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ABSTRACT. We prove an effective equidistribution theorem for semisimple
closed orbits on compact adelic quotients. The obtained error depends poly-
nomially on the minimal complexity of intermediate orbits and the complex-
ity of the ambient space. The proof uses dynamical arguments, property (7),
Prasad’s volume formula, an effective closing lemma, and a novel effective gen-
eration result for subgroups. The latter in turn relies on an effective version
of Greenberg’s theorem.

We apply the above to the problem of establishing a local-global principle
for representations of integral quadratic forms, improving the codimension
assumptions and providing effective bounds in a theorem of Ellenberg and

Venkatesh.
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1. INTRODUCTION

There is a very fruitful interplay between homogeneous dynamics and number
theory. The origins of this interplay are quite classical. It can be traced back to
Minkowski’s pioneering work on the Geometry of Numbers, which allowed geometry
and implicitly dynamics to be brought to bear on questions in number theory
and Diophantine approximations. This connection was further explored e.g. in
pioneering work by Artin as well as the remarkable results of Linnik and his school
(see e.g. [54]).
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The results obtained by Dani-Margulis and Ratner on unipotent flows have been
particularly influential, stemming from conjectures of Raghunathan and Dani [11],
which were also implicitly touched upon in the work of Cassels and Swinnerton-
Dyer [7]. These conjectures were fully resolved by Ratner in [68, 69, 70], with
important special cases proved using a different approach by Dani and Margulis
[56, 13, 14]. To pass from the measure classification to understanding individ-
ual orbits Ratner used important nondivergence estimates of Margulis and Dani
[55, 12, 15]. Particularly powerful has been the combination of Ratner’s mea-

sure classification results [69] with significant additional techniques known as the
Linearization method that came out of the above mentioned works of Dani and
Margulis [16]; cf. also Shah’s related work [79].

In this paper, our focus is on equidistribution of periodic orbits of semisim-
ple groups. Using Ratner’s work and the Linearization method, Mozes and Shah
showed in [62] that a sequences of such orbits in a quotient space I'\G (say with
volume tending to infinity) either has a subsequence that becomes equidistributed
in a homogeneous subspace of I'\G which contains them (up to small shifts), or
escapes to the cusp; unless the sequence become equidistributed in T'\G this can
be explained by algebraic reasons. Our main result in this paper is a fully effec-
tive and quantitative and ‘fully adelic’ version of this result when I'\G is compact.
Let G be a semisimple group defined over a number field F'. Then the space we
work in' is G(F)\G(A) with A the ring of adeles of F, and by fully adelic we
mean an equidistribution result for a sequence of (translated) orbits corresponding
to semisimple F-subgroups of G that can be quantified solely in terms of global
properties of the subgroups and not on how they split at given places. A non ef-
fective adelic equidistribution result was given by Gorodnik and Oh in [29] but it
is not fully adelic in our sense as it requires the F-subgroups to have no compact
factors over a fixed place of F'. Gorodnik and Oh’s work relies on S-arithmetic
generalizations of Ratner’s measure classification theorem by Ratner [71] and by
Margulis and Tomanov [57, 58]; cf. also Tomanov’s paper [84].

Perhaps surprisingly, the powerful dynamical techniques of unipotent flows, whose
origins stem from the study of statistical properties of typical trajectories in dy-
namical systems, have been very successful in studying integer points on arithmetic
varieties. An early notable examples of this was the work of Eskin, Mozes and Shah
[27] on counting the number of integer matrices of norm < T with a given char-
acteristic polynomial. Gorodnik and Oh in [29] in their paper used S-arithmetic
unipotent flows to count rational point of bounded height as the height increases.
In this paper, we need dynamics already to show the existence of at least one inte-
ger point on the relevant arithmetical variety, though our techniques also find the
asymptotic number of points. That one can establish existence of integer points on
‘sufficiently large’ varieties using dynamics was shown by Ellenberg and Venkatesh
in [26] who established a local-to-global principle for representation of a quadratic
form in m variables by a form in n variables, n > m + 3. We strengthen their work
by making it effective (hence one can establish the existence of such representation
in explicit cases). Moreover by using our fully adelic equidistribution result we
can drop certain splitting conditions Ellenberg and Venkatesh had to impose when
n < m+ 5. The local-to-global principle of [26] as well as the stronger results we

1Strictly speaking, this is only true when G is simply connected; more generally we look at a
slight variant of this space.
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prove in this paper rely on the Hasse-Minkowski theorem, a classical local-to-global
result that shows that while we do not know apriori that our variety has an integer
point, at least we have a rational point on it.

An effective equidistribution result for periodic orbits of a fixed semisimple
group H in quotients of a real group G by a congruence lattice was proved by
Margulis, Venkatesh, and one of us (M.E.) in [21]. In that work, the semisimple
subgroup H was assumed to have finite centralizer in the bigger group G, hence
the periodic orbits are isolated and do not come in continuous families. Margulis,
Venkatesh, M.E. and A.M. in [20] proved a fully adelic equidistribution results for
maximal semisimple F-subgroups H of an F-group G. The fact that the result
obtained is not just effective (and quantitative) but also fully adelic allowed the
authors of [20] to prove new equidistribution results that were not known even
qualitatively earlier. Note that the assumption that H is maximal is more restric-
tive than the finite centralizer assumption of [21].

Unfortunately, the finite centralizer assumption is a significant one, and in par-
ticular made it impossible to use these tools to provide an effective local-to-global
result extending the work of Ellenberg and Venkatesh from [26]. The finite central-
izer assumption was recently removed by A.W. for quotients of real algebraic groups
in [87]. There are difficulties in extending [37] already to the S-arithmetic context
due to the presence of small subgroups in p-adic groups; the fully adelic version
we give here requires additional ideas and careful tracking of the dependence of all
steps of the proof on the arithmetic complexity of all groups involved.

Finally, we mention that recently there have been significant advances in under-
standing quantitatively the distribution properties of arbitrary unipotent trajecto-
ries, we mention in particular [52, 88, 53]. At present, such results are known only
in groups of rank at most 2, but in principle one could envision that modification
of that approach could prove e.g. results like [21, 87] (and of course can be used to
study general orbits, not just periodic orbits). However, these results are inherently
not fully adelic in the sense discussed above.

1.1. Equidistribution of adelic periods. In the following F' will always denote
a number field, A will denote the ring of adeles over F', and G will be a connected
semisimple algebraic F-group. We also consider as given a homomorphism with
finite central kernel p : G — SLy.

Throughout this paper, we will assume G is F-anisotropic.

We define the compact (ambient) homogeneous space
X = [p(G(A))] = SLy (F)p(G(A)) C SLy (F)\SL(A).

Let px denote the p(G(A))-invariant probability measure on X.
We wish to study closed orbits, also known as adelic periods, inside X arising
from data D = (H,t, g) consisting of

(1) an F-algebraic group H such that H(F)\H(A) has finite volume,
(2) an algebraic homomorphism ¢ : H — SLy defined over F with finite kernel,
and
(3) an element g € SLy(A).
We call D = (H,,g) consistent with (G, p) if «(H) C p(G) and g € p(G(A)).
To any data D = (H, ¢, g), we may associate the algebraic homogeneous set

Yp = [1(H(A))g] = SLn (F)(H(A))g
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and the algebraic homogeneous measure pip = py,, given by the push-forward, under
the map = — v(x)g, of the normalized Haar measure on H(F)\H(A). We say that
D, Yp, or up is simple, semisimple, simply connected, etc. according to whether
the algebraic group H is so. We note that up is invariant under H = g~ 1.(H(A))g
and supported on the single orbit Yp = SLy(F)gH. If D is semisimple, simply
connected, and consistent with (G, p), Yp is contained in X.

We now define the complexity associated to an orbit (slightly adapted from [20,
App. BJ, sometimes also called a discriminant or height), which will become the
basis for the error rate in the desired equidistribution result. Let D = (H, ¢, g) be
data for an algebraic homogeneous measure and let

dim(H) dim(H)
me N uLieEH)(F)C N gln(F)

be any non-zero vector. For every place v of F' we let F, be the completion of F'
at v and let || - ||, denote the norm on /\dlm H) gl (F,) induced by the maximum

norm, with respect to the elementary matrices, on gl (F,). Then the complezity
of Yp is defined by

(1.1) cpl(Yp) Hllgv o,

where the product is over all places of F'. Note that the definition is independent
of the choice of vector zg and so only depends on D. In fact, it only depends on
the orbit Yp.

If an algebraic homogeneous set Yp C X is contained in another such proper
subset of intermediate dimension and small complexity, then pup cannot be close
to px. Therefore we are also concerned with the complexity of intermediate orbits
and define the min-complezity of Yp by

mepl(Yp) = min{cpl(SLy (F)M(A)g) : t(H) € M C p(G) semisimple}.

Recall that a C'-function f on X is a function invariant under a compact open
subgroup K < G(Ay) (via p) and C' on the (p(G(F @ R))-invariant) manifold
X/p(K), where Ay < A is the ring of finite adeles over F. If L > 1 is minimal
so that p(K) < SLy(Ayf) can be defined using a congruence condition modulo L,
then we say that f has level L. Finally we fix an inner product on gl (F)® R and
define the C'-norm || f||c1(x) of a smooth function f as the maximum of the sup
norms of the function and its partial derivatives in directions corresponding to an
orthonormal basis of Lie(G)(F) ® R.

In this paper we prove the following effective equidistribution result regarding
algebraic homogeneous measures:

Theorem 1.1. Assume that G and H are semisimple simply connected F-groups
that are also F-anisotropic. Let X = [p(G(A))] and Yp C X be defined by data
D = (H,t,g9) consistent with (G, p). Then there exists Ay > 1 depending only on
N and [F : Q] so that

epl( X))
dup — d —_— L
Yo Jdper /X / MX‘ < mepl(Yp)l/ 4 1Fller ey

where f is C', L is the level of f, and the implied constant depends only on N,
[F: Q], and polynomially on | disc(F)|.




EFFECTIVE EQUIDISTRIBUTION OF SEMISIMPLE ADELIC PERIODS 5

The above theorem describes equidistribution in the ambient space. The follow-
ing theorem describes equidistribution to an intermediate object at polynomial rate
in the complexity of the orbit Y. Nominally it is a generalization of Theorem 1.1,
though we deduce it from that theorem.

Theorem 1.2. Assume G and H are semisimple connected F-anisotropic and
that H is simply connected. Let Yp be defined by data D = (H,t,g) consistent
with (G, p). There exists As > 0 depending only on N and [F : Q] so that the
following holds. For any B > As|disc(F)|*2cpl(X)*? there exists a semisimple
simply connected data D' = (H', ./, g) consistent with (G, p) and with cpl(Yp') < B
such that ' (H') D «(H) and

fdup— | fdpp | < B V| flovx)L

Yp \

for all C*-functions f of level L > 1.

As mentioned earlier, Gorodnik and Oh [29] have considered sequences of semisim-
ple simply connected adelic periods [¢;(H;(A))g;] and classified their limit measures
provided there exists a place v of F for which all of the semisimple F,-groups H;(F,)
have no compact factors. Removing this type of splitting condition already requires
proving an effective theorem as the size of the ‘least splitting place’ can increase
along the sequence of orbits (the size of the least splitting place was addressed in

[20])-

1.2. Representations of quadratic forms. A quadratic lattice over Z is a pair
(Z™, Q) where Q : Z" — Z is a quadratic form. A representation of a quadratic
lattice (Z™, Q) by another quadratic lattice (Z™, Qo) is a linear isometry

L:(Z2™,Q) — (Z™, Qo).

We say that ¢ is primitive if «(Z™) is a primitive lattice in Z™ (that is, «(Z™) =
((Z™) ® Q) N Z"™) and that (Z™,Q) is primitively representable by (Z™, Qo) if a
primitive representation exists. A necessary criterion for primitive representability
is that there exist local primitive representations (Z}*, Q) — (Z}, Qo) for any prime
¢ as well as a representation of real quadratic spaces (R™,Q) — (R™, Qo). In that
case, we will call (Z™, Q) locally primitively representable by (Z", Qo).

The (integral) local-to-global principle for primitive representations of quadratic
lattices asks whether local primitive representability implies (global) primitive rep-
resentability. This is an analogy to the Hasse-Minkowski theorem by which local
representability of rational forms implies global representability. When n > m + 3
and the quadratic form @y on the rank n lattice is indefinite, the local-to-global
principle is a consequence of strong approximation for spin groups established by
Eichler [19].

When Q) is positive definite, the problem has proven to be significantly harder.
In the 70’s, Hsia, Kitaoka, and Kneser [34] established the local-to-global principle
for n > 3m + 3 under the (necessary) additional assumption that the minimum
min(Q) = mingzzezm Q(x) is sufficiently large in terms of Q. Jochner and Kitaoka
[41] improved the assumptions of [34] to n > 2m + 3 under some weak conditions
on Q.

In a later breakthrough, Ellenberg and Venkatesh [26] utilized methods from
homogeneous dynamics to show the local-to-global principle for n > m + 5 (and
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under a Linnik-type splitting condition for n > m + 3) and min(Q) sufficiently
large. Their result is ineffective as it relies on measure classification results from
unipotent dynamics [71, 57]. To start off, they utilize (as do we) the Hasse principle
to produce a primitive representation by a form in the spin genus of Q.

Here, we prove an effective version of the local-to-global principle for dimensions
n > m + 3, also avoiding a Linnik-type splitting condition.

Theorem 1.3. Let m,n be positive integers with n > m + 3. Then there exist
constants C; A > 0 depending only on n with the following property.
Let (Z™,Q), (Z™, Qo) be positive definite quadratic lattices. Suppose that (Z™, Q)
is locally primitively representable by (Z™, Qo) and that
min  Q(z) > C disc(Qo)™”.

zez™\{0}
Then (Z™, Q) is primitively representable by (Z™, Qo).

For m = 1 the above theorem encapsulates a local-to-global principle for primi-
tive representations of integers, which is already contained in the literature. Given
codimension at least 3, this has been established by Kloosterman (for diagonal
forms) and by Tartakovskii (see for instance [38, Ch. 11]). For primitive represen-
tations of integers, a local-to-global principle exists in codimension 2, but is more
intricate to formulate — see the work of Duke and Schulze-Pillot [18] relying on
Duke [17] and Iwaniec [37]. Correspondingly, we suspect a version of Theorem 1.3
to hold in codimension 2 for m > 1 (for instance, for quadratic lattices primitively
representable by the spin genus).

Existing literature (e.g. the work of Hsia, Kitaoka, and Kneser [31]) typically
focusses on local-to-global principles for (not necessarily primitive) representations.
Here, the question is whether local representability implies global representability
for quadratic lattices with sufficiently large minimum. This version of the local-
to-global principle can be seen to fail in general when the codimension is 3. For
instance, the form x% + x3 + 2523 + 2527 locally represents any positive number,
yet does not represent numbers of the form 3 - 2* for k& > 0. For general examples
of this form see [13, p. 144]. Work of Kitaoka [11, 15, 16] has aimed to compare the
two variants of the local-to-global principle (primitive or not necessarily primitive).
In conjuction with the work of Ellenberg and Venkatesh [26] and Theorem 1.3 this
implies the local-to-global principle for representations given dimensions (m, n)

e when m =2 and n > 6,
e when m = 3,4,5 and n > 2m + 1, and finally
e when m > 6 and n > 2m.

In particular, the counter-examples of Kitaoka, [26] and Theorem 1.3 completely
resolve the local-to-global principle for representations of binary and ternary forms.
For binary forms, this was already known following work of Jochner [10]. To the
knowledge of the authors it remains unclear in which codimensions the local-to-
global principle for representations should be suspected to hold in general (e.g. does
it hold for (m,n) = (4,8)7). We also note that the current work may be extended
to representations of bounded imprimitivity — see Schulze-Pillot [75].

We refer to the comprehensive surveys of Schulze-Pillot [74, 76] for a discussion
of known results towards the local-to-global principle that we have omitted here.
In particular, there is a variety of results proving local-to-global principles under
assumptions on successive minima of ¢ — see for instance [8].
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2. REPRESENTATIONS OF QUADRATIC FORMS

We will now phrase a strengthening of Theorem 1.3 by working over an arbitrary
number field and obtaining asymptotics for representation numbers.

Let F' be a number field, let Op be its ring of integers, and let (V,Q) be a
quadratic space over F. A lattice (over O) is a finitely generated Op-module
£ C V spanning V over F. The rank of £ is rk(£) = dim(V'). A lattice £ C V is
quadratic if Q(£) C Op. (Sometimes, one calls the pair (£, Q) a quadratic lattice
avoiding the ambient space V.)

In much of the discussion to follow the quadratic form @ or the ambient vector
space will sometimes be implicit (though they are a crucial part of the data). The
discriminant 0.£ is the ideal of O generated by the discriminants of the quadratic
form on all free submodules of £ of full rank.

The notions from §1.2 carry over to the current, more general setup without
much effort. For instance, a representation ¢: M — £ of quadratic lattices is
an Op-linear isometric embedding and it is primitive if (9N) = £N (M) @ F).
The terms primitively representable and locally primitively representable are defined
similarly to §1.2.

In this setting, strong approximation for spin groups [19] also implies the local-
to-global principle unless F//Q is totally real and the quadratic form on the ‘larger’
lattice is totally definite. Here, a quadratic space (V, Q) is totally definite if the
quadratic form Q: V ® F, — F, is definite for every real place v and we call a
quadratic lattice totally definite if its ambient quadratic space is.

Assume in the following that F'/Q is totally real and that 9%, £ are totally definite
quadratic lattices. Let

RO, L) = {i: M — £ primitive representation}

be the set of primitive representations of 9 by £ and set 7(9, £) = #R(M, £).
Let Aut(£) be the (finite) group of Op-linear invertible isometries of the quadratic
lattice £. Note that Aut(£) acts on the set R(, £) of primitive representations.

Recall that the genus gen(£) of £ consists of all lattices in £& F locally isometric
to £. It is a classical result that the genus consists of finitely many equivalence
classes (i.e. (global) isometry classes) of quadratic lattices; let £ = £,£9,..., £,
be a set of representatives. Note that the numbers (901, £;) and #Aut(£;) depend
only on the equivalence class of £;.
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Define
(2.1) we =Y #Aut(g;)"
and
(2.2) r(9, gen(£)) — i )3 7;(:’;; (‘i))

When 90t is locally primitively representable by £, then it is primitively repre-
sentable by some element of the genus and hence (91, gen(£)) is non-zero. We
remark that Siegel’s mass formula [30, 81, 82] writes the averaged representation
number in (2.2) in terms of a local product of representation numbers modulo prime
powers as well as archimedean factors involving only the discriminants.

We prove an effective asymptotic for representation numbers.

Theorem 2.1. Letn > 1 and d > 1 be integers. Then there exists A > 1 depending
on n,d with the following property.

Let F be a totally real number field of degree d. Let £ be a totally definite qua-
dratic lattice of rank n over Op. Then for any quadratic space (W,q) of dimension
at most n — 3 and any quadratic lattice M C W locally primitively representable by
£ we have

(9, £) . » —1A N
_ - 1‘ n ( N ) Nrg(0€)|*.
M gen(g)) | poin, - [Nrg (g(2))] [Nrg (0L)]
Using volume estimates contained in this article and in [20] one can show (see
Lemma 2.10 below) that there exists § > 0 depending only on n and d such that

(2.3) (O, gen(L)) >re |Nr5(09ﬁ)|5.

In particular, Theorem 2.1 provides an amount of primitive representation polyno-
mial in the discriminant of 9t as soon as one assumes the minimum of 91 to be
sufficiently large. Estimating local densities in Siegel’s theorem likely yields much
more precise lower bounds in (2.3); see also [74, Lemma 2.1].

Remark 2.2 (Variants of Theorems 1.3 and 2.1). Theorem 2.1 can be extended in
various ways. For instance, given local primitive representations and M € N one
may prove asymptotics for the number of primitive representations congruent to
these local representations mod M in analogy to e.g. [11]. Also, the positions of the
primitive representations as points on the appropriate Grassmannian variety can
be shown to be asymptotically random (see e.g. the discussion in [I, §1.2]).

This section is structured as follows: In §2.1 we establish an effective equidistri-
bution result for adelic periods of spin groups as a corollary of the theorems in the
introduction. In §2.2, we recall various facts regarding spin genera and primitive
representations and how to view these objects in a setting relevant to this article.
In §2.3, we prove Theorems 1.3 and 2.1.

2.1. Adelic periods of spin stabilizer groups. We first deduce an effective
equidistribution result for adelic periods of spin groups as a consequence of Theo-
rem 1.1. Let F be a totally real number field with discriminant disc(F') and ring of
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integers Op. To avoid some of the technicalities, we assume in the following that
Q is a totally definite quadratic form on F™,

Q(mh ey CEn) = Zmzszxja
1<y
with coefficients m;; € Op. We set h, = max;<; |m;;|, for each place v of F' and
hoo = Hv|oo hy as well as h =[], hy < hoo-
We let G = Sping and write 0 : G — G’ = SOg for the standard representation.
For any F-subspace W C V we write
Hy ={g€ G:p(g)w =w for any w € W}

for the pointwise stabilizer group of the subspace W under the action of G.
The following corollary captures the input of our dynamical theorems into local-
to-global principles discussed in this section.

Corollary 2.3. There exist A3 > 0 depending only on n and [F : Q] with the
following property.
Let W C V be an F-subspace of codimension at least 3 and set

X =[o(G(A))], Yw = [o(Hw(A))].
Then for any f € CY(X) of level L
[ 5= [ Al ymin o) INE @)™ el b2 e

By Theorem 1.1 the proof of the corollary will boil down to the following esti-
mates:

(2.4) cpl(X) < h*|disc(F)|*,

(25)  mepl(Yiv) > hi|dise(F)|~* N Q)]

min
weWNOE\{0}

The latter will require statements regarding intermediate groups between Hy, and
G already present in [26]. For any subgroup M < G recall the choice of vector oy €
NmM) g corresponding to the Lie algebra of M and define ht(M) = [T, [lom]o-
Throughout we will use the following version of Siegel’s lemma over F' due to
Bombieri and Vaaler.

Theorem 2.4 ([3, Thm. 9]). For k < ¢ let A € Maty,(Op) be of full rank. Then
there exist vy, ...,v_ € Ofm linearly independent over F with Av; =0 and

[ nt(v:) < | dise(F)[ZF T ht(ar A ... A ax)

where ay,...,a denote the rows of A.

Proof of (2.4). We need to estimate the height of the Lie algebra of o(Sping) =
SOgq as a point in the appropriate projective space for sl,. Note that Lie(SOq) is
given by

Lie(SOgq) = {X € Mat,, : X Mg + MoX" =0}
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where we write Mg € %Matn((’)p) for the representation matrix. We may ap-
ply Theorem 2.4 to find an F-basis for Lie(SOq)(F) consisting of integral vectors
v1,. .., 74 with height < | disc(F)|[*h*. In particular,

cpl(X) = ht(SOq) = ht(w A ... Agy) < | disc(F)|*h*
as claimed. 0

We turn to proving (2.5). As mentioned earlier, we will require some under-
standing of intermediate groups between Hyy and G.

Lemma 2.5. Let L < G be a connected semisimple F-subgroup so that Hyy is
contained in L but not in any proper normal F-subgroup of L. Then L = Hy, for
a non-trivial F-subspace W' C W.

In [26], Ellenberg and Venkatesh invoke classification results of Guralnick and
Saxl [32] on groups generated by reflections to obtain a similar statement. An
earlier version of the same article on the arXiv contains an elementary argument in
codimension at least 7. The elementary argument we present here is already present
in work of M.E. and Wirth [25, Prop. 3.1], a variant of which is also contained in
work of Lee and Oh [19, Cor. 3.8].

Proof. We first prove a version of the lemma for Lie algebras over R: Suppose that
[ < s0,(R) is a proper Lie subalgebra so that

o,k Ok,n—k }
= ’ ’ cl
b { (Onk,k 0nk,nk>
and b is not contained in any proper factor of [. We claim that there exists k <
k' <nand g € {1x} x SO,_;(R) such that

* / 7 O /n_ ’
(26) adtg={ (o7 gemr )Y,

To keep the notation simple, we write SOk (R) for the subgroup of SO, (R) with Lie
algebra h and SO,,_(R) for the group with Lie algebra the centralizer of h. The
adjoint representation of h on so0,,(R) can be decomposed as soy(R) @50, (R) Bty

where

o = 7 A € Mate,n(R) .

b { (_At On—k,n—k k, k( )
Note that v, ~ R¥ @ R"~* is invariant under SO (R) x SO,,_x(R) where the action
on R*¥ ® R"™* is the natural one. Since [Nt is invariant under SO(R), there
exists a subspace U C R" ¥ so that [Nt = R* ® U under the identification
t, ~ R¥ @ R"7*. Here, we used that the standard representation of SO(R) is
irreducible. As SO,,_(R) acts transitively on subspaces of R"~*, there exists k' > k
and g € SO, _1(R) so that Ad(g)[Nt, ~ R* @ (R¥ =% x {0, _j}). In particular,
Ad(g)! contains the subspace

Xk k A
7 : A€ Maty o -x(R) |
{ (—At Ok’—k,k/—k) i (R)

viewed as embedded in the top left corner in the above coordinates on s0,,(R). This
implies that Ad(g)l in fact contains soy(R), again embedded in the top left corner.

To see that Ad(g)l = soy/(R), notice that the adjoint representation of so,(R)
restricted to sog (R) may be decomposed in precisely the same manner as for b.
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Moreover, Ad(g)l cannot intersect the complement vy to s (R) ® s0,_p/(R). In-
deed, any intersection would yield a vector with non-zero entry in the last n — &k’
entries of the top row (by irreducilibity of the standard representation of soy (R))
contradicting the choice of k£’. This proves [ C sog/ (R) @ so0,,_s (R) and thus (2.6)
since b is not contained in any proper factor of I.

We turn to proving the lemma. Recall that @ was assumed to be totally definite.
For any real place w of F, (2.6) shows that [, = Lie(L)(F,) is the Lie algebra of
the stabilizer of some F,,-subspace of W ® F,,. Since [ is defined over F, this shows
Lie(L) = Lie(Hy) for an F-subspace W’ C W. This proves the lemma. O

Proof of (2.5). Let M < G be a proper semisimple F-subgroup of G with Hy, C
M C G. By e.g. [87, Lemma 8.6], any normal F-subgroup of M has height con-
trolled polynomially by the height of M. We may hence, for simplicity, replace M
with the minimal normal F-subgroup of M containing Hyy .

By Lemma 2.5, there exists a non-trivial F-subspace W’ C W with M = Hyy-.
By a version of Minkowski’s second theorem — see [3, Thm. 8 — there exists an
F-basis vy, ..., 74 of Lie(Hy) consisting of integral vectors with

[ bt(2) < [ dise(F)[*ht(Hw).

Also, observe that W’ is the unique subspace pointwise stabilized by Hy s and so
W' ={w e F" : Do(v;)w = 0 for all i}.
By Theorem 2.4 we have
ht(Hyy/) > ht(W')*| disc(F)|~*.

By Minkowski’s first theorem (a sufficient version of which is implied by Theo-
rem 2.4), there exists a vector w € W’ with ht(w) < | disc(F)[*ht(Hw)*. Replac-
ing w by a multiple and using Minkowski’s bound, we may assume that

[W N O : Opw] < | disc(F)|?.

In particular, [ [wlly > | disc(F)|~2. We also have

v finite
[Tl > 12 T 1Qw)IE = hld INef (@(w))] .
v|oco v|oco

Putting all these estimates together shows

ht(M) = ht(Hy) 3> ht(w)*| disc(F)|~* > [ llwll}] dise(F)|~*
v|oo
— % 1: i F *
> h | disc(F)| |NrQ(Q(w))| .
This proves the claim. ([

Proof of Corollary 2.3. In view of (2.4) and (2.5) this is a direct consequence of
Theorem 1.1. 0

2.2. Spin genera, primitive representations, and adelic orbits. The goal of
this subsection is to describe the sets at the beginning of the section (the genus,
the set of primitive representations etc) in terms of adelic periods. While this is
mostly standard, we do so from first principles for the readers’ convenience.
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2.2.1. Some notation. As before, F' is a totally real number field with ring of in-
tegers Op. For any finite place v of F' we write 0, for the ring of integers of F,.
Let (V,Q) be an n-dimensional totally definite quadratic space over F'. We write
G’ = SOq for the special orthogonal group of @, G = Sping, for the spin group
of @ (the simply connected cover of SOq), and ¢ : G — G’ for the standard
representation. For any subspace U C V we let

Hy={9geG:po(gu=uforalluecU}

be the pointwise stabilizer group of the subspace U under the action of G. Similarly,
we define Hy; < G’ to be the pointwise stablizer group in G’. One may identify Hy
(resp. Hj;) with the spin group (resp. special orthogonal group) of the restriction
of the quadratic form @ to the orthogonal complement of U.

2.2.2. The genus and the spin genus. Recall that the standard action of GL,,(Ay)
on Op-lattices £ C V is given by letting ¢. £ be the unique lattice with completions
g»(£ ® 0,) at every finite place v of F. Explicitly,

9:£=] (9L ®0,)NV).
vfoo
For brevity, we set £® 0, = £,.
Two quadratic lattices are equivalent (or isometric) if they are in the same G’(F)-
orbit. The genus of a quadratic lattice £ C V is the orbit

gen(L) = G'(Ay).L.

The genus consists of finitely many equivalence classes. If F' = Q and Q(£) C Z, the
genus of £ is naturally identified with the genus of the quadratic form Q|¢. Indeed,
the quadratic form restricted to a lattice in SOg(A ). £ is locally equivalent to the
quadratic form on £.

The spin genus of a quadratic lattice £ C V' is

(2.7) spn(€) = G/'(F)o(G(Af)).L
where we note that o(G(Ay)) is normalized by G'(F).

2.2.3. Primitive representations. Suppose now that 91 is a quadratic lattice of rank
m < n in another quadratic space (W, q).

Lemma 2.6. If m <n — 3 and M is locally primitively representable by a lattice
£ C V, then M is primitively representable by some £ € spn(L). That is, there
exists an F-subspace U C V isometric to W such that £ NU is isometric to .

Proof. This is a well-known fact contained e.g. in [33, p. 2] and [75, Lemma 2]. Here,
we replicate the proof of [75, Lemma 2] in our notation for the readers’ convenience.
By the Hasse-Minkowski theorem [65, Thm. 66:3], there exists a linear isometry

t: W = V. Set U= (W) and
S = {v finite place of F': ((M,) # (U ® F,) N £, }.

Note that S is finite. By assumption, 9 is locally primitively representable by £
and so there exists for any v € S a linear isometry ¢ : MM, — £, with ¢ (9,) =
(. (M) ® F,) N £,. By Witt’s extension theorem (cf. [6, p. 21], [65, §42F]), we
may further find g, € G'(F,) such that g, (w) = ¢(w) for any w € W ® F,,. Thus,
for any v € S we have «(M,) = (U @ F,) N g, L,. If £ € gen(L) is the lattice with
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g =28, forall v ¢ S and £, = g,&, for all v € S, we have shown that 9 is
primitively representable by £'.

We adapt g,, which is uniquely determined up to left-multiples with Hy, (F,),
so that g, € o(G(F,)). Since m < n — 3, the spinor norm on both G'(F,) and
H[,(F,) is surjective (cf. [65, Thm. 91:6]) and we obtain exact sequences

G(F,) = G/(F,) = F*J(F})* =1,
Hy(F,) - Hy(F,) = F)/(F))? — 1.
In particular, for every v € S there exists h, € Hy,(F,) with h,g, € o(G(F},)). The

lattice £ with £/ = £, for all v ¢ S and with £ = h,g,£, for all v € S belongs
to spn(£) and primitively represents 9t. Thus, the lemma follows. O

From now on, we will always assume m <n — 3.

In the following, we view for a given lattice £ C V primitive representations
of MM by the spin genus of £ as tuples (£',t) where £ € spn(£) and t: W — V
is an isometry with :=(£') = 9M. The group G'(F) acts on the set of primitive
representations by the spin genus via v.(£',¢) = (v£',4¢) (where (y¢)(w) = yi(w)).
We write [(£/,¢)] = G/(F).(£,:) for the G'(F)-equivalence class and define the
following sets:

o R(9M,spn(L)) is the set of G’ (F)-equivalence classes of primitive represen-
tations of 91 by the spin genus of £.

e R(M, L) is the set of primitive representations of M by £.

° 7~2(9ﬁ, £) is the set of primitive representations of 9t by £ up to the action
of Aut(£) (where Aut(£) is the finite group of linear isometries of £).

In the above notation, whenever spn(£) = | |, G'(F).£; then
R(M,spn(L)) ~ | |R(M, £,).

By Lemma 2.6, if 9 is locally primitively representable by £, then R (90, spn(£))
is non-empty. There is an obvious forgetful map

7 R(M,spn(L)) — G'(F)\spn(L).

In this phrasing, the conclusion of Theorem 1.3 corresponds to showing that R (9, £;)
is non-empty for every i or, equivalently, that 7 is surjective.

Lemma 2.7. Let (£,1) be a primitive representation of 9. The map
(2.8) {H}y, (F)-orbits in H,yy, (F)o(H,w(Af)).L} — R(M,spn(L))

given by (Hly, (F)h) L — [(hi£,0)] is injective.

Moreover, a class of primitive representations [(£',1')] belongs to the image of
(2.8) if and only if there exist v € G'(F') and g € G(Ay) such that £ = (y0(g))+L£
and ! = vo(gy)t for every finite place v of F.

By construction, the composition of (2.8) with 7 is given by the natural map
(2.9 Hy(F)\Hy (F)o(MHw(Af)).£ = G(F)\G'(F)o(G(Ay)).L.

The lemma yields an equivalence relation ~ on R(M,spn(£)). (Following Kneser
[17] one could call the classes under ~ ‘spin genus classes of primitive representa-

tions’.) We note that the claim for the image of (2.8) will not be used for the proof
of Theorem 1.3.
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Proof. For any £ € H!;,(F)o(H,w (Af)).£ we have £ NV = (9M) and hence the
map in (2.8) is well-defined. If [(£1,¢)] = [(£2,¢)] then there exists v € G'(F') with
v£€1 = £5 and y¢ = ¢; the latter implies v € H/;,(F)) and so injectivity follows.
For the claim regarding the image, note that any image under (2.8) has the
desired property by construction. Conversely, suppose there exist g € G(As) and
v € G/(F) such that £ = (y0(g9))«£ and ' = vo(g,)t for every finite place v of
F. By Witt’s extension theorem (cf. [0, p. 21], [65, §42F]), there is v/ € G/(F)
such that 7't/ = . Replacing the representative of the class we may thus assume
/= . Thus, yo(9) € H,,;,(Af). By [05, 101:8] using m < n — 3, the spinor
norms G/(F) — F*/(F*)? and H/;,(F) — F*/(F*)? surject onto the set of
totally positive elements. We may thus write v = 71 0(72) where v; € H/;,(F) and
v2 € G(F). Replacing g with 29 we can hence assume that v € H/y, (F) and
g € H,w(Ay). This proves the lemma. O

Remark 2.8. The map in (2.8) need not be surjective. For an example, one may
construct a non-unimodular quadratic lattice £ and two subspaces W7, W5 where
£NW; and £N Wy are isometric but £ N Wi~ and £ N W3- are not.

Since (2.9) factors through (2.8), the following corollary is immediate.

Corollary 2.9. If (£,.) is a primitive representation of MM such that (2.9) is sur-
jective, then M is primitively representable by any element of the spin genus of £.

Corollary 2.9 provides a clear path to proving Theorem 1.3. Indeed, let (£,¢) be
a primitive representation of 9t and set

Ky ={g € G'(Fo(G(Ay)) : g.£ = £},
(2.10) K ={ge G (F)o(G(A)): (97)+£ = £} = o(G(F @ R)) Ky

where we used o(G(F ® R)) = G'(F ® R) for the last equality; the latter holds
since G'(F ® R) is connected.

Then 91 is primitively representable by any lattice in the spin genus of £ if
the homogeneous set [o(H,w (A))] intersects any of the finitely many (right-)K-
orbit in [o(G(A))]. Thus, effective equidistribution (or rather effective density) of
[o(H,w (A))] can yield Theorem 1.3.

2.2.4. Determining the weights. Let £ C V be a quadratic lattice and suppose that
there is a primitive representation (£,:) of 9 by £. Define K as in (2.10). In the
following we compute

a) the measure of K-orbits on [o(G(A))] and
b) the measure of K N (H!y, (F)o(H,w (A)))-orbits on [o(H,w (A))]

for the Haar probability measures on the respective orbits. Note that only a) (or
rather a lower bound on the measures in a)) is needed to establish Theorem 1.3 as
a corollary of Theorem 1.1.

We start with a). Let vg be the Haar measure on the group G'(F)g(G(A)) which
projects to the probability measure ¥ on the quotient [p(G(A))]. The measure of
an orbit [o(g)K] is

v ([o(g)K]) = m

where £ = 0(gy)«£ € spn(£), and recall that Aut(£') = {g € G'(F): g. &' = £'}.
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Using the fact that g is a probability measure we have vg(K) ! = wopn(e)
where

(2.11) Wepn(g) = > #Aut(g) !

G/(F).L'Cspn(L)
Thus,
1
Wepn(g)FEAUL(L) '

For b), set K, = K N (H,;,(F)o(H,w(A))) (which implicitly also depends on
£). Let v, be the Haar measure on Hy;, (F)o(H,w (A)) that descends to the prob-
ability measure on [o(H,w (A))]. In view of the map (2.8) in Lemma 2.7, any
K,-orbit in [o(H,w (A))] corresponds to a class [(£, )] of primitive representations
in R(M, spn(L)). The measure of this orbit is

v, (K,) 1

(2.12) #(Aut(£) N HL, (F)  wiie.) - #(Aut(€) NH.,, (F))

where wi(¢ ) is the normalizing constant

1
(213)  weg =wlK) = Y] .
7 Aut(&)NH , (F
(2 0)]~[(20)] #(Aut(£) N Hy, (F))

Here, we used the equivalence relation ~ defined after Lemma 2.7.
Suppose now that £y C V is a quadratic lattice. When {£;} is a set of repre-
sentatives for G’(F')-orbits in the spin genus of £y, we have by unfolding

va(lo(9)K]) =

> Wien) = D #(Aut(L mHQW( )

[(£,1)]ER(M,spn(Lo))/~ ()]

1
_Z Z | #(Aut(S) VH]y (F))

A(Aut(L).(8:,0)
72 Z #Aut 1)

i [(Sm)]

Z #Aut

(2.14)

For future use, we set
1 r(i)ﬁ, 21)
Wspn(gg) < FAUL(L:)

T(m7 spn(SO)) =

Lemma 2.10. When m <n — 3 have

(2.15) (9, spn(Ly)) = (M, gen(Ly)).

Moreover, if £y locally primitively represents 9t then
(M, spn(Lo)) >r.e, \NrS(Dfm)\*-

Recall that (91, gen(Ly)) was defined in (2.2) in a similarly to (9, spn(Ly))
using the full genus.
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Proof. The comparison of averaged numbers of representations by different spinor
genera in a genus in (2.15) is due to Kneser [17] and Weil [36, p. 473]. These works
also verify that wypn(e,) depends only on the genus of £.

Since we do not strictly speaking require the lower bound on (91, spn(£y)), we
shall be brief in proving it. It suffices to bound wy(¢ ,); from below for any primitive
representation (£,¢) by the spin genus of £9. Notice that by (2.13)

Wi(e) = Y (K A (HZW(F)@(HLw(A))))

where K is as in (2.10) and v, is the Haar measure on the group H!y, (F)o(H,w (A))
which descends to the Haar probability measure on the quotient

Y = [o(How (A))].

In other words, wye,.y = \7cv)l(Y) where the adapted volume vol is defined in [20,
§5.12]. By [20, §5.12, App. B], we have vol(Y) >p ., cpl(Y)* where one uses
reduction theory to realize Y appropriately as a subset of SL,, (F')\SLy, (A) (cf. §2.3.2
below). As in §2.1, one may verify cpl(Y) g e, [Nrg(290)[* proving the lemma.

[

2.3. Proof of Theorems 1.3 and 2.1. The goal of this section is to prove The-
orems 1.3 and 2.1. To make our arguments accessible, we will prove Theorem 1.3
first despite it being a direct corollary to Theorem 2.1. The proof of Theorem 2.1
will warrant a discussion of reduction theory for quadratic forms over the totally
real number field F'; we will recall these facts in §2.3.2.

Throughout, £ C V and 9t C W are quadratic lattices and 91 is locally primi-
tively representable by £.

2.3.1. Proof of Theorem 1.3. Recall that F' = Q is assumed in Theorem 1.3. We
fix £9 € spn(£) which primitively represents 9t (this is possible by Lemma 2.6).
Let (£o,t0) be such a primitive representation.

By Minkowski’s reduction theory of quadratic forms over Q (see e.g. [6, Ch. 12]),
there exist linearly independent vectors vy,...,v, € £y spanning a sublattice of
index O,(1) in £y such that

Qv1) < ... < Q(vn)
and |(vi,v5)q| < Q(v;) for i < j. In particular, disc(Q) =< ], Q(v;). We use this
basis to identify V' with Q™ and hence identify the isogeny g with a homomorphism
0: G = Sping — SL,,. Set
X =[o(G(A)], Y =[o(H,w(A))].

In this setting, Corollary 2.3 yields that for any f € C*(X) of level L
2.16 = < mi i - L.
(216) [ =] o< amin atw) " dise(@le,) 1 len

Note that D := disc(Qle,) = disc(Q|e) does not depend on the element of the
genus of £.

Since £p € spn(L) there exists go € G'(Q)o(G(Ay)) with (go)+Lo = £. Asin
(2.10), let

Ki={g€ G (Qo(G(Af)) : g:£0 = £}, K = o(G(R))K}.
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By Lemma 2.7, the theorem follows if we can show that Y intersects the open
subset [goK] of X (see the comments after Corollary 2.9). Let f be its indicator
function. Note that f is locally constant at the real place and invariant under K.
In particular, it is of level O,,(1) recalling that the integral structure is defined using
V1,...0U,. By a) in §2.2.4 we have

J! = o
X B Wspn(g) - #AUt(S)

where wgpn(g) is as in (2.11). We have #Aut(£) < 1. In view of the above
discussion of reduction theory of integral quadratic forms, wgpn(e) << D*. Indeed,
this follows from reduction theory as there are < d* many forms over Z with
coefficients bounded by d. Overall, this shows that [, f > D~*. Thus, if [, f =0
we have by (2.16)

D™« / < min g(w)) "D*
X (w@m\{o} (w))
and hence min,,eon\ 03 ¢(w) < D*. This proves the theorem. a

2.3.2. Reduction theory for quadratic forms over number fields. The classical re-
duction theory over Q by Minkowksi [6] has been extended to quadratic forms over
number fields by Humbert [35, 36] (see also [18, §9-11]). Here, we briefly recall this
theory in a slightly refined form (as our lattices are not free); the reader interested
in the case F' = Q may skip this subsection.

Let £ C V be a quadratic lattice. We set

. . F
min(€) = _min [Nt (Q())]

Since £ is not necessarily free, the statements to follow are slightly more intricate
than usual phrasings of reduction theory over F. We refer to e.g. [9, Thm. 3.11]
for the following discussion. By Minkowski’s bound and the classification of finitely
generated modules over Dedekind domains, there exists a free submodule A C £
such that

[£: A] < | disc(F)[*.

In fact, there exists Cr > 0 (depending only on F') and such a free sublattice
A=0pv +...4 Opv, so that Cr min(£) > min(A), and the quadratic form @ in
the basis vy, ..., v, is given by
(2.17) ar(xy + browa +..)% 4 ao(wy + baszs + .. )2 + ...+ apz?
for some a;, b;; € F with the following properties.

o |Nr(g(a1)| < Crmin(g).

e For any v | oo and any ¢ < j we have |b;;|, < Cp.

e For any 7 < 5 we have

Nt (a5)] < CpINTg ().

e For any v, w | co and any i we have |a;|, < Cp|a;|w.

In particular, applying these estimates in (2.17) the matrix representation (m;;) of

the quadratic form Q| (in the basis provided above) satisfies for any place v | co

(2.18) Imijle <p |disc(Q[a)[} <r NG (2L)[*.
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Here, recall that £ is the ideal of Op generated by the discriminants of free sub-
lattices of £ and that [£ : A] < | disc(F)|*.
We also record the following corollary of the above discussion.

Corollary 2.11. For any quadratic lattice £ CV

#(G'(F)\spn(L)) <r |Nr5(0£)|*.
Proof. The number of quadratic forms over Op in n variables whose coeflicients
(mij;) satisfy [m;jl, < h for all v | oo is < h*. Write G'(F)\spn(&) = | |; G'(F).£L;
and apply the reduction theory from above to find for any i a free sublattice A; C £;

with the required properties. The number of G’(F)-inequivalent lattices A; is
< NrG(0L)[*. If A; = v,A; for some v € G'(F), then

[Sz : 27 N ")/*Ej], [7*21' : 27 N "}/*2]‘] <LF 1.
In particular, there are < 1 such j’s for any given i. This proves the corollary. [

2.3.3. Proof of Theorem 2.1. We proceed similarly to the above proof of Theo-
rem 1.3. By Lemma 2.6, 9 is primitively representable by an element of the spin
genus of £. For the time being, fix a pair (£o, ) where £y € spn(£) and ¢ is a
primitive representation of 9. Note that we will later have to vary this choice over
all equivalence classes of the relation ~ introduced in Lemma 2.7.

By reduction theory as in §2.3.2, let Ay C £ be a free sublattice with a basis
V1, . . ., Up satisfying the required coefficient bounds. We identify V' with F™ through
this basis. In particular, we view ¢ as a homomorphism ¢ : G — SL,,. Set

X =[o(G(A))], Y = [o(H,,w(A))]
By Corollary 2.3 we thus have for any f € C1(X) of level L

]/ f—/ f‘ < min(Ag N 2o(W)) ™ Nt& 0£0)[*[| fll o (x) L.
X Y

Notice that Nr(g (0Ly) = Nrg(bﬁ) and
min(Ag N o(W)) <p min(Ly N to(W)) = min(M)
so that
(219) | [ 1= [ 4] <r minom) INE QO o
As in (2.10) let
Ky ={g€ G (Fo(G(Af)) : 9:€0 = Lo}, K = 0(G(R))K;.

Since £y € spn(L) there exists g € G'(F)o(G(Ay)) with ¢g.£y = £. We apply
the estimate in (2.19) to the characteristic function f of [¢K]. The function f is
locally constant at all archimedean places and, since [£o : Ag] <p 1, the level L of
f satisfies L < 1. By a) in §2.2.4 we have

oo
X Wspn(L) #AUt(’S) .
Moreover, by (2.12)

1 1
(2.20) /fzi 3
o Aut(e) NH/_, (F
v W00 g i gy ) D H L (F)
[(£",00)]~[(Lo5t0)]
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where, as was the case earlier,
7 R(M, spn(Lo)) — G/ (F)\spn(Lo).

is the forgetful map. Inserting these expressions into (2.19) one obtains an as-
ymptotic for primitive representations belonging to the equivalence class for ~ of
(£o,t0). Notice that the rate does not depend on the equivalence class and, hence,
the same effective asymptotic holds for any average.

We take the convex combination of (2.20) using the weights W‘lw[(gwo)] for all
equivalence classes [(£o,tg)] of ~. By (2.14) we have

W= Z Wi(p.10)] = Wpn(e)T (M, spn(L)).
[(L0,00)]€R(M,spn(L))/~

Moreover, by the same calculation in (2.14) (for a fixed £;) the weighted average
of the right-hand side of (2.20) yields

r(9, £)
Wepn(2)T (MM, spn(L))#Aut(L) '
In summary, the above analysis shows with (2.19)
1 r(9M, L)
Wspn(g)FAUL(L) B Wspn () (MM, spn(L))#Aut(L)
Since #Aut(£) < 1 and, by Corollary 2.11, wypn(e) <r |Nr6 (0L)* we deduce

< min(M)~* |Nr6(02) [*.

’r( ? :) : —% I *
- N
(00, spn(2) < min(9M) " *[Nrg (0L)]
which proves the theorem since (91, spn(£)) = r(M, gen(L)) (cf. (2.15)). O

3. NOTATION AND PRELIMINARIES

3.1. Setup. We will prove Theorems 1.1-1.2 first over Q and then deduce the
version over general number fields. In particular, most of the article will assume
F =Q. Let ¥ and Xy denote the set of places, respectively finite places of Q.

For m > 0 and every ¢ € Xy, let

SL (Z¢)[k] = ker(SLn(Z¢) — SLn(Ze/C*Zy))

be the k-th congruence subgroup of SLy(Z¢). For any closed subgroup M <
SLy(Qg) and any integer k > 0, we put M[k] := M N SLy(Z¢)[k] and refer to
this as the principal subgroup of level k£ in M. When k£ > 0 is not an integer, we
set M[k] = M[[k]] for simplicity of notation.

Let G be simply connected semisimple Q-group and let p: G — SLy be an
algebraic homomorphism defined over Q with central kernel. We define

Ky = p~ ' (SLn(Z0)),

and let Ky =[]y, K. Also, set
(3.1) Ky[k] := ker(Ky — SLy(Z¢ /0% Zy))
for k > 1. Tt is convenient to write K;[0] := K; and Gy = p(G(Qy)).

Given g € SLy(A) we write [g] € SLy(Q)\SLy(A) for the corresponding coset
and, similarly, we write [B] for the set of cosets represented by a subset B C SLy(A).

We consider data D = (H, ¢, g) where H is a simply connected semisimple Q-
group, ¢ : H — SLy an algebraic homomorphism defined over Q with central kernel,
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and gp € SLy(A). Similarly to the introduction, we assume that the data D is
consistent with the pair (G, p) i.e. t(H) < p(G) and gp € p(G(A)). We set

X =[p(G(A))], Yp=[(H(A))gp]
Then Yp is invariant under the group
Hp = g5 W(H(A))gp,
and for every £ € 3, we put

H, = gg}gb(H(@f))gD,Z'

When there is no confusion, we denote Hp simply by H.

We also set up the corresponding notions at the level of the Lie algebra g of G.
For any ¢ € X, we let g, be the Lie algebra of G over Q. For £ € Xy, g,[0] denotes
the preimage of the Zs-integral N x N matrices under the differential Dp : g — sly.
More generally, we write gy[] for the preimage of the matrices all of whose entries
have valuation at least k. For any subspace V' < g, we put V[k] = V N g[k]. For
convenience, we will usually identify g with its image under the isomorphism Dp
and similarly for its subalgebras. We will also view g as a linear subvariety of sly.

Throughout, redy: SLy(Z¢) — SLy(IF¢) denotes the reduction map mod ¢; simi-
larly we consider reduction mod ¢ for the Lie algebras, see [66, Ch. 3] for a discussion
of reduction maps.

For g € G(Qy), we write ||g||¢, or simply ||g|| if there is no confusion, for the
largest absolute value of the matrix entries of p(g) and p(g)~!. For an element
g € G(A) we write

lgll = max{|lgell : £ € 3}

Notice that ||g|| = [|g~*|]. Moreover, for any g € G(A) we define ht(g) = [ ey 1]l
The content of a vector w € (A" sly)(A) (or w € AN) is

(3.2) e(w) = [T lwell-

lex

Here, for ¢ a prime the norm ||-||¢ is the largest absolute value of the entries of w (in
an integral basis) and || - || is the usual Euclidean norm. Note that c(aw) = c(w)
for any w and any a € Q*.

For any Q-subgroup L < SLy we let

dim(L) dim(L)

we N Le@@c A sv(@

be one of the two primitive integral vectors in the line /\dim(L) Lie(L)(Q). The
height of L, denoted by ht(L), is the Euclidean norm of =, where the Euclidean
norm is induced from the usual Euclidean norm on sly C Maty. Since the height
only depends on the Lie algebra, we write ht(L) = ht(p(L)) for any Q-subgroup
L < G (and in particular, for G itself).

More generally, and similarly to the introduction, we define the complexities

epl(X) = c(vp(c)) = ht(G), cpl(¥Yp) = c(gp" wm))-
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3.2. Volume of a homogeneous set. We now recall a notion of volume of a
homogeneous set from [20]. We will do so only in our setting i.e. for adelic periods
over QQ (as this is sufficient for our purposes). Note that this discussion is subsumed
by the discussion in Appendix A.

Let © C SLy(A) be an open neighborhood of the identity with compact closure.
Define the volume of Yp = [t(H(A))gp| (and similarly for X) by

mH(YD)

VOI(YD) = m,

where my is a Haar measure on H = g5 «(H(A))gp.

If Q' C SLy(A) is another compact open neighborhood of the identity, then the
volume vol'(-) defined using Q' satisfies vol'(-) < vol(-), see [20, §2.3]. In the sequel,
we will assume that

o=1J .

VEX
where o, C SLy(R) is a fixed open neighborhood of the identity in SLy(R)
and Qy = SLy(Z,) for all primes ¢.
The following proposition is a special case of Proposition A.2 and is proved in
Appendix A.

Proposition 3.1. Assume that G is Q-anisotropic. Then there exists a constant
Ay > 0 depending only on N such that

(3.3) epl(Yp) Y44 <« vol(Yp) < cpl(X) ™ epl(Yp)™
where the implicit constants depend only on N.

In view of Proposition 3.1, we may switch between vol(-) and cpl(-) at will in the
proof of Theorems 1.1-1.2.

3.3. Good primes. Let H = H; --- Hy be a direct product decomposition of H
into Q-almost simple factors — recall that H is simply connected. Let F;/Q be a
finite extension so that H; = Resp, /o(H)) where HJ is an absolutely almost simple
Fj-group for all 1 < j < k. Then [F} : Q] is bounded by dim H. Let ’H;- be the
quasi-split inner form of H; over F;. Let L;/F; be the corresponding number field
defined as in [67, §0.2]. That is, L; is the splitting field of H’, except in the case
where ”H; is a triality form of type 6Dy where it is a degree 3 subfield of the degree 6
Galois splitting field with Galois group Ss.
For any prime ¢, let
K =1 (9¢SLn(Ze)g; V).

Then K C H§:1 [1.c K5, where K7, is the projection of K7 into H',(F},) and,

3w g
in particular, it is a compact open subgroup of H; (Fj.»). We recall the following

Proposition 3.2 ([20, §5.11]). For every A > 1, there exists a prime p satisfying
A < p <4 max{(log vol(Yp))?, (log vol(X))?}
so that all of the following properties hold:

(1) G is quasi split over Q, and splits over the mazimal unramified exten-

sion Qp, and K, is a hyperspecial subgroup of G(Q,),
(2) L;/Q is unramified at p for every 1 < j <k,
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3) H'.  is quasi split over F;, and splits over f\v = @, or every 1 < j <k

v J, Js p
and every v|p,

(4) K, = H§:1 Hv‘p K7, and K7, is hyperspecial for all 1 < j < k and all
v|p.

We will refer to a prime p € X satisfying properties in Proposition 3.2 as a good
prime (for X and Yp). For simplicity in notation, we write j,: H — p(G) for the
homomorphism defined by j,(-) = gilpb(')gp,p at a good prime p.

Bruhat-Tits theory, see [33], provides smooth group schemes &, and £, whose
generic fibers are G and H, respectively, and so that

Kp=8,(Zp) and K =9Hp(Zy).

In fact, &, = [[, &,,; where for every i, the generic fiber of &, ; is a Qp-simple
factor of G(Q,) and the special fiber of &, ; is an Fp-simple factor of the special
fiber of &,,. A similar statement holds for £,,.

It follows from [20, §6.2] that p extends to a closed immersion from &, to
(SLn)z,, and that the map j, extends to a closed immersion from §),, to (SLx)z,,
respectively. In particular, the Z,-structure on (sly)z, defined above agrees with
the Z,-structure on Lie(&,).

Recall that red,, denotes the reduction map modulo p and, for simplicity, we will
write e to denote red,(e) for any Z,-module, scheme, or morphism e. Abusing the
notation, given an Qp-subspace V' C sln(Q,), we denote V[0] simply by V.

The following will play an important role in the sequel.

Lemma 3.3. There exists a closed immersion
eo’p : SL2 — ﬁlﬂ

of Zy-group schemes so that 8, := j, o 0y, satisfies the following properties.

(1) The map 8, : SLy — SLy is a closed immersion.

(2) The projection of 0,(SL2(Qy)) into each Qp,-almost simple factor of Hy, is
nontrivial.

(3) Ado#6,:SLy — SL(sly) is a closed immersion of Z,-group schemes.

(4) We have Ad o0, = Ado 6, as representations of SLa(F,) on sly @x, F,.

Proof. For the existence of 6 ), see [20, §6.7] and the references therein. Then the
first part follows from the fact that j, is a closed immersion.

The second part is proved in [20, §6.7]. Indeed 6 ,: SLy — $),, is constructed
in loc. cit. precisely so that if we define 6, as above, then part (2) holds.

Since p >n 1, the adjoint representation Ad: SLy — SL(sly) is a closed im-
mersion and the reduction mod p is the adjoint representation of (SL N)ﬂ' Thus,
Part (3) follows as Ad o 6, is a composition of closed immersions. Taking the
reduction mod p, we also conclude for Part (4). O

We will refer to 6,(SL2(Qp)) as the principal SLy in the sequel (though we
caution readers that 6,(SL2(Q,)) is merely isomorphic to a quotient of SLa(Q))
by a finite normal subgroup). We define a one-parameter unipotent subgroup u :

@p - ep(SL2(Qp)) by

(3.4 uw=0,((5 3)):
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let U = {u(s) : s € Q,}. We write
(3.5) c=zt =D, ((8 é)) € g,[0]

for the derivative of u(-) at 0 where we recall that g, is identified with its image
under p. We let z= € g,[0] be the analogously defined direction using the lower
nilpotent in sly. For any t € Q set

(36) a=0,((5 ).

and let A = {a(t) :t € Q) } and a := a(p~'). Note that U and A are the Q,-points
of Zy-schemes, and write, as before, {a(t) : t € F} and {u(s) : s € F,} for the
reduction mod p of the groups {a(t) : t € Z;} and {u(s) : s € Z,}, respectively.
Abusing the notation we write A = {a(t) : t € F,'} and U = {u(s) : s € F,, }.

3.4. The adjoint representation of the principal SLy. A vector v € sl (Q,)
is said to be of weight X if a(t).z = t*v; we will say v has pure weight if it has some
weight. A non-zero vector will be called a highest weight vector if it has pure weight
and is U invariant. If a Q,-subspace V' C slx(Q,) is invariant under A, we let V)
denote the space of vectors in V of weight A, and let VPV (resp. VhW’O‘)) denote
the subspace of U-invariant vectors (resp, the subspace of U-invariant vectors of
weight A).

Similarly, a vector w € sly(F,) is said to be of weight A if a(t).w = t*w. We
also define pure and highest weight vectors accordingly, albeit with U in place of U.
If W C sly(F),) is an F,-subspace which is invariant under A, we let W) denote
the space of vectors in W of weight A. Define W™ and W™ (M) similarly.

Lemma 3.4. Let V C sln(Q,) be a 0,(SL2(Q)))-invariant subspace. Then
Vhw [O] — @ Vhw,()\) [O]7
A

and for each A, there is a Zy-basis {ox 1, ..., oxay, } of VIV XN0] so that the following
hold for every A:

(1) {UA,l, ce 7/>\7dx} is a basis for VWM

(2) For every 1 <i < dj,

SL2 (Qp).v,\ﬂ»
spans an A + 1-dimensional irreducible representation of SL2(Q)), and

SL2 (]Fp)@

spans an A + 1-dimensional irreducible representation of SLa(F),).
(3) vV = v Iy particular, VR = VY

Proof. First note that if W C sl (Q,) is a Qp-subspace and wi, ..., wg € W[0] is a
basis for W[0] as Z,-module, then W[0] = &;Z,w; and {wx,...,ws} is a basis for
w.

Using representation theory of SLo over @, we conclude that Vvhw — ¢ ,\ZOVhW’(’\)
and each non-zero vector » € VM) with A > 0 is a highest weight vector.
Moreover, 6,(SL2(Qp)).v spans an A + 1-dimensional irreducible representation of

0p(SL2(Qp))-
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For each ), fix an Z,-basis {v; 1,...,0r.4, } for VI [0]. Then for every i, vy ;
is a highest weight vector with weight A. Since p > 1, we have that v, ; is also a
highest weight vector with weight A. Moreover, {ox1,..., 74, } is an F,-basis for

Vhw,(M (that is, part (1) of the lemma is verified) and the following holds
(3.7) {w:)\zo,l §i§d>\} is a basis for V"V,

To verify (3.7), suppose ZM‘ cr,iUx,; = 0, and let uy = Y. cxvr,. Let m be the
largest weight where u,, # 0, thgtmum = = em i um/gr all t € F, by
applying a(t). Since p > 1 and the above is a polynomial equation in ¢, this implies
uy =0 for all A. As {vy; :4 < d,} is an F,-basis for yhw, () (3.7) holds.

Now since @V N[0] € V?¥[0], we conclude from (3.7) that

VhW[O} _ @)\Zovhw,()\) [O]

as it was claimed in the lemma.

We now show that part (2) also holds for these vectors. The claim regarding
SL2(Q,) was already discussed, thus, we work over the residue field F,. Since
p > 1 and the representation of SLy(F,) on g, is given by Ad o 6, see Lemma 3.3,
V is completely reducible and the representation appearing in V are the standard
highest weight representation. In particular, SLa(F,).7) ; spans an A41-dimensional

irreducible representation of V.

To see part (3), first note that by part (2), we have V™) < ') More-
over, by part (1) we have dim(V™*) = dim(V™(N)). These, the above remark
regarding subrepresentations of V, and dimension count, imply

dim(V) =dim(V) = Z()\ +1) dim (V™)

(3.8) : e
> (A + 1) dim(V™ M) = dim(V).
A

Thus dim(V™ ™) = dim(V™ M) = dim(V" M) for every A > 0, which proves
part (3). O

Lemma 3.5. Let V C sly(Qy) be a 0,(SL2(Qp))-invariant subspace. Then there
are 0,(SL2(Qp))-trreducible subspaces W1,...,Wq CV so that

d
Vil =@ Wi

andV = @?:1 Wi is decomposition of V. into SLa(FF),)-irreducible representations.
In particular, if V is irreducible, then so is V.

Proof. By Lemma 3.4, V¥[0] has a Z,-basis {; : 1 <i < d}sothat {g; : 1 <i < d}
is an F,-basis for V™. For every i, let W; be the Q,-span of ,(SLa(Q,)).z;. We
claim the lemma holds with Wy,..., Wjy.

First note that V. = &;W; and ®W;[0] C V[0]. Let now 1 < i < d, and
let W; be the Z,-span of 6,(SL2(Z,)).z;. Then W; C W;[0], moreover, in view
of Lemma 3.3 and part (2) of Lemma 3.4, W, is an irreducible representation of
SLy(F),) of dimension dim W;. Put V = @&;W;; arguing as in (3.8), we conclude that
Y =V. Since V C V[0], the lemma follows. O
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For any vector » € V[0] in a subrepresentation V' C sly(Q,) of the principal
SLo, we write »™ for the natural projection onto the direct sum of the non-trivial
irreducible subrepresentations of V. By Lemma 3.5, we have v"* € V[0].

We will also need the following lemma.

Lemma 3.6. Let the notation be as in Lemma 3.5, and let W; C V be any
of the irreducible representations given by loc. cit. Then there exists a Zp-basis
{wir,...,wia;,} of Wi[0] so that w; ; is a pure weight vector for all j.

In particular, K()‘) =X for any A.

Proof. Let us first prove the first claim. For simplicity in the notation we will drop
the index ¢ and denote W;, d;, etc. by W, d, etc. Let Aq1,..., Ay denote the distinct
weights of W. For every weight A;, let w; € W(’\J')[O] denote a primitive vector,
ie., Zy.w; = WA)[0]. We claim {wy, ..., w;} is the desired basis. To see this, note
that for any t € Z,;, we have

a(t)w; = a(t)w; = tN w; = " w;.

As p is large, {w1, ..., wq} are linearly independent. Since W is a d-dimensional
irreducible representation of SLy(F,,), {1, ..., wq} is a basis for W. This completes
the first assertion in the lemma.

The second claim in the lemma follows from the above and Lemma 3.5. O

For v € V[0] contained in a subrepresentation V' C sl (Q,) of the principal SLy
we write v1 (resp. v™) for its projection onto the positive (resp. negative) weight
components. Note that v+, 2~ € V[0] by Lemma 3.6.

3.5. Undistorted complements. We now record two corollaries of the above
discussion which will be used in the sequel.

Lemma 3.7. Suppose that ((H) is not contained in the image of any proper Q-
factor of G under p. Then the image of the closed immersion 8, : SLy — SLy s
not contained in the image of any proper factor of &, under p. Similarly, the image
of the closed immersion 0y, : (SLQ)E — (SLN)E is not contained in the image of
any proper factor of &, under p.

Proof. Recall that G, = p(&(Q,)) and H, = j,(H,(Qp)). We first show that if
§ <1 g, is the minimal ideal (with respect to inclusion) containing Lie(H,), then s is
defined over Q. Indeed, since s is an ideal, it is also the minimal ideal containing
Lie((H(Q,))), which is defined over Q. Thus for any o € Aut(Q,/Q) the Lie
algebra s N s7 also contains Lie(¢(H(Q)))); in view of the minimality of s hence
sMNs? = 5. This implies that s is necessarily defined over Q as we claimed. Combined
with our assumption on ¢(H), thus, H, has non-trivial projection to each Qp-almost
simple factor of G/p.

Recall now from part (2) of Lemma 3.3 that the projection of ,(SL2(Q,)) to each
Qp-almost simple factor of H,, is non-trivial. Together with the fact that H is simply
connected, this implies that H,, is generated by Hp-conjugates of 6,(SL2(Q,)). Al-
together, we conclude that the projection of 8,(SL2(Qy)) to each Qp-almost simple
factor of G, ; of G, is non-trivial; establishing the first claim.

To see the second claim, recall that each Q,-almost simple factor G, ; is the
image of the generic fiber of &, ; under p and &, ; is an Fj-almost simple factor of
&,,. Moreover, all F,-almost simple factors of &, arise this way, see the discussion
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preceding Lemma 3.3. Now by the first claim, the representation of 8, (SL2(Q))) on
Lie(Gp ;) has a nontrivial highest weight. Thus by Lemma 3.4 the representation
of SLy(F,) on

Lie(Gp,i) =06y, (Fp)

is non-trivial. This implies the second claim and finishes the proof of the lemma. [

For any Q,-subspace V' C g, and k > 0 we write V[k] = VNg,[k]. A complement
W to V is undistorted if W[0] & V[0] = g,[0]; note that if this holds, then W[k] &
V[k] = gplk] for all & > 0. Arguing as in the proof of Lemma 3.5, we have the
following.

Lemma 3.8 (Existence of undistorted complements). Let V' C g, be a subspace
invariant under the principal SLy. Then there exists an undistorted complement W
to V' which is also invariant under the principal SLso.

Proof. First note that since Zj, is a PID, there exists a Zy-basis (v;)1<i<m of gh*[0]
so that (v;)1<i<a is a Z,-basis for VI¥[0]. In particular, (vi)1<i<m is an Fp-basis
for g,"™ and (7;)1<i<q is an F,-basis for V" by Lemma 3.4.

For every 1 < i < m, let W; be the Qp-span of 6,(SL2(Qp)).7. By the proof of
Lemma 3.5, applied with V' and g, and the above basis, we have

m d
g,[0] = EPWi[0] and V0] = @ Wi[0]
i=1 i=1
The claim in the lemma thus holds with W = &%, W;. O

4. OUTLINE OF THE PROOF

4.1. Standing assumptions. For the outline of the proof of Theorems 1.1, 1.2 in
this section, and until the proof of the main theorems in §10 we make the following
STANDING ASSUMPTIONS:
e G is a Q-anisotropic simply connected semisimple group, p : G — SLy is
a homomorphism defined over Q with central kernel, and

X = [p(G(A))].

The Lie algebra g and its subalgebras are identified with their images un-
der p.

D = (H,, gp) is semisimple simply connected data over Q consistent with
(G,p) ie. t : H— p(G) is a homomorphism defined over Q with central
kernel and gp € p(G(A)).

+(H) is not contained in any proper Q-factor of p(G).

e ;i = pp is the invariant probability measure on

Yp = [t(H(A))gp].

p is a good prime for X and Yp as in Proposition 3.2 (assumed to be >y 1).
0,(SL2(Qp)) is a fixed principal SLy (cf. Lemma 3.3) contained in H, =
g{j}pL(H(Qp))gp,p. We denote by {u(r)}, {a(t)} the unipotent and diagonal
subgroups respectively of the principal SLa (cf. (3.4) and (3.6)).

Weights and highest weights are understood with respect to these choices (see §3.4).
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4.2. Strategy. The overarching strategy is roughly the same as in previous works
— see e.g. [21, 20, 87] — accumulating ‘almost invariance’. To illustrate this,
we will first phrase the approach in vague terms emphasizing the corresponding
imprecisions” by placing the terms that need to be made precise in quotes.

The goal is to show ‘almost invariance’ under more and more highest weight
directions in an (undistorted) invariant complement v of h, = Lie(H,). In the
course of the argument it would transpire (using (B) below) that if p is ‘almost
invariant’ under all highest weight directions then it is ‘very close’ to the uniform
measure on X.

By induction, suppose we are given v, ..., s, € t[0] highest weight vectors (of
non-trivial weight) which are linearly independent modulo p. Assume further that
the measure p is ‘almost invariant’ under the one-parameter unipotent subgroups
U; = {exp(ts;): t € Qp} and that Un, ..., U, together with 6,(SL2(Q,)) ‘effectively
generate’ a ball that is not ‘too small’ in a group M < p(G(Q,)) =: G,. We do
not assume that M contains the group H),.

Assuming that Yp is not contained in an orbit of ‘very small’ complexity, one
wishes to say the following:

(A) Additional almost invariance: There is an additional direction w,41 in
Lie(Gp) of highest (non-zero) weight which is ‘transversal’ to Lie(M), so
that p is ‘almost invariant’ under the one-parameter unipotent subgroup
{exp(tvn+1) 1t € Qp}.

(B) Effective generation: Assuming o,41 as in (A) exists, there is a ‘per-
turbation’ #{,...,7, ; so that p is ‘almost invariant’ under the corre-
sponding one-parameter unipotent subgroups Uy, ..., U} and in addition
Ui,..., U], together with 6,(SL2(Q))) ‘effectively generate’ a group M.

We point out that we do not prove that M’ has larger dimension than M, but
certainly dim(M') > (n+3)+1. Iterating the above one obtains ‘almost invariance’
under G, and in particular the horospherical subgroups of G, corresponding to
a(t); from here, one can conclude using spectral gap on the ambient space. We
turn to making the above steps precise.

4.3. Some effective notions. Given a C'-function f on X we write lev(f) for the
level of f i.e. the least integer L > 1 such that f is invariant under [[, G¢[ord,(L)].
Moreover, as in the introduction we fix an inner product on gl (R) and define the
C'-norm || f||c1(x) as the maximum of the sup norms of the function and its partial
derivatives in directions corresponding to an orthonormal basis of g.,. We use the
following notion of almost invariance:

Definition 4.1. Let ¢ > 0. We say that pv is e-almost invariant under g € G, if
for all C*-functions f on X

| / f(g)dn— / fdu| < clev(Dl fllor .

Moreover, i is e-almost invariant under a subgroup of G, if it is e-almost invariant
under every element of that subgroup. Lastly, u is e-almost invariant under v €
0,[0] if it is e-almost invariant under {exp(tv) : t € pZ,}.

2In particular we will ignore less crucial multiplicative constants in the informal discussion. How-
ever, Proposition 4.3 and Theorem 4.4 are precise as stated.
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Notice that the above definition differs from e.g. the notion of almost invariance
in [20] where L2-Sobolev norms were used. Definition 4.1 directly implies that
(4.1) p is 2p~F-almost invariant under all g € G,[k].

Other elementary properties of the definition will be discussed in §9.3 below.
We will use the following notion of effective generation. Let M < G, be a closed
subgroup with Lie algebra m.

Definition 4.2. We say that M is k-generated by nilpotents v, . .., Ugim(m) € m[0]
dim(m) dim(m)

if the following holds: There exists t € Zy so that for the map ¢: Qp —
SLy(Qp) defined by
(4.2) @(t1,. s tdim(m)) = exp(ti71) - - - exp(tdim(m) Zdim(m))

the derivative Dy has a dim(m)-minor of absolute value at least p~F.

In this case (cf. Lemma 5.1), a quantitative open mapping theorem implies that
@(Zgim(m))flw(zgim(m))

contains M [3k] — the ball of radius p~3* in M around the identity. In particular,
this notion will allow us to pass from almost invariance under nilpotent elements
to almost invariance under a ‘small’ subgroup.

Since the measure p is trivially 2p~*-almost invariant under M[k] by (4.1), we
need to ensure that there is no competition between the quality of almost invariance
under the given nilpotents and the quality of effective generation.

4.4. Additional almost invariance. We prove in §6—§9 the following precise ver-
sion of (A) above.

Proposition 4.3. There exists A5 > 1 depending only on N with the following

property.
Let M < p(G) be a proper Qp-subgroup containing 0,(SL2). Let k € N with

pA5cpl(X)‘4” <pk < mcpl(YD)l/‘AS.

Suppose that M = M(Q,,) < G, is k-generated by some nilpotents of pure non-zero
weight and that p is p~“5*-almost invariant under M[3k].

Then there exists a highest weight vector v € g,[0] (of non-zero weight) with
vmod p ¢ m[0] mod p so that p is p~ B/ 45 _almost invariant under v.

Let us indicate some ingredients of the proof of Proposition 4.3. The basic
idea, that can already be traced to Ratner’s proof of her measure classification
theorem [68, 69], is that nearby Birkhoff generic points give rise to additional in-
variance (for the current context, see [22] or [21, §2]). We wish to find two points
x1,x2 = x19 € X that are generic in a suitable effective sense so that the small
displacement g does not ‘almost normalize’ M. If this does not happen, we employ
an effective closing lemma in Proposition 7.1 to get a contradiction to our assump-
tion that mcpl(Yp) is large (compared to p¥). The closing lemma we use here is
a variant of the closing lemma that is given in joint work of Margulis, Shah and
three of the authors of this paper (E.L., A.M., and A.-W.) [51]. The closing lemma
in [51] is more general (though written only for quotients of real groups), but does
not take into account the dependence on the ambient group.
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When the displacement g does not ‘almost normalize’ M, one may ‘realign’ the
points z1, z2 so that g is of the form exp(») for some v € g,[0] with v ‘transversal’
to m and with Ad(a(t))v diverging ‘sufficiently quickly’ as |t| — oo (i.e. Ad(a(t))v
reaches size 1 for |¢| > ||z||7*). That » was arranged to be ‘transversal’ to m
ensures there is no contribution from M to this displacement. Making sure that
Ad(a(t))v diverges ‘sufficiently quickly’ is more involved; letting C be the centralizer
group of the principal SLy the argument employs an effective variant of the group
{ g€ p(G): Mg C sz} The identity component of this group agrees with the
identity component of the normalizer group of M, and if Ad(a(t))» cannot be made
to diverge ‘sufficiently quickly’ the effective analogue would contradict the fact that
g does not ‘almost normalize’ M.

The realigned points are then used with a version of the averaging operator

(4.3) f»—>/z fCu(s)a(t)™ ) ds

to prove additional almost invariance. A large set of generic points for this operator
is provided by an effective ergodic theorem based on uniformity of the spectral gap;
see [20, §7.6] or §9.2 below.

4.5. Effective generation. Suppose we are given a list of nilpotent elements
N = (v1,...,9,) and let M be the Zariski closure of the group generated by
0,(SL2(Qp)) together with the unipotent one-parameter subgroups defined by the
elements of . We wish to show that M(Q,) is ‘k-generated’ by one-parameter
subgroups corresponding to N and the usual one-parameter unipotent subgroups
of 6,(SL2(Q,)). If this does not work we instead would like to perturb the nilpo-
tent directions in N ‘slightly’ to decrease the dimension of the group M, which
should make it easier to be ‘k-generated’. Iterating this scheme we obtain in §5 the
following precise version of (B).

Theorem 4.4. There exists k1 > 0 depending only on N with the following prop-

erties. Let N' = (v1,...,9,) € g,[0]" be a list of nilpotent elements with n < dim(g)
where each v; for j =1,...,n is of pure weight. Let § € (0,1/2) and
(4.4) k> (116) 7240 (log (cpl(X)) + 1).
Then there exists a € (k1099 1] and a new list of nilpotent elements N =
(91, .., %) € 8p[0]™ with the following properties:

e Forj=1,...,n we have ||7; — v;|| < p~k+dim(a),

e For each j =1,...,n the nilpotent v; is of the same pure weight as v;. If

v; is of highest weight, then so is v;.

o Let M < p(G) be the Zariski closure of the group generated by the one-
parameter groups {exp(tv;): t € Qp} for j = 1,...,n and 0,(SL2). Then
M = M(Qp) 18 dak-generated by nilpotents of pure non-zero weight either
contained in N or equal to zV,z7.

In practice, we will apply the above theorem to a list of nilpotent elements, say

V1, ..., 0, for which the measure y is p~*-almost invariant. (This list is obtained
by adding to the list from the previous iteration step the new direction found in
Proposition 4.3.) The newly found directions, denoted 7, ..., 7,, leave the mea-

ak—+*

sure p~ -almost invariant and generate a comparatively sizable ball around the
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identity in the group M (the difference in size between this ball and the amount of
invariance we have is, in logarithmic terms, determined by §). Note here that the
freedom of the parameter ¢ is crucial. Indeed, in order to continue the iteration we
wish to apply Proposition 4.3 with the new group M and thus choose § ‘sufficiently
small’ in relationship to the constant As; from Proposition 4.3. A fortiori, this as-
serts that the quality of almost invariance is way better than what the assumed
continuity on f would give.

5. EFFECTIVE GENERATION

The goal of this section is to prove the effective generation result in Theorem 4.4.
We show that there is a dichotomy — either the given list of nilpotents either ‘ef-
fectively generates’ a group together with 6,(SLs) or there is a ‘small perturbation’
of the list generating a smaller group, which we then iterate to improve the quality
of the generation in terms of the size of the pertubation.

The main tool for establishing the existence of such a perturbation is an effective
version of a theorem of Greenberg [30, 31] — Theorem 5.4 below. This should be
seen as a version of Hensel’s lifting lemma for not necessarily smooth varieties. It
is crucial for us to have effective dependence of the size of the pertubation in terms
of the polynomials defining the variety.

This section is structured as follows: In §5.1, we prove a few preliminary proper-
ties regarding effective generation. In §5.2, we recall an effective version of Green-
berg’s theorem; the precise form of this theorem we use is taken from [50]. In
§5.3, we establish a simple fact regarding G-orbits in certain representations using
geometric invariant theory. In §5.4, we construct a precursor to the varieties for
which we apply Greenberg’s theorem. In §5.5, we prove an open mapping theorem
for certain affine varieties with an ‘essentially’ transitive G-action (e.g. for closed
G-orbits in linear representations). The rough aim is to show that two nearby Q,-
points on such varieties differ by a small element of G,. In §5.6, we finally prove
Theorem 4.4.

5.1. First results regarding effective generation. Recall our notion of effective
generation from §4.3. The following statement was used in the outline in §4 in order
to pass from ‘almost invariance’ under a list of nilpotents to ‘almost invariance’
under a ‘small’ group.

Lemma 5.1. There exists Ag > 0 depending only on N with the following property.
Assume p > N and let k > 0. Let M < SLx(Q,) be a closed subgroup with Lie
algebra m. Suppose that M is k-generated by nilpotents vy, . . ., vgim(m) € m[0]. Then

P(pPZy™ ™) " p(pZy™ ™) D M2k + Ag]
where @ is given by
©(t1,. s taim(m)) = exp(t121) - - - eXP(tdim(m) Zdim(m))-

Following our notation for Lie algebras, we set Zy[m| = p™Z, for m > 0. We
will make use of a well-known quantitative open mapping lemma (see for instance
also [73, Lemma 53']) which we summarize as follows.

Lemma 5.2. Let f : Z; — Zj be an analytic map with Zy-coefficients so that
|det(Dof)| > p~* for some k > 0. Then

f(Zylk+1]") D f(0) + Z,[2k + 1]".
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Proof. For concreteness, we will give a self-contained proof using Newton’s algo-
rithm. Let o = 0. Let y € f(zo) + Z,[2k + 1]”. We define

x1 =20+ (Do f) " (y — f(w0)) € Qp
so that
y = f(xo) + (Day f)(21 — 20)
and x1 — xg € Zplk + 1]™. Moreover, by Taylor expansion at x

1 (1) = yll < llzy = zoll* < p**[ly — f(x0)|?

so that || f(z1) —y|| < ||f(x0) — y||. Tterating this procedure and taking the limit,
one finds a point x € Z,[k + 1] with f(z) = y as claimed. O

Proof of Lemma 5.1. By assumption, there is a point ¢, € Z;‘fm(‘“) for which the
derivative Dy ¢ has a minor of size at least p~ k. As p > N, the map ¢, its
derivative, and all its minors are polynomial maps with coefficients in Z,. Applying
a Remez-type inequality (see e.g. [50, Lemma 5.4]), it follows that there exists a
point ty € pZa™™ at which the derivative of ¢ has a dim(m)-minor of absolute
value at least p~*~4 for some A = A(N) > 0.

Set f(-) =logop(p:-) : Zﬁim(‘“) — m[1]. This is an analytic map with coefficients
in Z,, (since p > N) whose derivative Dy, /, f has determinant of size at least p kA,
By Lemma 5.2

f(to/p + Zplk + A+ 1]M™™)) S F(to/p) + m[2k + 24 + 1].

im(m)

Taking the exponential, the image of ¢ on ng contains

exp (f(to/p) +m[2k + 24 + 1)) = p(to) M[2k + 24 + 1].

Here, the equality follows for instance from the Baker-Campbell-Hausdorff formula
and the fact that m[2k + 24 + 1] is invariant under brackets with m[1]. Thus,

(p(ngim(m))_lgp(ngim(m)) D M[2k +2A + 1p(to) ‘o(to) M2k 4+ 2A + 1]
= M2k +2A+1]
and we conclude the lemma with Ag = 24 + 1. O

In the proof of Theorem 1.1, we know precise invariance with respect to a list of
nilpotents effectively generating H,. The existence of such a list is a property of
the good prime p and the content of the following lemma.

Lemma 5.3. If the good prime p is sufficiently large depending on N, the group
G, is 0-generated by (not necessarily distinct) nilpotents vy, ..., vgim(g) € 8p[0] of
non-zero pure weight. The same holds for H,.

Proof. This is certainly well known; for the reader’s convenience and lack of explicit
reference, we present a proof; we prove the lemma for Gy, the proof for H,, is
identical.

Let W denote the set of non-zero weights for A in g, where A is the diagonal

subgroup of the principal SLs in (3.6). Asin §3.4, we let gz(,k) C gp denote the space

of vectors with weight A € W. It follows from Lemma 3.6 that @ = g, for
all A -

We first claim that &, is generated by the unipotent subgroups exp(-z) where
S gl(A) and A € W. Observe here that &, is connected since G is simply
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connected, see [33, §3.8]. Recall that the special fiber of a simple factor &;, of &,
is an F,-simple factor &, of the special fiber ®,. Given any simple factor (’5;,
the projection of 6,(SL2) is non-trivial by Lemma 3.7. The subgroup of the factor
generated by all unipotent subgroups for non-zero pure weight is a normal subgroup
and contains the projection of 6,(SLz) and so is equal to &;,. This proves the claim.

Using p > 1 and a dimension increase argument (see?g. [23, Prop. 5.2]), there
exists vy, ..., vaimc With o, € g, where \; € W for all i, so that

. Adim G
f-élm %%

defined by ¢(t1,...,tdima) = exp(tiz1) - - - exp(tdim ¢ Zaim ¢ ) is a dominant map.
The rest of the argument is similar to [20, §6.9]; we recall some of the details.
Using p > 1 and degy < N* it follows that ¢ is a separable map. In view of this
and using p > 1 again, a simple pigeonhole argument shows that there is some
te ngmG so that Dy has full rank. Define ¢ : @gimG — G(Qp) by lifting ¢ in
the obvious way. The above discussion implies that there is some t € ZgimG o)
that det(D;p) € Z), as we claimed. O

5.2. An effective version of Greenberg’s theorem. As mentioned, Green-
berg’s theorems [30, 31] can be understood as an analogue of Hensel’s lifting lemma
for non-smooth varieties. Vaguely, one would like to assert that whenever v € Z'
is a point with

= fa(v) =0 (modp¥)

—xk

fi(v)

for fi,..., fn polynomials over Z, then v is p~*"-close to a Z,-point on the variety
{fi = ... = fn = 0}. Alternatively, this can be seen as a p-adic analogue of
Lojasiewicz’s inequality for polynomials.

In Greenberg’s work, the dependency on the polynomials f1,..., f, is inexplicit
though the method can be effectivized using additionally an effective Nullstellen-
satz. Recall that the height of a polynomial over Z is the maximum of the absolute
values of its coefficients.

Theorem 5.4. Let f1,..., fn € Z[t1, ..., tm] have total degree at most d and height
at most h. There exists A > 0 depending only on n,m,d so that the following holds:
Let p be a prime. Suppose that wn, ..., wy, € Zy, are such that

filwi, ..., wy,) =0 (mod p*)

for all j and for k € N with k > Alog, (h) + A.
Then there exist wy, ..., w,, € Z, such that f;(wi,...,w),) =0 for all j and for
alll <i<m

w! = w; (modp!™/A1).

The proof of Theorem 5.4 can be found in [50, App. Al; it follows Greenberg’s
proof by induction on the dimension making explicit the dependencies on the height.
The base case of the empty variety is a direct consequence of an effective Nullstel-
lensatz — see e.g. [59, Thm. IV].
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5.3. Preliminaries from geometric invariant theory. For the proof it will be
convenient to know that G-orbits of certain specific vectors in representations of G
are closed. We establish these facts here using geometric invariant theory.

Recall the following: suppose we are given a representation M — GL(V) of a
reductive group M over an algebraically closed field of characteristic zero and a
vector v € V. If M.v \ M..v non-empty, there exists a vector o/ € M.v \ M.v and
a cocharacter A : G,, — M such that lim; ,o A(t).2 = ¢/. This is a result due to
Mumford; see for instance [63, Ch. 2,81], [12, Thm. 1.4], or [2, Thm. 4.2] where the
latter contains an elementary proof due to Richardson.

Lemma 5.5. Let M be a reductive group over an algebraically closed field K of
characteristic zero. For r > 0 let constants a;;, € K, 1 <14,j,k < r, be given and
assume that there is an (abstract) reductive Lie algebra with structure coefficients
aijk. Let m be the Lie algebra of M and consider the subvariety V of m” consisting
of tuples (v;)1<i<r such that [v;,v;] =, aijrve for all 1 < 4,5 <r. Then for any
point v = (v;); € V(K) the M-orbit M.v is closed.

Note that we will only apply the lemma for M = G and the variety of slo-triples
in g>; see Proposition 5.6 below.

Proof. Let v be as in the lemma and suppose by contradiction that M.o \ M.v is
non-empty. Then there exists a cocharacter A : G, — M with lim;_,g A(t).2 =
v/ € ML.v\ M.v. By construction, all components »; of » belong to the Lie algebra
of the parabolic subgroup

P={geM: tlin(l) A(t)gA(t) ™! exists in M}.
—

The components o/ of o’ are invariant under the adjoint action by A(G,,) and hence
belong to the Lie algebra of the centralizer L of A(G,;,) in P. The Lie algebra s
spanned by o1, ..., 7. is a factor of the abstract Lie algebra over K with structure
coefficients (a;jx)ijx and hence reductive. Thus, there exists a Levi subalgebra of
Lie(P) containing s. By the Levi-Malcev theorem, there is some u € R, (P)(K)
such that Ad(u)s is contained in the Levi subalgebra Lie(L). Here, R, (P) is the
unipotent radical of P. But then necessarily

T T _
v = }1_1}1(1))\@).7/ = }1_1)1(1))\(15).(%7/) =u.v

where we used A(t)ul(t)™! — id in the second equality and the fact that w.v is
fixed by A(G,,) in the third one. This contradicts our choice of »' and proves the
lemma. g

5.4. A variety of homomorphisms. The proof of Theorem 4.4 relies on Green-
berg’s theorem in the form given by Theorem 5.4 applied to suitable varieties. We
will now a building block of these varieties, specifically the variety of homomor-
phisms sl, — g.

Proposition 5.6. Consider the subvariety Ey of g defined over Q consisting of
tuples (wy, wp, w—) satisfying the relations

[WO, w+} = 2w+, [w()a Zl/,] = —2ZU,, [w+7 w*] = o

(i.e. sla-triples). Then By is invariant under the (adjoint) G-action on g* and con-
sists of finitely many closed orbits under that action. Moreover, the homomorphism

0, defines a point in Ey(Z,) = E4(Q,) N g,[0]3.
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As is apparent from the above, the variety Ey; of homomorphisms sly — g is
defined by polynomials of height < ht(G)*.

Proof. It is clear that Ey is G-invariant. By the representation theory of sl,

there are finitely many SLy (Q)-conjugacy classes of Lie algebra homomorphisms
sl3(Q) — sIx(Q). By work of Richardson [72, Thm. 7.1], the intersection of any
such SLy(Q)-conjugacy class with the set of homomorphisms sl;(Q) — g ® Q is
a finite union of G(Q)-conjugacy classes. This shows that E; consists of finitely
many G-orbits. By Lemma 5.5, any such orbit is closed. Lastly, the point defined
by 0, is precisely obtained by applying the derivative of , to the standard sly-triple
in sly(Z,) (we use here a property of the good prime through Lemma 3.3). The

claim follows. O

The variety Eg4 constructed above might consist of various G-orbits that could be
e.g. of different dimension (or not Galois conjugate over Q); this can be problematic
for our purposes.

FEzample 5.7. Consider the variety Eg,. A non-zero sly-triple in sl3 corresponds
either to an irreducible or a reducible non-zero three-dimensional representation
of sly. The so-obtained subvarieties of E,, are G-invariant and have different
dimension (8 in the former and 7 in the latter case).

One can show (using Grobner-based algorithms) that the height of Q-irreducible
components of E4 (or any other affine variety defined over Q) is also polynomially
controlled. In fact, such estimates are used crucially in the proof of Theorem 5.4
given in [50, App. A]. Nevertheless, we employ here a soft argument to control the
height of unions of Q-irreducible components of equal dimension.

Lemma 5.8. Let 7 : SLy — GL,, be a rational representation of SLy defined over
Q and let r,d > 1. Then there exist C;, A > 0 satisfying the following statement.
Let V.C A" be a G-invariant subvariety defined over Q such that

e V is defined by polynomials f1,...,fr € Z[x1,...,x,] of height at most
h > 2 and degree at most d, and that
e V consists of finitely many closed G-orbits.

Then for any dimension D the subvariety of V consisting of orbits of dimension
exactly D is defined by at most C many integral polynomial equations of height at
most ChAht(G)4 and degree at most C.

Proof. Fix a Q-basis wi, ..., wqim(g) of g consisting of integral vectors of height
< ht(G). The fact that all orbits are closed implies that for any point z in the
variety the derivative g — T,V of the orbit map G — G.x is surjective.

of the polynomial map f = (f1,...,fr): A™ — A”". The common zero locus of
these minors together with fi,..., f, defines the subvariety V' of V of G-orbits of
dimension at least D. Note that V' is also defined over Q.

We now impose additional equations to obtain dimension exactly D. Let II(z)
be the matrix with columns D7 (w)x, ..., D7 (@4im(g))2; this is the derivative of the
map (t1,...,tdim(g)) — 7(exp(D_, tiw;))x. The common zero locus of the D + 1-
minors of TI(+) defines a further subvariety V' of V'. The geometric components of
V' have dimension at most (and hence exactly) D. We have thus found the desired
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subvariety of V and observe that the polynomial equations defining it satisfy the
required properties. ([

In the following we let Ej C E4 be the union of closed G-orbits of dimension
equal to the dimension of the orbit of the point corresponding to 6, as in Proposi-
tion 5.6. Since 0, is non-trivial, the latter dimension is non-zero and for any field
K of characteristic zero a point in Ej(K) yields an embedding slz(K) — g® K. In
view of Lemma 5.8, Ef is defined by Oy (1)-many integral polynomial equations of
height < ht(G)* and degree Opn(1).

5.5. An open mapping theorem. Suppose that V is an affine QQ-variety con-
sisting of finitely many closed G-orbits. It seems natural to suspect that nearby
points on V(Q,) should be related by a small element of G(Q,). This also entails
a local separation statement for the G-orbits in V. In this subsection, we prove a
version of this making no use of any properties of the specific varieties from §5.4,
our statements depend effectively on the height of polynomials defining V.

Proposition 5.9. Let 7 : SLy — GL,, be a rational representation of SLy defined
over Q and let r,d > 1. There exists A > 0 satisfying the following statement.
Let V.C A™ be a G-invariant subvariety defined over Q such that

e V is defined by polynomials f1,...,fr € Z[x1,...,2,] of height at most
h > 2 and degree at most d, and
e V consists of finitely many closed G-orbits of equal dimension.

Let £ > 2 be a rational prime. Then there is some ko > 1 with
ko < pAnt(G)AnA
so that for any x,y € V(Z;) = V(Q) N Z} with
lz =yl < €72
there exists g € Go[0] with w(g)x =y and ||g —id|| < ||z — y||¢*o.

We remark that Proposition 5.9 could be refined in various ways e.g. one can drop
the integral assumption on the points x,y at the cost of including the denominator
in the resulting estimate for g. The version given above is however sufficient for
our purposes.

Proof. Let D be the common dimension of the G-orbits. We first choose the ‘level’
parameter ko. Let J; C Q[z1,...,2,] be the ideal generated by fi,..., f, and all
f=1,..-, fr): A" — A". As V is smooth and all components have dimension D,
the zero locus of J; is empty or, equivalently, J; = Q[z1,...,2,]. By the effective
Nullstellensatz (see e.g. [59, Thm. IV] or [50, §4.11]) there is some non-zero By € N
of height at most C;h“4* which is presented by a linear combination in the relations
fi and the minors with integral polynomial coefficients of height <« h* and degree
<d,rn 1. Here, A;,Cy > 0 depend only on d, r,n. This implies in particular that if
there were a point x € V(Z;) such that all n — D-minors are congruent to 0 modulo
¢% then B; = 0mod ¢*. We assume that (50 > C;h4* so that B; # 0 mod %o,

We proceed now similarly for the G-action. Fix a Q-basis w1, ..., @Wgim(g) of @
consisting of integral vectors of height < ht(G). Recall that all orbits are closed
and of dimension D. This implies that the derivative g — T,V of the orbit map
G — G.z is surjective for any point x in the variety and the rank of the derivative at
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the identity is D, independent of the point . Let II(x) be the matrix with columns
Dr(wy ), ..., Dr(waimg))x for 2 € A"; for Qp-points z, this matrix represents
the derivative of the map (t1,...,t4im(g)) — m(exp(D_, tiwi))y at zero. Let Jo C
Q[z1,...,x,] be the ideal generated by fi,..., f, and all D-minors of II(e). As
before, Jo = Q[z1,...,z,]. Now proceed similarly to find a non-zero constant
By € Z of height at most Cy(ht(G)h)42 such that if there is a point z € V(Zj)
with all D-minors of II(z) congruent to 0 modulo ¢¥ then By = O0mod ¢*. Again,
assume ko is sufficiently large, e.g.

ko = [max{log,(C1h™1),log,(Ca(ht(G)R)A2)}] + 1,

so that By # 0mod ¢,
Now let z,y € V(Z;) with y — x = (“v for some primitive integral vector v € Z}
and a > 2kg. Forall 1 <i<r

0= fi(y) = file + £70) = (01 fi(2), ..., Onfi(x))v + O(*%)

so that (D, f)v € ¢*Zj. By the Smith normal form over the PID Z,, there exist
hi1 € GL.(Z¢) and he € GL,(Z;) such that hy(D,f)hs is nonzero only on the
diagonal where it has entries ¢¥1 ¢*2 ... ¢k=-p (,... 0. Note that our choice of
ko implies Y.<, ki < ko. Thus, (h;ly)i =0mod/¢* % foralll1 <i<n-—D. It
follows that there exist o/ € Z} with

v=7¢ mod(* ™ (D,f)d =0;

Explicitly, take o/ = hy(0,...,0, (hy *@)n_pi1,...). In other words, what we have
shown above is that the displacement v is close to being tangential.

We shall now try to realize the above perturbation o’ of the displacement v
within derivatives coming from g. For any 1,...,%dim(g) € £Z¢ We have

w(cxp(z tiw)) =z + Z ;D (w;)x + O(mflx |t:17)
— 4+ TI()t + O(max|43)

where t = (t1,...,tdim(g))". As the image of II(z) is exactly the tangent space at
the point = (the kernel of D, f), there exists t € (@?lm(g) with II(x)t = ¢%¢'. By
using the Smith normal form of II(z), we conclude that ¢ can be chosen so that
te Z“’kOZ?m(g). Then g = exp(}_, t;w;) satisfies

m(g)r = x4+ (z)t = x + (70 =z + (“v = ymod £2¢~ ko,
As 2a — 2ky > a, we have found a new point on the local G(Qp)-orbit through x
which is closer to y than x was.

To conclude we repeat the above procedure. By the above, there exists g1 €
G(Zy) such that ||7(g1)x —y| < |l —y|| and ||g1 —id|| < |]z —y]|¢*. By induction,
there exist g1, go, ... such that

17(gn - g1)z =yl <7 (gn-1---g1)z —yl|,
lgn = 1dll < 7 (gn-1---g1)a — y||*

for every n > 1. In particular, ||g,, --- g1 —id|| < ||z — y||¢*°. Taking the limit we
obtain the proposition. O
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5.6. Proof of Theorem 4.4. The proof of Theorem 4.4 proceeds by induction on
the following statement.

Proposition 5.10. There exists ko > 0 with the following property. For n <
dim(g) let N = (v1,...,9,) € g,[0]" be a list of nilpotent elements of pure weight.
Let M be the Zariski closure of the group generated by 6,(SL2(Q,)) and the one-
parameter unipotent groups {exp(tv;) : t € Q,} for 1 <i <mn. Then for any

k> (log,(ht(G)) + 1)/k2
one of the following is true.

(a) The group M = M(Q,) is k-generated by a list of nilpotents where each
element is contained in the list N or is equal to z+ or z= (cf. (3.5)).
(b) There exist a list of nilpotent elements N” = (v1,...,9}) € gp[0]" with

o — willp < p ek foralll<i<n

so that the Zariski closure of the group generated by 0,(SL2(Q,)) and the
one-parameter groups exp(Qpv}) for 1 < i < n has strictly smaller dimen-
sion than M. Moreover, for each 1 < i < n the nilpotent v/ has the same
pure weight as v and, if v; is highest weight, then so is v].

Proof. The proof, which will be completed in several steps, relies heavily on the
effective version of Greenberg’s theorem given in Theorem 5.4. We begin by con-
structing a variety of controlled complexity (using §5.4), which serves as the pa-
rameter space.

STEP 0: CONSTRUCTION OF THE PARAMETER SPACE. Let A1,...,\, € Z be
the weights of the nilpotents in A given in the assumptions of the proposition.
Note that there are finitely many options for these weights depending on N. Let
E’g be the variety defined after the proof of Lemma 5.8. In particular, E; consists
of finitely many closed G-orbits and is defined by Ox(1)-many integral polynomial
equations of height < ht(G)* and of degree On(1).

Let Vg C g™ be the variety of nilpotent tuples and let V C E; X Vy be the
subvariety of points ((wy, wy, w_), (21, ..., 2,)) satisfying the additional equations

[W(),Zi] = )\157 for all 1 S 7 S n

as well as [wy,z] = 0 if the nilpotent element with index 1 < ¢ < n given in
the proposition is of highest weight. When convenient, we write z,11 = wy and
Zn+o = w_. By construction, V is G-invariant with a surjective G-equivariant
projection V — E; and is defined by Oy (1)-many polynomial equations of height
< ht(G)* and of degree Opn(1).

The data in the proposition gives rise to an ‘initial’ point x € V,[0] = V(Z,);
it consists of the sly-triple given by Proposition 5.6 and the nilpotents in A (given
by assumption).

STEP 1: CONSTRUCTION OF A SUBVARIETY. We construct the subvariety W C
V of points x = (-, (2;)) € V for which the group generated by the one-parameter
unipotent subgroups {exp(-z;)}i1<i<n+2 has dimension strictly smaller than d =
dim(M). A priori, it is unclear that this is indeed a subvariety and, if it is, that it
can be defined with polynomials of controlled height.

Fix a list of indices Z = (iy,...,iq) € {1,...,n + 2}? (repetitions are allowed).
Given a point x of V and the nilpotent elements z; within it, define the polynomial
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map
T it=(t1,...,ts) € A — exp(tiz;,) - - exp(taz,) € G.

The d-minors of D;®% are polynomials in Q[V][t]. Let F C Q[V] be the set of
coefficients of these polynomials where we run over the minors of all derivatives for
all Z of length d. Let W be the subvariety of V defined by the polynomials in
F. This will be the subvariety we apply Greenberg’s theorem (Theorem 5.4) to.
Notably, the complexity of W satisfies the analogous bound as V does. Returning
to the initial goal of this step, a simple dimension increase argument shows that
x = (+,(2)) € W if and only if the group generated by the one-parameter unipotent
subgroups {exp(-z;)} has dimension strictly smaller than d. In particular, W is
invariant under the G-action.

Specializing to the ‘initial’ point xp, one would like some d-minor of the derivative
of one of the maps <I>fo to be large. We shall see that this amounts to saying that
1 is not too close to W(Q,).

STEP 2: APPLYING GREENBERG’S THEOREM. Let k > 1. Suppose first that
there exists a polynomial f € F for which |f(xp)| > p~%. We prove (a) in this case.
Let Z be the index list f is associated to. The so-defined map fI)i) maps into M.
The minor of Dtéfo of which f is a coefficient is hence a polynomial in ¢t with one
coefficient of size at least p~*. In particular, there exists t € Zg so that th)%() has
a minor of size at least p~* (using that p is assumed sufficiently large). Therefore
M is k-generated by the nilpotents v;,,..., v, where Z = (i1,...,4q) and where
Un+1 T€SP. up4+2 are the upper resp. lower nilpotent in the sls-triple associated to
the principal SLs.

Assume now that |f(x)| < p~* for all f € F. We apply the effective version
of Greenberg’s theorem in Theorem 5.4 to W and let A > 0 be the corresponding
exponent (which depends only on N). If k is assumed sufficiently large, there exists
a point x € W(Z,) with

lx — 2|l < p~H/A.

The same estimate holds true for the images of x, 39 under the projection V. — E;.
By Proposition 5.9, there exists g € G,[0] with ||g—id|| < p~*/4**ht(G)* such that
g.x and zp have the same image under the projection. Observe that g.x € W(Q))
and that, by the estimate on g, ||g.x — 1| < p~*/4+t*ht(G)*. Write

X'=gx=((9)i<nt2)-

STEP 3: VERIFYING PROPERTIES IN (b). We now show that the nilpotents
7,..., 7, satisfy the properties in part (b). Since x’, xp project to the same point
in Eg, the nilpotents v{, ..., 7, satisfy the weight (and highest weight) requirement
of (b).

Let M’ be the group generated by 6,(SL2) and the one-parameter unipotent sub-
groups obtained from the nilpotents o1, ..., #,. It remains to show that dim(M’') <
d = dim(M). Since x’ € W, the Zariski closure M” of the group generated
by the one-parameter subgroups {exp(tz}) : t € Q,} for 1 < i < n + 2 is less
than dim(M). Notice that 6,(SL2(Q,)) is 0-generated by v, ,,, 7, 5,7, where
Upi1 = Un+l,Uyio = Vpy2. Therefore, 6,(SL2(Q,)) € M"(Q,) and M” = M’
which proves (b) and hence the proposition. a
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Proof of Theorem 4.4. The theorem follows from Proposition 5.10 by recursion as
follows.

We begin by applying Proposition 5.10 for k;y = |0k]. If Option (a) holds for
this choice, we conclude with N =N and a = 1. Otherwise, there exists A1) as
in Option (b) so that in particular [N ) — N|| < p=r2k1,

Define recursively k; = [dr2kj_1] so that

(5H2)j715k —j é kj S (5/12)‘771(5]47

At the j-th step of the induction, we are given a list of nilpotents MU~ satisfying,
in particular, [NU=Y — N|| < p=#2ki-1. Applying Proposition 5.10 with k; we
either conclude with o = (65)7~" and the list AU~ or we find a new list N0,
At each step the group generated as in (b) decreases in dimension and hence the
induction stops after less than dim(g) many steps. O

6. DIOPHANTINE POINTS AND AN EFFECTIVE AVOIDANCE PRINCIPLE

In this section, we recall the notion of Diophantine points introduced by E.L.,
Margulis, A.M., and Shah in [50] and the effective avoidance results therein. Given
the desired controlled dependence on G we will also use diameter estimates due to
A.M., Salehi-Golsefidy, and Thillmany [60].

Let S = {o0,p} C X. The definitions in §3.1 transfer seamlessly to Qs-points
where we write cs(-) for the corresponding content on Q% for Qs = R x Q, (see
specifically (3.2)). We write Gs = p(G(Qs)), I's = Gs N SLy(Z[1/p]), and Xs =
I's \ Gs. By strong approximation, there is a quotient map

s : X = Xs.

Indeed, since p is a good prime, all Q,-simple factors of G are QQ,-isotropic. We can
thus apply strong approximation for G (recall that G is assumed simply connected),
the set of places S, and the compact open subgroup HeeZ\s K, C H;ez\s G(Qy)

(where K, = p~1(SLn(Z)) as in §3.1).

6.1. Bounds on the height in the cusp. Since G is assumed to be Q-anisotropic,
X is compact. The following lemma establishes an upper bound for the height in
the cusp when X is viewed as a subset of SLy(Q)\ SLy(A).

Proposition 6.1. There exists Ay > 0 such that for any g € G(A) we have

min ¢ w) > ht(G) ™47,
e (p(g)w) (G)
The proof below uses geometric invariant theory. Recall that, by a result of
Hilbert, the ring Q[x1, . . ., x| of G-invariant polynomials in Q[z1, . .., zx] (where
the action is through p) is finitely generated since G is semisimple.

Lemma 6.2. There exist G-invariant polynomials fy, . ..JT € Zlxy,...,zN] of
height < ht(G)* and degree Oy (1) which generate the ring Q[z1,...,rN]%. More-
over, r = On(1).

Proof. We first claim that there are polynomials fi,...,f. € Q[z1,...,2n] of
degree at most d = Ox(1) generating Q[z1,...,2x]% where © = Ox(1). This
statement depends only on the Q-isomorphism class of the group G and of the
representation over Q. There are finitely many Q-isomorphism classes of simply
connected groups over Q with dimension at most dim(SLy) and for each such
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class there are finitely many isomorphism classes of representations in each given
dimension. This implies the above initial claim.

The vector space V of G-invariant polynomials of degree at most d is defined
over Q (since G and p are). If p is the G-action on Q[z1,...,zx] and 1, . .., Zgim(q)
is a Q-basis of g of integral vectors of height < ht(G) then

V= {f € Q[z1,...,zn] : deg(f) <d, Dp(z;)f =0forall 1 <i< dim(g)}.

By construction, V generates Q[xy,...,zx]%. By Siegel’s lemma there exists a
basis f1,..., faim(v) € Zlx1,...,xN] of V over Q where the coefficients of the
polynomials f; are < ht(G)* in absolute value. This proves the lemma. O

Proof of Proposition 6.1. We first claim that all G-orbits through points in Q" are
closed. It follows from geometric invariant theory and, more specifically, a result
of Kempf [12] that for any w € QN with G.w \ G.w non-empty there exists a
cocharacter A\ : G,, — G defined over Q with lim; ;o0 A\({)w ¢ G.w. But G is
Q-anisotropic and so the claim follows.

By geometric invariant theory, see e.g. [63, §1.2] or [85, §4.4], there exists for any
two closed G-orbits G.w; # G.ws an invariant polynomial f with f(w) # f(ws).
Equivalently, the closed orbits are separated by some f; where f1,..., f. are as in
Lemma 6.2. Without loss of generality, we may assume f; = 1 and f;(0) = 0 for
all ¢ > 1. We may also suppose that the polynomials f; are homogeneous.

Now let w € QY be non-zero and let f; for i > 1 be such that f;(w) # 0. Then

H |fi(w)]e = H | fi(ge-w)|e < ht(G)*c(gw)ee),

€ex rex
The left-hand side is equal to 1 since f;(w) # 0 and we deduce that c(gw) >
ht(G)~*. Hence, the proposition follows. O
6.2. Diameter estimate. The following is a consequence of [60] in combination

with volume and height comparison in Proposition 3.1 (Proposition A.2) and the
estimate of the height in the cusp in Proposition 6.1.

Theorem 6.3. There exists As > 0 depending only on N with the following prop-
erty. For any g € G(A) there exists v € G(Q) such that

e |vglle =1 for any prime € # p,
o [[vgll, < p**ht(G)**, and
o |79l < 1.

In particular,
lvgll < p**ht(G)*.

We remark for later purposes that p is only required to be a good prime for X
(and not for Yp) to obtain the above theorem.

Proof. Tt is shown in [60, Thm. 5.5] and its proof that the above theorem holds
when the second item is replaced by

Ivgll, < (IQQQC(QW))**VOKX)*I)*.

By Proposition 3.1 we have vol(X) <« ht(G)* and by Proposition 6.1 we have
min, .o c(gw) > ht(G)~*. Thus, Theorem 6.3 follows. O
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6.3. Diophantine points and effective linearization. A connected Q-subgroup
L C SLy is said to belong to class H if L(C) is generated by unipotent subgroups,
or equivalently if the radical of L is unipotent. Since G is assumed Q-anisotropic,
any Q-subgroup of p(G) of class H is semisimple. We write Hg for the collection
of connected semisimple Q-subgroups of p(G).

Recall from §3.1 that given L € Hg we write o1, for one of the two primitive
integral vectors in the rational line

dim(L) dim(L)
/\ Lie(L) C /\ g.
We write i, : g € SLy + g~ L., for the right orbit map through vy,.

Definition 6.4 ([50]). Let € : RT™ — (0,1) be a monotone decreasing function and
let t € RY. A point I'sg in Xs is called (¢,t)-Diophantine (for the action of
U = {u(s)} with generator z as in (3.4)) if for all L € Hg with {e} # L # p(G)
and cs(nL(g)) < ¢’

(6.1) Iz Anw(g)ll > e(cs(n(g))).-

Here, we wrote z A nr,(g) = z Anw(g), for simplicity.
We turn to phrasing the main theorem of [50] in our setting.

Theorem 6.5 ([50]). There exists a constant Ag > 0 depending only on N with
the following property. Let g € Gs, t >0, k> 0, and n € (0, %) Suppose that for
allr>0

e(r) <= (me(G) ")
Then at least one of the following is true:
(1) (Many Diophantine points) We have
I{|s| < p* : Tsgu(s) is not (e,t)-Diophantine}| < (ht(G)p)A-"nﬁpk.

(2) (Obstruction from a class H-subgroup) There exist a non-trivial proper
subgroup L € Hg such that for all |s| < p*

cs(n(gu(s))) < (nt(G)n~'pet) ™,
Iz A nr(gu(s))]] < p kAo (ht(G )y~ Lpet)Ae.
(3) (Obstruction from a normal-subgroup) There exist a non-trivial proper nor-
mal Q-subgroup L < p(G) such that
L 1
||Z A ’Z)LH S €(ht(L)TQ (ht(G)p)*Aon) Ag

As phrased, the above uses that G is Q-anisotropic. We have also used The-
orem 6.3 to make the dependency on G in the main theorem of [50] explicit (see
[50, Lemma 2.8]). We have additionally absorbed implicit multiplicative constants
using the fact that p is assumed sufficiently large.

The following corollary of Theorem 6.5 establishes an abundance of Diophantine
points on Yp.

Corollary 6.6. There exists a constant A1y > Ag depending only on N with the
following property. Let n € (0,1/2). Suppose that for all r > 0

(6.2) e(r) < v~ (ht(G)"Ipp )M

For any t > 0 at least one of the following is true:
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(a) (Many Diophantine points) We have
w({y € Yp : ms(y) is not (e, t)-Diophantine}) < (ht(G)p)A-"ni.

(b) (Obstruction from an intermediate semisimple subgroup) There exists a
non-trivial proper semisimple Q-subgroup L < p(G) containing «(H) such
that

_ A
cpl([L(A)gp]) = c(nL(gp)) < (ht(G)n~'pe) """
For the proof, we will require the following lemma giving an effective isolation

statement for Lie ideals of g.

Lemma 6.7. For any proper normal Q-subgroup L < p(G) we have
o Aol = 1.

Proof. Suppose that ||zA 2| < 1. Since L is normal, this implies that ||wAwg| < 1
for any w € b'[0] where b’ = Lie(6,(SL2(Qp))). In particular, the reduction b’ of
b’ modulo p is contained in a proper ideal of g. Since we assumed that +(H) is not
contained in a proper Q-factor of p(G), this contradicts Lemma 3.7. O

Proof of Corollary 6.6. By Theorem 6.3, there exists v € p(G(Q)) so that g = vgp
satisfies

ge € SLy(Zy) for all £ # p, |lgeo|| < 1, and ||g,|| < p**ht(G)"=.
Recall that the U-action on Yp is ergodic. There exists
h € 95" «(H(A))gp N {h' € SLy(A) « 1] < 3}

such that @ = [gh] € Yp is Birkhoff generic and satisfies the pointwise ergodic
theorem for the characteristic function of the set of (¢,t)-Diophantine points. We
apply Theorem 6.5 to ms(x) for all k € N. One of the options (1)-(3) holds infinitely
often (i.e. for infinitely many k € N). If (1) holds infinitely often, we conclude (a)
(fOI‘ any Al(] 2 Ag).

Assume (2) holds infinitely often. Notice that for any R > 0 there are finitely
many Q-subgroups L’ with c(nr/(gh)) < R. We may thus assume that (2) holds
infinitely often for some proper subgroup L’ € Hg with

c(n(gh)) = cs(nu (rs(gh))) < (bt(G)n~pe’)™.
Here, we used (gh); € SLy(Zg) for £ # p in the first equality. As the second
inequality in (2) holds for infinitely many k, we have |z A n/(gh))|| = 0. In
particular, z € Ad(gh)~!Lie(L’) and hence U C (gh)~'L’gh = (g9ph)'L(gph) for
L = v~ 'L’y. By density of 2U in Yp this shows that
Yp = 2U = [gh|U = [gph|U C [L(A)gph]

and so Yp C [L(A)gp] since Yp is invariant under h. In particular, there exists for
any h' € H(R) some v € SLy(Q) and m € L(A) with ¢(h') = 4'm. Since hj, = id
for any prime ¢, this shows 7/ € L(Q) and so ¢(h') € L(R). Thus, ¢(H(R)) C L(R)
and so «(H) C L by Zariski-density. By the above bound on c(n1/(9)) = c(n(9p)),
(b) follows.

Assume (3) in Theorem 6.5 holds infinitely often (or once) for some non-trivial
proper normal subgroup L = L’ < p(G). Then by Lemma 6.7

pht(G) T < [z A < (ht(G)ntp) T he(L)
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and so ht(L) < (ht(G)n~'p) AT If A1y > 0 is chosen sufficiently large, this

gives a contradiction as ht(G),ht(L) > 1 and n € (0,1/2). O

For future convenience, we choose 1 = 19 > 0 with

(63) (@) g = 5

and set
(6.4) eo(r) == 1~ (ht(G) " tnop~ 1) e,
In particular, for all » > 0

eo(r) > r*ht(G) *p*.

To simplify the terminology, we will say that © € Xg is T-Diophantine if it is
(€0,log(T))-Diophantine.

Corollary 6.8. Suppose that
(6.5) mepl(Yp) > (ht(G)ng 'p)
For anyn > 0, the set of y € Yp with

2A10

[{Is| < p" : ms(y)u(s) is mcpl(Yp)ﬁ-DiophantineH < 2p"
has p-measure at most %
Proof. By Corollary 6.6 and in view of the choice of 7y in (6.3), we either have as
in (a)
(6.6) ,u({y € Yp : ms(y) is not mcpl(Yp)#w—Diophantine}) < %
or as in (b)
mepl(Yp) < (1t(G)rg pmepl(Yp) 7 ) 1.

The latter contradicts our assumption on the minimal complexity in (6.5) and so
(6.6) holds.
Given n > 0 and y € Yp set

f) =p " [{ls| <p" : ms(y)u(s) is not mcpl(YD)ﬁw—DiophantineH

By U-invariance of y and (6.6) we have [ fdu < % The corollary thus follows from
the Chebyshev inequality. O

7. AN EFFECTIVE CLOSING LEMMA

The main result of this section is the effective closing lemma in Proposition 7.1.
Throughout the section, we fix a Lie subalgebra m C g, defined over Q, and our
standing assumption is that

(7.1) m is Ad(U)-invariant.
Denote by 7, € P(Adim(®) gp) the point corresponding to m. The projective space
P(AYm(™) g ) is equipped with the metric given by d(2, w) = min,,c;« [|v — aw||
for any choice of unit vectors in » € 7, w € w. Note that G, acts on P(Adm(m)g )
through the adjoint representation. We say that m is e-normalized by an element
g € Gy if

d(g.?/m, ?/m) <e.
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We will study this notion further in §8 below. Here, we prove the following.
Proposition 7.1. There exists k3 € (0,1) so that the following holds. Let
1
n > - (log,(ht(G)) + 1).
Assume there is a point y € X and a measurable subset

ECc{reQ,:|rl, <p"}
with the following properties:
(1) ws(yu(s)) is p™-Diophantine for all s € E,
(2) [E| > p™(=53) | and
(3) for all s,s’ € E, we have
yu(s) = yu(s')p(gss')
where gssr € G(R) X Ky satisfies ||gss||co < 2 and is so that the Lie algebra
m is p~"-normalized by (gss')p-
Then m is a semisimple ideal of gp.

For quotients of real groups, an analogous result was obtained in [51] and, in
fact, significantly strengthened using [50]. For our purposes, the above proposition
is sufficient. The proof we give below follows the argument given in [51] by adapting
it to the current p-adic setting; we include it for completeness.

7.1. Almost invariant subalgebras. The following proposition, which is of inde-
pendent interest, will play an important role in the proof of Proposition 7.1. For a
lattice element v € SLy(Q) the height ht(7y) is the Euclidean norm of the smallest
non-zero multiple of v with integer coefficients.

Proposition 7.2. For any r > 0 there exist A > 0 and C > 0 (depending on r
and N ) with the following property.
Let T > 2,6 >0, and suppose that we have the following.

(1) {71,y Cp(G)(Q) with ht(y;) <T.
(2) The Zariski closure of (y1,...,7r) equals p(G).
(3) For every 1 < i <r the Lie algebra m is d-normalized by v; i.e. we have

(7.2) d(i-%m, Om) < O.
Then either

Cé > (ht(G)pT)~4
or m is an ideal of gp.

The proof invokes the effective version of Greenberg’s theorem (Theorem 5.4)
and the following isolation property for ideals of g,.

Lemma 7.3. There exists Aj; > 1 depending only on N so that the following holds.
Suppose that m is a Lie subalgebra of g, and that there exists a Lie ideal W' of g,
with

A( B, 7)) < p~ht(G) A1,
Then m =m' is an ideal.

The proof of Lemma 7.3 is, mutatis mutandis, the proof of [51, Lemma 3.3]; we
omit it here.
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Proof of Proposition 7.2. Take a basis wy, ..., ws of the Z,-submodule m[0]. For
any 1 <i<rand1<j<swehave

IAd(vi)awj Aan A A awg|| = ||Ad(7i)wj|HW

Nwy N\ ... N\ ws
i) w;ll

(7.3) < T*5

using ht(y;) < T for the first term and (7.2) for the second. We want to perturb the
vectors wy, ..., ws to obtain new vectors nearby that span a subalgebra normalized
by all 4; (and hence by G). For this, we define

Zy={(w,...,w) € g [w,wj] ANw| A... ANw| =0 for all i,j},
Zo={(w,...,w}) €g®: Ad(yi)wj Nw| A ... Nw =0 for all i,j}.

Both Z; and Z, are defined by integral equations with height < ht(G)*T*. As
m is a Lie algebra, (wr,...,ws) € Z1(Qp). This, (7.3), and Theorem 5.4 imply
that there exists (wy,...,w}) € (Z1 NZ2)(Qp) with ||w] — w;|| < §* for all ¢ unless
0 > ht(G) *T*p~*. The subspace m’ spanned by =/{,...,w. is a Lie algebra
and satisfies d(om/, om) < 0*. Also, as (wj,...,w.) € Za, the Lie algebra m’
is normalized by all ; and, thus, is a Lie ideal by Zariski density of the group
(71,7 in p(G). Lemma 7.3 implies that m needs to be an ideal as well unless,
again, 6 > ht(G) *T*p~*. This proves the proposition. O

7.2. Proof of Proposition 7.1. We will complete the proof of Proposition 7.1 in
various steps. The proof uses an inductive process to construct a nontrivial group
L < p(G) of class H and of controlled height so that a piece of the U-orbit through
y stays very close to a translate of the orbit [L(A)]. Then using our assumption
(1) in Proposition 7.1, we conclude that L = p(G). After this is established, the
proposition follows from Proposition 7.2.

Notation and setup for the proof. Let y € X and E be as in the statement
of Proposition 7.1 satisfying [E| > p"(!=%) for some x € (0,1/2) which will be
determined later. In particular, we have for s,s’ € E

(7.4) yu(s) = yu(s')p(gss')
and
(7.5) d((gss')p-Tms om) < P

Furthermore, (gss')¢ € K¢ for any £ and [|gss||co < 2.
We set o = 1/ 20+dim(G)) and may determine o instead of  in the proof below
(depending only on N). For every 0 < j < 1+ dim(G), let

(76) a; = alerim(G)*j and Rj = p]'naﬂ )

We have Ry yqim(q) = p" and Rf; < R; < RY p for every 0 < j < dim(G). In
view of our assumptions on n, we assume that

(7.7) RS > pht(G).
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A pigeonhole principle argument. We need good density points for E simulta-
neously in all scales R; for 0 < j < dim(G) + 1. This is obtained using a simple
pigeonholing argument.
We proceed inductively, let j = dim(G). Take a subdivision of
B(0,Rj+1) ={r € Qp:|rlp < Rj41}

into Rj;1/Rj-disjoint balls B(s,R;) = {r : |s — r|, < R;}. By the pigeonhole
principle, there is some t; € B(0, Rj41) such that

pn(lfn)Rj

B(t;, R;) NE| >
i1

— ijfn/{ > pn(afm).

Replace B(0, Rgim(c)+1) With B(tgim(c), Raim(g)) and repeat the above argu-
ment. Iterating this process (dim(G) + 1)-times we get
{to, .-, taime)} C B(0, Raim(c)+1)
such that the following holds for all 0 < j < dim(G):
(a) tj € B(t;, Rj), for all 0 < j/ < j, and
(b) |B(tj,Rj) N E’ > prlas—n) (Here, recall that o > k.)
Put taim(@)+1 = 0.
Finding S-arithmetic elements with controlled height. Write y = [g] for
g € p(G(A)). Fix some sg € B(tg,Ro) NE and let vy € p(G(Q)) be so that for
go = Yogu(so) € p(G(A)) we have
9o, € SLn(Ze)  for £ # p,
(7.8) 90,5/l < p**ht(G)™*, and
190,00 [[oc < 1.

Note that such a lattice element vy exists thanks to Theorem 6.3.
By (7.4) and (7.5) for s’ = sg there exists for all s € E a lattice element v, €
p(G(A)) NSLy(Q) C p(G)(Q) so that

(7.9) Ysgou(—so)u(s) = gogs  and  d(gsp-Tm,om) <P~

where g, = p(gss,)- This and (7.8) in particular imply that v, , € SLy(Z,) for
all £ # p. Thus, v € T's. By (7.9), (7.8) and (7.7) we further have for all
seEN B(tj,Rj)

n

(7.10) sllp < p™ht(G)" R} < Rj,
[7slloe <1
and, in particular,
[17sll = max{{|7slp, 17slloo } < R,
ht(y,) < R
Lastly, notice that if v5 = 74 for s,s" € E then by (7.9)
uls) = u(s0)95 " 7s ' 908s = uls0)go 7y ' go8s = uls g, '8
and so u(s — s’) € SLy(Z,) using (gs)p, (8s')p € SLN(Z,). By choice of the unipo-
tent subgroup U in (3.4), we have s — s’ € Z,. Since |B(tj,Rj) N E| > prlei—r)
this proves

(711) #{rys = B(t]7RJ> N E} Z pn(aj—n).
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Finding a controlled semisimple Q-group. For j € {0,...,dim(G)+1}, define

L; = <{fys ts € B(t;, R;) N E}> and
L; = the identity component of L.

These are Q-subgroups of p(G). Dimension considerations imply that there exists
some 0 < jo < dim(G), so that L, = Lj 1. Note that Lj, is not necessarily in H
(i.e. might not be semisimple). Let L := L;’é be the maximal subgroup of class ‘H
which is contained in Lj,. Since Lj, is reductive, L = [L;,, Lj,]. By (7.10) and [51,
Prop. 2.6] we have

(7.12) ht(L) < Rj,.

We now investigate properties of L; the goal is to show that L = p(G). This
will be established in two steps in Lemmas 7.4 and 7.5.

Lemma 7.4. The group L is non-trivial.

To clarify, it is also true that L;”‘ # {1} for any j i.e. the special choice of jo
plays no role in this lemma.

Proof of Lemma 7.4. We need to show that Lj, is not a torus. The idea is to exhibit
a ‘polynomial amount’ of lattice elements in L;, and combine this with logarithmic
growth of the number of S-arithmetic lattice elements in tori.
By [51, Lemma 2.4] we have [L} : Lj] <y 1. By (7.11), there exists a coset
vsLj,, s € B(tjy, Rj,) N E, which contains > p™(@%0=%) many lattice elements 7,
for s’ € B(tjo, Rjo) NE.

In view of (7.10) we have ||yy|| < CRY for all ' € B(tj,, Rj,) N E and some
B, C > 0 absolute. Now note that

#{v € Ly, (Z[1/p)) : Iyl < C?R3Y
> #{'75_1’)/5’ .8 € B(tjo,RjO) NE, v¢ € ’ySLjo}
> pn(ajo*'ﬂ) > Rj%o'
For any Q-torus T < SLy and any R > 1 we have (see e.g. [24, Lemma 6.3])
(7.13) £y € T@[1/p) : Il < R} < log(R)".

This shows that Lj, is not a Q-torus assuming (7.7) and hence L is non-trivial. O

Lemma 7.5. We have L = p(G).

Proof. Assume contrary to our claim that L # p(G).

CASE 1: Suppose that L is not normal.

Notice that for any s € B(t;,+1, Rj,+1) the lattice element v, satisfies v; .o, =
X(7vs)w, for some S-adic unit x(vs) € Z[1/p]*. Here, we used that L is a nor-
mal subgroup of L’ ., and that v, € SLy(Z) for £ # p. By (7.10) we have
IX(Vs)loo» [X(7s)]p < R, 1. Notice that the number of units u € Z[1/p]* satisfying
the same bound is < log(Rj,+1) < log(R;,)-

For every s € ENB(tj,+1, Rjy+1), put

(714) J(S) = {t cEN B(tj0+1,Rj0+1) : ’yt_l’l)L = ’Y;I‘U‘L}
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The above estimate on the number of multiplicative factors x(v,) implies that there
exists some s € EN B(tj,+41, Rj,+1) so that

(7.15) #1(s) > p" @007 (log(R;,)) ' > Rjpp1 R32,

where in the last step we used k£ < ay,.
Let s be so that (7.15) is satisfied. Using (7.8), (7.12) and the given bounds on
g: we have

I (g08:) | < p*ht(G)"ht(L) < R},
for any ¢ € E. On the other hand, if ¢ € J(s) we have

nL(g08t) = 1L (Vegou(—so)u(t)) by (7.9)
=1L (%gou(—so)u(s)u(—s)u(t)) by (7.14)
= L (gogsu(t — s)) by (7.9).
Altogether, we conclude that
(7.16) InL (gogsult — s)) || < R, for all t € J(s).

The above map

te{|t] < Rj41} = nu(90.p8spu(t))

is a polynomial map. The Remez inequality (see e.g. [50, Lemma 5.4]) together
with (7.16) and (7.15) implies

7L (907pgs,pu(t>) | < R;O
for all |t|, < Rj,4+1. By [50, Prop. 5.8] we obtain that

(7‘17) ||z A NN (90,pgs,p) Hp < R;OR;O:-T
where N, is the normalizer of L in p(G) and as before Nt = [Ny, Ny].
On the other hand, we have ht(N7') < ht(L)* by [50, Lemma 4.2] and so

c(nnn(90gs)) < Rj, using additionally (7.12) and (7.8). For o sufficiently small,
we have c(nn#(908s)) < Rjo+1. As Ts([gogs]) = ms(yu(s)) is p"-Diophantine (and
in particular R}, 1-Diophantine) by assumption, we deduce from the definitions
(see Definition 6.4 and (6.4))

(7.18)  [lz A 7 (90,p8s,0) || = €0(c(nnz(908s))) > R "ht(G) ™ "p~" > R} .

The two inequalities (7.17) and (7.18) together yield R;,41 < R . However, for o
sufficiently small in comparison to the exponent, we obtain a contradiction.

CASE 2: L IS NORMAL

The proof is largely analogous in this case, but necessarily needs to use a dif-
ferent representation. Let (g, ) be a Chevalley pair for the subgroup L of SLy as
in [51, Prop. 2.2]. By restriction to the subspace of L-invariant vectors we obtain
a representation ¢ : p(G) — SL,, for some m <y 1 whose kernel is exactly L.
In particular, the identity component of the image o(L} . ;) is a Q-torus. Com-
bined with (7.13) and the estimate on the number of connected components in [51,
Lemma 2.4] we get

#{L’ys :s€EN B(tj0+1,Rj0+1)} < IOg(RjO)*.
For s € EN B(tj0+17Rj0+1> let
J(s) = {t € ENB(tjo+1, Rjo+1) : Lys = Ly}
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For some s we have as in the first case #J(s) > Rj0+1Rj_02. For t € J(s)

o(g081) "2 = o(vegou(—so)u(t)) v
= o(sgou(—so)u(s)u(—s)u(t)) v = o(gogsu(t — 5)) v

By the same argument as in the first case using the Remez inequality and the height
bound on » from [51, Prop. 2.2] we obtain

le(gogsu(t)) " 2ll, < Rj,
for all |t|, < Rj,4+1. Using (7.8) and taking the derivative we deduce

IDo(Ad(go,p8sp)2) 7|l < R} RS-

The map w — Do(w)v is a linear map with coefficients controlled by the entries
of v and ‘almost annihilates’ Ad(go pgs,pp)z. Note also that Do(w)v = 0 implies
w € Lie(L) = [ (by definition of the representation). A simple argument involving
the Smith normal form (as e.g. in the proof of Proposition 5.9) then shows that
there exists w € [(Qp) such that [|w — Ad(go,pgsp)2ll < R R, ;. Since L is
normal, this implies

|z Aol < R* Rjo*+1

From here, one concludes in the same manner as in the first case (or invokes

Lemma 7.3). O

Proof of Proposition 7.2. We use all of the notation from the current section. By
Lemma 7.5 and the construction of L, the group (vs : s € B(t;,, R;,)) is Zariski-
dense in p(G). In view of [51, Lemma 2.4], we may select s1,...,s, € B(tj,, Rj,)
for some r <« dim(G) so that (vs,,...,7s,) is also Zariski dense. Moreover, by
U-invariance of m and (7.9) we have

d(’Yng,p-E}mang-%m) = d(’ysgo7pu(s - 50)-%ma gO,p~’;/m) = d(gO,pgsm '?/ma gO,p-’;/m>

L p*ht(G)*d(gs,p-m, 7m) < P'IE(G) ™" K Rjoil
Thus, (7.2) holds for the Lie algebra Ad(go,)m and some § > 0 with § < RJO+1
The lattice elements ~s, satisfy ht(vs,) <7 for some T < R by (7.10). Applying
Proposition 7.2 we conclude for « sufficiently small. (]

8. AN ALIGNMENT LEMMA

In this section we show that whenever x1,22 = r19 € X are two points where
the ‘small’ displacement g does not ‘almost normalize’ an ‘effectively generated’
group M, then x1,x2 can be moved by mq,ms € M respectively so that the new
displacement is in an undistorted complement of m. Here, the quotation marks ‘...’
are to be understood in the sense of §4 and will be made precise (which will include
different scales).

Recall that an element g € G,[0] e-normalizes a subalgebra m C g,, if

d(9.%m, 7m) < €.

Here, o, € P(AY™(™)g ) denotes the point corresponding to m C g, and d(-, ) the
metric as in §7.
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We note that unlike the normalizer of m, which can change drastically under
‘small perturbations’, the notion of e-normalizer is ‘stable’ under ‘small perturba-
tions’ of the Lie algebra. It is worthwhile noting that points in the e-normalizer need
not be e*-close to the normalizer. For example, for any nilpotent v € slz(Z,) and
any k > 0 the normalizer of the nilpotent Lie algebra Q, (v, p*v) C sla(Q,) x5l2(Q))
is a 2-dimensional solvable subgroup of SL2(Q,) x SL2(Q,). On the other hand,
the p~*-normalizer contains e.g. {0} x SLa(Z,).

For any Q,-subgroup M with H, C M(Q,) = M we denote its Lie algebra by m
and by t, C g a choice of undistorted 6,,(SL2(Q,))-invariant complement to m (see
Lemma 3.8). Recall that given a vector w in a subrepresentation V' C g, we write
w™ for the component in the sum of non-trivial irreducible subrepresentations of
V (see the discussion before Lemma 3.6).

Proposition 8.1 (Alignment). Let ky > Ag and kg > 3k1. Let M C p(G) be a
Qyp-subgroup containing 6,(SL2) so that M = M(Q,) is ki-generated by nilpotents
of pure non-zero weight. Suppose that Oy, Oy C M[3k;] are two subsets of relative
measure at least %

Let g € G,[3k1] be an element that does not p~*2-normalize m. Then there exist
my € O1 and my € Oy such that exp(w) = migma satisfies

w € ty[3k1] and ||| > p Tt

Let C < G), be the centralizer of 6,(SL2(Q,)) and let ¢ be its Lie algebra. We
need the following lemma.

Lemma 8.2. Let k1 > Ag, k2 > 3k1, and let M C p(G) be a Q,-group containing
0,(SLy). Assume that M = M(Q,) is ki-generated by nilpotents of pure non-zero
weight. Let O C M|[3ky] be a subset of relative measure > %.

Suppose that g € Gp[3k1] satisfies

— ko

Then m is p~"2-normalized by g.

As an ineffective analogue, the reader may verify that {g € G : Mg c CM } is a
group whose identity component is exactly the identity component of the normalizer
of M (here C is the centralizer of 6,(SL2)). Indeed, if ¢ € G is close enough to
the identity and satisfies Mg C CM~ then g € CM, i.e. g = ¢m with ¢ € C and
m € M. It follows from Mg ¢ CM~ that ¢~'Mec ¢ CM . But this implies that
Adc_1 fixes the horospherical subalgebras m* and m~. Hence, Adc_1 fixes m as the
horospherical subalgebras generate (as a Lie algebra) all of m. It follows that ¢ and,
hence, g are in the normalizer of M.

Proof of Lemma 8.2. We first reduce the claim to the case of g € C[3k;]. Covering
M][3k1] by cosets of M[2ks], one sees that there exists my € M[3k;] such that
O = Omi N M[Qk‘g] C M[QkQ]

has relative measure > %. Multiplying m; by a suitable element of M[2ks] on

the right, we may further assume that O’ contains the identity. In particular,
my g € C[3k1|M[3k1]G)p[4ks] (since m;* € O) and so there exists ¢ € C[3k;] with
c € my 'gM|[3k1]Gp[4ks]. The new element c satisfies

(Omy)e C OgM|[3ky)Gy[dks] C C[3ky) M [3k1]Gp[4ks).
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As ¢ € my ' gM[3k,|G[4k2], it suffices to verify the conclusion of the lemma for ¢
and Om;. Since ¢ € C[3k;1] we have for any v € log(Om,)

(8.2) exp(Ad; o) € ¢ 1C[3k1 | M [3k1]G,[4ks] = C[3k1] M [3k1]G ,[4k2].

For the remainder of the proof, we will only rely on (8.2) for » € log(O’) (so
we will not invoke (8.1) further) and on the fact that ¢ € C[3k1]. The set of
v € m[3k;] satisfying (8.2) is rather complicated in view of the Baker-Campbell-
Hausdorff formula and the higher order commutator terms in that formula. The
situation is entirely different in the (much) smaller neighborhood m[2ks] where
commutator terms are absorbed by Gy [4ks]:

Claim. For any v € m[2ks] we have
(8.3) Ad; Yo € (¢ + m)[2ka] + gp[dko].

Proof of Claim. Notice that for any k& > 1 and any ¢y € C[k] there exist ¢; €
exp((cNty)[k]) and ¢o € (C'N M)[k] with ¢o = ¢1¢2. Indeed, the map

] = (mNo[l]+ (mNo)[l] = C[1], v = o1 + v2 — exp(n) exp(wa)

is surjective by the inverse function theorem as the derivative at zero is the identity.
We first show (8.3) for all vectors in log(Q’). Given v € log(Q’) we may write
using (8.2) and the above observation

eXp(Adc_lv) = exp(wy ) exp(urn) exp(ws)

for wn € (¢ Ntw)[3k1], wo € m[3k1], and =g € gp[dks] (where we have absorbed
the occurring (C' N M)[3k1] term into M[3k;]). By the Baker-Campbell-Hausdorff
formula we have

Adg o = wy + e + O(max{||wy||wsl, p~**})

where we abuse the Landau notation O(B) to mean an element of g, of size at
most B. Since ||w||||ws| < max{||wi],||wz|}? = ||en + ar||* (as tn is an undis-
torted complement), w; + wyp is the highest order term in the above right-hand
side (unless it is of size < p~#*2, in which case (8.3) certainly holds). Using ad-
ditionally Ad;'v € g,[2ko] by definition of O, we have wy + wy € g,[2k2] and
S0 wi, wy € gp[2ks] using again that v, is undistorted. In particular, we have
[[en[[[[ || < p~*2 and

Ad ' o € wy + wn + gp[dksa] C ¢[2ka] + m[2ks] + gp[4ko].

Hence (8.3) follows for vectors in log(Q’).

We upgrade this statement to general vectors in m[2ks] using linearity of (8.3).
Let v1,. .., %im(m) be a Zy-basis of m[2k;]. By Fubini’s theorem and using that O’
has relative measure > %, there exist #1,...,tdimm) € Zp and t € Z, such that

t; —t] € Z) and
t191 + .. + tdim(m) Ydim(m), 171 + t272 + . .. + tdim(m) Zdim(m) € log(O").

Since (8.3) holds for linear combinations of elements of log(Q’), we obtain by taking
the difference of the above two vectors that (t; —t))Ad, "o € (c+m)[2k2] + gp[4k2]
and so o; satisfies (8.3). One proceeds analogously to verify (8.3) for the other basis
vectors oo, ..., Ugim(m)- Lhis proves the claim by linearity. [
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We now proceed with the proof of Lemma 8.2. Given any k > 0 and any v € m[k]
we have by the claim that

Adgto = p e tRAd T (pPR )
c p—2k2+k((c + m)[2ko] + gp[4k2]) = (¢ +m)[k] + gp[2k2 + k].
In particular,
Ad; M (mlk]) C (¢ + m)[k] + g,[2k].

Now notice that Ad'v € gy if v € m* and Ad e € g, if v € m™. Since
(¢ +m)* = m*, we obtain that

Ad; N (mE[R]) € mE[K] + gp[2k2] C m[E] 4 gp[2k2].
or equivalently
(8.4) I ME[k]e € M[K]G,[2k2]

We now use effective generation to upgrade (8.4) to a similar statement for
M]3k1]. Recall that M is assumed to be kj-generated by nilpotents of pure non-
zero weight. In particular, any element of M[3k;] can be written as a product of
(at most 2dim(m) many) elements in M*[1] — see Lemma 5.1. Since M[1]G)[2k2]
is a group, this and (8.4) for k = 1 implies

c M [3ki]e C (M[1)Gp[2k2]) N Gp[3k1] = M[3k1]Gp[2k2).
In particular, Ad; " (m[3k;]) C m[3k1] + g,[2k2] and so
Ad_(m[0]) € m[0] + gp[2k2 — 3k1].
For a Zy-basis o1, ..., %qimm) of m[0] this implies that Ad;lvi = o/ mod p?kz 3k
for some 2/ € m[0]. Notice that the vectors {, ..., 7}, are linearly independent
modulo p and hence also form a Z,-basis of m[0]. Thus,

(o A A Ddim(m)) = ALLA v(’iim(m) mod p?kz 3k

which proves the lemma as ko > 3k;. O

Proof of Proposition 8.1. Since ty, is an undistorted complement, the map ¥ send-
ing v = v1 + » with v € tp[1] and » € m[1] to exp(w ) exp(we) is a diffeomorphism
gp[1] = G,[1] whose derivative has unit determinant at every point, with the de-
rivative at zero being the identity. In particular, as g € G,[3k1], we may write for
m € M[Skl]

(8.5) mg = exp(wp, )®(m) "
for some wy, € ty[3k1] and some ®(m) € M[3k;].

Claim. The map ® defines a diffeomorphism M|[3k,] — M[3k;] whose derivative
has unit determinant at every point. In particular, ® is measure-preserving.

Proof of Claim. We assume first that g = exp(w) for some w € vyu[3k1]. Let
v € m[0]. By the Baker-Campbell-Hausdorff formula we have for || < 1

(8.6) exp(tv) exp(w) = exp(w + tv + O(||«|||o[t]) + O(|t*)).
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As U is analytic, so is its inverse U1 : G, [1] — g, [1] (cf. [78, Ch. III)). In particular,
we may write for || <1

U (exp(to) exp(w)) = ¢e(t) + Pm(t)
with analytic curves

Ge(t) = w+tar + t2ag + ... € tn[l],

Gm(t) = thy + t%by + ... € m[1].

where we used that w € t,. Using the Baker-Campbell-Hausdorff formula for
exp(d.(t)) exp(Pm(t)) we have

exp (de(1)) exp(gm(t)) = exp (w + t(ar + b1) + O([t][[w][|[ba]]) + O(Jt]*)).
Comparing linear terms in ¢ with (8.6) we have
v+ 0~ o)) = ar + by + O~ [[br])

and so, since v € m, ||b1|| = ||v|| and by = v + O(p~3¥1| v||). This shows the claim
if g € exp(tm[3k1]) and the derivative of @ is taken at the identity.

The statement for general g and the derivative taken at the identity follows from
writing g = ¢'m’ for some m’ € M[3k] and ¢’ € exp(tm[3k1]). Moreover, taking
the derivative at any other point m € M|[3k;] reduces to the already proven part
of the claim by replacing g with mg. The claim follows. O

By the claim, O := O; N ®~1(0,) is a subset of relative measure at least +. By
Lemma 8.2 and since g does not p~*2-normalize m there exists m € O such that
mg ¢ C[3k1]M[3k1])Gp[4ks] (as long as ko > 3kq). In particular, w,, defined in

(8.5) satisfies wy, & ¢[3k1] + gp[4k2] as otherwise
mg = exp(wy,)®(m) ™" € C[3k1]Gp[4ka)®(m) " C C[3k1] M [3k:1 ]Gy [4ks],

where we used that G)[4ks] is a normal subgroup of G,[0]. In other words, we have
asserted that ||(w,,)™|| > p~**2 which proves the proposition for m; = m € Oy and
Mo = @(m) S 02. |:|

9. ATTAINING EXTRA ALMOST INVARIANCE

In this section, we prove Proposition 4.3 which provides extra almost invari-
ance. To do so, we combine results from previous sections with an effective ergodic
theorem for a version of the averaging operator

fes / fu(~s)a(®)~h) ds.

9.1. Spectral input. Recall that the representation of 6,(SL2(Q,)) on

L§(Yp) = {f € L*(Yp) : [ fdu =0}
is T-tempered for some T > 0 depending only on dim(H). That is, matrix coeffi-
cients of the T-fold tensor product of L(Yp) are in L2+ (6,(SL2(Q,))) for every
e > 0. If H(Q,) has rank at least 2, this follows from property (7). Otherwise, it
is a strong version of property (7); see [77, 39, 5, 10, 64, 28]. We also refer to the

discussion in [20, §4].
Similarly, the representation of ,(SL2(Q,)) on L3(X) is T-tempered.
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9.2. An effective ergodic theorem. In this subsection, we establish an effective
ergodic theorem. Similar results were also crucially used in e.g. [21, 87, 20] though
we use an adaptation here. In particular, we will use L°°-norms to avoid a degree
increase step that was necessary for L2-Sobolev norms.

Recall that given a C1-function f on X we write lev(f) for the level of f, i.e. least
integer L > 1 such that f is invariant under [[, G¢lordy(L)]. Moreover, as in the
introduction we fix an inner product on gly (R) and define the C'-norm || f||c1(x) =
[I7llct as the maximum of the sup norms of the function and its partial derivatives
in directions corresponding to an orthonormal basis of g... These definitions imply
that for any h € Gplk] and any C'-function f

(9-1) sup |f(eh) = f(x)] < 2p~"lev(f)l| fllcr

Definition 9.1. Let ko > ki > 1 be integers. A point x € X is [ky, ka|-typical for
the measure p if for any k € [k1,k2] NZ and any ball B C Z, of radius at least

p*% the average
1
Dy pf(z) = 7/ f(xu(fs)a*k) ds — /fdu
1Bl JB
satisfies

1
(9.2) | Dy f ()| < p~ ™0 @ lev(f)|| ]l on
for all f € CY(X). Here, |- | is the Haar probability measure on Z,.

Note that Definition 9.1 requires (9.2) to hold for every Cl-function f. It is not
assumed that the point x is in the support of the measure p. We also note that the
explicit exponent will be of little importance in what follows, though we point out
that it depends only on dim(G) (and not on u).

Proposition 9.2. There exists A15 > 1 with the following property: For any kg > 1
with
(9.3) pro > pHiepl(X) e

the set of points x € X which are not [kg, 00)-typical has p-measure at most p’ﬁko,

We will first show the existence of a large set of points for which the averages
in (9.2) are well-behaved with respect to an individual function. (Indeed, combine
Lemma 9.3 below with the Chebyshev inequality.) We will then use a partition of
unity to bootstrap to all functions.

Lemma 9.3. For any f € CY(X) and any ball B C Z,, of radius at least p~* we
have

1Dk 53200 < ™7 lev(£)?]1£ 1%
Proof. As the representation of ,(SL2(Q,)) on L3(Yp) is T-tempered, we have for
any f € C'(Yp) and any s € Q,
[(u(s)-£, ) = n()p(F)] < (1+ [s)77 dim(0,(SLa(Zy))- £) 117 2,)-

Notice also that the dimension dim(6,(SL2(Z,)).f) is at most the index of the
subgroup

{g € SLa(Z,) : 0,(9) € Gp[ordp(lev(f))}}
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in SLy(Z,). Since |SLo(Z/p"Z)| < p" for any n > 1, we have
dim(0,(SL2(Zy)).f) < lev(f)’

In particular,

(9.4) [(u(s).f, f) — n(Hu(F)| < L+ [s) "= lev(F)?| f]1%-

We finally turn to the problem posed in the lemma. Fix f € C1(X), k > 1, and
a ball B of radius equal to p—* for some § < 1. Combining Fubini’s theorem and
invariance of u under the principal SLy we have for f € C1(X)

1 B _

D55 st = Tz |, (et = a1 F) 1o = P ds '
0

where By is the translate of B containing zero. Notice that one of the two in-

tegration variables s, s’ may be removed by substitution in the above. Also, the

conjugated ball satisfies a*u(Bp)a™* = u(p~?=9*7Z,). Using (9.4) and these ob-

servations

1Dk 5 ()72 < o~ 70" / (1+ [s]) = lev(f)°| /1|2 ds

|s|<p(2=9)k
<p~ T Mev(HIS1%
proving the lemma. (I

We now construct a partition of unity. For this, we control first the injectivity
radius around each point. There exist constants A;3 > 0 and ¢; > 0 so that for
any z € X and any g € p(G(R))

(9.5) (Hg —id|| < ¢ epl(X)~* and xg = x) = g =id.

Indeed, by Proposition 6.1 we have min,cqn o3 c(p(g9)w) > cpl(X)~* for any
g € G(A) (vaguely, there are no short vectors for any coset in the compact space
X). Thus, (9.5) follows from e.g. [60, Lemma 2.3]).

Lemma 9.4. For any L > 1 and any € € (0,c; cpl(X)~12) there exists a smooth
partition of unity {xe r:1 € L. 1} of X with the following properties:

o The number of functions #1. 1 satisfies
#T. < e @) LN yo)(X).

e For anyi € I. 1, the function x. 1, is invariant under [ [, Gylorde(L)].
o For any i € L. 1, there exists v € X such that x. 1. 1s supported on the
neighborhood

({9 € p(GR) : |lg —id]| < e} x [] Gelorde(L)]).
L

o We have ||xe,pillcr(x) < e ! forallie I, L.

Proof. While such constructions are mostly standard, we give here a proof simplified
by the fact that X is compact. We may as well construct a partition of unity of
the smooth manifold X[L] := X/[[, Gelordy(L)]. Note that X[L] is a compact
manifold of volume < vol(X)LY * where the volume is intended with respect to a
Riemannian metric induced by the fixed inner product on the Lie algebra. Indeed,
for any prime ¢ the index of G¢[ord,(L)] in G,[0] is at most erde(L)N?,



56 M. EINSIEDLER, E. LINDENSTRAUSS, A. MOHAMMADI, AND A. WIESER

Let P be a measurable partition of X[L] consisting of sets of diameter at most
/4. We may assume that the cardinality of P is < e~ 4m(@vol(X)LN". Let
m be a Haar measure on p(G(R)). Let ¢ be a smooth density on p(G(R)) with
J ¢ dm = 1 which is supported on the ball of radius at most /2 around the identity
and which satisfies ||¢]c1(x) < e7!. For any measurable function f on X[L] the

convolution
0)= [ Hag)otg) dmy

is smooth. One may now check that {¢ * (1|p): P € P} satisfies the required
properties. O

Proof of Proposition 9.2. Our aim for a given kg > 1 is to find ‘many’ [kg, 00)-
typical points. For simplicity, we fix constants 4,8’ € (0,1) to be determined below
and to be used in the definition of typical points as follows: § will be the speed of
decay of the averages and ¢’ will be appear in the size of the expanded balls.

In view of (9.3) we may assume that kg satisfies p~%% < ¢; cpl(X)~“1¢. For any
k>koand L >1let {xx ;7€ Ly} be the partition of unity from Lemma 9.4,
where we used ¢ = (k) = p~°% and simplified the notation accordingly. Notice
that the estimate

Dy, f(x)] < p~Mlev(H)Ifllorx)

is trivial for functions f of level at least 2p°*

Given any ball B C Z, of radius at least p~0'%

we have by Lemma 9.3

1
||Dk,B(Xk,L,i)||%2(N) <Lp aTh3
In particular, by the Chebyshev inequality

(9.6) p({z: |Dy,p(xk,L:)(x)] > p_ékL(#Ik,L)_l}) < p%k_%kL(#Ik,L)?
Write Bad(ko) for the set of points x € X for which there exists k > ko, a ball
B C Z,, of radius at least p~0F alevel L < 2p, and some i € Iy, with

| Di,p(xzk,0)(@)] > p~ " L(#Zk,) ™!

Notice that there are at most 2p5/k many balls B C Z, of radius at least p*‘slk.
Using this and the bound on the number #7}, 1, of elements in the partition of unity
from Lemma 9.4 we obtain from (9.6)

p(Bad(ko)) < Z plo 2=k Z (#Tk.1)°

k>ko L<2psk
< Zp(6’+(2+3dim(G))5——)k Z JL+3N? vol(X )
k>ko L<2pdk
< Z p(§/+(2+3N2)6—%)kpék(2+3N2)Vol(X)3
k>ko
< Z p(6,+(6N2+4)5_%)kV01(X)3.
k>ko

Thus, for § = (6N2 +4)71(8T)~! and §' = g¢ we obtain
p(Bad (ko)) < p~irFovol(X)3.
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In fact, choosing § slightly smaller (as in Definition 9.1) we can guarantee that
(Bad(ko)) < p~ ko in view of (9.3) and Proposition 3.1.

We will now show that any « ¢ Bad(ko) is [ko, co)-typical. Solet z ¢ Bad(ko) and
suppose that f € C'(X) and k > kg are given. Recall that if the level L = lev(f)
satisfies L < 2p5”“, we are done. So assume otherwise. Write z; for the ‘center
points’ in the definition of the partition of unity {xk,: :% € Z,}. Then

f= Z J(@i)xn,,i + O(p_ék”f”cl(x))
iEIk',L

by the mean value theorem. Moreover, by definition of the set Bad(kq) we have for
any ball B of radius at least p 'k
| > @) Drsxnra@)| < 0L e

€Lk, L

Together, these estimates show that

|Dr,f(@)] < p " L] florx)-
Hence the proposition follows by recalling that p is assumed to be sufficiently large
and decreasing § slightly. O

Proposition 9.5. Suppose that p is p~*-almost invariant under all elements of a

closed subgroup My < Gp[0]. Then for any ko > 1 with (9.3) the proportion of pairs

(z,m) € X x My for which zm is not [ko, k/(4 dim G)]-typical is at most p~ ko,
In particular, for every n > 1 there exists a subset X' C X with u(X’) > % and

with the following property: For any x € X' the measure of the set of s € Q, with

|s| < p" and
vol({m € My : zu(s)m is [ko, 7qre k| -typical}) > 2
is at least %p". Here, vol(-) denotes the Haar probability measure on My.

Proof. The proof of the first statement is largely analogous to the proof of Propo-
sition 9.2. Given a smooth function x on X notice that the translate y(-u(s)a™*")
has level at most p? di“‘(G")k/lezv(x) for any &’ and any s € Z,. Correspondingly, for
any k' > 0 and for any ball B C Z,, of radius at least p‘k,

[ [ 1000 @m) dute) avolim)
My J X

< p PPN lev () X121 (x) + 1 Dr X320
~h2dm(@R oy () [[x ]2 ) + 27T lev(x)? X%
< Pfﬁk,l@V(X)SHX”ch(X)

where we used p~"-almost invariance for the first inequality (cf. Definition 4.1),
Lemma 9.3 for the second, and where we assumed k' < k/(4dim G) in the third.
From here, one may proceed in exactly the same fashion as in the proof of Proposi-
tion 9.2. The only minor difference is that the above estimate involves derivatives
of the elements of the partition of unity; these are controlled by Lemma 9.4.

The second statement follows from Fubini’s theorem and the first statement.
Indeed, set for x € Yp and |s| < p"

f(z,s) = vol({m € My : zu(s)m is not [ko, k/(4 dim G)]-typical}).

<p

k
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By U-invariance of p, the first statement in the proposition, and since kg is assumed
sufficiently large, we have

[ s dsdute) <p <
[s|<pm™

By Chebyshev’s inequality, the y-measure of z € Yp with p~™ f\s|§pn flz,s)ds > %
is less than % For any x € Yp outside this exceptional set, i.e. with

vt fesds<
[s|<p
another application of Chebyhev’s inequality shows that

[{Isl <p™: fla,s) = 3} < 39"
This proves the proposition. O

9.3. An elementary property of almost invariance. In the following, we verify
a few elementary properties of the notion of almost invariance defined in §4.3. We
note that almost invariance under p-adic directions in the Lie algebra is significantly
less well-behaved than almost invariance under archimedean directions (see e.g. [21,
§8] for properties of the latter). For instance, if u is ‘almost invariant’ under two
vectors v, w € @,[0] it is unclear to what extent, in general, p is also ‘almost
invariant’ under their sum v+ w (or other linear combinations). Issues arising from
this will be resolved via the effective generation result in Theorem 4.4.

The following properties are direct consequences of the definition (Definition 4.1):

(A1) pis 2p~*-almost invariant under all g € G, [k] (see also (4.1)).

(A2) If p is p~*-almost invariant under g € G [ ], then for any h € Gp[k'] the
measure p is (p~* + Qp*k/)—almost invariant under gh.

(A3) If p is p~*-almost invariant under g; € G,[0] and p
ant under go € G,[0], then y is also p~*t-almost invariant under g; ' and
(p~* + p~F2)-almost invariant under g;go. (Indeed, lev(f(-g; ') = lev(f)
for any f and i =1,2.)

(A4) If p is p~*-almost invariant under g € G, and h € 6,(SLa(Q,)), then u is
p~*||h||?-almost invariant under gh and hg. (Indeed, the level of f(-h) is
at most ||h]|?lev(f) for any f.) In particular, if y is p~*-almost invariant
under v € g,[0] then y is ||h[|*p~"-almost invariant under Ad(h)v.

—k2_glmost invari-

Here, we prove the following (arguably minimalistic) statement.

Proposition 9.6. There exists A14 > 1 with the following property.
Let V C g, be a subspace invariant under 0,(SL2(Q))) and let

v—Zv,\EVhW 1\ V1]
A>0

be a vector with pure-weight components vy € VN [0]. Suppose that u is p~*-

almost invariant under exp(v). Then there exists a highest weight vector w €
VIWI0]\ VP¥[1] of pure weight such that p is p~*/“1++414 almost invariant under
w.

Proof. In view of the conclusion, we may assume that k > B for some B = B(N) >
1 to be determined in the course of the proof. Indeed, recall from (A1) that p is
trivially p-almost invariant under any vector in g,[0].
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We first claim that there exists ¢’ with the same properties as v and with pure
non-zero weight A\ such that u is p~****-almost invariant under exp(#’). We find
v’ by induction and a simple case distinction according to whether or not the
component of largest weight in » is ‘small’.

Let Ao be maximal with »y, # 0. If A\g = 1, we are done, so assume otherwise.
Fix two parameters k1, ks < k to be determined later (with kq, ko > xk).

Assume first that ||oy, || > p~*1. By p*2-fold iteration of exp(v) using (A3), the
measure g is p*2*-almost invariant under exp(p*?v). Let

ks = | (k2 — log,([loa, 1))/ o]
Observe that
1> p~Rethohafoy || = [[Ad(a®)p"2on, || > p~
and ks < ,\%(/ﬁ + ko). In particular,
o = Ad(a")p*2ay, € V]0] \ V[\o).
For any smaller weight A < Ao we have
[Ad(a*)pton | < pharhe < profm(0o5k,

Notice that we have not specified either of the parameters ki, ko up to this point;
we choose k1 = L%(A;‘ﬁl — 1)ko] such that [[Ad(a®?)pF20y|| < p~*2 for any A <
Xo. By (A4) and the earlier iteration, p is p*Fsthz—F

exp(Ad(a*?)p*2v) where k3 < ki + ky < 2ky and

Ad(a*)p™o = o + O(p~**2).

-almost invariant under

Thus, p is also (p~**2 + p**2=%)-almost invariant under exp(¢’) by (A2). Choosing
ko = |xk| appropriately, u is p~**-almost invariant under exp(’). We may also
apply a and iterate by a suitable power of p so that ¢/ € V[0] \ V[1] in which
case u is p~**+*-almost invariant under exp(z’). This proves the claim under the
assumption ||oy, || > p~F.

If |o, || < p~*1, the measure p is (p~* + p~*1)-almost invariant under the el-
ement exp(D_,_, ?x) by (A2). Since k1 > k, p is p~**-almost invariant under
exp(d_ycn, »). In that case, we may replace the vector » with > ,_, o\ and
restart the above argument with new parameters.

We now show that p is p~****-almost invariant under o’. We first claim that p
is p~**+*_almost invariant under exp(t*¢’) for all t € Z,. Indeed, p is [t[*p~**+*-
almost invariant under a(t) exp(¢')a(t)~! = exp(t*¢’) which implies the claim for
t| > p~***+*. Otherwise, the claim follows directly from (A1).

By Hensel’s lemma, any t' € Z, with ' = 1modp is of the form #' = t* for
some t € Z, (using p > dim(g) > A). As p is p~**"*-almost invariant under
exp((t) — t3)7') for all t1,t2 € Z, by (A3), this shows that u is p~**T*-almost
invariant under exp(to') for all ¢t € pZ,. This proves the proposition. O

9.4. Extra almost invariance from transversal pairs of typical points. The
following proposition establishes ‘additional almost invariance’ assuming the exis-
tence of ‘transversal’ typical points; we will assert the latter in Proposition 9.9
below.



60 M. EINSIEDLER, E. LINDENSTRAUSS, A. MOHAMMADI, AND A. WIESER

Proposition 9.7. There exists Ay > 1 depending only on N with the following
property.

Let v C g, be an undistorted 0,(SL2(Q)))-invariant subspace. Let ki,ks € N
with ko > k1 > Aj5. Suppose that there exist two [k1/(3dim(g)), ka]-typical points
r1,T9 € X so that

2 = x19€xp(v)
where g € p(Ky) centralizes 0,(SL2(Q,)) and where v € v satisfies
ol <p™ and o™ = p~*.

Then p is p~*1/415 _almost invariant under a highest weight vector w € v[0]\ t[1] of
non-zero weight.

We will use the following simple observation relying on polynomial behaviour.

Lemma 9.8. Let v C g, be a 0,(SL2(Qp))-invariant subspace. Write v = ). t;
for irreducible subrepresentations v; as in Lemma 3.5. Let v =), v € t[0] where
v; € v;[0]. Then the measure of s € Z,, satisfying

(9.7) I(Ad(u(s)2)"™ | = [Ad(u(s))wll = || for alli

is at least 1 —

dimTft). In particular, there exists s € Z, with (9.7).

Proof. Given any polynomial f € Z,[s] of degree d < p with at least one coefficient
of absolute value one, the measure of {s € Z, : p | f(s)} is exactly the proportion
of zeros of fmodp in [F,,. Since fmodp is non-zero, it has at most d zeros and so

s €Zp:ptf(s)} >1—d/p.

Returning to the problem in the lemma, for every i choose w; € t'W[0] \ ti%[1]
and let f;(s) be the polynomial of degree dim(t;) — 1 with

v hw
By Lemma 3.6, each of these polynomials has at least one coefficient of absolute
value one. The lemma thus follows by applying the above general observation to

the polynomial f(s) =[], fi(s) of degree at most dim(). O

Proof of Proposition 9.7. We assume that k1 > C for some C = C(N) to be deter-
mined.

Write v = ). v; as a direct sum of irreducible subrepresentations with highest
weights A; with t[0] = >, ¢;[0] in view of Lemma 3.5. Express v = ) . v; accordingly
where v € v;[1] for each i. Let sg € Z,, be as in (9.7) and let £ > 0 be minimal
such that

IAd(a*u(s0))o|| > p~ @

By the assumptions on #", k indeed exists and satisfies k;/dim(g) < k < ko.
Moreover,

w = (Ad(a"u(s0))2)"™ = Ad(au(so))v + O(p~").
Let B be the ball around sg with radius pﬂﬁk], Then any s € B also satisfies
(9.7) and we have
(9.8) Ad(a*u(s))v = w + O(p~*").
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Indeed, Ad(a*u(s))v = (Ad(a*u(s))2)™ 4+ O(p~*) and
(Ad(a"u(s))2)™ = > " (Ad(a" u(s))w)™ = ZP_M (Ad(u(s))w)™

= prmi ((Ad(u(s0))z)™ + O(p~*"[|ul]))
= Zp_k)“ (Ad(u(s0))z)™ + O(p™*) = w + O(p~*F)

where in the fourth equality we used that ||z < p~** by choice of k.
Recall that both points z1,x2 are assumed to be [k;/dim(g), k2]-typical. Thus,
we have for any f € C1(X)

[ ran= [ saaui=sa™) ds+ 06 Mev(1)| e )
:1éf@w«ﬂm*ywmAaww@w»®+0@ﬂﬂwmmmm@ﬁ
=([;f(x1u<—s>a*kgexp(w))ds4—cup**ka<f)nfnch>>

=/ﬂwwmevm%mmwmwm

where we used (9.8) together with (9.1) for the third equality. This proves that p
is p~**1-almost invariant under gexp(w) (using p sufficiently large and k > k).
Note that by construction w = @™, w € t[0] \ t[dim(g)] and w is centralized by U
ie wethv,

We claim that p is in fact p~**1-almost invariant under exp(w) (removing g). To
see this, we apply the above argument for k£ much smaller than k;. More explicitly,
taking k = |k;/(2dim(g))] we have ||Ad(a*u(s))v| < p~*1/2 for any s € Z,,. Thus,
for f € C*(X) using (9.1)

flzau(—s)a™®) = f(z1u(—s)a *gexp(Ad(a*u(s))v))
= fzru(=s)a="g) + O(p~"/*lev(f)| fllon)-

Using that 1, o are [k1 /(3 dim(g)), k2]-typical and proceeding as before, we obtain
that y is p~**1-almost invariant under g. Hence, p is p~**1-almost invariant under
9~ 'gexp(w) = exp(w) (cf. (A3)).

Since w = w™ = w", there is some m < dim(g) such that @' := p™Ad(a)w €
t[0] \ t[1]. The measure u is < p~**1*+*_almost invariant under exp(w’) by (A3)
and (A4). The proposition now follows Proposition 9.6 applied to «’'. O

7*]61

9.5. Proof of Proposition 4.3. We first prove the following technical proposition
which relies on the previous results from §6-§8 (including the effective closing lemma
in Proposition 7.1). Under suitable conditions, it establishes the existence of a
pair of typical points with a ‘transversal’ displacement that is useful in view of
Proposition 9.7.

Proposition 9.9. There exist A1g > 0 depending only on N with the following
property. Let ko be minimal with (9.3) and let ky > Ajko. Let k > 1 be a further
integer with

epl(X)Hrep™e < pF < mepl(Yp)'/ e,
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Suppose that M < p(G) is a Q,-subgroup containing 6,(SL2) such that

(1) M =M(Q,) is k-generated by nilpotents of pure non-zero weight, and

(2) p is p~*1-almost invariant under M[3k].
Let vy, C gp be an undistorted 8(SLa(Q,))-invariant complement to m = Lie(M).
Then there exist two points 1, x2 € X which are both [ko, k1 /(4 dim G)]-typical and
where xo = x1g for g € p(G(A)) satisfying ge € SLn(Zy¢) for all £ # p, ||geoll < 2,
and g, = exp(v) for v € ty with

loll < %%, o™l = p= k.

Note that, in practice, we will take k; to be much larger than k so that the
assumption on almost invariance does not follow from mere Lipschitz continuity

(see (4.1)).

Proof of Proposition 9.9. Let vol(-) denote the Haar measure for M normalized for
simplicity such that vol(M[3k]) = 1. We use the specialized notion of Diophantine
points from (6.4). We may assume

(9.9) mepl(Yp) > (ht(G)p)** = (cpl(X)p)**

for some very large power A > 0 (otherwise, there exists no k& > 0 as in the
proposition and we conclude). In particular, (6.5) holds. Lastly, we let n > 0 be
an auxiliary integer to be chosen later (essentially as a multiple of k) and assume
it satisfies

(9.10) (ht(G)p)? < p™ < mepl(Yp)H/A.
and
(9.11) k3n/(2dim G) > 3k.

We begin by constructing a ‘good’ set of points. In vague words, these will be
points x € X satisfying, in particular, that for many points along a long piece of the
U-trajectory many translates by the almost invariance group M [3k] are ‘typical’.
We also require many points along the U-trajectory to be ‘Diophantine’. For the
precise construction, we combine Corollary 6.8 and Proposition 9.5 (applied for the
group My = M|[3k]). Thus, we obtain a set Yyo0a C Yp of p-measure at least %
with the following properties for any y € Ygo0d:

e The set of s € Q, with |s| < p™ for which 7s(y)u(s) is mcpl(Yp)ﬁ—
Diophantine has measure at least %p".
e The measure of the set of s € Q, with |s| < p™ and
vol({m € M[3k] : yu(s)m is [ko, k1 /(4 dim G)]-typical}) > 2

is at least %p”.
In the following we fix a point y € Ygo0q and let S C {s: |s| < p™} be the set of
‘good times’ for this point i.e. so that for all s € S we have

vol({m € MI[3k] : yu(s)m is [ko, k1/(4 dim G)]-typical}) > %

and 7s(y)u(s) is mepl(Yp) ﬁw—Diophantine (and in particular p"-Diophantine when
A > 2A,). Note that |S| > %p” by construction of the set Ygood-

We now use the pigeonhole principle to find two points in the u(S)-orbit of x
which are ‘close’ to each other, but do not lie on the same local M-orbit. In fact,
we will construct them so that their displacement does not ‘almost normalize’ M.
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Cover X by balls of the form
B(x) = {xg lglloo < %, ge € G¢[0] for £ # p, g, € Gp[[ﬁ'gn/(QdimGﬂ]}

for z € X. There is a finite cover of X by such balls with multiplicity bounded in
terms of N where the number of balls is < p"*™/2**vol(X) < ps™/2+*cpl(X)* by
definition of the volume and Proposition 3.1. In view of our assumption in (9.10),
the number of these balls is less than p™3™. In particular, there exists x € X such
that

E={seS:yu(s) € B(x)}

satisfies |[E| > p(1="3)", Note that for any s,s' € E we have zu(s) = zu(s')g
for some g € p(G(A)) with ||g|lcc < 2, g¢ € SLn(Z¢) for all £ # p, and g, €
Gpl[ksn/(2dim G)]].

We now wish to apply the effective closing lemma in Proposition 7.1 to the point
y and the set of times E. If the assumption in (3) therein holds, the closing lemma
is indeed applicable and we obtain that m is a semisimple ideal of g,. But this is
impossible by Lemma 3.7 and so (3) cannot hold. Thus, there exist s1, s2 € E such
that

yu(sz) = yu(s1)g

for g € p(G(A)) with ||g|lec <2, g¢ € SLn(Zy) for £ # p, gp € Gp[[rsn/(2dim G)]]
and, crucially,

d(gp-Tm, om) >0 "
In particular, m is not p~"-normalized by g,.

We now apply the alignment lemma in Proposition 8.1 to the above found dis-
placement g,. Since g, € G,[[r3n/(2dim G)]] and we assumed (9.11), we are able
to apply Proposition 8.1. Explicitly, let @7 C M[3k] be the subset of points m for
which yu(s1)m™1! is [ko, k1/(4 dim G)]-typical and let Oy C M[3k] be the subset
of points m for which yu(ss)m is [ko, k1 /(4 dim G)]-typical. Since s1,s2 € S, the
subsets O1, Oy have relative measure at least % By Proposition 8.1, there exist
my € O1 and mgy € Oy such that mqg,me = exp(») for v € vy with

loll < p=%, Jlo™ ] = p~*".

We choose n minimal such that (9.11) holds. In particular, this guarantees ||o"|| >
p~**. Finally, the two points

@1 = yu(s1)my", xa = yu(ss)ms
satisfy the requirements of the proposition with displacement exp(»). O

Proof of Proposition 4.3. As in the proposition, let M < p(G) be a Q,-subgroup
containing 6,(SLs) so that M = M(Q,) < G, is k-generated by some nilpotents
of pure non-zero weight. Suppose that p is p~™-almost invariant under M[3k]
for some auxiliary parameter n. When n, k are sufficiently large, we may apply
Proposition 9.9 with k& and with n instead of k1. We thus obtain two points x1, x5 €
X which are [kg,n/(4 dim G)]-typical so that zo = x1p(g) for g € G(A) satisfying
ge € Ky for all £ # p, ||goo|| < 2, and g, = exp(v) for v € vy with

loll < p=2F, [l = p=er.
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When k is sufficiently large and Ajgk < n/(4dim G), we may apply Proposi-
tion 9.7 and obtain that p is p~**-almost invariant under a highest weight vector
w € ty[0] \ twm[1] of non-zero weight. This implies Proposition 4.3. O

10. PROOF OF THE MAIN THEOREMS

In this section, we prove Theorems 1.1 and 1.2. For clarity, we shall do so over
F = Q first and then reduce to that case.

10.1. The case F = Q. We adopt our standing assumptions from §4.1 and prove
the following seemingly weaker claim.

Proposition 10.1. There exists A1z > 0 depending only on N so that for any
€ CHX) we have

Cpl A'7p1417
| <
’ /X /YD / mepl(Y; 1/ 417 (f)”fHCl(X)

Since p can potentially be of size at least log(cpl(Yp)), the conclusion of the
above proposition is empty if Yp is contained in an intermediate period of com-
plexity at most logarithmic in the complexity of Yp. The same is not the case in
e.g. Theorem 1.1. We will remedy this issue later by inducing over intermediate
periods.

We will use the following lemma relying on spectral gap for the ambient space X.

Lemma 10.2. There exists A1g > 0 with the following property. Let k > 1 with

pk > phisepl(X)As. Suppose that p is p~ 15k -almost invariant under G,[k]. Then
for any f € CH(X)
(10,1 [ 1= tau] <pHevDislen o,

X Yp

Proof. Fix A = A3 > 0 to be determined in the proof and suppose that u is p~4*-

almost invariant under G,[k] and p* > p“cpl(X)4. We fix f € C'(X) and wish to
show (10.1). We may assume lev(f) < 2p* as the statement is trivial otherwise.

Fix s € Q, to be determined (of size |s| some small power of pA*). As p is
p~A*_almost invariant under G,[k], we have by (A4)

(10.2) / / f(agpu(s)) dg, dp(z) = /X Fdp+ O(s'o ™ev(D)fller ).

where dg, denotes the normalized Haar measure on Gp[k].

We estimate the inner integral on the left-hand side of (10.2) using effective
decay of matrix coefficients for L3(ux). Let Qf = [],Q be the compact open
subgroup of p(G(Ay)) with Q; = Glord,(lev(f))] when £ # p and 2, = G,[k]. Let
1) be a smooth non-negative function on X with the following properties:

e ¢ is invariant under Q.
e The support of 9 is contained in

z({g € p(G(R)) : [|lg — id]| < p~*} x Q).

e [[¢]|o < p**. (The volume of the real manifold X/Qy is < p**.)
o [yv=1
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See also the discussion in the proof of Lemma 9.4; in view of the assumption on k
and (9.5), the above neighborhood of z is injective for A > 0 sufficiently large. By
Lipschitz continuity we conclude that

/ f(zgyu(s)) dg, = / Flu() () dux (4) + O (I flles )
Gplk]
_

(8)-F, ) L2y + O (0 [ fllerx))-

As the representation of 6,(SL2(Q,)) on L3(X) is T-tempered, we have as in
Lemma 9.3

(u(s).fo ) L2 (ux) = /X F+0((+ 1) 1ev(f) Flev() 2| flloo [ 4]] o)

(10.3)

(10.4) - /X £+ 0((1+ 15D~ 511 0)

using the above properties of ¢ and the assumption that lev(f) < 2p¥. Combining
(10.2), (10.3), and (10.4) we obtain

[ [ pau] < sl 7 () e () e
For a suitable choice of s € Q, and A > 0 the middle term in the above right-hand
side dominates. For p sufficiently large, this proves the lemma. ([

Proof of Proposition 10.1. The reader is advised to first recall the inductive scheme
outlined in §4.2 that we will follow here. Set A = max{A4s5,3A4,5} and § = 1/(3A4).
The following argument alternates between applying Proposition 4.3 and Theo-
rem 4.4.

INITIAL STEP: Starting from the obvious invariance under H,, we find additional
almost invariance. Let k& > 0 be maximal with p¥ < mcpl(Yp)Y/4s. If p* <
p™ocpl(X)#5, the proposition is trivially true. So we assume otherwise. We take
M = H, and note that y is invariant, and in particular p~“**-almost invariant,
under M[3k]. By Lemma 5.3, M = H, is O-generated (and, in particular, k-
generated). Overall, we are in position to apply Proposition 4.3. Thus, there exists
a highest weight vector v € g,[0] of non-zero weight with v modp ¢ h,[0] mod p so
that p is p~*/#5-almost invariant under o.

Let AV be the list consisting of the nilpotents wy, ..., Waim(y) Of pure non-zero
weight 0-generating H), (provided by Lemma 5.3) and the additional direction v.
Now apply Theorem 4.4 with N, with k/A; (instead of k) and with the above é.
As before, if (4.4) is not satisfied, we conclude. Else, we obtain a perturbation
V1, Udim(h) Of Wi, -+ Waim(n) and vgim(p)4+1 of v as well as a constant a; > 1 so
that the following hold:

| — ;|| < p~@tk/As+dim(G) for 1 <4 < dim(h).

| Zdim(p)+1 — 2| < prk/As+dim(G)

The vector vgim(p)+1 is a highest weight vector of pure non-zero weight.
The vectors z;, i < dim(h), are of pure non-zero (possibly negative) weight.
If M; is the Zariski closure of the group generated by 6,(SL2(Q,)) and
the one-parameter unipotent subgroups {exp(tz): t € Qpli<i<dim(p)+1
then M; = M;(Qyp) is dark/As-generated by nilpotents in g,[0] of pure
non-zero weight. Specifically, this list of nilpotents consists of vectors
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from {v1,..., %im(p)4+1} and the upper and lower nilpotent z*,z~ from
DO, (sl2(Qp))-

For convenience, we set k1 = [daqk/As] so that k1 > c¢1k for some constant ¢; > 0
depending only on N and so that M; is ki-generated in the above manner. By the
first bullet point, x is p~24*1-almost invariant under the new directions z; (assuming
that k; is sufficiently large). By Lemma 5.1, this implies that u is p~*¥1-almost
invariant under the group M[3k;]. Note that we have used our choice of § > 0 (and
in particular our freedom to do so) here.

Also, notice that the Lie algebra of the group generated by the one-parameter
groups {exp(tz;): t € Qpli<i<dim(p) agrees with b, modulo p. Since vmodp ¢
hp[0] mod p, this shows that dim(M;) > dim(H) + 1 (or, more precisely, the di-
mension of M is at least the dimension of H plus the dimension of the non-trivial
representation generated by the highest weight vector ogimp)+1)-

INDUCTIVE STEP: Suppose by induction that for ¢ € {dim(h) + 1,...,dim(g)}
we are given k; > ¢;k for some constant ¢; depending only on N and nilpotents
v, ..., € gpl0] of pure non-zero weight with the following properties:

e The Lie algebra of the group generated by {exp(tz;):t € Qp}i<i<dim(p)
agrees with the Lie algebra b, modulo p.

e The vectors vgim(), - -, v are highest weight vectors that are linearly in-
dependent modulo p and that are not contained in b, [0] mod p.

e Let M; the Zariski closure of the group generated by the principal SLs
and the one-parameter unipotent subgroups {exp(tz;): t € Q,}. Then
M; = M;(Q,) is k;-generated by a list of nilpotents so that each element is
contained in {vy,..., 7} or is equal to zT or z™.

e The measure p is p~“4*i-almost invariant under M;[3k;].

Note that the assumed list (#1, ..., 7;) might not overlap at all with the list attained
at the initial step or the previous step in the induction. Also, note that M; is not
guaranteed to contain the invariance group H,,.

If M; is not a proper subgroup, Lemma 10.2 implies the proposition (and the
induction is aborted). So assume that M; is a proper subgroup. We apply Proposi-
tion 4.3 for the group M; and for k;. If p*i is too small, we conclude. Otherwise, we
obtain a highest pure non-zero weight vector » € g,[0] with vmod p ¢ m;[0] modp
under which p is p~*/4s_almost invariant.

Now apply Theorem 4.4 to the list (v1,...,7;,9), § = ﬁ (as before), and
k = k;/As. Again, if k is too small, we conclude. Otherwise,\we find a new list
(of,...,7941) € gp[0]""! of nilpotent elements and a; € (r164™(®) 1] such that
the inductive assumption is satisfied for the nilpotents »,..., s/, and for ki 1 =

Finally, we remark that the above induction automatically stops after dim(g) —
dim(h) many steps. This proves the proposition. O

Proof of Theorem 1.1 for FF = Q. Recall the setting:

e G is a Q-anisotropic simply connected semisimple group and p : G — SLy
is a homomorphism with central kernel defined over Q.

e D= (H,.,gp) is semisimple simply connected data over Q consistent with
the pair (G, p).

o X = [p(G(A))] and Yp = [((H(A))gp] C X.
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To simplify notation, we will first reduce to the case gp = id. By Theo-
rem 6.3 (based on [60] and Proposition 6.1) using a good prime py for X with
po < log(cpl(X))? there exists v € G(Q) so that

lp(Mgpllee < 1, [|p(¥)gplle =1 for all £ # po, and ||p(7)gpllp, < cpl(X)*.

Let g = p(y)gp. Then Yp agrees with Yy v 4) where ¢7(-) = p(v)e(-)p(y) . By
the above bounds on g, the theorem follows if we establish it for (H,¢?,id). Hence,
we assume without loss of generality that gp = id. In the absence of the translate,
we may use the complexity of an orbit and the height of the associated group
interchangably.

Recall e.g. from [37, Lemma 8.6] that there exists A;9 > 0 depending only
on N so that ht(L) < ht(G)“*® for any normal subgroup L < G. Set A =
max{2A47, A19}. We prove the following claim by induction on the dimension
of G, which in turn clearly implies the theorem.

Claim. Assuming gp = id we have for all C' 1—functions f

(105) [ 1= ] i< o el oo,

If (H) is contained in a proper normal subgroup L <1 p(G), then
mepl(Yp) < epl([L(A)]) = ht(L) < epl(X)~e.

Thus, the claim in (10.5) is trivial in this case. Assume from now that +(H) is not
contained in a proper normal subgroup L <1 p(G).

We prove (10.5) by induction on the dimension of G and so may assume that
(10.5) holds for Yp considered inside intermediate semisimple orbits. Let B be the
collection of connected semisimple proper Q-subgroups L < p(G) with ((H) < L
and with

ht(L)*" < ht(L)
for all semisimple Q-subgroups L” < L containing ¢«(H). For convenience, we define
the relative minimal complexity
(10.6) meply, (Yp) = min {cpl([L'(A)]) : «(H) C L’ C L semisimple}.
Then L € B if and only if cpl([L(A)])34 < meply, (Yp)/A4.
Let Lo > ¢(H) be a connected semisimple Q-subgroup of p(G) so that
cpl([Lo(A)]) = mepl(Yp).
We construct a subgroup of Lg in the collection B as follows: If Ly € B, we are done.
Otherwise, there exists L1 < Ly with ht(L;) < ht(Lg)?’Az. Continuing inductively,

we find a sequence of subgroups Ly > L; > ... which has to terminate after at
most dim(G) steps. Thus, there exists j < dim(G) such that L; € B and

ht(L;) < ht(Lo) 47",
In particular,
10.7 mepl(Yp) < cpl([L;(A)]) < mepl(Yp (347)Hm(S)
J

For simplicity, we set L := L;. Note that L = «(H) is entirely possible and not
ruled out here. Write L for the simply connected cover of L and ¢r,: L — L for the
covering map. Set D' = (L, r, id).
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We wish to show equidistribution with a rate for Yp/ in X and for Yp in Yp/. For
the former, note that there is by Proposition 3.2 a good prime p for the homogeneous
set Ypr and for X with

p < max{log(cpl(X)), log(cpl(Ypr))}* < cpl(X) log(mepl(Yp))*

where (10.7) was used for the second inequality. Thus, by Proposition 10.1 (noting
also that L is not contained in a proper normal subgroup of G because ¢(H) is not)
we have for all C!-functions f on X

cpl(X)Q’417 log(mcpl(YD))2A17
_ 1
)/X ! /YD/ f| < mepl(Yp) /477 V()Iflere
epl(X)24r i
mepl(Yp )1/ (2417)

using also mepl(Ypr) > mepl(Yp).
By the inductive hypothesis, we have for all f € C1(X)

cpl(Ypr)A
[ 1= [ ]« e v e
YD/

meply,

(10.8)

ev(H)llfllerx)

Note that since L € B
meply, (Yp) /4 > cpl(Ypr )34

Also, any C''-function f on X is invariant under [], G¢[ord,(lev(f))] and hence the
restriction fly,, is also invariant under [, L¢[ord,(lev(f))]. Moreover, || flv,, lc1 (v, ) <
l|.fllcr(x) where the implicit constant accounts for possibly incompatible choices of
orthonormal bases of the Lie algebras [, < goo Overall, we obtain

(10.9) - [t e e o,

Combining (10.8) and (10.9) proves the claim in (10.5). As discussed earlier, the
theorem follows. O

Proof of Theorem 1.2 for F' = Q. As in the above proof of Theorem 1.1 for F' = Q,
we may assume gp = id. We set A = 24,2 (where A; > 1 is as in Theorem 1.1
for F = Q) and 6 = A~ 4™(G)_ In view of the assumptions of the theorem, we may
assume B%/(241) > cpl(X)4 or equivalently B > cpl(X)4/9.

For any ¢’ > 0 let Css be the collection of connected semisimple Q-subgroups
L < p(GQ) containing «(H) and

BY < meply, (Yp),

where we use the relative minimal complexity meply (+) introduced in (10.6) as a
shorthand.
If p(G) € Cs, we have mepl(Yp) > B? (by definition of Cs) and so

A 5/(24
cpl(X)™ _ B /241) < p-9/@2A)
mepl(Yp)t/ 4 = BO/AL —
so that the theorem follows from Theorem 1.1 for F' = Q with Ay > 34,/§ (ac-
counting also for implicit constants and using again that B is sufficiently large).

So assume now that p(G) & Cs. Thus, there exists a proper semisimple subgroup
L; < p(G) with Ly > «(H) and cpl([L1(A)]) < B® < B (where the exponent has
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worsened by a factor of A). Let L; be the simply connected cover of L; and let
ULyt f;l — Ly be the covering map.

If Ly € Cys, we apply Theorem 1.1 for F' = Q with the pair (il, (1, ) instead of
(G, p). Thus, we have

cpl([Lq (A)]) B
meply, (Yp)l/4r = BAY/ A

and the theorem follows from Theorem 1.1 for F' = Q with Ay > 2/(A,0).
If Ly & Cas, there exists a proper semisimple subgroup Ly < Ly with

cpl([L2(A))) < BY < B

g B*Aﬂs

containing ¢(H). We continue like this by induction constructing a sequence of sub-
groups Ly > Ly > Lg > ... containing «(H) with cpl([L;(A)]) < BA7' < B until
we find a subgroup L; € Cai5 with j < dim(G). Let ]:j be the simply connected
cover of L; and let g, : ij — L; be the covering map. Applying Theorem 1.1 for

F = Q with the pair (Lj,1,;) we obtain the rate

j—1 j—1
Cpl([LJ (A)])Al < BA o — BA o e B_Aj716441
melL,(YD)l/Al = BAIS/A B2AIT6A; .

This implies the theorem. ([l

10.2. The number field case. We finally prove Theorems 1.1 and 1.2 as stated
by reducing them to the already proven case F' = Q using restriction of scalars.
So let ' be a number field and write Dg for the absolute value of its discriminant
disc(F) and d = [F : Q] for the degree.

Recall first the setup:

e G is an F-anisotropic simply connected semisimple group and p : G — SLy
is a homomorphism with finite central kernel defined over F.

e D= (H,.,gp) is semisimple simply connected data over F' that is consistent
with (G, p), i.e. t: H — p(G) is a homomorphism with central kernel and
gp € p(G(AF)).

We introduce some notation pertaining to restriction of scalars. Set for simplicity
N' = N[F : Q) = Nd. By Minkowski’s second theorem, we may fix linearly
independent vectors ag,...,aq € O which span a sublattice of index O4(1) and

which have norm <y Dé, (under the complete embedding F' — R?). Representing
multiplication by F' in this basis we obtain homomorphisms ¥: F — Matq(Q) and
¥: Maty (F) — Maty/(Q). These will serve as our explicit realization of restriction
of scalars.

For an F-subspace V C sly write V' = 9(V) for its restriction of scalars. We
write ht (V') for the height of V' and htg(V”) for the height of V’ where the indices
alm to emphasize the field of definition.

Lemma 10.3. For any F-subspace V C sly we have
(10.10) D7*ht(V') < ht(V) < Diht (V).

Proof. This is certainly well-known; we include a proof for lack of explicit reference.
We record first a few elementary properties of 9. For any rational prime ¢ and all
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v € Maty (F) we have
(10.11) 1P(@)lle < max |zl < [[9(2)lle

where the implicit constant is 1 at all but O4(1)-many places. Moreover,

(10.12) Dp*([9(0)3 < Y lloll, < Do)

w]oo

We turn to proving (10.10) beginning with the upper bound. Apply Siegel’s
lemma to obtain a basis (;)i<ddim(v) of V' consisting of integer vectors such that
[l7i|loo < hit(V'). Note that V' is invariant under the F-module structure, i.e. under
Y(F). Pick a subset Z = {i1,...,idimp(v)} of indices i such that (;);cz are linearly
independent over F' and let u; € V with J(w;) = ;. The vectors u;, i € Z, span V
and hence by (10.11) and (10.12)

ho(V) = Ty Ao At o <€ DbV

To prove the lower bound in (10.10), we first assume dim(V) =1 and let v € V
be an integral vector with [, [[#[lw < Dr. We compute the covolume of the

lattice Op.v with respect to the Euclidean norm 37, || - |13, Explicitly, it is given

by |det({civ, a;v))| where (u,u') =" (u,u'),,. Expanding this expression

det((a;v, ajv)) = Z(—l)sgnm H(Oéﬂ/, Qr(i)?)
— Z(_Dsgn(ﬂ H Z Uai aar(i) <<7y7 ‘77/>
T i o

where 7 runs over all permutations of {1,...,d} and o runs over all embeddings
o : F — C. We enumerate these embeddings by o1, ... and obtain

det(<aiy, Q; 7}>) = Z(_l)sgn(r) Z H T () of/maq_(i) <UT/(1') v, 77 7}>

T

where 7/ runs over all self-maps of {1,...,d}. The expression
Z(_l)sgn(r) H JT/u)aT(i)

vanishes unless 7’ is bijective in which case its absolute value is < Dp. So we may
restrict the summation to permutations 7’ to obtain

| det({ov;v, ajv))| = ‘Z(—l)sgnm ST er ) i tror ) (7w, 7 o)

< D%htF(V)

By (10.12), this implies (10.10) when dim(V) = 1.

For dim(V) > 1, apply a version of Siegel’s lemma over F' — see e.g. [3] —
to find a basis u; of V' of integral vectors with [], htp(x) < Dyphtp(V). Here,
htp(w) = [, [lwllw. Applying the above calculation for dimension 1, we find
that the covolume of Op.u; with respect to either Euclidean norm in (10.12) is
< D%ht(y;). Taking the product, this yields the lower bound in (10.10) and hence
the lemma. ]
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Denote by G’ = Resp/q(G) the restriction of scalars of G and by
pl : G/ — SLN’

the homomorphism defined over Q which is induced by p. Note that G’ is a simply
connected semisimple Q-group that is Q-anisotropic. Also, p’ has finite kernel. The
analogous notation is used for (H,:) and we write L’ = Resp/g(L) < sly+ for any
F-subgroup L < p(G) as well. To clarify the proof, we denote by ¢’ € SLy/(Ag)
the element corresponding to g € SLy(AF). Lastly, we use the notation [B] for the
image in SLy(F)\SLn(AFr) resp. SLy/(Q)\SLn'(Ag) of a subset B of SLy(Ar)
resp. SLyv(Ag). We set X' = [p/(G/(Ag))] and Y}, = [/(H'(Ag))].

Lemma 10.4. We have

(10.13) D*epl(X')* < epl(X) < Diepl(X') .

Moreover, for any semisimple F-subgroup L < p(G) and let g € p(G(AFr))
(10.14) cpl([L(Ar)g]) < Df epl(X')*cpl([L'(Ar)g')).

Proof. The estimates in (10.13) are a direct consequence of Lemma 10.3.
For (10.14), notice first that, in view of Theorem 6.3, there exists v/ € G'(Q)

with (5/(v)g)e € SLat(Ze) for £ # p, [(0'(¥)g)ecll < 1, and [|(5'(¥)g)pll <
p*epl(X’)*. Here, we may take p to be a good prime in the sense of Proposition 3.2
for X’ only and so p < (logvol(X’))? < (logcpl(X’))? (see Proposition 3.1). The
corresponding bounds (with an additional polynomial dependence on D) also hold
for g and the element v € G(F') corresponding to 7' (see (10.11) and (10.12)). In
particular, L = yLy~! satisfies

epl([L(Ar)g)) < cpl([L(Ar)])epl(X')* = htg(L)epl(X")* D}
and
cpl([L'(Ar)g']) > htp(L')epl(X') 7.
This together with Lemma 10.3 applied to the Lie algebra of L yields the lemma. [

Lemma 10.5. Let M > «(H) be a connected semisimple F-subgroup of p(G). Let
L <M be a Q-subgroup which contains J'(H'). Assume further that

(1) «(H) projects non-trivially onto all F-almost simple factors of M, and
(2) L(Q) c M'(Q) = M(F) is Zariski dense in the F-group M.

Then L = M.

Proof. Let [ resp. m’ be the Lie algebra of L resp. M’ over Q. We will show [ = m/;
this establishes the claim since M is connected.

For this, we let s" = [ ,cp @.l where we use that g’ is naturally an F-module.
The Lie algebra ' is invariant under scalars in F' and so s = Resg/g(s) for some
F-subalgebra s of m. By definition, we have [[,s'] C ¢’ and in particular

Ad(L(Q))s(F) = Ad(L(Q))s'(Q) C 5'(Q) = s(F)

when viewing L(Q) as a subgroup of M(F). In view of our assumption (2), s is a
Lie ideal of m. Notice that s contains the Lie algebra of (H) and hence s = m by
assumption (1). We conclude that m’ =’ C [ C m’ and the lemma follows. ]
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Proof of Theorem 1.1 over general number fields. The theorem follows from its ver-
sion over Q (proven earlier) once we can show that

(10.15) mepl(Yp) < Dyepl(X)*mepl(Yh)*.

In view of (10.14), problems may arise precisely from subgroups L < p/(G’) with
J/(H') < L that do not arise through restriction of scalars; here, we wish to use
Lemma 10.5.

Let mepl,,,(Yp) be the minimum over the complexities cpl([L(A)g']) where L
runs over all connected semisimple Q-subgroups L < p/(G’) with /(H') < L and
for which ¢/(H’) is not contained in a proper factor of L. Clearly, mcply,,(Y5) >
mepl(Y). We claim that conversely

(10.16) meply,, (Yp) < cpl(X')*mepl(Yp)*.

This implies (10.15) (and hence the theorem) since, in view of Lemmas 10.5 and
10.4, we have

erg(

mepl(Yp) < | disc(F)[*cpl(X)*mepl,, (Yp)*.

It remains to show (10.16). By the same argument as in Lemma 10.4 (relying on
Theorem 6.3) we may assume that g; € SLy(Zg) for £ # p, [|g, || < 1, and [|g,, || <
cpl(X’)* where p < (logcpl(X))2. In particular, for any connected semisimple
Q-subgroup L < p'(G’)

cpl(X’)*htg(L) < cpl([L(A)g']) < cpl(X')*htgp(L).
Factors of a semisimple Q-subgroup L < p’(G’) have height controlled polynomially

by the height of L (see e.g. [87, Lemma 8.6]). Together, these estimates establish
(10.16) and hence the theorem. O

Proof of Theorem 1.2. As in the above proof of Theorem 1.1, the theorem can be
reduced to the version over Q that we have already established. Alternatively, it
may be deduced from Theorem 1.1 directly as was done earlier for F' = Q. ([
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APPENDIX A. VOLUME AND ARITHMETIC COMPLEXITY

In this appendix we establish, in particular, the volume and complexity compar-
ison of Proposition 3.1. In fact, we will establish a slightly finer result not assuming
that the ambient homogeneous space is compact.

For the following we fix

e a semisimple simply connected group H defined over Q,
e a homomorphism ¢ : H — SLy with central kernel, and
e an element g € SLy(A).

Set Y = [t(H(A))g] and H = g~ '.(H(A))g.

The notion of volume. Let us first recall the definition of a volume from [20] which
was already introduced in §3.2. Let ©Q C SLy(A) be an open neighborhood of the
identity with compact closure and define the volume (with respect to ) to be

(Al) VOl(Y’D) = VOlQ(Y) = mH(Q n H)71

where my is the Haar measure on H that descends to the invariant probability
measure on Y. A different choice ) of an open neighborhood of the identity yields
a comparable notion of volume — see the discussion in [20, §2.3].

Remark A.1. Instead of using the group H one might also use the full stabilizer
group of the orbit Y. The full stabilizer group is H' = g~ 1.(H(A))N(F)g [20,
Lemma 2.2] where N is the normalizer of H. In particular, it is often contains
H as an infinite index subgroup. The volume defined using H' turns out to be
comparable to the volume defined using H — see [20, §5.12] which relies on a deep
result of Borel and Prasad [4].

In the following, we assume that €2 is of the form
Q= Qs x [[,SLn(Zy)

where Qs = exp(Ew) C SLy(R) for a bounded symmetric open neighborhood
Ew C sly(R) of 0 on which exp is a diffeomorphism. In practice, one needs to
assume that ., is sufficiently small (depending only on N) — see the discussion
around [20, (5.3),(5.5)].

The notion of complezity. For a Q-subgroup L < SLy with Lie algebra [ we let
dim([) dim([)
e N\ @c A sv@
be a non-zero vector. The height of L is then defined to be ht(L) = [, ¢y l7L[|w

where ¥ is the set of places of Q (see also §3.1). As in the introduction, the
complexity of the orbit Y is given by

epl(Y) = [T lgw" 2ol
weY

The notion of minimal height. Define
minht(Y) = min max c(¢ o) !
¥) [gl€Y »veQm\{0} (9 )
where c(¢7".2) = [[,ex 197" -7/lw. The quantity minht(Y) measures how far up
the cusp the homogeneous set Y is.
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Comparing volume and complexity. The rest of this section is dedicated to the proof
of the following proposition.

Proposition A.2. There exist a constant Asg > 1 depending only on N such that
(A.2) epl(Y) /420 < vol(Y) < minht (V)20 ¢pl(Y)420
where the implicit constants depend only on N.

Note that Proposition A.2 implies Proposition 3.1 in light of the bound on
minht(Y") obtained from Proposition 6.1. Since the height in the cusp of Y should,
in principle, be dictated by the amount the translation occurs within the centralizer
of the invariance group, it is conceivable that Proposition A.2 holds without the
polynomial factor in minht(Y").

For the proof of Proposition A.2, we shall need bounds on the minimal discrim-
inant of a splitting field of H provided by the following lemma.

Lemma A.3. There exists Aoy > 0 depending only on N with the following prop-
erty. Let L < SLy be a connected reductive Q-subgroup. Then there exists a
mazximal Q-torus T < L with

ht(T) < ht(L)*2'.
Moreover, if F is the (Galois) splitting field of T then
| disc(F)| < ht(T)*.
We will use the following simple and well-known lemma.

Lemma A.4. Let f € Clxy,...,z,] be a non-zero polynomial of degree d. Then
there exists © € Z™ with sup; |z;| < d™ and f(z) # 0.

Proof. We prove the claim by induction on the number of variables n. If n = 1,
then f has at most d zeroes and the lemma is clear.

Suppose the lemma is known for all polynomials in n — 1 variables and let f be
given. Consider the polynomial

g(xlv"wxn) = f(xlaxQ +C¥2(E1,...,$n +C¥n$1).

for some aw,...,a, € Z. Then g is of the form g = ¢(ag,...,a,)xd + g, for
some non-zero polynomial ¢ of degree at most d and g; of degree smaller than d
in z;. By assumption we may choose ag,...,a, € Z with |a;| < d"~! such that
¢(az,...,a,) # 0. In particular, g(z1,0,...,0) is a non-constant polynomial in 2,
and so we may choose «; € Z with |ay| < d and g(21,0,...,0) # 0. This proves
the lemma with the point (a1, a1, ..., a1ay). O

Proof of Lemma A.3. We may choose the vector g, to be integral (i.e. contained
in AdmMg(y(Z)) and primitive (i.e. ||og|l¢ = 1 for every prime ¢). In particular,
B(L) = ol

We first prove the following claim.

Claim. There exists a non-trivial ad|-semisimple integral element = € [ = Lie(L)
with [|w]jee < o |[%-

Note that ||zr|leo is precisely the covolume of the lattice I(Z) in I(R). By
Minkowski’s second theorem, there exist vectors vi,. .., zqimq) € [(Z) which are
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linearly independent and which satisfy ||z;|| < ||oL]|eo for every i = 1,... dim(l).
Consider the proper subvariety of Adm(®)

{(gcl7 o Tdim(r)) Z x;v; 18 adh—nﬂpotent}

which is defined by polynomials of degree On(1). By Lemma A.4 applied to any
of these defining polynomials, there exist x; € Z, |z;| < 1, such that o' = )", z;9
is not ad|¢-nilpotent. In particular, ||#/||cc < |71||5. Note that the center of [
trivially consists of ad|;-nilpotent (but not nilpotent) elements and so @’ is not
contained in the center. The coefficients of the characteristic polynomial of =’ are
of size < ||#'||%,. The Jordan decomposition then implies that the semisimple part
w of @' is non-zero and satisfies ||w|o < ||@'||%, which concludes the claim.

As any semisimple element is contained in the Lie algebra of a maximal torus,
the centralizer I of the above constructed element w has the same absolute rank
as . By the above bound on the size of w, we have ht(lI') < ht()* = ht(L)*. Note
that I’ is a proper reductive subalgebra of [. Overall, we may as well find a maximal
subalgebra of I’ consisting of semisimple elements. Thus, the first part of the lemma
follows by induction on the dimension.

For the second part, recall that for any element w € sly(R) the coefficients
of the characteristic polynomial are integral polynomials in the entries of w and
have size < ||w||%,. We apply this observation to an integral basis (w;); of t with
||l < ht(T)*. We obtain that for each w; all eigenvalues are of size < ht(T)*
(e.g. by Cauchy’s bound on zeros of real polynomials). Since the discriminant of
a compositum of extensions is bounded in terms of the individual extensions, the

splitting field of a Q-torus T < SLy has the required bound. O
Proof of Proposition A.2. A version of (A.2) was established in [20, (B.2)], namely
(A.3) disc(Y)* < vol(Y) < disc(Y)*

where the notion of discriminant disc(Y") from [20] is equal to cpl(Y') up to a factor

depending only on H (or rather the quasi-split inner forms of the factors of H).
More specifically,

D(H
(A.4) disc(Y) = g((H))cpl(Y)
for some numbers D(H) > 1 and 0 < £(H) < 1. In particular, disc(Y") > cpl(Y') and
thus cpl(Y)* < vol(Y') follows. Here, the notation is taken from [20] for the readers’
convenience and, in particular, D(H) does not refer to data of a homogeneous set.
In the remainder of the proof we will show that

D(H) < minht(Y)*cpl(Y)* and EH) > 1.

We note that both of the quantities D(H),E(H) depend only on the SLy(Q)-
conjugacy class of H and not on H itself.

To recall the definition of D(H) from [20, (B.13)], we repeat parts of the dis-
cussion at the beginning of §3.3. As H is simply connected, we may write H =
H; - - - Hy where the groups H; are simply connected Q-almost simple Q-subgroups
of H. Write H; = Resp, o H] where F;/Q is a finite extension and Hj is an ab-
solutely almost simple group over F;. Associated to HJ is a ‘least distorted’ form
of it: let H} be the unique quasi-split inner form of H} over Q. Let L;/F; be the
corresponding number field defined as in [67, §0.2]. That is, L; is the splitting field
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of H! except in the case where H/ is a triality form of type D4 where it is a degree 3
subfield of the degree 6 Galois splitting field with Galois group Ss. Let s(#}) be as
defined in [67, §0.4] which is an integer only depending on the root system. Overall,
we set
1
H dim(H;) \ 2

D(H) = [[ D(H,), D(H,) = (D, %) D 10) .
Here, we write D for the absolute value of the discriminant of a number field
F and, similarly, we set Dr,/p to be absolute value of the norm of the relative

discriminant ideal for extensions L/F/Q.
We claim that for every H;

(A.5) D(H;) < minht(Y)*cpl(Y)*
and in particular
(A.6) D(H) < minht(Y)*epl(Y)*.

To see (A.5), note that D(H;) < D} < Dj, where L}/Q is the Galois closure
of L;/Q. Here, the extension L}/Q is the (Galé)is) splitting field of the quasi-split
group Resp, o H;j. As Resp, /o H; is an inner form of H;, any splitting field of
H; contains L} and the same is true for any SLy(Q)-conjugate of H,. Note that
the height of any factor of a semisimple Q-group is controlled polynomially by the
height of the Q-group — see e.g. [87, Lemma 8.6]. Combining this with Lemma A.3
we have

Dy < min ht(ve(H;))y " H)* < min  ht(ye(H)y~H)* .
< min  Dt(y(Hi)y™)" < min  ht(ye(H)yT)
Let [g] € Y be a coset achieving the minimal height of ¥ in the cusp. We may

assume g € SLy(R) by strong approximation. By reduction theory, there exists
v € SLn(Z) such that

-1 . -1 —%* : *
o0y oo<< . = htY
I6lse: 179) e << (_minm llg™" o)) ™" = minhi(Y)

Thus,
Dy < ht(y~"¢(H)y)* < minht(Y)*cpl(Y)*

proving (A.5) and hence (A.6).

The quantity £(H) is a local product of normalized cardinalities of certain finite
groups associated to the quasi-split inner forms #,. We refer to [20, (B.15)] for an
exact definition, but note that it may be expressed as reciprocal of the Dedekind
zeta functions of the fields L; and of certain Dirichlet L-functions at integer values
> 2 — see [67, Rem. 3.11] or [61, §5.2]. In particular, E(H) > ¢(2)™* > 1.
Combining this with (A.4) and (A.6) yields

cpl(Y) < dise(Y) < minht(Y)*epl(Y)™.

In view of (A.3), the proposition follows. a
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