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Abstract. We prove an effective closing lemma for unipotent flows on quo-

tients of perfect real groups. This work is largely motivated by recent devel-

opments in effective unipotent dynamics.
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1. Introduction

An important and active research direction in homogeneous dynamics is the
quantitative theory of unipotent flows, in particular their equidistribution proper-
ties. The starting point of almost any approach to quantitative equidistribution or
density statements is a closing lemma: consider the trajectory of a one-parameter
unipotent subgroup ut.x in a quotient space G/Γ. Suppose for some (or many)
ti which are well separated, we have that the uti .x are close to each other. In
what sense and under what conditions can we say that uti .x are in general position
with respect to one another? And if not, what does this tell us about the original
point x?

Such issues played a central role already in the pioneering works of G.A. Margulis
(G.M.) and of Dani and G.M. on the Oppenheim Conjecture (see e.g. [5]) and in
more quantitative forms e.g. in the works by Einsiedler, Venkatesh, and G.M. in [7]
and E.L. and G.M. in [14]. More recently, such a closing lemma was used by two of
us (E.L. and A.M.) in [15] and with Zhiren Wang in [17]. Similar statements were
also used by Lei Yang in [27].

The present article seems to us to be of independent interest, but the main
impetus to its writing is that it plays an important role in a forthcoming work
of A.W. [26]. Loosely, the main result of [26] says that a sequence of periodic
orbits of a semisimple group (say H), inside a quotient Γ \G, becomes effectively
equidistributed as the volume of the periodic orbit tends to infinity unless there
is an obvious obstruction to this. The result of [26] gives an effective version of
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(a special case of) a qualitative result by Mozes and N.S. [22]. It extends the
work of Einsiedler, G.M., and Venkatesh [7], where a similar result was shown but
under the additional requirement that the centralizer of H in G is finite. As in [7],
the equidistribution result in [26] requires that G be a semisimple algebraic group
defined over Q, and Γ a congruence lattice as it relies on the deep spectral theory
available for such quotient spaces Γ \G, and more importantly their homogeneous
subspaces.

Originally, a closing lemma similar to the one we present here was an ingredient
in a yet unpublished work of four of us (the four first-named authors), giving an
effective density result for one-parameter unipotent flows (albeit with very poor
rates) on arithmetic quotients; another ingredient of that project was an effective
avoidance principle that appeared separately (and also seems to us to be of inde-
pendent interest) by the first four named authors in [16]. We also use the results of
[16] in this paper. For simplicity of the exposition, we limit ourselves to quotients
of real groups.

Let G < SLN be a perfect Q-group, let G = G(R) be its group of real points,
and let g = Lie(G) be its Lie algebra. Let Γ < G∩SLN (Z) be a lattice in G, and let
X = Γ \G. Finally, we fix a one-parameter unipotent subgroup U = {ut : t ∈ R}
of G and consider the action of this group on X.

At a crucial point in the argument in [26] (as well as in the unpublished work of
the first four authors mentioned above), one aims to understand whether or not a
unipotent orbit can spend a lot of time close to a local orbit of some Lie subgroup
of G, say with corresponding Lie algebra h < g. Note that no further information
on the h is provided; in particular, as opposed to the setting in [7], the Lie algebra
h might not be semisimple.

The following is a slightly more precise formulation of the question we consider
here. Suppose that x ∈ X is a point and T > 0 is a time parameter such that there
is a subset E ⊂ [0, T ] of sufficiently large measure so that for all s, t ∈ E

xus = xutgst(1.1)

where gst ∈ G is a displacement of bounded (or at least controlled) size which
normalizes the given Lie subalgebra h < g up to an error of, say, T−1. Of course,
if h is a Lie ideal (or very close to a Lie ideal), this scenario yields no information
on the initial point x. Otherwise, we wish to say that x (and in fact the whole
unipotent orbit for time T ) remains close to a periodic orbit of a proper subgroup
of G of ‘low complexity’.

We turn to an exact formulation of our main theorems. As in [16], we define
H to be the (countable) family of connected Q-subgroups of SLN whose radical is
unipotent. We say that M < SLN is of class H if M ∈ H. For any M ∈ H we
put M = M(R) and also write M ∈ H. We assume throughout the article that
G ∈ H; in fact, in the statement of the main theorem, we assume G is perfect
(i.e. G = [G,G]), though this is not used in much of the argument.

We fix once and for all a Euclidean norm ∥·∥ on MatN (R), which induces a norm
on slN (R) and on SLN (R). We write ∥ · ∥ also for the induced norms on exterior
products of slN (R). For g ∈ SLN (R) we let

|g| = max{∥g∥, ∥g−1∥}.
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For τ > 0 let

Xτ = {Γg ∈ X : min
0 ̸=v∈g(Z)

∥Ad(g)−1v∥ ≥ τ}.

These are compact subsets of X, and any compact subset of X is contained in Xτ

for some τ > 0.
Let g(Z) = g∩ slN (Z), and let rad(g) denote the radical of g. Recall that U is a

one-parameter unipotent subgroup of G; we write U = {ut = exp(tz) : t ∈ R} for a
nilpotent unit vector z ∈ g.

Let M ∈ H be a non-trivial proper subgroup of G and define

VM = ∧dim(M)g, ρM = ∧dim(M)Ad.

The representation ρM is defined over Q and the lattice
∧dim(M)

g(Z) is Γ-invariant.
For simplicity, we often write g.v = ρM (g)v for the action of g ∈ G on v ∈ VM . Let
vM ∈ VM be a primitive integral vector corresponding to the Lie algebra of M ; that
is, vM is one the two shortest non-zero integral vectors in the line ∧dim(M)Lie(M).
So, for any γ ∈ Γ, γ.vM = ±vγMγ−1 . We write g ∈ G 7→ ηM (g) = ρM (g−1)vM for
the (right-)orbit map at vM . The height of M is defined to be ht(M) = ∥vM∥.

For any Lie subalgebra h < g (not necessarily defined over Q) we write v̂h for

the point it defines in the projective space P(∧dim(h)g). For any 0 < r ≤ dim(g)
we equip P(∧rg) with the Fubini-Study metric d(·, ·) where the distance d(v̂ , ŵ) of
two points v̂ , ŵ ∈ P(∧rg) is the angle between the corresponding lines in ∧rg. If
the lines v̂ and ŵ are represented by pure wedges v1 ∧ . . . ∧ vr and w1 ∧ . . . ∧ wr,
respectively, for orthonormal collections of vectors v1, . . . , vr and w1, . . . , wr, then

sup
1≤i≤r

∥vi ∧ w1 ∧ · · · ∧ wr∥ ≪ d(v ,w) ≪ sup
1≤i≤r

∥vi ∧ w1 ∧ · · · ∧ wr∥.(1.2)

Theorem 1.1. Suppose that G is perfect. There exist constants A1, A2 > 1 de-
pending only on N , and E > 0 depending on N,G,Γ with the following property.
Let h < g be a (proper) subalgebra so that h + rad(g) is not a proper Lie ideal of g.
Let τ ∈ (0, 1), T > 0, and R > 0 with T > R > Eτ−A1 . Let x = Γg ∈ Xτ be a
point.

Suppose that there exists a measurable subset E ⊂ [−T, T ] with the following
properties:

(a) |E| > TR−1/A1 .
(b) For any s, t ∈ E there exists γst ∈ Γ with

∥u−sg
−1γstgut∥ ≤ R1/A1 ,

d
(
u−sg

−1γstgut.v̂h, v̂h
)
≤ R−1.

Then one of the following is true:

(1) There exists a nontrivial proper subgroup M ∈ H so that the following hold
for all t ∈ [−T, T ]:

∥ηM (gut)∥ ≤ RA2 ,

∥z ∧ ηM (gut)∥ ≤ T−1/A2RA2 .

(2) There exist a nontrivial proper normal subgroup M�G of class H contain-
ing the radical of G with

∥z ∧ vM∥ ≤ R−1/A2 .
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We also obtain an analogous version for multidimensional unipotent groups.
We follow the setup of [16, §2.9]. Let U < G be a unipotent subgroup and let
u be its Lie algebra. We fix a basis BU of u consisting of unit vectors and set
Bu(0, δ) = {

∑
z∈BU

az z : |az | ≤ δ} for δ > 0 as well as BU (e) = exp(Bu(0, 1)).

Let λ : u → u be an R-diagonalizable expanding linear map (all eigenvalues
have absolute value > 1). For any k ∈ Z and any u = exp(z) ∈ U , we set
λk(u) = exp(λk(z)). We note that λk ◦ λℓ = λk+ℓ. We shall assume that there
exists k0 ∈ N such that for every integer k > k0,

exp
(
λk−k0

(Bu(0, 1))
)

exp
(
λk−1(Bu(0, 1))

)
⊂ exp

(
λk(Bu(0, 1))

)
.(1.3)

Since the exponential map exp : u → U pushes the Lebesgue measure on u to a
Haar measure, denoted by | · |, on U , for any measurable B ⊂ U and k ∈ Z,

|λk(B)| = |det(λ)|k|B|.(1.4)

The expanding map λ could, for instance, be given by an expanding automor-
phism of u. Another example is given by expanding the different partial quotients
in the lower central series of u with suitable rates; see [16, §2.9].

To avoid cumbersome statements, we suppose throughout that any constant that
is allowed to depend on N and ht(G) is also (implicitly) allowed to depend on ∥λ∥,

∥λ−1∥, |λ1(BU (e))|
|BU (e)| = |det(λ)|, and k0.

The following is our main theorem in this more general setting.

Theorem 1.2. Suppose that G is perfect. There exist constants A3, A4 > 1 de-
pending only on N , and E > 0 depending on N,G,Γ with the following property.
Let h < g be a (proper) subalgebra so that h + rad(g) is not a proper Lie ideal of g.
Let τ ∈ (0, 1), k ∈ N, and R > 0 with ek > R > Eτ−A3 . Let x = Γg ∈ Xτ be a
point.

Suppose that there exists a measurable subset E ⊂ BU (e) with the following
properties:

(a) |E| > R−1/A3 .
(b) For any u, u′ ∈ E there exists γ ∈ Γ with

∥λk(u)−1g−1γgλk(u′)∥ ≤ R1/A3 ,

d
(
λk(u)−1g−1γgλk(u′).v̂h, v̂h

)
≤ R−1.

Then one of the following is true:

(1) There exist a nontrivial proper subgroup M ∈ H so that the following hold
for all u ∈ BU (e):

∥ηM (gλk(u))∥ ≤ RA4 ,

max
z∈BU

∥z ∧ ηM (gλk(u))∥ ≤ e−k/A4RA4 .
(1.5)

(2) There exist a nontrivial proper normal subgroup M ∈ H containing the
radical of G with

max
z∈BU

∥z ∧ vM∥ ≤ R−1/A4 .

It is worthwhile noting that the assumptions of the theorem and the conclusion
in (1.5) only depend on the point x and not the choice of its representative g: The
element hu,u′ := λk(u)−1g−1γgλk(u′) appearing in the assumption (b) is such that
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xλk(u′) = xλk(u)hu,u′ ; and the choice of the subgroup M in Option (1) of the
conclusion depends on g, and replacing g by γ1g for some γ1 ∈ Γ exchanges M for
γ−1
1 Mγ1.

This paper is structured as follows. In §2, we establish various facts pertaining
to Q-groups generated by lattice elements. In §3, we show that a Lie algebra h
as in the main theorems cannot be ‘almost’ invariant under a generating set of G
consisting of ‘small’ lattice elements. In §4, we finally prove Theorem 1.2 crucially
using the results from [16].

Conventions. Given S, T > 0 we write S ≪ T when S ≤ cT for a constant c > 0
depending only on N and S ≪a T when c > 0 is allowed to depend additionally on
an object a. It will also be useful to denote by ⋆ a constant placeholder allowed to
depend only on N so that S ≤ T ⋆ if there is A = A(N) > 0 with S ≤ TA. We use
throughout the article constants A• that are only allowed to depend on N and are
typically larger than 1.

2. Heights of groups generated by lattice elements

2.1. Chevalley representations for groups of class H. The following is a clas-
sical theorem of Chevalley (see for instance [1, Ch. II, Thm. 5.1] or [2, Prop. 2.4]).

Theorem 2.1. Suppose that M < SLN is a subgroup. Then there exists a rational
representation ρ : SLN → SL(W ) and a non-zero vector w ∈ W such that

M = {g ∈ SLN : ρ(g)w ∧ w = 0}.

If M is defined over Q, one can find ρ and w also defined over Q.

In the following, we shall call such a pair (ρ,w) a Chevalley pair for M; for such
a pair, we will call ρ the Chevalley representation and w the Chevalley vector. The
following proposition allows us to control the height of the Chevalley vector w as
well as the occurring representations ρ when M ∈ H.

Proposition 2.2 (Chevalley representations and heights). There exists a finite
collection P = P(N) = {ρ : SLN → SLdim(ρ)} of integral1 representations of SLN

and constants A5 > 0 and c1 > 1 depending only on N with the following property.
Let M < SLN be a Q-subgroup of class H. Then there exists ρ ∈ P and a vector

w ∈ Zdim(ρ) satisfying

c1
−1ht(M)1/A5 ≤ ∥w∥ ≤ c1ht(M)A5

so that (ρ,w) is Chevalley pair for M.

It is easy to see that Proposition 2.2 cannot be true for all connected Q-groups.
Indeed, the proposition implies a uniform bound on the minimal degree of poly-
nomials defining subgroups of class H. Such a bound cannot exist for arbitrary
Q-subgroups. For example, one can take the subtori Td of the diagonal torus
A < SL3 given by the additional equation x22 = xd

11.
To prove Proposition 2.2, we start with the aforementioned uniform degree

bound.

1Here, we call a rational representation ρ : SLN → SLm integral if the coefficients of the polyno-
mials defining ρ are integers, and in particular ρ(SLN (Z)) ⊂ SLm(Z).
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Lemma 2.3 (Degree bound). There exists an integer d ≥ 1 depending only on N
so that any connected Q-subgroup M < SLN of class H is defined (as a subvariety
of MatN ) by rational polynomials of degree at most d.

In particular, there exists a finite collection P ′ = P ′(N) of integral representa-
tions of SLN such that for any connected subgroup M < SLN of class H there exists
ρ ∈ P ′ and w ∈ Zdim(ρ) so that (ρ,w) is a Chevalley pair for M.

Proof. Assuming the degree bound has been established, the second part of the
lemma can be deduced as follows. Let I ⊂ Q[MatN ] be the ideal of polynomials
vanishing on M and let Id ⊂ I be the subset of polynomials of degree at most d.
The regular representation of SLN on the space of all polynomials Vd on SLN with
degree at most d satisfies that the stabilizer of Id is M. The statement of the lemma
follows by taking the representation of SLN on the dim(Id)-th exterior product of
Vd. We also remark that the representation ρ obtained in this manner satisfies that
the entries of ρ(g) are polynomials of degree ≪N 1 in the entries of g.

It remains to prove the first part of the lemma, and in fact, it suffices to verify
that claim over the algebraic closure. Indeed, let f be a polynomial vanishing on M
and let A be the finite-dimensional vector space over Q generated by the coefficients
of f . Then f can be written as f =

∑
i αifi where {αi} is a basis of A and the

polynomials fi are rational and of degree at most deg(f). By linear independence
and Zariski density of M(Q) ⊂ M (cf. [1, Ch. 5, Cor. 18.3]), the polynomials fi
also vanish on M.

We have reduced the lemma to the claim that any Q-subgroup M with radical
equal to its unipotent radical may be defined by polynomials of degree ≪N 1.
Suppose first that M is semisimple. The representation theory of semisimple Lie
algebras (see e.g. [12]) shows that for any semisimple Lie algebra h the number of
SLN (Q)-orbits of homomorphisms h → slN defined over Q is finite. In particular,
there are finitely many SLN (Q̄)-conjugacy classes of subgroups with Lie algebra
isomorphic to Lie(M). Moreover, there are finitely many isomorphism classes of
semisimple Lie algebras of dimension at most dim(SLN ). This shows the claim for
semisimple subgroups.

If the subgroup M is unipotent, it is conjugate to a subgroup of the group of
upper triangular unipotent matrices U < SLN . Subgroups of U correspond to
subalgebras of Lie(U) via the logarithm map. As subalgebras can be defined by
linear equations, subgroups of U can be defined by equations with degree bounded
by the degree of the logarithm map (which is N − 1).

Suppose now that M is general. As the unipotent case has already been es-
tablished, let (π,w) be a Chevalley pair for the unipotent radical UM of M. In

particular, k = dim(π) ≪N 1. Let W ⊂ Qk
be the subspace of vectors fixed by

UM under π; by changing basis (over Q) we may suppose that W = ⟨e1, . . . , er⟩.
Thus, π(M) can be viewed as a semisimple subgroup of GLr after restricting to W .
By the already proven statement for semisimple subgroups, π(M) can be defined
by polynomials equations of degree ≪k 1, and by the pullback, the same holds for
M. □

Proof of Proposition 2.2. Let M < SLN be a Q-subgroup of class H and let (ρ,w)
be a Chevalley pair for M as constructed in Lemma 2.3. Note that we have no
control on the size of w at this point. Let W ⊂ Qdim(ρ) be the subspace of vectors
fixed under M(Q).
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For a more explicit description, let v1, . . . , vm be a Q-basis of m < slN consisting
of integral vectors with ∥vi∥ ≪ ht(M)⋆ (using Minkowski’s second theorem). Then

W = {w ′ ∈ Qk : Dρ(vi)w ′ = 0 for all i}.

Then W has height ht(W ) ≪ ht(M)⋆. Thus, there is a basis w1, . . . ,wdim(W ) of W
consisting of integral vectors with ∥wi∥ ≪ ht(M)⋆. If g ∈ SLN satisfies ρ(g)wi = wi

for every i then ρ(g)w = w (since w ∈ W ) and hence g ∈ M.

Let Ŵ =
⊕dim(W ) Qdim(ρ) where

⊕dim(W ) Zdim(ρ) is the set of integer points

in Ŵ and the Euclidean norm on Ŵ is the direct sum of the Euclidean norms
in the factors. Let ρ̂ be the representation of SLN on Ŵ obtained from ρ. The
integral vector ŵ = w1 ⊕ . . . ⊕ wdim(W ) satisfies ∥ŵ∥ ≪ ht(M)⋆ and M = {g ∈
SLN : ρ̂(g)ŵ = ŵ} by the observations above. This proves the upper bound in the
proposition. For the lower bound, notice that m = {v ∈ slN : Dρ̂(v)ŵ = 0} implies
ht(m) ≪ ∥ŵ∥⋆. This concludes the proof. □

2.2. A bound on the number of the connected components. There is no
general bound on the number of connected components of Q-subgroup M < SLN .
For example, one may view for every k ∈ N the group of k-th roots of unity as
Q-subgroups of the multiplicative group Gm. These finite groups contain very few
rational points, and the following holds true.

Lemma 2.4. Let M ⊂ SLN be a Q-subgroup with M(Q) ⊂ M Zariski-dense. Then

[M : M◦] ≪N 1

where M◦ is the identity component of M.

The proof utilizes the subgroup MH defined in [16]: the largest subgroup of M
of class H. Note that MH is a normal subgroup of M. We also use the following
simple lemma.

Lemma 2.5. Let T < SLN be a non-trivial torus. The centralizer of T is connected
and reductive. Moreover, the center of the centralizer has at most ON (1) connected
components and the identity component is a torus.

Proof. Without loss of generality, we assume that T is contained in the diagonal
subgroup A. Let χij for 1 ≤ i ̸= j ≤ N be the roots of A given by χij(a) = aii

ajj
.

Let Ω be the (possibly empty) set of roots which are trivial on T and let C =⋂
χ∈Ω ker(χ) ⊃ T. After permutation, we may assume that there are 1 = i0 < i1 <

. . . < ik = N such that

C = {a ∈ A : aii = ajj for all ik′ ≤ i, j ≤ ik′+1 where k′ ≤ k}.

A simple calculation shows that the centralizer L of C is the subgroup of block
matrices consisting of blocks of size i1 × i1, (i2 − i1) × (i2 − i1) and so on. In
particular, L is reductive and connected. The roots outside the diagonal blocks
that define L are non-trivial on T by construction; hence, the centralizer of T is L.
Lastly, note that the center C of L is isomorphic to

{(x1, . . . , xk) : xi1
1 · · ·xik−ik−1

k = 1}.

Clearly, this variety has at most ON (1) connected components, and the identity
component is a torus. □
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Proof of Lemma 2.4. Assume first that M◦ is trivial. By classical work of Minkowski
[20] (see also e.g. [11, 24]), the cardinality of finite subgroups of GLm(Q) is uni-

formly bounded in terms of m. (The simple bound of 3m
2

follows from the fact that
the kernel of GLm(Z) → GLm(Z/3Z) is torsion-free.) In particular, |M(Q)| ≪N 1
and so the claim in this case follows from Zariski-density of M(Q) in M.

Suppose now that T = M◦ is a non-trivial Q-torus. There are finitely many
automorphisms T → T obtained through conjugation by elements in SLN , and
the number of such automorphisms is bounded in terms of dim(T). Indeed, the
normalizer of T contains the centralizer of T with finite index [1, p. 117] and acts
on the group of Q-characters of T with kernel the centralizer of T. The group
of characters is isomorphic to Zdim(T) and so by the bound on the order of finite
subgroups of GLdim(T)(Q) (discussed at the beginning of the proof) the above claim
holds. Any element of M defines an automorphism of T and, after switching to a
subgroup of index ≪N 1, we may suppose that M acts trivially on T. Equivalently,
M is contained in the centralizer L of T which is reductive by Lemma 2.5.

Let ρ be the adjoint representation of L. The image of M under ρ is a finite
subgroup equal to ρ(M(Q)) by Zariski density. As in the first case where M◦ was
trivial, this implies that |ρ(M(Q))| ≪N 1. We may thus replace M by the kernel
of ρ|M so that M is contained in the center C of L. We may further assume that
M ⊂ C◦ by Lemma 2.5.

Let F/Q be a Galois extension splitting the torus C◦. Note that [F : Q] ≪N 1
since C◦ < SLN . If χ is an F -character on C◦ with χ|T = id, then χ(M(Q)) ⊂ F× is
a finite subgroup. Necessarily, χ(M(Q)) consists of roots of unity in F . The degree
of a primitive root of unity in F is controlled by [F : Q] and hence |χ(M(Q))| ≪N 1.
We apply this discussion to a minimal generating set of F -characters for C◦/T to
obtain a morphism ϕ : C◦ → Gr

m defined over F with kernel T and |ϕ(M)| ≪N 1
where r = dim(C◦) − dim(T). This proves the lemma when M◦ is a Q-torus.

Turning to the general case, let (ρ,w) be a Chevalley pair for the group MH as
found in Lemma 2.3. Considering the MH-fixed vectors under ρ, we obtain (by re-
striction) a representation ρ′ : NMH → SLm defined over Q where m ≤ dim(ρ) and
ker(ρ′) = MH. To conclude the proof, it suffices to show that [ρ′(M) : ρ′(M◦)] ≪m

1. But ρ′(M◦) is a (possibly trivial) Q-torus and ρ′(M)(Q) ⊃ ρ′(M(Q)) is dense
in ρ′(M) so the already proven special cases imply the lemma. □

2.3. Q-groups generated by lattice elements. If γ ∈ SLN (K) for K a number
field we define the height of γ to be ht(γ) =

∏
v max{1, |γij |v} where v runs over all

places of K. For γ ∈ SLN (Q) thisdefinition reduces to ht(γ) = mmax(|γij |), where
m ∈ Q>0 is minimal such that mγ ∈ MatN (Z).

Proposition 2.6. There exists A6 > 0 depending on N with the following property.
Let γ1, . . . , γk ∈ SLN (Q) with ht(γi) ≤ T for all i and consider the Q-subgroup

M = ⟨γ1, . . . , γk⟩
z
< SLN .

Then ht(MH) ≪ TA6 .

We will reduce Proposition 2.6 to the case where M is connected. To that end,
we will apply Lemma 2.4, which implies the following by a standard argument.
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Lemma 2.7. There exists A7 > 0 and k0 ∈ N depending only on N with the
following property. Let T > 2 and γ1, . . . , γk ∈ SLN (Q) with ht(γi) ≤ T . Set

M = ⟨γ1, . . . , γk⟩
z
.

Then there exist k′ ≤ k0k and η1, . . . , ηk′ ∈ SLN (Q) with ht(ηi) ≤ TA7 and

M◦ = ⟨η1, . . . , ηk′⟩
z
.

Proof. We begin with an elementary observation: If F is a finite group and S is a
generating set of F containing 1, then there exists ℓ ≤ |F| with Sℓ = F . Indeed, as
1 ∈ S we have an ascending sequence S ⊂ S2 ⊂ S3 ⊂ . . . and there must be some
ℓ ≤ |F| with Sℓ = Sℓ+1. But in that case, Sℓ is invariant under multiplication by S
and, as S is a generating set, Sℓ = F . We apply this discussion to F = M/M◦. In
view of Lemma 2.4 we may replace the generating set S = {γ1, . . . , γk} and assume
that any coset of M0 in M is represented by some element of the generating set.

We fix representives id = c1, c2, . . . , cI ∈ S of each coset where I = [M : M0] ≪N

1. For any 1 ≤ i ≤ I and 1 ≤ j ≤ k write

ciγj = mijckij
(2.1)

for some kij ≤ I and mij ∈ M0(Q). In particular, γj = m1jck1j . Note that
∥mij∥ ≪ T ⋆.

We claim that the elements mij generate a dense subgroup of M0: By con-
struction the group ∆ = ⟨γ1, . . . , γk⟩ ∩ M0(Q) is dense in M0. For any word
ω = γj1 · · · γjr ∈ ∆ successive applications of (2.1) show that ω is a word in the
elements mij which concludes the claim and hence the lemma. □

Proof of Proposition 2.6. By Lemma 2.7, we may assume without loss of generality
that M is connected.

Case 1: H-groups. Suppose that M is a group of class H. Let Vd be the space
of polynomials on MatN of degree at most d and let Id ⊂ Vd be the subspace of
such polynomials vanishing on M. Here, we take d ∈ N to be the degree bound
obtained in Lemma 2.3. It suffices now to show that ht(Id) ≪ T ⋆. Set γ0 = id
for convenience and assume without loss of generality that the generating set is
invariant under inversion. For any m ≥ 1, consider the following linear map:

ϕm : Vd → Q(k+1)m , p 7→ (p(γi1 · · · γim))ki1,...,im=0.

By construction,

ker(ϕ1) ⊃ ker(ϕ2) ⊃ ker(ϕ3) ⊃ . . .

Let m ≤ dim(Vd) be minimal such that ker(ϕm) = ker(ϕm+1). We claim ker(ϕm) is
invariant under the action of γ1, . . . , γk. Indeed let p ∈ ker(ϕm) = ker(ϕm+1), then
for any word w of length m in {γi}, we have

γi.p(w) = p(wγi) = 0.

This implies ker(ϕm) is invariant under ⟨γ1, . . . , γk⟩, hence, ker(ϕm) = ker(ϕm+ℓ)
for all ℓ ≥ 0. In particular,

ker(ϕm) =
⋂
ℓ≥1

ker(ϕℓ).

The above and Zariski-density of ⟨γ1, . . . , γk⟩ implies that ker(ϕm) = Id.
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Note, however, that since m ≤ dim(Vd), the subspace ker(ϕm) has height ≪ T ⋆,
so the proposition follows in this case.

Case 2: General groups. To simplify the discussion, we apply the (multi-
plicative) Jordan decomposition – see [1, §4]. For each γi write γi = γs

i γ
u
i = γu

i γ
s
i

where γu
i is unipotent and γs

i is semisimple. Moreover, γu
i , γ

s
i ∈ M(Q) and, us-

ing the fact that γu
i , γ

s
i may be expressed as polynomials in γi depending on the

coefficients of the characteristic polynomial, we have ht(γu
i ) ≪ T ⋆ and ht(γs

i ) ≪ T ⋆.
Consider the subgoup of M defined as the Zariski closure of the group generated

by all commutators [γi, γj ] and all unipotent elements γu
i . We claim it is equal to

MH. By what we have already proved this will show ht(MH) ≪ T ⋆.
To prove this remaining claim, let S1 = {[γi, γj ], γ

u
i } and define inductively

Sℓ+1 = Sℓ ∪ {[γi, s] : i ≤ k, s ∈ Sℓ}.

Moreover, we let Mℓ be the Zariski-closure of the group generated by Sℓ. By
construction, M1 ⊂ M2 ⊂ . . . and by Lemma 2.4 there exists ℓ bounded by some
constant depending only on N with Mℓ+1 = Mℓ. Then Mℓ is normal in M as we
have

γjsγ
−1
j = [γj , s]s

−1 ∈ Mℓ+1 = Mℓ.

for any s ∈ Sℓ and any j ≤ k. By construction, Mℓ is contained in MH since
any character on M is trivial when restricted to Mℓ. Moreover, note that the
connected group M/Mℓ is a torus. Indeed, it is abelian as γiγjMℓ = γjγiMℓ

for all i, j, and it is the Zariski closure of the group generated by the semisimple
elements γiMℓ = γs

iMℓ. This shows that Mℓ = MH. The proposition now follows
from Case 1 applied to Mℓ. □

3. Almost invariant Lie algebras

The following proposition shows that a Lie algebra which is ‘almost invariant’
under the action of G via the adjoint representation is close to an ideal. Later in
the section, the separation of ideals in the semisimple case will further restrict the
options for such a Lie algebra.

Proposition 3.1. There exists A8 > 0 and c2 > 1 depending only on N with
the following property. Let G < SLN be a Q-subgroup of class H. Let h < g be
a subalgebra, let R > 0, and δ ∈ (0, 1). Suppose that γ1, . . . , γk ∈ Γ satisfy the
following:

(a) ∥γi∥ ≤ R for all i = 1, . . . , k.
(b) For all i = 1, . . . , k we have d(γi.v̂h, v̂h) ≤ δ.
(c) The group generated by γ1, . . . , γk is Zariski-dense in G.

Then one of the following holds:

(1) δ ≥ c2ht(G)−A8R−A8 .
(2) There exists a Lie ideal h′ � g with dim(h) = dim(h′) and

d(v̂h, v̂h′) ≤ δ1/A8 .

The proof uses a variant of  Lojasiewiecz’s inequality [18].  Lojasiewiecz’s inequal-
ity generally asserts that a point with a small value for a real analytic function must
be close to its zero locus (see also [19, Thm. 4.1]). Here, we shall use an effective
version of this statement for polynomials (in view of the effective dependency on
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the height of G in Proposition 3.1). The height of a polynomial f ∈ Z[x1, . . . , xn]
is the maximum of its coefficients in absolute value.

Theorem 3.2 (Solernó [25]). For any d ∈ N, there exists A(d) > 1 with the
following property.

Let h > 1 and let f1, . . . , fr ∈ Z[x1, . . . , xn] have degree at most d and height at
most h. Let V ⊂ Rn be the zero locus of f1, . . . , fr. Then for w ∈ Rn

min{1,d(w, V )} ≪d (1 + ∥w∥∞)A(d)hA(d) max
1≤i≤r

|fi(w)|1/A(d),

where d(w, V ) = infv∈V d(w, v), so if V = ∅, then d(w, V ) = ∞.

Proof. When V is non-empty, the statement follows directly from [25, Thm. 7]. So
suppose that V is empty. Let y be an auxiliary variable and consider the variety
Ṽ ⊂ Rn+1 cut out by the equations yfi(x1, . . . , xn) = 0. Since V is empty, Ṽ is

equal to the subspace {y = 0}. Applying [25, Thm. 7] for the variety Ṽ and the
point (w, 1) ∈ Rn+1 for w ∈ Rn we obtain

1 = d((w, 1), Ṽ ) ≪ (1 + ∥w∥∞)⋆h⋆ max
1≤i≤r

|fi(w)|⋆

and the theorem follows. □

The above theorem extends the work of Brownawell [3], who proved the analo-
gous result over C. We remark that it may also be established using Greenberg’s
approach [9, 10] as communicated privately to authors by W. Kim and P. Yang;
see also [16, Appendix A] for a related discussion.

Proof of Proposition 3.1. Fix an orthonormal basis w1, . . . ,wh of h with respect to
a Euclidean norm on slN (R). By the assumption (a) of the proposition, we have

max(∥Ad(γi)∥, ∥Ad(γi)
−1∥) ≪ |γi|∗ ≪ R⋆.

Using the assumption (b) and the definition of the Fubini-Study metric (see (1.2)),
we have for every i ≤ k and ℓ ≤ h

∥Ad(γi)wℓ ∧ w1 ∧ . . . ∧ wh∥ ≪ R⋆
∥∥∥ Ad(γi)wℓ

∥Ad(γi)wℓ∥
∧ w1 ∧ . . . ∧ wh

∥∥∥
≪ R⋆δ.

(3.1)

We apply Theorem 3.2 to the variety V of tuples (w ′
1, . . . ,w ′

h) ∈ gh with Ad(γi)w ′
ℓ∧

w ′
1∧ . . .∧w ′

h = 0 for all i, ℓ and [w ′
ℓ1
,w ′

ℓ2
]∧w ′

1∧ . . .∧w ′
h = 0 for all ℓ1, ℓ2. Therefore,

from (3.1), and since [wℓ1 ,wℓ2 ] ∧ w1 ∧ . . . ∧ wh = 0 for all ℓ1, ℓ2, we get

min{1,d((w1, . . . ,wh), V )} ≪ ht(G)⋆R⋆δ⋆.

Suppose that Option (1) of the conclusion of the proposition does not hold. Then
δ ≤ ht(G)−AR−A/C for some large A,C > 0 and, in particular,

d((w1, . . . ,wh), V ) ≤ δ⋆.

Thus, there exists (w ′
1, . . . ,w ′

h) ∈ V with ∥wℓ − w ′
ℓ∥ ≤ δ⋆ for every ℓ. By con-

struction, the subalgebra h′ spanned by w ′
1, . . . ,w ′

h is Ad(γi)-invariant for every i
and hence, by the Zariski-density assumption (c) of the proposition, h′ is Ad(G)-
invariant. In other words, h′ is a Lie ideal, and Option (2) of the conclusion of the
proposition follows. □
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The following lemma asserts that in the semisimple case, a Lie algebra cannot
be too close to an ideal unless it is an ideal itself.

Lemma 3.3. There exist A9 > 0 and c3 > 0 depending only on N with the following
property. Suppose that g is semisimple and that h is a Lie subalgebra of g for which
there exists a Lie ideal h′ � g with dim(h) = dim(h′) and

d(v̂h, v̂h′) ≤ c3ht(G)−A9 .

Then h = h′ and, in particular, h is a Lie ideal.

Proof. We prove the analogous stronger statement for complex subalgebras of g⊗C.
We begin by bringing g into a ‘simpler’ form (similarly to the proof of Lemma 2.3).

By the representation theory of semisimple Lie algebras (see e.g. [12]), there are
finitely many SLN (Q)-conjugacy classes of embeddings of any semisimple Q-Lie al-
gebra into slN . Also, there are finitely many Q-isomorphism classes of semisimple
Lie algebras that embed into slN . In particular, there exists a finite list g1, . . . , gk
of subalgebras of slN (which can be taken defined over Q) such that any Lie algebra
g as in the lemma is conjugate to some gi over Q. The variety

{g ∈ SLN : Ad(g)g = gi}

is hence non-empty. In view of [23, Prop. 65] there must exist g ∈ SLN (Q) of height
≪ ht(G)⋆ such that Ad(g)g = gi. In particular, |g| ≪ ht(G)⋆. Considering the Lie
algebra Ad(g)h, the above discussion hence reduces the lemma to the case g = gi,
and we may ignore the dependency on the height of G from now on.

Now suppose that d(v̂h, v̂h′) ≤ δ for some δ > 0. Write g = h′ ⊕ h′′ for another
ideal h′′ and π′, π′′ for the respective projections onto h′, h′′. We have for any w ∈ h

∥π′′(w)∥ = ∥π′(w) − w∥ ≪ δ⋆∥w∥

by assumption. In particular, π′|h is an isomorphism for δ sufficiently small. The Lie
algebra homomorphism ϕ = π′′ ◦ (π′|h)−1 : h′ → h′′ then satisfies ∥ϕ(w)∥ ≪ δ⋆∥w∥.
We wish to show that ϕ = 0 unless δ is not small.

So suppose there is a simple factor s of h′ ⊗C with ϕ|s ̸= 0. In particular, ϕ|s is
injective. Let w ∈ s be any unit vector, λ an eigenvalue for the ad(w)-action on s,
and u ∈ s non-zero with [w , u] = λu. Then

|λ|∥ϕ(u)∥ =
∥∥[ϕ(w), ϕ(u)]

∥∥ ≤ ∥ϕ(w)∥∥ϕ(u)∥

and so |λ| ≪ δ⋆ since ϕ(u) ̸= 0. Since there are only finitely many ideals s, this is
a contradiction if δ is sufficiently small. □

The following upgrades Proposition 3.1 to the situation considered in Theo-
rem 1.2.

Proposition 3.4. There exists A10 > 0 and c4 > 1 depending only on N with the
following property. Let G < SLN be a perfect Q-subgroup. Let h < g be a proper
subalgebra such that h + rad(g) is not a proper Lie ideal of g. Let R ≥ 1, and
δ ∈ (0, 1). Suppose that γ1, . . . , γk ∈ Γ satisfy the following:

(a) ∥γi∥ ≤ R for all i = 1, . . . , k.
(b) For all i = 1, . . . , k we have d(γi.v̂h, v̂h) ≤ δ.
(c) The group generated by γ1, . . . , γk is Zariski-dense in G.

Then δ ≥ c4ht(G)−A10R−A10 .
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We use the following observation about perfect groups to prove the proposition.

Lemma 3.5. Suppose that g is perfect and that h� g is a Lie ideal which contains
a Levi subalgebra of g. Then h = g.

Proof. Let u0 = rad(g) � u1 = [u0, u0] � u2 = [u0, u1] � . . . be the lower central
series of the (nilpotent) radical of g. As h contains a Levi subalgebra, h + u0 = g.
Moreover, if h + ui = g then as h is an ideal

g = [g, g] = [h, g] + [ui, h] + [ui, ui] ⊂ h + ui+1

and so the claim follows by induction. □

Proof of Proposition 3.4. By Proposition 3.1 we may either reach the desired con-
clusion, or there exists a Lie ideal h′ � g with dim(h′) = dim(h) and d(v̂h, v̂h′) ≤
δ1/A8 . In particular, the projections of h, h′ to g/rad(g) are at distance ≪ ht(G)⋆δ⋆.
In view of Lemma 3.3 either δ ≫ ht(G)−⋆ (in which case we again conclude) or
the projections of h, h′ to g/rad(g) agree. In the latter case, by assumption on h
the projection of h is not a proper ideal and so h and h′ surject onto g/rad(g). In
particular, h′ contains a Levi subalgebra. By Lemma 3.5 we have h′ = g and so
h = g which is a contradiction. □

4. Proof of Theorem 1.2

In the following, we let τ ∈ (0, 1) and let x = Γg ∈ Xτ . Furthermore, we fix
k ∈ N and R ≥ 1, where we assume that R < ek and R > Cτ−A for some large
constants C,A to be determined in the course of the proof, where A is allowed
to depend on N and C is allowed to depend on N,G,Γ. Moreover, a proper Lie
subalgebra h < g is given with the property that h+rad(g) is not a proper Lie ideal
of g.

We suppose that there exists a measurable subset E ⊂ BU (e) with the following:

(A1) |E| > R−κ.
(A2) For any u,w ∈ E there exists γ ∈ Γ with

∥λk(w)−1g−1γgλk(u)∥ ≤ Rκ,

d(λk(w)−1g−1γgλk(u).v̂h, v̂h) ≤ R−1.

Here, a small κ > 0, depending only on N , will be determined during the proof;
and we will choose A large enough so that κA ≥ 2k0, and hence Rκ > e2k0 , where
k0 is as in (1.3).

Throughout the proof, we will use the notation from the introduction.
The main step in the proof of Theorem 1.2 (namely Proposition 4.2 below)

consists of showing that there is a ‘large’ set of points in BU (e) for which the
associated point along the orbit through x is not ‘Diophantine’ (cf. [16, Def. 3.1])
in a specific sense. We then apply the main theorem of [16].

4.1. Visits to cusp neighborhoods. We first shrink E slightly to control the
height in the cusp. To that end, one wishes to apply non-divergence results for
unipotent flows — see, for instance, the papers [4, 6, 13]. We will use the following
effective version of the non-divergence theorem proven in [16].

Theorem 4.1 ([16, Theorem 6.3]). There exist a constant A11 > 0 depending
on N and a constant C1 > 0 depending polynomially on ht(G) with the following
property.
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For any g ∈ G, η ∈ (0, 1/2), and k ≥ 1 at least one the following holds:

(1) We have

|{u ∈ BU (e) : Γgλk(u) ̸∈ Xη}| ≤ C1η
1/A11 .

(2) There exists a non-trivial proper subgroup M ∈ H such that for all u ∈ BU (e)

∥ηM (gλk(u)∥ ≤ C1|g|A11η1/A11 ,

max
z∈BU

∥z ∧ ηM (gλk(u)∥ ≤ C1|g|A11η1/A11e−k/A11 .

Moreover, M = NH
U for some unipotent subgroup U < G where NU is the

normalizer of U.

By [16, Lemma 2.8], there exists F > 0 (depending only on N) and EG > 0
depending on the geometry of Γ\G so that for any y ∈ Xτ we can find g0 ∈ G with
Γg0 = y and

|g0| ≤ EGτ−F ;(4.1)

see also [21] for more precise statements.
Applying Theorem 4.1 with η = R−4A11κ, our given point x ∈ Xτ , and a repre-

sentative g ∈ G of x as in (4.1) we have

|{u ∈ BU (e) : xλk(u) ̸∈ XR−4A11κ}| ≤ R−2κ

or Option (2) of Theorem 4.1 holds. In the latter case Option (1) of the conclusion
of Theorem 1.2 holds, because due to our assumption that R ≫ τ−⋆ we have
|g| ≤ EGτ−F ≪ R⋆. Recall here that, in view of the comment after Theorem 1.2,
it is enough to verify the conclusion of Theorem 1.2 for any choice of a representative
g of x.

In particular, we assume from now on — after discarding a subset of E of size at
most R−2κ — that the following holds:

(A3) For any u ∈ E we have xλk(u) ∈ XR−4A11κ .

4.2. A large set of non-Diophantine points. Assume that E is such that (A1),
(A2), and (A3) hold for some κ > 0 (fixed, but small). We further fix some
θ ∈ (0, 1), to be determined in the course of the proof, with θdim(G)+1 > κ. Set

ℓi = ⌊θdim(G)+1−i log(R)⌋, for i = 0, . . . ,dim(G) + 1.(4.2)

Note that ℓi+1 ≥ ⌊θ−1⌋ℓi, and 2k0 ≤ ℓ0 ≤ . . . ≤ ℓdim(G)+1 < k. The aim of this
subsection is to prove the following claim that plays a key role in the proof of
Theorem 1.2.

Proposition 4.2. For any D > 1 there exist κ, θ ∈ (0, 1) and A12 > 1 (depending
only on N,D), and a measurable subset E0 ⊂ E with |E0| ≫ |E| and with the
following property: for any w ∈ E0 there exists i ∈ {0, . . . ,dim(G)} and a proper
Q-subgroup L < G of class H such that

∥ηL(gλk(w))∥ ≤ eℓiA12 ,

max
z∈BU

∥z ∧ ηL(gλk(w))∥ ≤ e−DℓiA12 .
(4.3)

The rest of the subsection is dedicated to the proof of Proposition 4.2. As before,
θ, κ are fixed small constants to be determined during the proof.
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4.2.1. A set of good density points. The following technical lemma constructs the
desired subset E0 of points with good density simultaneously for all scales ℓi.

Lemma 4.3. There exists a measurable subset E0 ⊂ E with |E0| ≫ |E| such that
for every i = 0, . . . ,dim(G) + 1 and every w ∈ E0 we have

|{u ∈ E : λk(u) ∈ λk(w)λℓi(BU (e))}| ≫ |E| |λℓi(BU (e))|
|λk(BU (e))|

(4.4)

as well as

|{u ∈ BU (e) : λk(w)λℓi(u) ∈ λk(E)}| ≫ |E|.(4.5)

Proof. In the following, we will use the fact that for all ℓ ≥ 1, λℓ(·) scales the Haar
measure on U by a constant factor (indeed, the Haar measure on U corresponds to
the Lebesgue measure on the Lie algebra u via the exponential map).

We construct by downward induction on i subsets Ei so that Ei satisfies the
lemma for all i′ ≥ i. For i = dim(G) + 1, let U ′ ⊂ BU (e) be a maximal subset
such that the translates λk(u)λℓdim(G)+1−2k0

(BU (e)) for u ∈ U ′ are pairwise disjoint,

where k0 > 0 is as in (1.3). Then

λk(BU (e)) ⊂
⋃

u∈U ′

λk(u)λℓdim(G)+1−k0
(BU (e)),(4.6)

where the multiplicity of the covering is ≪ 1. In particular, we have

#U ′ ≍ |λk(BU (e))|
|λℓdim(G)+1

(BU (e))|
.

Let U ⊂ U ′ be the subset of points u for which

(4.7)
|λk(E) ∩ λk(u)λℓdim(G)+1−k0(BU (e))| ≥ |λk(E)|

2 · (#U ′)

≫ |E||λℓdim(G)+1
(BU (e))|,

where we used |E| = |λk(E)|/|λk(BU (e))| in the second inequality. Set

Edim(G)+1 := {u′ ∈ E : ∃u ∈ U s.t. λk(u′) ∈ λk(u)λℓdim(G)+1−k0
(BU (e))}.

Then, by (4.6) and the first inequality in (4.7), |λk(Edim(G)+1)| ≥ 1
2 |λk(E)|, and

hence |Edim(G)+1| ≥ 1
2 |E|. Moreover, if w ∈ Edim(G)+1 and u ∈ U is such that

λk(w) ∈ λk(u)λℓdim(G)+1−k0(BU (e)), then by (1.3)

λk(u)λℓdim(G)+1−k0(BU (e)) ⊂ λk(w)λℓdim(G)+1
(BU (e)).(4.8)

Thus by (4.8) and (4.7), we have

(4.9) |λk(E) ∩ λk(w)λℓdim(G)+1
(BU (e))| ≫ |E||λℓdim(G)+1

(BU (e))|

which implies (4.4); recall that λk scales the Haar measure by a constant factor.
Since the Haar measure is left invariant, (4.9) also implies that for w ∈ Edim(G)+1

|λk(w)−1λk(E) ∩ λℓdim(G)+1
(BU (e))| ≫ |E||λℓdim(G)+1

(BU (e))|

and so (4.5) holds for i = dim(G) + 1; recall again that λℓdim(G)+1
scales the Haar

measure by a constant factor.
We iterate the above construction using at the i-th step the set Ei+1 constructed

in the previous step instead of E . This constructs a set E0 with the desired proper-
ties, and so yields the lemma. □
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4.2.2. Constructing a group of class H. We fix w ∈ E0 till we complete the
proof of Proposition 4.2.

Let γ0 ∈ Γ be such that for

g0 = γ0gλk(w), we have |g0| ≪ R⋆κ,(4.10)

which is possible in view of (4.1) and (A3). By (A2), and inserting g0 = γ0gλk(w),
for any u ∈ E we pick γu ∈ Γ with

∥g−1
0 γug0λk(w)−1λk(u)∥ ≤ Rκ,(4.11)

d(g−1
0 γug0λk(w)−1λk(u).v̂h, v̂h) ≤ R−1.(4.12)

To simplify notation, we set

gu = g−1
0 γug0λk(w)−1λk(u).(4.13)

For 0 ≤ i ≤ dim(G), let

E ′
i = {u ∈ E : λk(u) ∈ λk(w)λℓi(BU (e))}.(4.14)

Then E ′
0 ⊂ E ′

1 ⊂ . . .. For any u ∈ E ′
i we have

∥γu∥ ≤ eA13ℓi(4.15)

for some A13 > 0 by (4.10), (4.11), and that Rκ ≤ eℓ0 ≤ eℓi . We set

Mi = ⟨γu : u ∈ E ′
i⟩

z
.

In the following, we first collect some properties of the subgroups Mi.

Lemma 4.4. For every 0 ≤ i ≤ dim(G), the subgroup Mi < G is proper.

To prove Lemma 4.4, we use the following lemma, which essentially asserts that
h is almost U -normalized.

Lemma 4.5. If θ is sufficiently small depending only on N , for all u ∈ BU (e),

d(λ⌊θ log(R)⌋(u).v̂h, v̂h) ≪ R−1/4.

Proof of Lemma 4.5. Let ℓ = ⌊θ log(R)⌋ (note that ℓ = ℓdim(G) by (4.2)) and set

F ′ = {u ∈ BU (e) : λk(w)λℓ(u) ∈ λk(E)}.

Then, for each u ∈ F ′, we have a unique u′ ∈ E such that

λk(w)λℓ(u) = λk(u′)(4.16)

By (4.5), we have |F ′| ≫ |E|, since w ∈ E0.
As the number of lattice elements γ ∈ Γ < SL(N,Z) with ∥γ∥ ≤ eA13ℓ is ≪ e⋆ℓ,

it follows from (4.15) that there exists a subset F ⊂ F ′ of measure |F| ≫ |E|e−⋆ℓ

on which the map u ∈ F 7→ γu′ is constant, where u′ is given by (4.16) and γu′ is
as in (4.13).

We fix u0 ∈ F . By (4.11) and (4.13), ∥gu′
0
∥ ≤ Rκ. For any u′ ∈ E , by (4.12) and

(4.13), we have d(gu′ .v̂h, v̂h) ≪ R−1. Therefore, by the argument as in (3.1), we get

d(g−1
u′
0
gu′ .v̂h, v̂h) ≪ R⋆κR−1 ≪ R−1/2,

where we assume that κ is sufficiently small depending on N .
On the other hand, for any u ∈ F and the corresponding u′ ∈ E as in (4.16),

g−1
u′
0
gu′ = λk(u′

0)−1λk(u′) = λℓ(u0)−1λℓ(u) ∈ λℓ+k0
(BU (e)),
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where gu0
, gu are given by (4.13), γu′

0
= γu′ by the definition of F , and we use (1.3)

after noting that by definition λℓ(u0)−1 = λℓ(u
−1
0 ). Let

Gu0
= {u1 ∈ BU (e) : λℓ+k0

(u1) = λℓ(u0)−1λℓ(u) for some u ∈ F}.

Then, by scale invariance by λℓ of the Haar measure on U ,

|Gu0 | = |det(λ)|−k0 |F| ≫ |E|e−⋆ℓ ≫ e−⋆ℓ,

and for all u1 ∈ Gu0
,

d(λℓ+k0(u1).v̂h, v̂h) ≪ R−1/2.(4.17)

For any u1 ∈ Bu(e), |λℓ+k0
(u1)| ≪ e∗ℓ, and hence by (1.2), the left-hand side of

(4.17) can be recast in terms of polynomials of degree, say at most d, depending
only on N : given an orthonormal basis w1, . . . ,wh of h, we have for any u1 ∈ BU (e)

e−⋆ℓ max
i=1,...,h

∥λℓ+k0(u1).wi ∧ w1 ∧ . . . ∧ wh∥

≪ d(λℓ+k0(u1).v̂h, v̂h) ≪ e⋆ℓ max
i=1,...,h

∥λℓ+k0(u1).wi ∧ w1 ∧ . . . ∧ wh∥.

Here, the lower bound follows as in (3.1) and the upper bounds follows from Gram-
Schmidt applied to the vectors λℓ+k0(u1).wi, for 1 ≤ i ≤ h. Thus, the Remez
inequality (which we recall in Lemma 4.6 below) implies that

sup
u1∈BU (e)

d(λℓ+k0(u1).v̂h, v̂h) ≪ e⋆ℓR−1/2,(4.18)

where ⋆ is a large constant no more than a fixed power of N . By the definition of ℓ,
eℓ ≤ Rθ. So, by choosing θ sufficiently small, depending only on N , the conclusion
of the lemma follows. □

The following is a special case of [16, Lemma 5.4].

Lemma 4.6 (Remez inequality). Let f1, . . . , fr ∈ R[x1, . . . , xn] be nonzero polyno-
mials of degree at most d and set f(x) = maxj |fj(x)|. For any compact, convex
subset B ⊂ Rn and any δ > 0 we have∣∣{x ∈ B : f(x) < δ sup

y∈B
f(y)}

}∣∣ ≤ cδ
1
d |B|

where c > 0 depends only on r, n, d.

Proof of Lemma 4.4. Let u ∈ E ′
i , then λk(w)−1λk(u) = λℓi(u1) for some u1 ∈

BU (e), see (4.14). By (4.12)

d(g−1
0 γug0λℓi(u1).v̂h, v̂h) ≤ R−1.(4.19)

And by Lemma 4.5,

d(λℓi(u1).v̂h, v̂h) ≤ R−1/4.(4.20)

We have that ∥g0∥ ≪ R⋆κ ≪ R∗θ by (4.10) and ∥γu∥ ≤ eA13ℓi ≤ R∗θ by (4.15).
Therefore, from (4.20) we get

d(g−1
0 γug0λℓi(u1).v̂h, g−1

0 γug0.v̂h) ≪ R⋆θR−1/4.

Combining this with (4.19) we get

d(g−1
0 γug0.v̂h, v̂h) ≪ R⋆θR−1/4 + R−1.
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Hence,

d(γug0.v̂h, g0.v̂h) ≪ R∗κ(R⋆θR−1/4 + R−1) ≤ R−1/8(4.21)

for sufficiently small θ, depending only on N .
We consider Proposition 3.4 for the subalgebra Ad(g0)h and the finite set {γu :

u ∈ E ′
i} ⊂ Γ. Then its conditions (a) and (b) are satisfied for eA13ℓi in place of R

and R−1/8 in place of δ. We choose θ sufficiently small depending only on N , and
we choose C sufficiently large depending on N , G and Γ, so that since R > Cτ−A,
we get

c4ht(G)−A10e−A10A13ℓi ≥ c4ht(G)−A10R−A10A13θ > R−1/8 = δ.

Then, the conclusion of Proposition 3.4 fails to hold, and hence its condition (c)
cannot hold. Therefore, Mi, which is the Zariski closure of {γu : u ∈ E ′

i}, cannot
contain G. □

Lemma 4.7. For all 0 ≤ i ≤ dimG, the group MH
i is non-trivial.

Proof. We will show that the number of lattice points in M◦
i (R) of norm at most K

is at least polynomial in K for some K = e⋆ℓi . Note that for any Q-torus T < SLN

and any K ≥ 2 we have

#{γ ∈ T(Z) : ∥γ∥ ≤ K} ≪N log(K)⋆;(4.22)

see for instance [8, Lemma 6.3]. Thus, the claimed lattice point estimate implies
that M◦

i is not a torus, so MH
i is nontrivial.

Notice first that γu = γu′ for u, u′ ∈ E ′
i implies ∥λk(u)−1λk(u′)∥ ≪ R⋆κ by (4.11)

and, in particular, λk(u′) ∈ λk(u)λ⋆κ log(R)(BU (e)). For any c > 0,

|{u′ ∈ BU (e) : λk(u′) ∈ λk(u)λcκ log(R)(BU (e))}| ≪ R⋆cκ

|λk(BU (e))|
.

Now since w ∈ E0, it follows from (4.4) that

|E ′
i | ≫ |E| |λℓi(BU (e))|

|λk(BU (e))|
≫ R−κ e⋆ℓi

|λk(BU (e))|
.(4.23)

Together, the above estimates show that

#{γu : u ∈ E ′
i} ≫ e⋆ℓiR−⋆κ ≫ e⋆ℓi ,

when θ is sufficiently big in comparison to κ, see (4.2)
By Lemma 2.4 we have [Mi : M◦

i ] ≪N 1 since by construction the subgroup
of rational points is dense in Mi. Thus, there exists a finite subset E ′ ⊂ E ′

i with
#E ′ ≫ e⋆ℓi so that the lattice elements γu, u ∈ E ′, all belong to the same M◦

i coset
and are distinct. Thus, we have in view of (4.15) for u1 ∈ E ′ fixed

#{γ ∈ M◦
i (Z) : ∥γ∥ ≤ e2A13ℓi} ≥ #{γ−1

u1
γu : u ∈ E ′} ≫ e⋆ℓi

proving the claimed polynomial amount of lattice elements. □

We have M◦
0 ⊂ M◦

1 ⊂ . . . ⊂ M◦
dim(G) and so there exists i0 ∈ {0, . . . ,dim(G)−1}

such that M◦
i0

= M◦
i0+1. We set for a choice of i0

M = MH
i0 .(4.24)

Using Proposition 2.6 and (4.15) we have

ht(M) ≪ e⋆ℓi0 .(4.25)
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By Lemmas 4.4 and 4.7, M is a non-trivial proper subgroup of G.

4.2.3. Completion of the proof of Proposition 4.2. Assume first that M de-
fined in (4.24) is not normal. Note that for any u ∈ E ′

i0+1 we have γu.vM = ±vM .
Indeed, since M is normalized by Mi0+1 by construction, γu.vM is an integer mul-
tiple of vM and that multiple is a unit since γu.vM is also primitive. So for any
u ∈ E ′

i0+1 using (4.10), (4.11), (4.25), and κ < θdim(G)+1

∥ηM (g0λk(w)−1λk(u))∥ = ∥ηM (γug0λk(w)−1λk(u))∥ ≪ R⋆κe⋆ℓi0 ≪ e⋆ℓi0 .

Let

F1 = {u′ ∈ BU (e) : λℓi0+1
(u′) = λk(w)−1λk(u) for some u ∈ E ′

i0+1}.

Then

∥ηM (g0λℓi0+1
(u′))∥ ≪ e⋆ℓi0

for all u′ ∈ F1. We observe that by the definition (4.14) of Ei0+1,

F1 = {u′ ∈ BU (e) : λk(w)λℓi0+1
(u′) = λk(u) for some u ∈ E}.

By (4.5), we have |F1| ≫ |E|. The Remez inequality in Lemma 4.6 thus implies

∥ηM (g0λℓi0+1(u))∥ ≪ e⋆ℓi0(4.26)

for all u ∈ BU (e). By [16, Prop. 5.8], we have for L = NH
M (where NM is the

normalizer of M and it is a proper subgroup of G) and all u ∈ BU (e)

∥ηL(g0λℓi0+1
(u))∥ ≪ |g0|⋆e⋆ℓi0 ≪ e⋆ℓi0 ,

max
z∈BU

∥z ∧ ηL(g0λℓi0+1(u))∥ ≪ |g0|⋆e⋆ℓi0 e−⋆ℓi0+1 ≪ e−⋆ℓi0+1 ,
(4.27)

because |g0| ≪ R⋆κ by (4.10), eℓi0 ≥ R and ℓi0+1 ≥ ⌊θ−1⌋ℓi0 by (4.2), and we choose
sufficiently small κ and θ. Recall that g0 = γ0gλk(w) (cf. (4.10)). Therefore,
ηL(g0) = ηγ−1

0 Lγ0
(gλk(w)). Hence, by putting u = e in (4.27), there exists an

absolute constant A > 0 such that

∥ηγ−1
0 Lγ0

(gλk(w))∥ ≪ eAℓi0 ,

max
z∈BU

∥z ∧ ηγ−1
0 Lγ0

(gλk(w))∥ ≪ e−ℓi0+1/A.

Taking A12 ≥ 2A and θ sufficiently small with D ≤ 1
4A2θ , this proves the conclusion

(4.3) of the proposition for the point w ∈ E0 and the proper Q-subgroup γ−1
0 Lγ0 <

G of class H, when the subgroup M associated to w is not normal.

Suppose now that the subgroup M associated to w is a normal subgroup of G.
In this case, the above argument fails since, of course, the necessary passage to
the normalizer does not produce a proper subgroup. Hence, to extract information
from (4.11), we will instead use the Chevalley representation for M constructed in
§2.1.

Let (ρ, v) be a Chevalley pair for M as in Proposition 2.2. So, by (4.25),

∥v∥ ≪ ht(M)⋆ ≪ e⋆ℓi0 .
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Let V ⊂ Qdim(ρ) be the subspace of M(Q)-fixed vectors. The identity component
of the image of Mi0+1 under the restricted representation ρ′ : G → GL(V ) is a Q-
torus. Let S = {ρ′(γu) : u ∈ E ′

i0+1}. Then by Lemma 2.4, (4.15), and (4.22) we
have

#(S) ≪ ℓ⋆i0 ≪ log(R)⋆.

For each s ∈ S, let

E ′(s) = {u ∈ E ′
ℓi0+1

: ρ′(γu) = s} and

F(s) = {u ∈ BU (e) : λk(w)λℓi0+1
(u) ∈ λk(E ′(s))}.(4.28)

Then ∪s∈SE ′(s) = E ′
ℓi0+1

, and hence

∪s∈SF(s) = {u ∈ BU (e) : λk(w)λℓi0+1(u) ∈ λk(E ′
ℓi0+1

)}
= {u ∈ BU (e) : λk(w)λℓi0+1

(u) ∈ λk(E)},
by the definition of E ′

ℓi0+1
. So, by (4.5) we have

| ∪s∈S F(s)| ≫ |E|.
By the pigeonhole principle, we can pick s1 ∈ S such that

|F(s1)| ≫ |E|/#(S) ≫ |E| log(R)−⋆.

We fix u1 ∈ E ′(s1). For simplicity, we denote the right orbit map at v by
ϑ : g ∈ G 7→ ρ(g)−1v . For any u ∈ E ′(s1), since ϑ(γu) = ϑ(γu1), we have

ϑ(g0gu) = ϑ(γu1g0λk(w)−1λk(u)) = ϑ(g0gu1λk(u1)−1λk(u))(4.29)

where gu = g−1
0 γug0λk(w)−1λk(u) as in (4.13). Also, by (4.10) and (4.11), since

∥v∥ ≪ e⋆ℓi0 , we have

∥ϑ(g0gu)∥ ≪ e⋆ℓi0 .(4.30)

Let u′
1 ∈ BU (e) be such that λk(u1) = λk(w)λℓi0+1

(u′
1). Then,

λk(E ′(s1)) ⊂ λk(E ′
ℓi0+1)

⊂ λk(w)λℓi0+1(BU (e)), by definition of E ′
ℓi0+1

,

= λk(u1)λℓi0+1
(u′

1)−1λℓi0+1(BU (e))

⊂ λk(u1)λℓi0+1
(λk0

(BU (e))),(4.31)

by (1.4). So, we define

F2 = {u′ ∈ λk0(BU (e)) : λk(u1)λℓi0+1(u′) ∈ λk(E ′(s1))}.(4.32)

Then, by (4.29) and (4.30), for all u′ ∈ F2, we have

ϑ(g0gu1
λℓi0+1(u′)) ≪ e⋆ℓi0 .(4.33)

Also,

F2 = {u′ ∈ λk0(BU (e)) : λk(w)λℓi0+1(u′
1)λℓi0+1(u′) ∈ λk(E ′(s1))}

⊃ {u′ ∈ λk0
(BU (e)) : λℓi0+1(u′

1)λℓi0+1(u′) ∈ λℓi0+1
(F(s))}, by (4.28),

= λ−1
ℓi0+1

(
λℓi0+1(u′

1)−1λℓi0+1
(F(s))

)
.

Since λℓi0+1
acts on the Haar measure of U as a scalar,

|F2| ≥ |F(s)| ≫ |E|(logR)−⋆.(4.34)
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Therefore, from (4.33) using the Remez inequality (Lemma 4.6), we conclude that

∥ϑ(g0gu1
λℓi0+1

(u))∥ ≪ e⋆ℓi0(4.35)

for all u ∈ BU (e) ⊂ λk0
(BU (e)).

Now, we will argue as in [16, Prop. 5.8] to conclude. Fix z ∈ BU . The estimate
in (4.35) implies that

∥ϑ(g0gu1
λℓi0+1

(exp(tT ẑ)))∥ ≪ e⋆ℓi0 for all |t| ≤ 1,

where ẑ = λ−ℓi0+1(z) and T = ∥ẑ∥−1 (recall that by definition λℓ(exp(z)) =
exp(λℓ(z)) for all ℓ). Thus, using (4.11) and |g0| ≪ R⋆κ, we get

∥ϑ(exp(tAd(g0gu1)z))∥ ≪ e⋆ℓi0 for all |t| ≤ T .(4.36)

By Proposition 2.2, each coordinate function of the map

t 7→ ϑ(exp(tAd(g0gu1
)z))

is a polynomial of degree bounded by a number that depends only on N . Hence,
from (4.36), using Lagrange interpolation, we conclude that all of the non-constant
coefficients of the polynomial map must be ≪ e⋆ℓi0T−1 in size.

Using T ≫ (∥λ−1∥−1)ℓi0+1 , we obtain that

∥Dρ(Ad(g0gu1
)z)v∥ ≪ e⋆ℓi0T−⋆ ≪ e−⋆ℓi0+1 ,

because ℓi0+1 ≥ ⌊θ−1⌋ℓi0 , and we choose the constant θ sufficiently small.
By definition of the Chevalley representation,

Lie(M) = {w ∈ slN : Dρ(w)v = 0}.
The map w 7→ Dρ(w)v is linear and can be realized as an integral matrix with
coefficients of size ≪ ht(M)⋆ ≪ e⋆ℓi0 . In view of the above estimate, there exists
z′ in the kernel Lie(M) with distance ≪ e−⋆ℓi0+1 to Ad(g0gu1

)z (see e.g. [7, §13.4])
and hence

∥Ad(g0gu1
)z ∧ vM∥ ≪ e−⋆ℓi0+1 .

As M is normal, this implies ∥z ∧ vM∥ ≪ e−⋆ℓi0+1 , because |g0gu1
| ≪ e⋆ℓi0 , ℓi0+1 ≥

⌊θ−1⌋ℓi0 , and we choose θ sufficiently small. For appropriate A12 and θ, as in the
non-normal case considered earlier, and noting that ηM (·) = vM , this completes
the proof of Proposition 4.2 in combination with (4.25). □

4.3. Proof of Theorem 1.2. We begin by recalling the notion of Diophantine
points as well as the main result from [16].

Definition 4.8 ([16]). Let ϵ : R>0 → (0, 1) be a monotonely decreasing function.
A point x = Γg is called (ϵ, t)-Diophantine (with respect to U) if for any non-trivial
proper subgroup M < G of class H with ∥ηM (g)∥ ≤ et we have

max
z∈BU

∥z ∧ ηM (g)∥ ≥ ϵ(∥ηM (g)∥).

Using this notion, we can state the main result of [16]:

Theorem 4.9 ([16, Thm. 3.3]). There exist constants A14, A15 > 0 depending only
on N , E > 0 depending on N and polynomially on ht(G), and E1 depending in
addition also (polynomially) on EG, so that the following holds. Let g ∈ G, t > 0,
k ≥ 1, η ∈ (0, 1/2). Assume ϵ : R>0 → (0, 1) satisfies for any s ∈ R>0 that

ϵ(s) ≤ s−A14ηA14/E1.(4.37)
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Then, at least one of the following holds.

(1) ∣∣∣{u ∈ BU (e) :
Γgλk(u) ̸∈ Xη or

Γgλk(u) is not (ϵ, t)-Diophantine

}∣∣∣ < E1η
1/A15 .

(2) There exists a nontrivial proper subgroup M ∈ H so that for all u ∈ BU (e)

∥ηM (gλk(u))∥ ≤ (E|g|A14 + E1eA14t)η−A14 ,

max
z∈BU

∥z ∧ ηM (gλk(u))∥ ≤ e−k/A15(E|g|A14 + E1eA14t)η−A14 .

(3) There exists a nontrivial proper normal subgroup M�G with

ht(M) ≤ E1(etη−1)A14 ,

max
z∈BU

∥z ∧ vM∥ ≤ ϵ(ht(M)1/A14η/E1)1/A14 .

Proof of Theorem 1.2. Fix a sufficiently large constant D > 1 to be determined
later, and let E0 be as in Proposition 4.2. We may reduce E0 further and assume
that (4.3) holds for all u ∈ E0 and some fixed i ∈ {0, . . . ,dim(G)}. Set for s > 0

ϵ(s) = e−DℓiA12/2s−A14 .

Note that ϵ(·) satisfies (4.37) whenever η ≥ e−ℓi and D is sufficiently large.
Observe now that for any u ∈ E0 the point xλk(u) is not (ϵ, A12ℓi)-Diophantine.

Indeed, by Proposition 4.2 there exists for any u ∈ E0 a nontrivial proper Q-
subgroup L ∈ H of G such that

∥ηL(gλk(u))∥ ≤ eA12ℓi ,

see the first estimate in (4.3), and moreover, by the second estimate in (4.3) when-
ever D > 2A14

max
z∈BU

∥z ∧ ηL(gλk(u))∥ ≤ e−DℓiA12

< e−DℓiA12/2e−A14A12ℓi ≤ ϵ(∥ηL(gλk(u))∥).

We may apply Theorem 4.9 for η > 0 with E1η
1/A15 = R−2κ assuming κ is small

enough so that θdim(G)+1 > 2A15κ. Since |E0| ≥ R−2κ, we obtain that Option (2)
or Option (3) in Theorem 4.9 holds. If (2) holds, we conclude with Option (1) in
Theorem 1.2. So assume that Option (3) of Theorem 4.9 holds for some nontrivial
proper normal subgroup M�G. In particular,

max
z∈BU

∥z ∧ vM∥ ≤ ϵ(ht(M)1/A14η/E1)1/A14 ≪ e−DℓiA12/3.(4.38)

by definition of ϵ(·). By Lemma 3.5, Lie(M) cannot contain a Levi subalgebra of
g and, in particular, M′ = M · R(G) is a proper normal subgroup of G where
R(G) denotes the (unipotent) radical of G. Clearly, the distance z to Lie(M ′)
is at most the distance of z to Lie(M). These statements together show that
∥z ∧ vM ′∥ ≪ ∥z ∧ vM∥ for all z ∈ BU and thus Option (2) of Theorem 1.2 follows
from (4.38).

Moreover, we also note that there are only finitely many choices for M′, and
hence ht(M′) ≪G 1 (see [26, Lemma 8.6] for a more precise estimate). □
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