € F + 7,/ is constant, where «’ is given by (4.16) and ~, is
as in (4.13).

We fix ug € F. By (4.11) and (4.13), ||lgu || < R”. For any v’ € &, by (4.12) and
(4.13), we have d(gy .7y, 75) < R™'. Therefore, by the argument as in (3.1), we get

d(ggélgu,.ab, %) < R™R™' < R7Y/2,

where we assume that x is sufficiently small depending on N.
On the other hand, for any u € F and the corresponding v’ € £ as in (4.16),

917619“' = Ae(uh) " Ae(u) = Ae(uo) M Ae(u) € Aegr, (Bu(e)),
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where gy, gu are given by (4.13), v, = v, by the definition of F, and we use (1.3)
after noting that by definition Ag(ug) ™" = A¢(ug ') Let

Guo = {u1 € By(e) : Mpsry (u1) = Ne(uo) “ Ae(u) for some u € F}.
Then, by scale invariance by Ay of the Haar measure on U,
(Guol = | det(N)[ 50| F| > [Ele™" > 7,
and for all uy € Gy,
(4.17) A(Npyro (u1).2, ) < R™Y2,

For any u; € By(e), |Aesr, (u1)| < e, and hence by (1.2), the left-hand side of
(4.17) can be recast in terms of polynomials of degree, say at most d, depending
only on N: given an orthonormal basis wy, ..., wy, of h, we have for any u; € By (e)

e ! i:HllaXhH)\Hko (ur).awy Awy Ao A |

L Ad(Ngtrg (u1)-79, 75) < e*t i:HllaXh I Aeiro (ur).as Ay Acoo A
Here, the lower bound follows as in (3.1) and the upper bounds follows from Gram-
Schmidt applied to the vectors Agyp,(u1).w;, for 1 < ¢ < h. Thus, the Remez
inequality (which we recall in Lemma 4.6 below) implies that
(4.18) sup  d(Apyro (u1).24, ) < e R™Y2,
Ul GBU(B)
where x is a large constant no more than a fixed power of N. By the definition of ¢,
e! < R. So, by choosing 6 sufficiently small, depending only on N, the conclusion

of the lemma follows. O
The following is a special case of [16, Lemma 5.4].
Lemma 4.6 (Remez inequality). Let fi,..., fr € R[zy,...,x,] be nonzero polyno-

mials of degree at most d and set f(x) = max; |f;(z)|. For any compact, convex
subset B C R™ and any 6 > 0 we have

{zeB: f(z)<dsup f(y)}}| < c§%|B\
yeB
where ¢ > 0 depends only on r,n,d.

Proof of Lemma /.4. Let u € &/, then A\p(w)~tA\g(u) = A, (u1) for some u; €
By(e), see (4.14). By (4.12)

(4.19) d(gy Yugode, (ur).2y, o) < R
And by Lemma 4.5,
(4.20) d(Ne, (ur).2n, 95) < R™Y4,

We have that ||go|| < R*" < R*? by (4.10) and ||y.|| < e?#% < R*¥ by (4.15).
Therefore, from (4.20) we get

d(gy "Yugore, (ur) -2, g5 " yugo-2y) < RRTHL.
Combining this with (4.19) we get
(g5 Yugo-2, 75) < ROR™V4 4 R,
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Hence,
(4.21) d(Yugo-7y, go- ) < R*(R®R™V4 + R71) < R71/8
for sufficiently small 6, depending only on N.

We consider Proposition 3.4 for the subalgebra Ad(go)h and the finite set {v, :
u € &} C T. Then its conditions (a) and (b) are satisfied for e in place of R
and R~1/8 in place of §. We choose 6 sufficiently small depending only on N, and

we choose C sufficiently large depending on N, G and T, so that since R > C7~4,
we get

C4ht(G)—A11)e—A10A1:§Zi > C4ht(G)—AwR—AmA139 > R—l/s =J.

Then, the conclusion of Proposition 3.4 fails to hold, and hence its condition (c)
cannot hold. Therefore, M;, which is the Zariski closure of {v, : u € &/}, cannot
contain G. O

Lemma 4.7. For all 0 < i < dim G, the group M:" is mon-trivial.

Proof. We will show that the number of lattice points in M?(R) of norm at most K
is at least polynomial in K for some K = e*:. Note that for any Q-torus T < SLy
and any K > 2 we have

(4.22) #{v e T(Z): || < K} < log(K)™;

see for instance [8, Lemma 6.3]. Thus, the claimed lattice point estimate implies
that MY is not a torus, so M?* is nontrivial.

Notice first that v, = v,/ for u,u’ € & implies || Ag(u) " A (v)|| < R** by (4.11)
and, in particular, A\x(u’) € Ax(u) Ak 10g(r)(Bu(e)). For any ¢ > 0,

*CK

{u' € Bu(e) : (W) € Mn(Aewton(m) (Bule)}] < 3

Now since w € &, it follows from (4.4) that

[Ae,(Bu(e))| Lk et
(4.23) Il > €]~ > R .
A (Bu (e))| A (Bu (e))|
Together, the above estimates show that
#yuu €&} > R > el

when 6 is sufficiently big in comparison to , see (4.2)

By Lemma 2.4 we have [M; : M?] <y 1 since by construction the subgroup
of rational points is dense in M;. Thus, there exists a finite subset & C &/ with
#&' > % 50 that the lattice elements v, v € £, all belong to the same M coset
and are distinct. Thus, we have in view of (4.15) for u; € &’ fixed

#{yeM(Z) : ||| < M5} > #{yu s u € £ >
proving the claimed polynomial amount of lattice elements. O

We have Mg C MY C ... C Mg, g, and so there exists ig € {0,...,dim(G)—1}
such that M{ = M7 ;. We set for a choice of ig
(4.24) M = MZ.
Using Proposition 2.6 and (4.15) we have

(4.25) ht(M) < e*tio.
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By Lemmas 4.4 and 4.7, M is a non-trivial proper subgroup of G.

4.2.3. Completion of the proof of Proposition /.2. Assume first that M de-
fined in (4.24) is not normal. Note that for any u € & ,; we have v,.op = Fopr.
Indeed, since M is normalized by M,;,+1 by construction, v,.7ys is an integer mul-
tiple of 7y and that multiple is a unit since ~,.7p; is also primitive. So for any
u € &), using (4.10), (4.11), (4.25), and k < g4m(G)+1

1731 (go A (w0) ™ A (@)l = ll1as (rugo s (w) ™ A (w))|| < R0 < o
Let

Fi={u" € By(e): Ay, ,, (u') = Mp(w) " Ag(u) for some u € & ,,}.

Then

Ima1 (goAe,, ., ()] < e*fo
for all ' € F;. We observe that by the definition (4.14) of &;, 41,

Fi={u' € By(e) : \g(w)Ag, ., (u') = \g(u) for some u € E}.

ig+1

By (4.5), we have |F1| > |€|. The Remez inequality in Lemma 4.6 thus implies
(4.26) 1731 (g0 Ae; 4 (w) ]| < €0

for all u € By(e). By [16, Prop. 5.8], we have for L = N34 (where Ny is the
normalizer of M and it is a proper subgroup of G) and all u € By (e)

112 (90Aesy 2 (W) | < lgo[*e**0 < e,

4.27 * *l; — K —%t;

0 max |2 A nz(goAe, 4 (W)l < lgol"e foe ot e hion,

because |go| < R*" by (4.10), e’ > Rand £;,41 > |67 |¢;, by (4.2), and we choose
sufficiently small x and 6. Recall that go = yogAr(w) (cf. (4.10)). Therefore,
nL(go) = nvglmo(g)\k(w)). Hence, by putting v = e in (4.27), there exists an
absolute constant A > 0 such that

1,1 1 (900 ()] < €4,

—Lig+1/A
max |2 A n, sy, (gAk (w))]] < e Rt

Taking A5 > 2A and 6 sufficiently small with D < ﬁ, this proves the conclusion
(4.3) of the proposition for the point w € & and the proper Q-subgroup v 'Ly <
G of class ‘H, when the subgroup M associated to w is not normal.

Suppose now that the subgroup M associated to w is a normal subgroup of G.
In this case, the above argument fails since, of course, the necessary passage to
the normalizer does not produce a proper subgroup. Hence, to extract information
from (4.11), we will instead use the Chevalley representation for M constructed in
§2.1.

Let (p, ) be a Chevalley pair for M as in Proposition 2.2. So, by (4.25),

7] < ht(M)* < e*tio
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Let V ¢ Q¥™() be the subspace of M(Q)-fixed vectors. The identity component
of the image of M, 1 under the restricted representation p’: G — GL(V) is a Q-
torus. Let S = {p'(yu) : u € & 1} Then by Lemma 2.4, (4.15), and (4.22) we
have

#(S) < 47, < log(R)*.
For each s € S, let
E'(s)={ue ‘%igﬁ :p'(v4) = s} and
(4.28) F(s) ={u € By(e) : Ag(w) A, (u) € Me(E(s)}
Then Uses&'(s) = Séioﬂ, and hence
UsesF(s) = {u € By(e) : A(w)Ae, ., (u) € )‘k(‘%o“)}
= {u S BU(e) : )\k(w)AgiOJrl(u) S /\k(g)},
by the definition of Eéioﬂ. So, by (4.5) we have
| Uses F(s)] > [€].
By the pigeonhole principle, we can pick s; € § such that
|F(s1)| > [E]/#(S) > |€]log(R) ™.

We fix u; € &£'(s1). For simplicity, we denote the right orbit map at » by
Y:9€ G p(g)~to. For any u € £'(sy), since 9(v,) = 9(Vu, ), we have

(4.29) gogu) = 9(Yur Jo Mk (w) ™ A (1)) = D(gogu, A (u1) ™ Ak (u))

where g, = g5 “Yugo x(w) A (u) as in (4.13). Also, by (4.10) and (4.11), since
|lo|| < e*fio, we have

(4.30) 19(g09:) | < e*o
Let uy € By(e) be such that Ag(u1) = Ap(w)As,, ,, (u7). Then,
Ae(€'(s1)) € Me(&, 1)
C )\k(w))\g +1(Bu(e)), by definition of &,
= A(u1) e, 1 (u1) " A, 1 (Bu(e))
(

(4.31) C Ai(u1) e, 1 (Mo (Bu(€)))s

by (1.4). So, we define

(4.32) Fo =A{u' € Ay (Bu(e)) : Ar(u) e, o (u') € Ar(E'(51))}-
Then, by (4.29) and (4.30), for all v’ € F5, we have

(4.33) D(g0Gus Ay +1 (1)) < o

Also,

= {u’ € Ao (Bu(e)) : Ar(w)Ae, 41 (u)Aey, 1 () € Ak(E' (1))}

D {u" € Ao (Bu(€) = Aey1(w1) Aes 41 () € Ay, (F(s))}, by (4.28),
A O () Aey 0 (F(s))

Since Ay, ., acts on the Haar measure of U as a scalar,

(4.34) [ F2| = [F(s)| > |€](log R) ™"
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Therefore, from (4.33) using the Remez inequality (Lemma 4.6), we conclude that

(4.35) 19(90guur Atig 1 (w)) || < €70
for all u € By (e) C Mg, (Bul(e)).
Now, we will argue as in [16, Prop. 5.8] to conclude. Fix z € By. The estimate

in (4.35) implies that
19(g0Gus Aty (exD(T2)))[| < €0 for all [t <1,

where z = A "%+1(z) and T = ||z[|~' (recall that by definition A\(exp(z)) =
exp(X\f(z)) for all £). Thus, using (4.11) and |go| < R**, we get
(4.36) 9 (exp(tAd(gogu, )2))|| < e*“io for all |t| < T

By Proposition 2.2, each coordinate function of the map
t — J(exp(tAd(gogu,)z))

is a polynomial of degree bounded by a number that depends only on N. Hence,
from (4.36), using Lagrange interpolation, we conclude that all of the non-constant
coefficients of the polynomial map must be < e*“ T~ in size.

Using T > (|]A71|71)%0+1, we obtain that

IDp(Ad(gogu,)2)v| < e*oT™* <« e *hiotr,

because £;, 11 > |07 ]¢;,, and we choose the constant § sufficiently small.
By definition of the Chevalley representation,

Lie(M) = {w € sly : Dp(w)v = 0}.

The map w — Dp(w)v is linear and can be realized as an integral matrix with
coefficients of size < ht(M)* < e*“o. In view of the above estimate, there exists
Z' in the kernel Lie(M) with distance < e *%0+1 to Ad(gogu, )z (see e.g. [7, §13.4])
and hence

|Ad(gogu, )z A var]| < e *bio+1,

As M is normal, this implies ||z A vpr|| < e *“i0+1, because |gogu, | < e, €;, 11 >
|671]¢4;,, and we choose 6 sufficiently small. For appropriate A5 and 6, as in the
non-normal case considered earlier, and noting that ny(-) = oas, this completes
the proof of Proposition 4.2 in combination with (4.25). O

4.3. Proof of Theorem 1.2. We begin by recalling the notion of Diophantine
points as well as the main result from [16].

Definition 4.8 ([16]). Let € : Ryg — (0,1) be a monotonely decreasing function.
A point x = T'g is called (e, t)-Diophantine (with respect to U ) if for any non-trivial
proper subgroup M < G of class H with ||na(g)|| < et we have

max 1z Anar(9)ll > e(llnaz(9)1])-

Using this notion, we can state the main result of [16]:

Theorem 4.9 ([16, Thm. 3.3]). There exist constants A4, A5 > 0 depending only
on N, E > 0 depending on N and polynomially on ht(G), and E; depending in
addition also (polynomially) on Eg, so that the following holds. Let g € G, t > 0,
k>1,n€(0,1/2). Assume €:Rsg — (0,1) satisfies for any s € Rsq that

(4.37) e(s) < s Mgt/ gy
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Then, at least one of the following holds.
(1)

TgAi(u) & X, or

- 1/Aq5
’{u € By(e) : Tg\i(u) is not (e, t)-Diophantine }‘ < Ein '

(2) There exists a nontrivial proper subgroup M € H so that for all u € By (e)

||77M(g)\k(u))|| < (E|g|A14 + EleAMt)n*AM’
e A e M) S e~ (Bl 4 ety
15

z€
(3) There exists a nontrivial proper normal subgroup M < G with
h(M) < By (el )4,
m%x Hz A '”MH < G(ht(M)l/A‘477/El)1/Al4_
zeBy

Proof of Theorem 1.2. Fix a sufficiently large constant D > 1 to be determined
later, and let & be as in Proposition 4.2. We may reduce &y further and assume
that (4.3) holds for all u € & and some fized i € {0,...,dim(G)}. Set for s > 0

e(s) = o Phi2/2g= s

Note that €(-) satisfies (4.37) whenever n > e~% and D is sufficiently large.

Observe now that for any u € & the point xA;(u) is not (e, A12¢;)-Diophantine.
Indeed, by Proposition 4.2 there exists for any u € &y a nontrivial proper Q-
subgroup L € H of G such that

Iz (gAk ()] < e125,

see the first estimate in (4.3), and moreover, by the second estimate in (4.3) when-
ever D > 2Aq4

max ||z A (gh(u))]| < e~ Plictiz
zEBU
< e PliAn/2e=AuAnt < (g (g e (w)]]).

We may apply Theorem 4.9 for n > 0 with Ejn'/415 = R~2* assuming « is small
enough so that #4™(&)+1 > 24,5k, Since || > R™2*, we obtain that Option (2)
or Option (3) in Theorem 4.9 holds. If (2) holds, we conclude with Option (1) in
Theorem 1.2. So assume that Option (3) of Theorem 4.9 holds for some nontrivial
proper normal subgroup M < G. In particular,

(4.38) max ||z A o] < e(bt(M) i/ By) A L em Pl
zebu

by definition of €(-). By Lemma 3.5, Lie(M) cannot contain a Levi subalgebra of
g and, in particular, M’ = M - R(G) is a proper normal subgroup of G where
R(G) denotes the (unipotent) radical of G. Clearly, the distance z to Lie(M’)
is at most the distance of z to Lie(M). These statements together show that
|z A oarr]| < ||z A wag]] for all z € By and thus Option (2) of Theorem 1.2 follows
from (4.38).

Moreover, we also note that there are only finitely many choices for M’, and
hence ht(M') <@g 1 (see [26, Lemma 8.6] for a more precise estimate). O
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