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Abstract. We prove an effective equidistribution theorem for semisimple

closed orbits on compact adelic quotients. The obtained error depends poly-
nomially on the minimal complexity of intermediate orbits and the complex-

ity of the ambient space. The proof uses dynamical arguments, property (τ),

Prasad’s volume formula, an effective closing lemma, and a novel effective gen-
eration result for subgroups. The latter in turn relies on an effective version

of Greenberg’s theorem.

We apply the above to the problem of establishing a local-global principle
for representations of integral quadratic forms, improving the codimension

assumptions and providing effective bounds in a theorem of Ellenberg and

Venkatesh.
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1. Introduction

There is a very fruitful interplay between homogeneous dynamics and number
theory. The origins of this interplay are quite classical. It can be traced back to
Minkowski’s pioneering work on the Geometry of Numbers, which allowed geometry
and implicitly dynamics to be brought to bear on questions in number theory
and Diophantine approximations. This connection was further explored e.g. in
pioneering work by Artin as well as the remarkable results of Linnik and his school
(see e.g. [54]).
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The results obtained by Dani–Margulis and Ratner on unipotent flows have been
particularly influential, stemming from conjectures of Raghunathan and Dani [11],
which were also implicitly touched upon in the work of Cassels and Swinnerton-
Dyer [7]. These conjectures were fully resolved by Ratner in [68, 69, 70], with
important special cases proved using a different approach by Dani and Margulis
[56, 13, 14]. To pass from the measure classification to understanding individ-
ual orbits Ratner used important nondivergence estimates of Margulis and Dani
[55, 12, 15]. Particularly powerful has been the combination of Ratner’s mea-
sure classification results [69] with significant additional techniques known as the
Linearization method that came out of the above mentioned works of Dani and
Margulis [16]; cf. also Shah’s related work [79].

In this paper, our focus is on equidistribution of periodic orbits of semisim-
ple groups. Using Ratner’s work and the Linearization method, Mozes and Shah
showed in [62] that a sequences of such orbits in a quotient space Γ\G (say with
volume tending to infinity) either has a subsequence that becomes equidistributed
in a homogeneous subspace of Γ\G which contains them (up to small shifts), or
escapes to the cusp; unless the sequence become equidistributed in Γ\G this can
be explained by algebraic reasons. Our main result in this paper is a fully effec-
tive and quantitative and ‘fully adelic’ version of this result when Γ\G is compact.
Let G be a semisimple group defined over a number field F . Then the space we
work in1 is G(F )\G(A) with A the ring of adeles of F , and by fully adelic we
mean an equidistribution result for a sequence of (translated) orbits corresponding
to semisimple F -subgroups of G that can be quantified solely in terms of global
properties of the subgroups and not on how they split at given places. A non ef-
fective adelic equidistribution result was given by Gorodnik and Oh in [29] but it
is not fully adelic in our sense as it requires the F -subgroups to have no compact
factors over a fixed place of F . Gorodnik and Oh’s work relies on S-arithmetic
generalizations of Ratner’s measure classification theorem by Ratner [71] and by
Margulis and Tomanov [57, 58]; cf. also Tomanov’s paper [84].

Perhaps surprisingly, the powerful dynamical techniques of unipotent flows, whose
origins stem from the study of statistical properties of typical trajectories in dy-
namical systems, have been very successful in studying integer points on arithmetic
varieties. An early notable examples of this was the work of Eskin, Mozes and Shah
[27] on counting the number of integer matrices of norm < T with a given char-
acteristic polynomial. Gorodnik and Oh in [29] in their paper used S-arithmetic
unipotent flows to count rational point of bounded height as the height increases.
In this paper, we need dynamics already to show the existence of at least one inte-
ger point on the relevant arithmetical variety, though our techniques also find the
asymptotic number of points. That one can establish existence of integer points on
‘sufficiently large’ varieties using dynamics was shown by Ellenberg and Venkatesh
in [26] who established a local-to-global principle for representation of a quadratic
form in m variables by a form in n variables, n ≥ m+3. We strengthen their work
by making it effective (hence one can establish the existence of such representation
in explicit cases). Moreover by using our fully adelic equidistribution result we
can drop certain splitting conditions Ellenberg and Venkatesh had to impose when
n < m + 5. The local-to-global principle of [26] as well as the stronger results we

1Strictly speaking, this is only true when G is simply connected; more generally we look at a
slight variant of this space.
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prove in this paper rely on the Hasse–Minkowski theorem, a classical local-to-global
result that shows that while we do not know apriori that our variety has an integer
point, at least we have a rational point on it.

An effective equidistribution result for periodic orbits of a fixed semisimple
group H in quotients of a real group G by a congruence lattice was proved by
Margulis, Venkatesh, and one of us (M.E.) in [21]. In that work, the semisimple
subgroup H was assumed to have finite centralizer in the bigger group G, hence
the periodic orbits are isolated and do not come in continuous families. Margulis,
Venkatesh, M.E. and A.M. in [20] proved a fully adelic equidistribution results for
maximal semisimple F -subgroups H of an F -group G. The fact that the result
obtained is not just effective (and quantitative) but also fully adelic allowed the
authors of [20] to prove new equidistribution results that were not known even
qualitatively earlier. Note that the assumption that H is maximal is more restric-
tive than the finite centralizer assumption of [21].

Unfortunately, the finite centralizer assumption is a significant one, and in par-
ticular made it impossible to use these tools to provide an effective local-to-global
result extending the work of Ellenberg and Venkatesh from [26]. The finite central-
izer assumption was recently removed by A.W. for quotients of real algebraic groups
in [87]. There are difficulties in extending [87] already to the S-arithmetic context
due to the presence of small subgroups in p-adic groups; the fully adelic version
we give here requires additional ideas and careful tracking of the dependence of all
steps of the proof on the arithmetic complexity of all groups involved.

Finally, we mention that recently there have been significant advances in under-
standing quantitatively the distribution properties of arbitrary unipotent trajecto-
ries, we mention in particular [52, 88, 53]. At present, such results are known only
in groups of rank at most 2, but in principle one could envision that modification
of that approach could prove e.g. results like [21, 87] (and of course can be used to
study general orbits, not just periodic orbits). However, these results are inherently
not fully adelic in the sense discussed above.

1.1. Equidistribution of adelic periods. In the following F will always denote
a number field, A will denote the ring of adeles over F , and G will be a connected
semisimple algebraic F -group. We also consider as given a homomorphism with
finite central kernel ρ : G → SLN .

Throughout this paper, we will assume G is F -anisotropic.

We define the compact (ambient) homogeneous space

X = [ρ(G(A))] = SLN (F )ρ(G(A)) ⊂ SLN (F )
∖
SLN (A).

Let µX denote the ρ(G(A))-invariant probability measure on X.
We wish to study closed orbits, also known as adelic periods, inside X arising

from data D = (H, ι, g) consisting of

(1) an F -algebraic group H such that H(F )\H(A) has finite volume,
(2) an algebraic homomorphism ι : H → SLN defined over F with finite kernel,

and
(3) an element g ∈ SLN (A).

We call D = (H, ι, g) consistent with (G, ρ) if ι(H) ⊂ ρ(G) and g ∈ ρ(G(A)).
To any data D = (H, ι, g), we may associate the algebraic homogeneous set

YD := [ι(H(A))g] = SLN (F )ι(H(A))g
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and the algebraic homogeneous measure µD = µYD given by the push-forward, under
the map x 7→ ι(x)g, of the normalized Haar measure on H(F )\H(A). We say that
D, YD, or µD is simple, semisimple, simply connected, etc. according to whether
the algebraic group H is so. We note that µD is invariant under H = g−1ι(H(A))g
and supported on the single orbit YD = SLN (F )gH. If D is semisimple, simply
connected, and consistent with (G, ρ), YD is contained in X.

We now define the complexity associated to an orbit (slightly adapted from [20,
App. B], sometimes also called a discriminant or height), which will become the
basis for the error rate in the desired equidistribution result. Let D = (H, ι, g) be
data for an algebraic homogeneous measure and let

vH ∈
dim(H)∧

ι(Lie(H))(F ) ⊆
dim(H)∧

glN (F )

be any non-zero vector. For every place v of F we let Fv be the completion of F

at v and let ∥ · ∥v denote the norm on
∧dim(H)

glN (Fv) induced by the maximum
norm, with respect to the elementary matrices, on glN (Fv). Then the complexity
of YD is defined by

cpl(YD) =
∏
v

∥g−1
v .vH∥v,(1.1)

where the product is over all places of F . Note that the definition is independent
of the choice of vector vH and so only depends on D. In fact, it only depends on
the orbit YD.

If an algebraic homogeneous set YD ⊂ X is contained in another such proper
subset of intermediate dimension and small complexity, then µD cannot be close
to µX . Therefore we are also concerned with the complexity of intermediate orbits
and define the min-complexity of YD by

mcpl(YD) = min
{
cpl(SLN (F )M(A)g) : ι(H) ⊆ M ⊊ ρ(G) semisimple

}
.

Recall that a C1-function f on X is a function invariant under a compact open
subgroup K < G(Af ) (via ρ) and C1 on the (ρ(G(F ⊗ R))-invariant) manifold
X/ρ(K), where Af < A is the ring of finite adeles over F . If L ≥ 1 is minimal
so that ρ(K) < SLN (Af ) can be defined using a congruence condition modulo L,
then we say that f has level L. Finally we fix an inner product on glN (F )⊗R and
define the C1-norm ∥f∥C1(X) of a smooth function f as the maximum of the sup
norms of the function and its partial derivatives in directions corresponding to an
orthonormal basis of Lie(G)(F )⊗ R.

In this paper we prove the following effective equidistribution result regarding
algebraic homogeneous measures:

Theorem 1.1. Assume that G and H are semisimple simply connected F -groups
that are also F -anisotropic. Let X = [ρ(G(A))] and YD ⊂ X be defined by data
D = (H, ι, g) consistent with (G, ρ). Then there exists A1 ≥ 1 depending only on
N and [F : Q] so that∣∣∣∣∫

YD

f dµD −
∫
X

f dµX

∣∣∣∣ ≪ cpl(X)A1

mcpl(YD)1/A1
∥f∥C1(X)L

where f is C1, L is the level of f , and the implied constant depends only on N ,
[F : Q], and polynomially on |disc(F )|.
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The above theorem describes equidistribution in the ambient space. The follow-
ing theorem describes equidistribution to an intermediate object at polynomial rate
in the complexity of the orbit YD. Nominally it is a generalization of Theorem 1.1,
though we deduce it from that theorem.

Theorem 1.2. Assume G and H are semisimple connected F -anisotropic and
that H is simply connected. Let YD be defined by data D = (H, ι, g) consistent
with (G, ρ). There exists A2 > 0 depending only on N and [F : Q] so that the
following holds. For any B ≥ A2|disc(F )|A2cpl(X)A2 there exists a semisimple
simply connected data D′ = (H′, ι′, g) consistent with (G, ρ) and with cpl(YD′) ≤ B
such that ι′(H′) ⊃ ι(H) and∣∣∣∣∫

YD

f dµD −
∫
YD′

f dµD′

∣∣∣∣ ≤ B−1/A2∥f∥C1(X)L

for all C1-functions f of level L ≥ 1.

As mentioned earlier, Gorodnik and Oh [29] have considered sequences of semisim-
ple simply connected adelic periods [ιj(Hj(A))gj ] and classified their limit measures
provided there exists a place v of F for which all of the semisimple Fv-groupsHj(Fv)
have no compact factors. Removing this type of splitting condition already requires
proving an effective theorem as the size of the ‘least splitting place’ can increase
along the sequence of orbits (the size of the least splitting place was addressed in
[20]).

1.2. Representations of quadratic forms. A quadratic lattice over Z is a pair
(Zn, Q) where Q : Zn → Z is a quadratic form. A representation of a quadratic
lattice (Zm, Q) by another quadratic lattice (Zn, Q0) is a linear isometry

ι : (Zm, Q) → (Zn, Q0).

We say that ι is primitive if ι(Zm) is a primitive lattice in Zn (that is, ι(Zm) =
(ι(Zm) ⊗ Q) ∩ Zn) and that (Zm, Q) is primitively representable by (Zn, Q0) if a
primitive representation exists. A necessary criterion for primitive representability
is that there exist local primitive representations (Zm

ℓ , Q) → (Zn
ℓ , Q0) for any prime

ℓ as well as a representation of real quadratic spaces (Rm, Q) → (Rn, Q0). In that
case, we will call (Zm, Q) locally primitively representable by (Zn, Q0).

The (integral) local-to-global principle for primitive representations of quadratic
lattices asks whether local primitive representability implies (global) primitive rep-
resentability. This is an analogy to the Hasse-Minkowski theorem by which local
representability of rational forms implies global representability. When n ≥ m+ 3
and the quadratic form Q0 on the rank n lattice is indefinite, the local-to-global
principle is a consequence of strong approximation for spin groups established by
Eichler [19].

When Q0 is positive definite, the problem has proven to be significantly harder.
In the 70’s, Hsia, Kitaoka, and Kneser [34] established the local-to-global principle
for n ≥ 3m + 3 under the (necessary) additional assumption that the minimum
min(Q) = min0̸=x∈Zm Q(x) is sufficiently large in terms of Q0. Jöchner and Kitaoka
[41] improved the assumptions of [34] to n ≥ 2m + 3 under some weak conditions
on Q.

In a later breakthrough, Ellenberg and Venkatesh [26] utilized methods from
homogeneous dynamics to show the local-to-global principle for n ≥ m + 5 (and
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under a Linnik-type splitting condition for n ≥ m + 3) and min(Q) sufficiently
large. Their result is ineffective as it relies on measure classification results from
unipotent dynamics [71, 57]. To start off, they utilize (as do we) the Hasse principle
to produce a primitive representation by a form in the spin genus of Q.

Here, we prove an effective version of the local-to-global principle for dimensions
n ≥ m+ 3, also avoiding a Linnik-type splitting condition.

Theorem 1.3. Let m,n be positive integers with n ≥ m + 3. Then there exist
constants C,A > 0 depending only on n with the following property.

Let (Zm, Q), (Zn, Q0) be positive definite quadratic lattices. Suppose that (Zm, Q)
is locally primitively representable by (Zn, Q0) and that

min
x∈Zm\{0}

Q(x) ≥ C disc(Q0)
A.

Then (Zm, Q) is primitively representable by (Zn, Q0).

For m = 1 the above theorem encapsulates a local-to-global principle for primi-
tive representations of integers, which is already contained in the literature. Given
codimension at least 3, this has been established by Kloosterman (for diagonal
forms) and by Tartakovskii (see for instance [38, Ch. 11]). For primitive represen-
tations of integers, a local-to-global principle exists in codimension 2, but is more
intricate to formulate — see the work of Duke and Schulze-Pillot [18] relying on
Duke [17] and Iwaniec [37]. Correspondingly, we suspect a version of Theorem 1.3
to hold in codimension 2 for m > 1 (for instance, for quadratic lattices primitively
representable by the spin genus).

Existing literature (e.g. the work of Hsia, Kitaoka, and Kneser [34]) typically
focusses on local-to-global principles for (not necessarily primitive) representations.
Here, the question is whether local representability implies global representability
for quadratic lattices with sufficiently large minimum. This version of the local-
to-global principle can be seen to fail in general when the codimension is 3. For
instance, the form x21 + x22 + 25x23 + 25x24 locally represents any positive number,
yet does not represent numbers of the form 3 · 2k for k ≥ 0. For general examples
of this form see [43, p. 144]. Work of Kitaoka [44, 45, 46] has aimed to compare the
two variants of the local-to-global principle (primitive or not necessarily primitive).
In conjuction with the work of Ellenberg and Venkatesh [26] and Theorem 1.3 this
implies the local-to-global principle for representations given dimensions (m,n)

• when m = 2 and n ≥ 6,
• when m = 3, 4, 5 and n ≥ 2m+ 1, and finally
• when m ≥ 6 and n ≥ 2m.

In particular, the counter-examples of Kitaoka, [26] and Theorem 1.3 completely
resolve the local-to-global principle for representations of binary and ternary forms.
For binary forms, this was already known following work of Jöchner [40]. To the
knowledge of the authors it remains unclear in which codimensions the local-to-
global principle for representations should be suspected to hold in general (e.g. does
it hold for (m,n) = (4, 8)?). We also note that the current work may be extended
to representations of bounded imprimitivity — see Schulze-Pillot [75].

We refer to the comprehensive surveys of Schulze-Pillot [74, 76] for a discussion
of known results towards the local-to-global principle that we have omitted here.
In particular, there is a variety of results proving local-to-global principles under
assumptions on successive minima of Q — see for instance [8].
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2. Representations of quadratic forms

We will now phrase a strengthening of Theorem 1.3 by working over an arbitrary
number field and obtaining asymptotics for representation numbers.

Let F be a number field, let OF be its ring of integers, and let (V,Q) be a
quadratic space over F . A lattice (over OF ) is a finitely generated OF -module
L ⊂ V spanning V over F . The rank of L is rk(L) = dim(V ). A lattice L ⊂ V is
quadratic if Q(L) ⊂ OF . (Sometimes, one calls the pair (L, Q) a quadratic lattice
avoiding the ambient space V .)

In much of the discussion to follow the quadratic form Q or the ambient vector
space will sometimes be implicit (though they are a crucial part of the data). The
discriminant dL is the ideal of OF generated by the discriminants of the quadratic
form on all free submodules of L of full rank.

The notions from §1.2 carry over to the current, more general setup without
much effort. For instance, a representation ι : M → L of quadratic lattices is
an OF -linear isometric embedding and it is primitive if ι(M) = L ∩ (ι(M) ⊗ F ).
The terms primitively representable and locally primitively representable are defined
similarly to §1.2.

In this setting, strong approximation for spin groups [19] also implies the local-
to-global principle unless F/Q is totally real and the quadratic form on the ‘larger’
lattice is totally definite. Here, a quadratic space (V,Q) is totally definite if the
quadratic form Q : V ⊗ Fv → Fv is definite for every real place v and we call a
quadratic lattice totally definite if its ambient quadratic space is.

Assume in the following that F/Q is totally real and thatM,L are totally definite
quadratic lattices. Let

R(M,L) = {ι : M → L primitive representation}

be the set of primitive representations of M by L and set r(M,L) = #R(M,L).
Let Aut(L) be the (finite) group of OF -linear invertible isometries of the quadratic
lattice L. Note that Aut(L) acts on the set R(M,L) of primitive representations.

Recall that the genus gen(L) of L consists of all lattices in L⊗F locally isometric
to L. It is a classical result that the genus consists of finitely many equivalence
classes (i.e. (global) isometry classes) of quadratic lattices; let L1 = L,L2, . . . ,Lg

be a set of representatives. Note that the numbers r(M,Li) and #Aut(Li) depend
only on the equivalence class of Li.
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Define

ωL =
∑
i

#Aut(Li)
−1(2.1)

and

r(M, gen(L)) =
1

ωL

∑
i

r(M,Li)

#Aut(Li)
.(2.2)

When M is locally primitively representable by L, then it is primitively repre-
sentable by some element of the genus and hence r(M, gen(L)) is non-zero. We
remark that Siegel’s mass formula [80, 81, 82] writes the averaged representation
number in (2.2) in terms of a local product of representation numbers modulo prime
powers as well as archimedean factors involving only the discriminants.

We prove an effective asymptotic for representation numbers.

Theorem 2.1. Let n ≥ 1 and d ≥ 1 be integers. Then there exists A > 1 depending
on n, d with the following property.

Let F be a totally real number field of degree d. Let L be a totally definite qua-
dratic lattice of rank n over OF . Then for any quadratic space (W, q) of dimension
at most n− 3 and any quadratic lattice M ⊂W locally primitively representable by
L we have∣∣∣ r(M,L)

r(M, gen(L))
− 1

∣∣∣ ≪n,F

(
min

x∈M\{0}
|NrFQ (q(x))|

)−1/A

|NrFQ (dL)|A.

Using volume estimates contained in this article and in [20] one can show (see
Lemma 2.10 below) that there exists δ > 0 depending only on n and d such that

r(M, gen(L)) ≫F,L |NrFQ (dM)|δ.(2.3)

In particular, Theorem 2.1 provides an amount of primitive representation polyno-
mial in the discriminant of M as soon as one assumes the minimum of M to be
sufficiently large. Estimating local densities in Siegel’s theorem likely yields much
more precise lower bounds in (2.3); see also [74, Lemma 2.1].

Remark 2.2 (Variants of Theorems 1.3 and 2.1). Theorem 2.1 can be extended in
various ways. For instance, given local primitive representations and M ∈ N one
may prove asymptotics for the number of primitive representations congruent to
these local representations modM in analogy to e.g. [41]. Also, the positions of the
primitive representations as points on the appropriate Grassmannian variety can
be shown to be asymptotically random (see e.g. the discussion in [1, §1.2]).

This section is structured as follows: In §2.1 we establish an effective equidistri-
bution result for adelic periods of spin groups as a corollary of the theorems in the
introduction. In §2.2, we recall various facts regarding spin genera and primitive
representations and how to view these objects in a setting relevant to this article.
In §2.3, we prove Theorems 1.3 and 2.1.

2.1. Adelic periods of spin stabilizer groups. We first deduce an effective
equidistribution result for adelic periods of spin groups as a consequence of Theo-
rem 1.1. Let F be a totally real number field with discriminant disc(F ) and ring of
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integers OF . To avoid some of the technicalities, we assume in the following that
Q is a totally definite quadratic form on Fn,

Q(x1, . . . , xn) =
∑
i≤j

mijxixj ,

with coefficients mij ∈ OF . We set hv = maxi≤j |mij |v for each place v of F and
h∞ =

∏
v|∞ hv as well as h =

∏
v hv ≤ h∞.

We let G = SpinQ and write ϱ : G → G′ = SOQ for the standard representation.
For any F -subspace W ⊂ V we write

HW = {g ∈ G : ϱ(g)w = w for any w ∈W}

for the pointwise stabilizer group of the subspace W under the action of G.
The following corollary captures the input of our dynamical theorems into local-

to-global principles discussed in this section.

Corollary 2.3. There exist A3 > 0 depending only on n and [F : Q] with the
following property.

Let W ⊂ V be an F -subspace of codimension at least 3 and set

X = [ϱ(G(A))], YW = [ϱ(HW (A))].

Then for any f ∈ C1(X) of level L∣∣∣ ∫
YW

f −
∫
X

f
∣∣∣ ≪ (

min
w∈W∩On

F \{0}

∣∣NrFQ (Q(w))
∣∣)−1/A3 |disc(F )|A3hA3

∞ ∥f∥C1(X)L.

By Theorem 1.1 the proof of the corollary will boil down to the following esti-
mates:

cpl(X) ≪ h⋆|disc(F )|⋆,(2.4)

mcpl(YW ) ≫ h−⋆
∞ |disc(F )|−⋆

(
min

w∈W∩On
F \{0}

∣∣NrFQ (Q(w))
∣∣)⋆

.(2.5)

The latter will require statements regarding intermediate groups between HW and
G already present in [26]. For any subgroupM < G recall the choice of vector vM ∈
∧dim(M)g corresponding to the Lie algebra of M and define ht(M) =

∏
v ∥vM∥v.

Throughout we will use the following version of Siegel’s lemma over F due to
Bombieri and Vaaler.

Theorem 2.4 ([3, Thm. 9]). For k < ℓ let A ∈ Matkℓ(OF ) be of full rank. Then
there exist v1, . . . , vℓ−k ∈ Oℓ

F linearly independent over F with Avi = 0 and∏
i

ht(vi) ≪ |disc(F )|
ℓ−k

2[F :Q] ht(a1 ∧ . . . ∧ ak)

where a1, . . . , ak denote the rows of A.

Proof of (2.4). We need to estimate the height of the Lie algebra of ϱ(SpinQ) =
SOQ as a point in the appropriate projective space for sln. Note that Lie(SOQ) is
given by

Lie(SOQ) = {X ∈ Matn : XMQ +MQX
t = 0}
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where we write MQ ∈ 1
2Matn(OF ) for the representation matrix. We may ap-

ply Theorem 2.4 to find an F -basis for Lie(SOQ)(F ) consisting of integral vectors
v1, . . . , vd with height ≪ |disc(F )|⋆h⋆. In particular,

cpl(X) = ht(SOQ) = ht(v1 ∧ . . . ∧ vd) ≪ |disc(F )|⋆h⋆

as claimed. □

We turn to proving (2.5). As mentioned earlier, we will require some under-
standing of intermediate groups between HW and G.

Lemma 2.5. Let L ⪇ G be a connected semisimple F -subgroup so that HW is
contained in L but not in any proper normal F -subgroup of L. Then L = HW ′ for
a non-trivial F -subspace W ′ ⊂W .

In [26], Ellenberg and Venkatesh invoke classification results of Guralnick and
Saxl [32] on groups generated by reflections to obtain a similar statement. An
earlier version of the same article on the arXiv contains an elementary argument in
codimension at least 7. The elementary argument we present here is already present
in work of M.E. and Wirth [25, Prop. 3.1], a variant of which is also contained in
work of Lee and Oh [49, Cor. 3.8].

Proof. We first prove a version of the lemma for Lie algebras over R: Suppose that
l < son(R) is a proper Lie subalgebra so that

h =
{(

∗k,k 0k,n−k

0n−k,k 0n−k,n−k

)}
⊂ l

and h is not contained in any proper factor of l. We claim that there exists k ≤
k′ < n and g ∈ {1k} × SOn−k(R) such that

Ad(g)l =
{(

∗k′,k′ 0k′,n−k′

0n−k′,k′ 0n−k′,n−k′

)}
.(2.6)

To keep the notation simple, we write SOk(R) for the subgroup of SOn(R) with Lie
algebra h and SOn−k(R) for the group with Lie algebra the centralizer of h. The
adjoint representation of h on son(R) can be decomposed as sok(R)⊕son−k(R)⊕ rk
where

rk =
{(

0k,k A
−At 0n−k,n−k

)
: A ∈ Matk,n−k(R)

}
.

Note that rk ≃ Rk ⊗Rn−k is invariant under SOk(R)×SOn−k(R) where the action
on Rk ⊗ Rn−k is the natural one. Since l ∩ rk is invariant under SOk(R), there
exists a subspace U ⊂ Rn−k so that l ∩ rk = Rk ⊗ U under the identification
rk ≃ Rk ⊗ Rn−k. Here, we used that the standard representation of SOk(R) is
irreducible. As SOn−k(R) acts transitively on subspaces of Rn−k, there exists k′ ≥ k

and g ∈ SOn−k(R) so that Ad(g)l ∩ rk ≃ Rk ⊗ (Rk′−k × {0n−k′}). In particular,
Ad(g)l contains the subspace{(

∗k,k A
−At 0k′−k,k′−k

)
: A ∈ Matk,k′−k(R)

}
viewed as embedded in the top left corner in the above coordinates on son(R). This
implies that Ad(g)l in fact contains sok′(R), again embedded in the top left corner.

To see that Ad(g)l = sok′(R), notice that the adjoint representation of son(R)
restricted to sok′(R) may be decomposed in precisely the same manner as for h.
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Moreover, Ad(g)l cannot intersect the complement rk′ to sok′(R)⊕ son−k′(R). In-
deed, any intersection would yield a vector with non-zero entry in the last n − k′

entries of the top row (by irreducilibity of the standard representation of sok′(R))
contradicting the choice of k′. This proves l ⊂ sok′(R)⊕ son−k′(R) and thus (2.6)
since h is not contained in any proper factor of l.

We turn to proving the lemma. Recall that Q was assumed to be totally definite.
For any real place w of F , (2.6) shows that lw = Lie(L)(Fw) is the Lie algebra of
the stabilizer of some Fw-subspace of W ⊗Fw. Since l is defined over F , this shows
Lie(L) = Lie(HW ′) for an F -subspace W ′ ⊂W . This proves the lemma. □

Proof of (2.5). Let M < G be a proper semisimple F -subgroup of G with HW ⊂
M ⊊ G. By e.g. [87, Lemma 8.6], any normal F -subgroup of M has height con-
trolled polynomially by the height of M. We may hence, for simplicity, replace M
with the minimal normal F -subgroup of M containing HW .

By Lemma 2.5, there exists a non-trivial F -subspace W ′ ⊂ W with M = HW ′ .
By a version of Minkowski’s second theorem — see [3, Thm. 8] — there exists an
F -basis v1, . . . , vd of Lie(HW ′) consisting of integral vectors with∏

i

ht(vi) ≪ |disc(F )|⋆ht(HW ′).

Also, observe that W ′ is the unique subspace pointwise stabilized by HW ′ and so

W ′ = {w ∈ Fn : Dϱ(vi)w = 0 for all i}.

By Theorem 2.4 we have

ht(HW ′) ≫ ht(W ′)⋆|disc(F )|−⋆.

By Minkowski’s first theorem (a sufficient version of which is implied by Theo-
rem 2.4), there exists a vector w ∈W ′ with ht(w) ≪ |disc(F )|⋆ht(HW ′)⋆. Replac-
ing w by a multiple and using Minkowski’s bound, we may assume that

[W ∩ On
F : OFw] ≪ |disc(F )| 12 .

In particular,
∏

v finite ∥w∥v ≫ |disc(F )|− 1
2 . We also have∏

v|∞

∥w∥v ≫ h−1
∞

∏
v|∞

|Q(w)|
1
2
v = h−1

∞
∣∣NrFQ (Q(w))

∣∣ 1
2 .

Putting all these estimates together shows

ht(M) = ht(HW ′) ≫ ht(w)⋆|disc(F )|−⋆ ≫
∏
v|∞

∥w∥⋆v|disc(F )|−⋆

≫ h−⋆
∞ |disc(F )|−⋆

∣∣NrFQ (Q(w))
∣∣⋆.

This proves the claim. □

Proof of Corollary 2.3. In view of (2.4) and (2.5) this is a direct consequence of
Theorem 1.1. □

2.2. Spin genera, primitive representations, and adelic orbits. The goal of
this subsection is to describe the sets at the beginning of the section (the genus,
the set of primitive representations etc) in terms of adelic periods. While this is
mostly standard, we do so from first principles for the readers’ convenience.
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2.2.1. Some notation. As before, F is a totally real number field with ring of in-
tegers OF . For any finite place v of F we write ov for the ring of integers of Fv.
Let (V,Q) be an n-dimensional totally definite quadratic space over F . We write
G′ = SOQ for the special orthogonal group of Q, G = SpinQ for the spin group
of Q (the simply connected cover of SOQ), and ϱ : G → G′ for the standard
representation. For any subspace U ⊂ V we let

HU = {g ∈ G : ϱ(g)u = u for all u ∈ U}

be the pointwise stabilizer group of the subspace U under the action ofG. Similarly,
we define H′

U < G′ to be the pointwise stablizer group in G′. One may identify HU

(resp. H′
U ) with the spin group (resp. special orthogonal group) of the restriction

of the quadratic form Q to the orthogonal complement of U .

2.2.2. The genus and the spin genus. Recall that the standard action of GLn(Af )
on OF -lattices L ⊂ V is given by letting g∗L be the unique lattice with completions
gv(L⊗ ov) at every finite place v of F . Explicitly,

g∗L =
⋂
v∤∞

(
(gvL⊗ ov) ∩ V

)
.

For brevity, we set L⊗ ov = Lv.
Two quadratic lattices are equivalent (or isometric) if they are in the sameG′(F )-

orbit. The genus of a quadratic lattice L ⊂ V is the orbit

gen(L) = G′(Af )∗L.

The genus consists of finitely many equivalence classes. If F = Q and Q(L) ⊂ Z, the
genus of L is naturally identified with the genus of the quadratic form Q|L. Indeed,
the quadratic form restricted to a lattice in SOQ(Af )∗L is locally equivalent to the
quadratic form on L.

The spin genus of a quadratic lattice L ⊂ V is

spn(L) = G′(F )ϱ(G(Af ))∗L(2.7)

where we note that ϱ(G(Af )) is normalized by G′(F ).

2.2.3. Primitive representations. Suppose now that M is a quadratic lattice of rank
m ≤ n in another quadratic space (W, q).

Lemma 2.6. If m ≤ n − 3 and M is locally primitively representable by a lattice
L ⊂ V , then M is primitively representable by some L′ ∈ spn(L). That is, there
exists an F -subspace U ⊂ V isometric to W such that L′ ∩ U is isometric to M.

Proof. This is a well-known fact contained e.g. in [33, p. 2] and [75, Lemma 2]. Here,
we replicate the proof of [75, Lemma 2] in our notation for the readers’ convenience.
By the Hasse-Minkowski theorem [65, Thm. 66:3], there exists a linear isometry
ι :W → V . Set U = ι(W ) and

S = {v finite place of F : ι(Mv) ̸= (U ⊗ Fv) ∩ Lv}.

Note that S is finite. By assumption, M is locally primitively representable by L
and so there exists for any v ∈ S a linear isometry ι′v : Mv → Lv with ι′v(Mv) =
(ι′v(Mv) ⊗ Fv) ∩ Lv. By Witt’s extension theorem (cf. [6, p. 21], [65, §42F]), we
may further find gv ∈ G′(Fv) such that gvι

′
v(w) = ι(w) for any w ∈W ⊗Fv. Thus,

for any v ∈ S we have ι(Mv) = (U ⊗ Fv) ∩ gvLv. If L
′ ∈ gen(L) is the lattice with
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L′
v = Lv for all v ̸∈ S and L′

v = gvLv for all v ∈ S, we have shown that M is
primitively representable by L′.

We adapt gv, which is uniquely determined up to left-multiples with H′
U (Fv),

so that gv ∈ ϱ(G(Fv)). Since m ≤ n − 3, the spinor norm on both G′(Fv) and
H′

U (Fv) is surjective (cf. [65, Thm. 91:6]) and we obtain exact sequences

G(Fv) → G′(Fv) → F×
v /(F

×
v )2 → 1,

HU (Fv) → H′
U (Fv) → F×

v /(F
×
v )2 → 1.

In particular, for every v ∈ S there exists hv ∈ H′
U (Fv) with hvgv ∈ ϱ(G(Fv)). The

lattice L′ with L′
v = Lv for all v ̸∈ S and with L′

v = hvgvLv for all v ∈ S belongs
to spn(L) and primitively represents M. Thus, the lemma follows. □

From now on, we will always assume m ≤ n− 3.
In the following, we view for a given lattice L ⊂ V primitive representations

of M by the spin genus of L as tuples (L′, ι) where L′ ∈ spn(L) and ι : W → V
is an isometry with ι−1(L′) = M. The group G′(F ) acts on the set of primitive
representations by the spin genus via γ.(L′, ι) = (γL′, γι) (where (γι)(w) = γι(w)).
We write [(L′, ι)] = G′(F ).(L′, ι) for the G′(F )-equivalence class and define the
following sets:

• R̃(M, spn(L)) is the set of G′(F )-equivalence classes of primitive represen-
tations of M by the spin genus of L.

• R(M,L) is the set of primitive representations of M by L.

• R̃(M,L) is the set of primitive representations of M by L up to the action
of Aut(L) (where Aut(L) is the finite group of linear isometries of L).

In the above notation, whenever spn(L) =
⊔

i G
′(F )∗Li then

R̃(M, spn(L)) ≃
⊔
i

R̃(M,Li).

By Lemma 2.6, if M is locally primitively representable by L, then R̃(M, spn(L))
is non-empty. There is an obvious forgetful map

π : R̃(M, spn(L)) → G′(F )\spn(L).

In this phrasing, the conclusion of Theorem 1.3 corresponds to showing that R̃(M,Li)
is non-empty for every i or, equivalently, that π is surjective.

Lemma 2.7. Let (L, ι) be a primitive representation of M. The map{
H′

ιW (F )-orbits in H′
ιW (F )ϱ(HιW (Af ))∗L

}
→ R̃(M, spn(L))(2.8)

given by (H′
ιW (F )h)∗L 7→ [(h∗L, ι)] is injective.

Moreover, a class of primitive representations [(L′, ι′)] belongs to the image of
(2.8) if and only if there exist γ ∈ G′(F ) and g ∈ G(Af ) such that L′ = (γϱ(g))∗L
and ι′ = γϱ(gv)ι for every finite place v of F .

By construction, the composition of (2.8) with π is given by the natural map

H′
ιW (F )\H′

ιW (F )ϱ(HιW (Af ))∗L → G′(F )\G′(F )ϱ(G(Af ))∗L.(2.9)

The lemma yields an equivalence relation ∼ on R̃(M, spn(L)). (Following Kneser
[47] one could call the classes under ∼ ‘spin genus classes of primitive representa-
tions’.) We note that the claim for the image of (2.8) will not be used for the proof
of Theorem 1.3.
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Proof. For any L′ ∈ H′
ιW (F )ϱ(HιW (Af ))∗L we have L′∩ιW = ι(M) and hence the

map in (2.8) is well-defined. If [(L1, ι)] = [(L2, ι)] then there exists γ ∈ G′(F ) with
γL1 = L2 and γι = ι; the latter implies γ ∈ H′

ιW (F ) and so injectivity follows.
For the claim regarding the image, note that any image under (2.8) has the

desired property by construction. Conversely, suppose there exist g ∈ G(Af ) and
γ ∈ G′(F ) such that L′ = (γϱ(g))∗L and ι′ = γϱ(gv)ι for every finite place v of
F . By Witt’s extension theorem (cf. [6, p. 21], [65, §42F]), there is γ′ ∈ G′(F )
such that γ′ι′ = ι. Replacing the representative of the class we may thus assume
ι′ = ι. Thus, γϱ(g) ∈ H′

ιW (Af ). By [65, 101:8] using m ≤ n − 3, the spinor
norms G′(F ) → F×/(F×)2 and H′

ιW (F ) → F×/(F×)2 surject onto the set of
totally positive elements. We may thus write γ = γ1ϱ(γ2) where γ1 ∈ H′

ιW (F ) and
γ2 ∈ G(F ). Replacing g with γ2g we can hence assume that γ ∈ H′

ιW (F ) and
g ∈ HιW (Af ). This proves the lemma. □

Remark 2.8. The map in (2.8) need not be surjective. For an example, one may
construct a non-unimodular quadratic lattice L and two subspaces W1,W2 where
L ∩W1 and L ∩W2 are isometric but L ∩W⊥

1 and L ∩W⊥
2 are not.

Since (2.9) factors through (2.8), the following corollary is immediate.

Corollary 2.9. If (L, ι) is a primitive representation of M such that (2.9) is sur-
jective, then M is primitively representable by any element of the spin genus of L.

Corollary 2.9 provides a clear path to proving Theorem 1.3. Indeed, let (L, ι) be
a primitive representation of M and set

Kf = {g ∈ G′(F )ϱ(G(Af )) : g∗L = L},
K = {g ∈ G′(F )ϱ(G(A)) : (gf )∗L = L} = ϱ(G(F ⊗ R))Kf(2.10)

where we used ϱ(G(F ⊗ R)) = G′(F ⊗ R) for the last equality; the latter holds
since G′(F ⊗ R) is connected.

Then M is primitively representable by any lattice in the spin genus of L if
the homogeneous set [ϱ(HιW (A))] intersects any of the finitely many (right-)K-
orbit in [ϱ(G(A))]. Thus, effective equidistribution (or rather effective density) of
[ϱ(HιW (A))] can yield Theorem 1.3.

2.2.4. Determining the weights. Let L ⊂ V be a quadratic lattice and suppose that
there is a primitive representation (L, ι) of M by L. Define K as in (2.10). In the
following we compute

a) the measure of K-orbits on [ϱ(G(A))] and
b) the measure of K ∩ (H′

ιW (F )ϱ(HιW (A)))-orbits on [ϱ(HιW (A))]
for the Haar probability measures on the respective orbits. Note that only a) (or
rather a lower bound on the measures in a)) is needed to establish Theorem 1.3 as
a corollary of Theorem 1.1.

We start with a). Let νG be the Haar measure on the groupG′(F )ϱ(G(A)) which
projects to the probability measure ν̄G on the quotient [ϱ(G(A))]. The measure of
an orbit [ϱ(g)K] is

ν̄G
(
[ϱ(g)K]

)
=

νG(K)

#Aut(L′)

where L′ = ϱ(gf )∗L ∈ spn(L), and recall that Aut(L′) = {g ∈ G′(F ) : g∗L
′ = L′}.
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Using the fact that ν̄G is a probability measure we have νG(K)−1 = ωspn(L)

where

ωspn(L) :=
∑

G′(F )∗L′⊂spn(L)

#Aut(L′)−1.(2.11)

Thus,

ν̄G([ϱ(g)K]) =
1

ωspn(L)#Aut(L′)
.

For b), set Kι = K ∩ (H′
ιW (F )ϱ(HιW (A))) (which implicitly also depends on

L). Let νι be the Haar measure on H′
ιW (F )ϱ(HιW (A)) that descends to the prob-

ability measure on [ϱ(HιW (A))]. In view of the map (2.8) in Lemma 2.7, any
Kι-orbit in [ϱ(HιW (A))] corresponds to a class [(L′, ι)] of primitive representations

in R̃(M, spn(L)). The measure of this orbit is

νι(Kι)

#(Aut(L′) ∩H′
ιW (F ))

=
1

ω[(L,ι)] ·#(Aut(L′) ∩H′
ιW (F ))

(2.12)

where ω[(L,ι)] is the normalizing constant

ω[(L,ι)] = νι(Kι)
−1 =

∑
[(L′,ι)]∼[(L,ι)]

1

#(Aut(L′) ∩H′
ιW (F ))

.(2.13)

Here, we used the equivalence relation ∼ defined after Lemma 2.7.
Suppose now that L0 ⊂ V is a quadratic lattice. When {Li} is a set of repre-

sentatives for G′(F )-orbits in the spin genus of L0, we have by unfolding

(2.14)

∑
[(L,ι)]∈R̃(M,spn(L0))/∼

ω[(L,ι)] =
∑

[(L,ι)]

1

#(Aut(L) ∩H′
ιW (F ))

=
∑
i

∑
[(Li,ι)]

1

#(Aut(Li) ∩H′
ιW (F ))

=
∑
i

∑
[(Li,ι)]

#(Aut(Li).(Li, ι))

#Aut(Li)

=
∑
i

r(M,Li)

#Aut(Li)
.

For future use, we set

r(M, spn(L0)) =
1

ωspn(L0)

∑
i

r(M,Li)

#Aut(Li)
.

Lemma 2.10. When m ≤ n− 3 have

r(M, spn(L0)) = r(M, gen(L0)).(2.15)

Moreover, if L0 locally primitively represents M then

r(M, spn(L0)) ≫F,L0
|NrFQ (dM)|⋆.

Recall that r(M, gen(L0)) was defined in (2.2) in a similarly to r(M, spn(L0))
using the full genus.
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Proof. The comparison of averaged numbers of representations by different spinor
genera in a genus in (2.15) is due to Kneser [47] and Weil [86, p. 473]. These works
also verify that ωspn(L0) depends only on the genus of L0.

Since we do not strictly speaking require the lower bound on r(M, spn(L0)), we
shall be brief in proving it. It suffices to bound ω[(L,ι)] from below for any primitive
representation (L, ι) by the spin genus of L0. Notice that by (2.13)

ω[(L,ι)] = νι

(
K ∩ (H′

ιW (F )ϱ(HιW (A)))
)−1

where K is as in (2.10) and νι is the Haar measure on the group H′
ιW (F )ϱ(HιW (A))

which descends to the Haar probability measure on the quotient

Y = [ϱ(HιW (A))].

In other words, ω[(L,ι)] = ṽol(Y ) where the adapted volume ṽol is defined in [20,

§5.12]. By [20, §5.12, App. B], we have ṽol(Y ) ≫F,L0 cpl(Y )⋆ where one uses
reduction theory to realize Y appropriately as a subset of SLn(F )\SLn(A) (cf. §2.3.2
below). As in §2.1, one may verify cpl(Y ) ≫F,L0

|NrFQ (dM)|⋆ proving the lemma.
□

2.3. Proof of Theorems 1.3 and 2.1. The goal of this section is to prove The-
orems 1.3 and 2.1. To make our arguments accessible, we will prove Theorem 1.3
first despite it being a direct corollary to Theorem 2.1. The proof of Theorem 2.1
will warrant a discussion of reduction theory for quadratic forms over the totally
real number field F ; we will recall these facts in §2.3.2.

Throughout, L ⊂ V and M ⊂ W are quadratic lattices and M is locally primi-
tively representable by L.

2.3.1. Proof of Theorem 1.3. Recall that F = Q is assumed in Theorem 1.3. We
fix L0 ∈ spn(L) which primitively represents M (this is possible by Lemma 2.6).
Let (L0, ι0) be such a primitive representation.

By Minkowski’s reduction theory of quadratic forms over Q (see e.g. [6, Ch. 12]),
there exist linearly independent vectors v1, . . . , vn ∈ L0 spanning a sublattice of
index On(1) in L0 such that

Q(v1) ≤ . . . ≤ Q(vn)

and |(vi, vj)Q| ≤ Q(vi) for i < j. In particular, disc(Q) ≍
∏

iQ(vi). We use this
basis to identify V with Qn and hence identify the isogeny ϱ with a homomorphism
ϱ : G = SpinQ → SLn. Set

X = [ϱ(G(A))], Y = [ϱ(Hι0W (A))].

In this setting, Corollary 2.3 yields that for any f ∈ C1(X) of level L∣∣∣ ∫
Y

f −
∫
X

f
∣∣∣ ≪ (

min
w∈M\{0}

q(w)
)−⋆

disc(Q|L0)
⋆∥f∥C1(X)L

⋆.(2.16)

Note that D := disc(Q|L0
) = disc(Q|L) does not depend on the element of the

genus of L.
Since L0 ∈ spn(L) there exists g0 ∈ G′(Q)ϱ(G(Af )) with (g0)∗L0 = L. As in

(2.10), let

Kf = {g ∈ G′(Q)ϱ(G(Af )) : g∗L0 = L0}, K = ϱ(G(R))Kf .
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By Lemma 2.7, the theorem follows if we can show that Y intersects the open
subset [g0K] of X (see the comments after Corollary 2.9). Let f be its indicator
function. Note that f is locally constant at the real place and invariant under Kf .
In particular, it is of level On(1) recalling that the integral structure is defined using
v1, . . . vn. By a) in §2.2.4 we have∫

X

f =
1

ωspn(L) ·#Aut(L)

where ωspn(L) is as in (2.11). We have #Aut(L) ≪ 1. In view of the above
discussion of reduction theory of integral quadratic forms, ωspn(L) ≪ D⋆. Indeed,
this follows from reduction theory as there are ≪ d⋆ many forms over Z with
coefficients bounded by d. Overall, this shows that

∫
X
f ≫ D−⋆. Thus, if

∫
Y
f = 0

we have by (2.16)

D−⋆ ≪
∫
X

f ≪
(

min
w∈M\{0}

q(w)
)−⋆

D⋆

and hence minw∈M\{0} q(w) ≪ D⋆. This proves the theorem. □

2.3.2. Reduction theory for quadratic forms over number fields. The classical re-
duction theory over Q by Minkowksi [6] has been extended to quadratic forms over
number fields by Humbert [35, 36] (see also [48, §9–11]). Here, we briefly recall this
theory in a slightly refined form (as our lattices are not free); the reader interested
in the case F = Q may skip this subsection.

Let L ⊂ V be a quadratic lattice. We set

min(L) = min
x∈L\{0}

|NrFQ (Q(x))|.

Since L is not necessarily free, the statements to follow are slightly more intricate
than usual phrasings of reduction theory over F . We refer to e.g. [9, Thm. 3.11]
for the following discussion. By Minkowski’s bound and the classification of finitely
generated modules over Dedekind domains, there exists a free submodule Λ ⊂ L
such that

[L : Λ] ≪ |disc(F )|⋆.

In fact, there exists CF > 0 (depending only on F ) and such a free sublattice
Λ = OF v1 + . . .+OF vn so that CF min(L) ≥ min(Λ), and the quadratic form Q in
the basis v1, . . . , vn is given by

a1(x1 + b12x2 + . . .)2 + a2(x2 + b23x3 + . . .)2 + . . .+ anx
2
n(2.17)

for some ai, bij ∈ F with the following properties.

• |NrFQ (a1)| ≤ CF min(L).
• For any v | ∞ and any i < j we have |bij |v ≤ CF .
• For any i < j we have

|NrFQ (ai)| ≤ CF |NrFQ (aj)|.

• For any v, w | ∞ and any i we have |ai|v ≤ CF |ai|w.
In particular, applying these estimates in (2.17) the matrix representation (mij) of
the quadratic form Q|Λ (in the basis provided above) satisfies for any place v | ∞

|mij |v ≪F |disc(Q|Λ)|⋆v ≪F |NrFQ (dL)|⋆.(2.18)
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Here, recall that dL is the ideal of OF generated by the discriminants of free sub-
lattices of L and that [L : Λ] ≪ |disc(F )|⋆.

We also record the following corollary of the above discussion.

Corollary 2.11. For any quadratic lattice L ⊂ V

#(G′(F )\spn(L)) ≪F |NrFQ (dL)|⋆.

Proof. The number of quadratic forms over OF in n variables whose coefficients
(mij) satisfy |mij |v ≤ h for all v | ∞ is ≪ h⋆. Write G′(F )\spn(L) =

⊔
i G

′(F )∗Li

and apply the reduction theory from above to find for any i a free sublattice Λi ⊂ Li

with the required properties. The number of G′(F )-inequivalent lattices Λi is

≪F |NrFQ (dL)|⋆. If Λi = γ∗Λj for some γ ∈ G′(F ), then

[Li : Li ∩ γ∗Lj ], [γ∗Lj : Li ∩ γ∗Lj ] ≪F 1.

In particular, there are ≪F 1 such j’s for any given i. This proves the corollary. □

2.3.3. Proof of Theorem 2.1. We proceed similarly to the above proof of Theo-
rem 1.3. By Lemma 2.6, M is primitively representable by an element of the spin
genus of L. For the time being, fix a pair (L0, ι0) where L0 ∈ spn(L) and ι0 is a
primitive representation of M. Note that we will later have to vary this choice over
all equivalence classes of the relation ∼ introduced in Lemma 2.7.

By reduction theory as in §2.3.2, let Λ0 ⊂ L0 be a free sublattice with a basis
v1, . . . , vn satisfying the required coefficient bounds. We identify V with Fn through
this basis. In particular, we view ϱ as a homomorphism ϱ : G → SLn. Set

X = [ϱ(G(A))], Y = [ϱ(Hι0W (A))].

By Corollary 2.3 we thus have for any f ∈ C1(X) of level L∣∣∣ ∫
X

f −
∫
Y

f
∣∣∣ ≪F min(Λ0 ∩ ι0(W ))−⋆|NrFQ (dL0)|⋆∥f∥C1(X)L.

Notice that NrFQ (dL0) = NrFQ (dL) and

min(Λ0 ∩ ι0(W )) ≍F min(L0 ∩ ι0(W )) = min(M)

so that ∣∣∣ ∫
X

f −
∫
Y

f
∣∣∣ ≪F min(M)−⋆|NrFQ (dL)|⋆∥f∥C1(X)L.(2.19)

As in (2.10) let

Kf = {g ∈ G′(F )ϱ(G(Af )) : g∗L0 = L0}, K = ϱ(G(R))Kf .

Since L0 ∈ spn(L) there exists g ∈ G′(F )ϱ(G(Af )) with g∗L0 = L. We apply
the estimate in (2.19) to the characteristic function f of [gK]. The function f is
locally constant at all archimedean places and, since [L0 : Λ0] ≪F 1, the level L of
f satisfies L≪F 1. By a) in §2.2.4 we have∫

X

f =
1

ωspn(L)#Aut(L)
.

Moreover, by (2.12)∫
Y

f =
1

ω[(L0,ι0)]

∑
[(L′,ι0)]∈π−1(G′(F ).L)

[(L′,ι0)]∼[(L0,ι0)]

1

#(Aut(L′) ∩H′
ι0W

(F ))
(2.20)



EFFECTIVE EQUIDISTRIBUTION OF SEMISIMPLE ADELIC PERIODS 19

where, as was the case earlier,

π : R̃(M, spn(L0)) → G′(F )\spn(L0).

is the forgetful map. Inserting these expressions into (2.19) one obtains an as-
ymptotic for primitive representations belonging to the equivalence class for ∼ of
(L0, ι0). Notice that the rate does not depend on the equivalence class and, hence,
the same effective asymptotic holds for any average.

We take the convex combination of (2.20) using the weights W−1ω[(L0,ι0)] for all
equivalence classes [(L0, ι0)] of ∼. By (2.14) we have

W =
∑

[(L0,ι0)]∈R̃(M,spn(L))/∼

ω[(L0,ι0)] = ωspn(L)r(M, spn(L)).

Moreover, by the same calculation in (2.14) (for a fixed Li) the weighted average
of the right-hand side of (2.20) yields

r(M,L)

ωspn(L)r(M, spn(L))#Aut(L)
.

In summary, the above analysis shows with (2.19)∣∣∣ 1

ωspn(L)#Aut(L)
− r(M,L)

ωspn(L)r(M, spn(L))#Aut(L)

∣∣∣ ≪F min(M)−⋆|NrFQ (dL)|⋆.

Since #Aut(L) ≪ 1 and, by Corollary 2.11, ωspn(L) ≪F |NrFQ (dL)|⋆ we deduce∣∣∣1− r(M,L)

r(M, spn(L))

∣∣∣ ≪F min(M)−⋆|NrFQ (dL)|⋆

which proves the theorem since r(M, spn(L)) = r(M, gen(L)) (cf. (2.15)). □

3. Notation and preliminaries

3.1. Setup. We will prove Theorems 1.1–1.2 first over Q and then deduce the
version over general number fields. In particular, most of the article will assume
F = Q. Let Σ and Σf denote the set of places, respectively finite places of Q.

For m ≥ 0 and every ℓ ∈ Σf , let

SLN (Zℓ)[k] = ker
(
SLN (Zℓ) → SLN (Zℓ/ℓ

kZℓ)
)

be the k-th congruence subgroup of SLN (Zℓ). For any closed subgroup M <
SLN (Qℓ) and any integer k ≥ 0, we put M [k] := M ∩ SLN (Zℓ)[k] and refer to
this as the principal subgroup of level k in M . When k ≥ 0 is not an integer, we
set M [k] =M [⌈k⌉] for simplicity of notation.

Let G be simply connected semisimple Q-group and let ρ : G → SLN be an
algebraic homomorphism defined over Q with central kernel. We define

Kℓ = ρ−1(SLN (Zℓ)),

and let Kf =
∏

ℓ∈Σf
Kℓ. Also, set

(3.1) Kℓ[k] := ker(Kℓ → SLN (Zℓ/ℓ
kZℓ))

for k ≥ 1. It is convenient to write Kℓ[0] := Kℓ and Gℓ = ρ(G(Qℓ)).
Given g ∈ SLN (A) we write [g] ∈ SLN (Q)\SLN (A) for the corresponding coset

and, similarly, we write [B] for the set of cosets represented by a subsetB ⊂ SLN (A).
We consider data D = (H, ι, g) where H is a simply connected semisimple Q-

group, ι : H → SLN an algebraic homomorphism defined over Q with central kernel,
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and gD ∈ SLN (A). Similarly to the introduction, we assume that the data D is
consistent with the pair (G, ρ) i.e. ι(H) < ρ(G) and gD ∈ ρ(G(A)). We set

X = [ρ(G(A))], YD = [ι(H(A))gD].

Then YD is invariant under the group

HD = g−1
D ι(H(A))gD,

and for every ℓ ∈ Σ, we put

Hℓ = g−1
D,ℓι(H(Qℓ))gD,ℓ.

When there is no confusion, we denote HD simply by H.
We also set up the corresponding notions at the level of the Lie algebra g of G.

For any ℓ ∈ Σ, we let gℓ be the Lie algebra of G over Qℓ. For ℓ ∈ Σf , gℓ[0] denotes
the preimage of the Zℓ-integral N×N matrices under the differential Dρ : g → slN .
More generally, we write gℓ[] for the preimage of the matrices all of whose entries
have valuation at least k. For any subspace V < gℓ we put V [k] = V ∩ gℓ[k]. For
convenience, we will usually identify g with its image under the isomorphism Dρ
and similarly for its subalgebras. We will also view g as a linear subvariety of slN .

Throughout, redℓ : SLN (Zℓ) → SLN (Fℓ) denotes the reduction map mod ℓ; simi-
larly we consider reduction mod ℓ for the Lie algebras, see [66, Ch. 3] for a discussion
of reduction maps.

For g ∈ G(Qℓ), we write ∥g∥ℓ, or simply ∥g∥ if there is no confusion, for the
largest absolute value of the matrix entries of ρ(g) and ρ(g)−1. For an element
g ∈ G(A) we write

∥g∥ = max{∥gℓ∥ℓ : ℓ ∈ Σ}.

Notice that ∥g∥ = ∥g−1∥. Moreover, for any g ∈ G(A) we define ht(g) =
∏

ℓ∈Σ ∥gℓ∥.
The content of a vector w ∈ (

∧k
slN )(A) (or w ∈ AN ) is

c(w) =
∏
ℓ∈Σ

∥wℓ∥ℓ.(3.2)

Here, for ℓ a prime the norm ∥·∥ℓ is the largest absolute value of the entries of w (in
an integral basis) and ∥ · ∥∞ is the usual Euclidean norm. Note that c(αw) = c(w)
for any w and any α ∈ Q×.

For any Q-subgroup L < SLN we let

vL ∈
dim(L)∧

Lie(L)(Q) ⊂
dim(L)∧

slN (Q)

be one of the two primitive integral vectors in the line
∧dim(L)

Lie(L)(Q). The
height of L, denoted by ht(L), is the Euclidean norm of vL where the Euclidean
norm is induced from the usual Euclidean norm on slN ⊂ MatN . Since the height
only depends on the Lie algebra, we write ht(L) = ht(ρ(L)) for any Q-subgroup
L < G (and in particular, for G itself).

More generally, and similarly to the introduction, we define the complexities

cpl(X) = c
(

vρ(G)

)
= ht(G), cpl(YD) = c

(
g−1
D .vι(H)

)
.
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3.2. Volume of a homogeneous set. We now recall a notion of volume of a
homogeneous set from [20]. We will do so only in our setting i.e. for adelic periods
over Q (as this is sufficient for our purposes). Note that this discussion is subsumed
by the discussion in Appendix A.

Let Ω ⊂ SLN (A) be an open neighborhood of the identity with compact closure.
Define the volume of YD = [ι(H(A))gD] (and similarly for X) by

vol(YD) =
mH(YD)

mH(H ∩ Ω)
,

where mH is a Haar measure on H = g−1
D ι(H(A))gD.

If Ω′ ⊂ SLN (A) is another compact open neighborhood of the identity, then the
volume vol′(·) defined using Ω′ satisfies vol′(·) ≍ vol(·), see [20, §2.3]. In the sequel,
we will assume that

Ω =
∏
v∈Σ

Ωv,

where Ω∞ ⊂ SLN (R) is a fixed open neighborhood of the identity in SLN (R)
and Ωℓ = SLN (Zℓ) for all primes ℓ.

The following proposition is a special case of Proposition A.2 and is proved in
Appendix A.

Proposition 3.1. Assume that G is Q-anisotropic. Then there exists a constant
A4 > 0 depending only on N such that

cpl(YD)
1/A4 ≪ vol(YD) ≪ cpl(X)A4cpl(YD)

A4(3.3)

where the implicit constants depend only on N .

In view of Proposition 3.1, we may switch between vol(·) and cpl(·) at will in the
proof of Theorems 1.1–1.2.

3.3. Good primes. Let H = H1 · · ·Hk be a direct product decomposition of H
into Q-almost simple factors — recall that H is simply connected. Let Fj/Q be a
finite extension so that Hj = ResFj/Q(H

′
j) where H

′
j is an absolutely almost simple

Fj-group for all 1 ≤ j ≤ k. Then [Fj : Q] is bounded by dimH. Let H′
j be the

quasi-split inner form of H′
j over Fj . Let Lj/Fj be the corresponding number field

defined as in [67, §0.2]. That is, Lj is the splitting field of H′
j except in the case

where H′
j is a triality form of type 6D4 where it is a degree 3 subfield of the degree 6

Galois splitting field with Galois group S3.
For any prime ℓ, let

K∗
ℓ = ι−1(gℓSLN (Zℓ)g

−1
ℓ ).

Then K∗
ℓ ⊂

∏k
j=1

∏
v|ℓK

∗
j,v where K∗

j,v is the projection of K∗
ℓ into H′

j(Fj,v) and,

in particular, it is a compact open subgroup of H′
j(Fj,v). We recall the following

Proposition 3.2 ([20, §5.11]). For every A ≥ 1, there exists a prime p satisfying

A ≤ p≪A max{(log vol(YD))2, (log vol(X))2}

so that all of the following properties hold:

(1) G is quasi split over Qp and splits over the maximal unramified exten-

sion Q̂p, and Kp is a hyperspecial subgroup of G(Qp),
(2) Lj/Q is unramified at p for every 1 ≤ j ≤ k,
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(3) H′
j,v is quasi split over Fj,v and splits over F̂j,v = Q̂p, for every 1 ≤ j ≤ k

and every v|p,
(4) K∗

p =
∏k

j=1

∏
v|pK

∗
j,v, and K

∗
j,v is hyperspecial for all 1 ≤ j ≤ k and all

v|p.

We will refer to a prime p ∈ Σf satisfying properties in Proposition 3.2 as a good
prime (for X and YD). For simplicity in notation, we write jp : H → ρ(G) for the

homomorphism defined by jp(·) = g−1
D,pι(·)gD,p at a good prime p.

Bruhat-Tits theory, see [83], provides smooth group schemes Gp and Hp whose
generic fibers are G and H, respectively, and so that

Kp = Gp(Zp) and K∗
p = Hp(Zp).

In fact, Gp =
∏

i Gp,i where for every i, the generic fiber of Gp,i is a Qp-simple
factor of G(Qp) and the special fiber of Gp,i is an Fp-simple factor of the special
fiber of Gp. A similar statement holds for Hp.

It follows from [20, §6.2] that ρ extends to a closed immersion from Gp to
(SLN )Zp

, and that the map jp extends to a closed immersion from Hp to (SLN )Zp
,

respectively. In particular, the Zp-structure on (slN )Zp
defined above agrees with

the Zp-structure on Lie(Gp).
Recall that redp denotes the reduction map modulo p and, for simplicity, we will

write • to denote redp(•) for any Zp-module, scheme, or morphism •. Abusing the
notation, given an Qp-subspace V ⊂ slN (Qp), we denote V [0] simply by V .

The following will play an important role in the sequel.

Lemma 3.3. There exists a closed immersion

θ0,p : SL2 −→ Hp,

of Zp-group schemes so that θp := jp ◦ θ0,p satisfies the following properties.

(1) The map θp : SL2 → SLN is a closed immersion.
(2) The projection of θp(SL2(Qp)) into each Qp-almost simple factor of Hp is

nontrivial.
(3) Ad ◦ θp : SL2 → SL(slN ) is a closed immersion of Zp-group schemes.

(4) We have Ad ◦ θp = Ad ◦ θp as representations of SL2(Fp) on slN ⊗Fp
Fp.

Proof. For the existence of θ0,p see [20, §6.7] and the references therein. Then the
first part follows from the fact that jp is a closed immersion.

The second part is proved in [20, §6.7]. Indeed θ0,p : SL2 −→ Hp is constructed
in loc. cit. precisely so that if we define θp as above, then part (2) holds.

Since p ≫N 1, the adjoint representation Ad: SLN → SL(slN ) is a closed im-
mersion and the reduction mod p is the adjoint representation of (SLN )Fp

. Thus,

Part (3) follows as Ad ◦ θp is a composition of closed immersions. Taking the
reduction mod p, we also conclude for Part (4). □

We will refer to θp(SL2(Qp)) as the principal SL2 in the sequel (though we
caution readers that θp(SL2(Qp)) is merely isomorphic to a quotient of SL2(Qp)
by a finite normal subgroup). We define a one-parameter unipotent subgroup u :
Qp → θp(SL2(Qp)) by

(3.4) u(s) := θp

((
1 s
0 1

))
;
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let U = {u(s) : s ∈ Qp}. We write

z = z+ = Dθp

((
0 1
0 0

))
∈ gp[0](3.5)

for the derivative of u(·) at 0 where we recall that gp is identified with its image
under ρ. We let z− ∈ gp[0] be the analogously defined direction using the lower
nilpotent in sl2. For any t ∈ Q×

p set

(3.6) a(t) := θp

((
t 0
0 t−1

))
,

and let A = {a(t) : t ∈ Q×
p } and a := a(p−1). Note that U and A are the Qp-points

of Zp-schemes, and write, as before, {a(t) : t ∈ F×
p } and {u(s) : s ∈ Fp} for the

reduction mod p of the groups {a(t) : t ∈ Z×
p } and {u(s) : s ∈ Zp}, respectively.

Abusing the notation we write A = {a(t) : t ∈ F×
p } and U = {u(s) : s ∈ Fp}.

3.4. The adjoint representation of the principal SL2. A vector v ∈ slN (Qp)
is said to be of weight λ if a(t).v = tλv ; we will say v has pure weight if it has some
weight. A non-zero vector will be called a highest weight vector if it has pure weight
and is U invariant. If a Qp-subspace V ⊂ slN (Qp) is invariant under A, we let V

(λ)

denote the space of vectors in V of weight λ, and let V hw (resp. V hw,(λ)) denote
the subspace of U -invariant vectors (resp, the subspace of U -invariant vectors of
weight λ).

Similarly, a vector w ∈ slN (Fp) is said to be of weight λ if a(t).w = tλw . We
also define pure and highest weight vectors accordingly, albeit with U in place of U .
If W ⊂ slN (Fp) is an Fp-subspace which is invariant under A, we let W (λ) denote

the space of vectors in W of weight λ. Define W hw and W hw,(λ) similarly.

Lemma 3.4. Let V ⊂ slN (Qp) be a θp(SL2(Qp))-invariant subspace. Then

V hw[0] =
⊕
λ

V hw,(λ)[0],

and for each λ, there is a Zp-basis {vλ,1, . . . , vλ,dλ
} of V hw,(λ)[0] so that the following

hold for every λ:

(1)
{

vλ,1, . . . , vλ,dλ

}
is a basis for V hw,(λ).

(2) For every 1 ≤ i ≤ dλ,

SL2(Qp).vλ,i
spans an λ+ 1-dimensional irreducible representation of SL2(Qp), and

SL2(Fp).vλ,i

spans an λ+ 1-dimensional irreducible representation of SL2(Fp).

(3) V hw,(λ) = V hw,(λ). In particular, V hw = V hw.

Proof. First note that if W ⊂ slN (Qp) is a Qp-subspace and w1, . . . ,wd ∈W [0] is a
basis for W [0] as Zp-module, then W [0] = ⊕iZpwi and {w1, . . . ,wd} is a basis for
W .

Using representation theory of SL2 over Qp we conclude that V
hw = ⊕λ≥0V

hw,(λ)

and each non-zero vector v ∈ V hw,(λ) with λ ≥ 0 is a highest weight vector.
Moreover, θp(SL2(Qp)).v spans an λ + 1-dimensional irreducible representation of
θp(SL2(Qp)).
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For each λ, fix an Zp-basis {vλ,1, . . . , vλ,dλ
} for V hw,(λ)[0]. Then for every i, vλ,i

is a highest weight vector with weight λ. Since p ≫ 1, we have that vλ,i is also a

highest weight vector with weight λ. Moreover, {vλ,1, . . . , vλ,dλ
} is an Fp-basis for

V hw,(λ) (that is, part (1) of the lemma is verified) and the following holds

(3.7)
{

vλ,i : λ ≥ 0, 1 ≤ i ≤ dλ
}

is a basis for V hw.

To verify (3.7), suppose
∑

λ,i cλ,ivλ,i = 0, and let uλ =
∑

i cλ,ivλ,i. Let m be the

largest weight where um ̸= 0, then tmum = −
∑

m′<m tm
′
um′ for all t ∈ Fp by

applying a(t). Since p≫ 1 and the above is a polynomial equation in t, this implies
uλ = 0 for all λ. As {vλ,i : i ≤ dλ} is an Fp-basis for V

hw,(λ), (3.7) holds.

Now since ⊕λV
hw,(λ)[0] ⊂ V hw[0], we conclude from (3.7) that

V hw[0] = ⊕λ≥0V
hw,(λ)[0]

as it was claimed in the lemma.
We now show that part (2) also holds for these vectors. The claim regarding

SL2(Qp) was already discussed, thus, we work over the residue field Fp. Since
p≫ 1 and the representation of SL2(Fp) on gp is given by Ad ◦ θp, see Lemma 3.3,

V is completely reducible and the representation appearing in V are the standard
highest weight representation. In particular, SL2(Fp).vλ,i spans an λ+1-dimensional

irreducible representation of V .

To see part (3), first note that by part (2), we have V hw,(λ) ⊂ V hw,(λ). More-
over, by part (1) we have dim(V hw,(λ)) = dim(V hw,(λ)). These, the above remark
regarding subrepresentations of V , and dimension count, imply

(3.8)

dim(V ) = dim(V ) =
∑
λ

(λ+ 1) dim(V hw,(λ))

≥
∑
λ

(λ+ 1) dim(V hw,(λ)) = dim(V ).

Thus dim(V hw,(λ)) = dim(V hw,(λ)) = dim(V hw,(λ)) for every λ ≥ 0, which proves
part (3). □

Lemma 3.5. Let V ⊂ slN (Qp) be a θp(SL2(Qp))-invariant subspace. Then there
are θp(SL2(Qp))-irreducible subspaces W1, . . . ,Wd ⊂ V so that

V [0] =

d⊕
i=1

Wi[0]

and V =
⊕d

i=1Wi is decomposition of V into SL2(Fp)-irreducible representations.
In particular, if V is irreducible, then so is V .

Proof. By Lemma 3.4, V hw[0] has a Zp-basis {vi : 1 ≤ i ≤ d} so that {vi : 1 ≤ i ≤ d}
is an Fp-basis for V hw. For every i, let Wi be the Qp-span of θp(SL2(Qp)).vi. We
claim the lemma holds with W1, . . . ,Wd.

First note that V = ⊕iWi and ⊕Wi[0] ⊂ V [0]. Let now 1 ≤ i ≤ d, and
let Wi be the Zp-span of θp(SL2(Zp)).vi. Then Wi ⊂ Wi[0], moreover, in view
of Lemma 3.3 and part (2) of Lemma 3.4, Wi is an irreducible representation of
SL2(Fp) of dimension dimWi. Put V = ⊕iWi; arguing as in (3.8), we conclude that
V = V . Since V ⊂ V [0], the lemma follows. □
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For any vector v ∈ V [0] in a subrepresentation V ⊂ slN (Qp) of the principal
SL2, we write vnt for the natural projection onto the direct sum of the non-trivial
irreducible subrepresentations of V . By Lemma 3.5, we have vnt ∈ V [0].

We will also need the following lemma.

Lemma 3.6. Let the notation be as in Lemma 3.5, and let Wi ⊂ V be any
of the irreducible representations given by loc. cit. Then there exists a Zp-basis
{wi,1, . . . ,wi,di} of Wi[0] so that wi,j is a pure weight vector for all j.

In particular, V (λ) = V (λ) for any λ.

Proof. Let us first prove the first claim. For simplicity in the notation we will drop
the index i and denote Wi, di, etc. by W , d, etc. Let λ1, . . . , λd denote the distinct
weights of W . For every weight λj , let wj ∈ W (λj)[0] denote a primitive vector,

i.e., Zp.wj =W (λj)[0]. We claim {w1, . . . ,wd} is the desired basis. To see this, note
that for any t ∈ Z×

p , we have

a(t)wj = a(t)wj = tλj wj = tλj wj .

As p is large, {w1, . . . ,wd} are linearly independent. Since W is a d-dimensional
irreducible representation of SL2(Fp), {w1, . . . ,wd} is a basis forW . This completes
the first assertion in the lemma.

The second claim in the lemma follows from the above and Lemma 3.5. □

For v ∈ V [0] contained in a subrepresentation V ⊂ slN (Qp) of the principal SL2

we write v+ (resp. v−) for its projection onto the positive (resp. negative) weight
components. Note that v+, v− ∈ V [0] by Lemma 3.6.

3.5. Undistorted complements. We now record two corollaries of the above
discussion which will be used in the sequel.

Lemma 3.7. Suppose that ι(H) is not contained in the image of any proper Q-
factor of G under ρ. Then the image of the closed immersion θp : SL2 → SLN is
not contained in the image of any proper factor of Gp under ρ. Similarly, the image
of the closed immersion θp : (SL2)Fp

→ (SLN )Fp
is not contained in the image of

any proper factor of Gp under ρ.

Proof. Recall that Gp = ρ(G(Qp)) and Hp = jp(Hp(Qp)). We first show that if
s� gp is the minimal ideal (with respect to inclusion) containing Lie(Hp), then s is
defined over Q. Indeed, since s is an ideal, it is also the minimal ideal containing
Lie(ι(H(Qp))), which is defined over Q. Thus for any σ ∈ Aut(Qp/Q) the Lie
algebra s ∩ sσ also contains Lie(ι(H(Qp))); in view of the minimality of s hence
s∩sσ = s. This implies that s is necessarily defined over Q as we claimed. Combined
with our assumption on ι(H), thus, Hp has non-trivial projection to each Qp-almost
simple factor of Gp.

Recall now from part (2) of Lemma 3.3 that the projection of θp(SL2(Qp)) to each
Qp-almost simple factor ofHp is non-trivial. Together with the fact thatH is simply
connected, this implies that Hp is generated by Hp-conjugates of θp(SL2(Qp)). Al-
together, we conclude that the projection of θp(SL2(Qp)) to each Qp-almost simple
factor of Gp,i of Gp is non-trivial; establishing the first claim.

To see the second claim, recall that each Qp-almost simple factor Gp,i is the
image of the generic fiber of Gp,i under ρ and Gp,i is an Fp-almost simple factor of

Gp. Moreover, all Fp-almost simple factors of Gp arise this way, see the discussion
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preceding Lemma 3.3. Now by the first claim, the representation of θp(SL2(Qp)) on
Lie(Gp,i) has a nontrivial highest weight. Thus by Lemma 3.4 the representation
of SL2(Fp) on

Lie(Gp,i) = Gp,i(Fp)

is non-trivial. This implies the second claim and finishes the proof of the lemma. □

For any Qp-subspace V ⊂ gp and k ≥ 0 we write V [k] = V ∩gp[k]. A complement
W to V is undistorted if W [0]⊕ V [0] = gp[0]; note that if this holds, then W [k]⊕
V [k] = gp[k] for all k ≥ 0. Arguing as in the proof of Lemma 3.5, we have the
following.

Lemma 3.8 (Existence of undistorted complements). Let V ⊂ gp be a subspace
invariant under the principal SL2. Then there exists an undistorted complement W
to V which is also invariant under the principal SL2.

Proof. First note that since Zp is a PID, there exists a Zp-basis (vi)1≤i≤m of ghwp [0]

so that (vi)1≤i≤d is a Zp-basis for V hw[0]. In particular, (vi)1≤i≤m is an Fp-basis

for gp
hw and (vi)1≤i≤d is an Fp-basis for V

ht by Lemma 3.4.

For every 1 ≤ i ≤ m, let Wi be the Qp-span of θp(SL2(Qp)).vi. By the proof of
Lemma 3.5, applied with V and gp and the above basis, we have

gp[0] =

m⊕
i=1

Wi[0] and V [0] =

d⊕
i=1

Wi[0]

The claim in the lemma thus holds with W = ⊕m
i=d+1Wi. □

4. Outline of the proof

4.1. Standing assumptions. For the outline of the proof of Theorems 1.1, 1.2 in
this section, and until the proof of the main theorems in §10 we make the following
Standing Assumptions:

• G is a Q-anisotropic simply connected semisimple group, ρ : G → SLN is
a homomorphism defined over Q with central kernel, and

X = [ρ(G(A))].

The Lie algebra g and its subalgebras are identified with their images un-
der ρ.

• D = (H, ι, gD) is semisimple simply connected data over Q consistent with
(G, ρ) i.e. ι : H → ρ(G) is a homomorphism defined over Q with central
kernel and gD ∈ ρ(G(A)).

• ι(H) is not contained in any proper Q-factor of ρ(G).
• µ = µD is the invariant probability measure on

YD = [ι(H(A))gD].

• p is a good prime for X and YD as in Proposition 3.2 (assumed to be≫N 1).
• θp(SL2(Qp)) is a fixed principal SL2 (cf. Lemma 3.3) contained in Hp =

g−1
D,pι(H(Qp))gD,p. We denote by {u(r)}, {a(t)} the unipotent and diagonal

subgroups respectively of the principal SL2 (cf. (3.4) and (3.6)).

Weights and highest weights are understood with respect to these choices (see §3.4).
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4.2. Strategy. The overarching strategy is roughly the same as in previous works
— see e.g. [21, 20, 87] — accumulating ‘almost invariance’. To illustrate this,
we will first phrase the approach in vague terms emphasizing the corresponding
imprecisions2 by placing the terms that need to be made precise in quotes.

The goal is to show ‘almost invariance’ under more and more highest weight
directions in an (undistorted) invariant complement r of hp = Lie(Hp). In the
course of the argument it would transpire (using (B) below) that if µ is ‘almost
invariant’ under all highest weight directions then it is ‘very close’ to the uniform
measure on X.

By induction, suppose we are given v1, . . . , vn ∈ r[0] highest weight vectors (of
non-trivial weight) which are linearly independent modulo p. Assume further that
the measure µ is ‘almost invariant’ under the one-parameter unipotent subgroups
Ui = {exp(tvi) : t ∈ Qp} and that U1, . . . , Un together with θp(SL2(Qp)) ‘effectively
generate’ a ball that is not ‘too small’ in a group M ⪇ ρ(G(Qp)) =: Gp. We do
not assume that M contains the group Hp.

Assuming that YD is not contained in an orbit of ‘very small’ complexity, one
wishes to say the following:

(A) Additional almost invariance: There is an additional direction vn+1 in
Lie(Gp) of highest (non-zero) weight which is ‘transversal’ to Lie(M), so
that µ is ‘almost invariant’ under the one-parameter unipotent subgroup
{exp(tvn+1) : t ∈ Qp}.

(B) Effective generation: Assuming vn+1 as in (A) exists, there is a ‘per-
turbation’ v ′

1, . . . , v ′
n+1 so that µ is ‘almost invariant’ under the corre-

sponding one-parameter unipotent subgroups U ′
1, . . . , U

′
n+1 and in addition

U ′
1, . . . , U

′
n+1 together with θp(SL2(Qp)) ‘effectively generate’ a group M ′.

We point out that we do not prove that M ′ has larger dimension than M , but
certainly dim(M ′) ≥ (n+3)+1. Iterating the above one obtains ‘almost invariance’
under Gp, and in particular the horospherical subgroups of Gp corresponding to
a(t); from here, one can conclude using spectral gap on the ambient space. We
turn to making the above steps precise.

4.3. Some effective notions. Given a C1-function f on X we write lev(f) for the
level of f i.e. the least integer L ≥ 1 such that f is invariant under

∏
ℓGℓ[ordℓ(L)].

Moreover, as in the introduction we fix an inner product on glN (R) and define the
C1-norm ∥f∥C1(X) as the maximum of the sup norms of the function and its partial
derivatives in directions corresponding to an orthonormal basis of g∞. We use the
following notion of almost invariance:

Definition 4.1. Let ε > 0. We say that µ is ε-almost invariant under g ∈ Gp if
for all C1-functions f on X∣∣∣ ∫ f(·g) dµ−

∫
f dµ

∣∣∣ ≤ ε lev(f)∥f∥C1(X).

Moreover, µ is ε-almost invariant under a subgroup of Gp if it is ε-almost invariant
under every element of that subgroup. Lastly, µ is ε-almost invariant under v ∈
gp[0] if it is ε-almost invariant under {exp(tv) : t ∈ pZp}.

2In particular we will ignore less crucial multiplicative constants in the informal discussion. How-
ever, Proposition 4.3 and Theorem 4.4 are precise as stated.
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Notice that the above definition differs from e.g. the notion of almost invariance
in [20] where L2-Sobolev norms were used. Definition 4.1 directly implies that

µ is 2p−k-almost invariant under all g ∈ Gp[k].(4.1)

Other elementary properties of the definition will be discussed in §9.3 below.
We will use the following notion of effective generation. Let M < Gp be a closed

subgroup with Lie algebra m.

Definition 4.2. We say that M is k-generated by nilpotents v1, . . . , vdim(m) ∈ m[0]

if the following holds: There exists t ∈ Zdim(m)
p so that for the map φ : Qdim(m)

p →
SLN (Qp) defined by

φ(t1, . . . , tdim(m)) = exp(t1v1) · · · exp(tdim(m)vdim(m))(4.2)

the derivative Dtφ has a dim(m)-minor of absolute value at least p−k.

In this case (cf. Lemma 5.1), a quantitative open mapping theorem implies that

φ(Zdim(m)
p )−1φ(Zdim(m)

p )

contains M [3k] — the ball of radius p−3k in M around the identity. In particular,
this notion will allow us to pass from almost invariance under nilpotent elements
to almost invariance under a ‘small’ subgroup.

Since the measure µ is trivially 2p−k-almost invariant under M [k] by (4.1), we
need to ensure that there is no competition between the quality of almost invariance
under the given nilpotents and the quality of effective generation.

4.4. Additional almost invariance. We prove in §6–§9 the following precise ver-
sion of (A) above.

Proposition 4.3. There exists A5 > 1 depending only on N with the following
property.

Let M < ρ(G) be a proper Qp-subgroup containing θp(SL2). Let k ∈ N with

pA5cpl(X)A5 ≤ pk ≤ mcpl(YD)
1/A5 .

Suppose that M = M(Qp) < Gp is k-generated by some nilpotents of pure non-zero
weight and that µ is p−A5k-almost invariant under M [3k].

Then there exists a highest weight vector v ∈ gp[0] (of non-zero weight) with

v mod p ̸∈ m[0]mod p so that µ is p−k/A5-almost invariant under v .

Let us indicate some ingredients of the proof of Proposition 4.3. The basic
idea, that can already be traced to Ratner’s proof of her measure classification
theorem [68, 69], is that nearby Birkhoff generic points give rise to additional in-
variance (for the current context, see [22] or [21, §2]). We wish to find two points
x1, x2 = x1g ∈ X that are generic in a suitable effective sense so that the small
displacement g does not ‘almost normalize’ M . If this does not happen, we employ
an effective closing lemma in Proposition 7.1 to get a contradiction to our assump-
tion that mcpl(YD) is large (compared to pk). The closing lemma we use here is
a variant of the closing lemma that is given in joint work of Margulis, Shah and
three of the authors of this paper (E.L., A.M., and A.W.) [51]. The closing lemma
in [51] is more general (though written only for quotients of real groups), but does
not take into account the dependence on the ambient group.



EFFECTIVE EQUIDISTRIBUTION OF SEMISIMPLE ADELIC PERIODS 29

When the displacement g does not ‘almost normalize’ M , one may ‘realign’ the
points x1, x2 so that g is of the form exp(v) for some v ∈ gp[0] with v ‘transversal’
to m and with Ad(a(t))v diverging ‘sufficiently quickly’ as |t| → ∞ (i.e. Ad(a(t))v
reaches size 1 for |t| ≥ ∥v∥−⋆). That v was arranged to be ‘transversal’ to m
ensures there is no contribution from M to this displacement. Making sure that
Ad(a(t))v diverges ‘sufficiently quickly’ is more involved; lettingC be the centralizer
group of the principal SL2 the argument employs an effective variant of the group{
g ∈ ρ(G) : Mg ⊂ CM

z}
. The identity component of this group agrees with the

identity component of the normalizer group of M, and if Ad(a(t))v cannot be made
to diverge ‘sufficiently quickly’ the effective analogue would contradict the fact that
g does not ‘almost normalize’ M .

The realigned points are then used with a version of the averaging operator

f 7→
∫
Zp

f(·u(s)a(t)−1) ds(4.3)

to prove additional almost invariance. A large set of generic points for this operator
is provided by an effective ergodic theorem based on uniformity of the spectral gap;
see [20, §7.6] or §9.2 below.

4.5. Effective generation. Suppose we are given a list of nilpotent elements
N = (v1, . . . , vn) and let M be the Zariski closure of the group generated by
θp(SL2(Qp)) together with the unipotent one-parameter subgroups defined by the
elements of N . We wish to show that M(Qp) is ‘k-generated’ by one-parameter
subgroups corresponding to N and the usual one-parameter unipotent subgroups
of θp(SL2(Qp)). If this does not work we instead would like to perturb the nilpo-
tent directions in N ‘slightly’ to decrease the dimension of the group M, which
should make it easier to be ‘k-generated’. Iterating this scheme we obtain in §5 the
following precise version of (B).

Theorem 4.4. There exists κ1 > 0 depending only on N with the following prop-
erties. Let N = (v1, . . . , vn) ∈ gp[0]

n be a list of nilpotent elements with n ≤ dim(g)
where each vj for j = 1, . . . , n is of pure weight. Let δ ∈ (0, 1/2) and

k > (κ1δ)
−2 dim(g)(logp(cpl(X)) + 1).(4.4)

Then there exists α ∈ (κ1δ
dim(g), 1] and a new list of nilpotent elements Ñ =

(ṽ1, . . . , ṽn) ∈ gp[0]
n with the following properties:

• For j = 1, . . . , n we have ∥ṽj − vj∥ < p−αk+dim(g).
• For each j = 1, . . . , n the nilpotent ṽj is of the same pure weight as vj. If

vj is of highest weight, then so is ṽj.
• Let M̃ < ρ(G) be the Zariski closure of the group generated by the one-
parameter groups {exp(tṽj) : t ∈ Qp} for j = 1, . . . , n and θp(SL2). Then

M̃ = M̃(Qp) is δαk-generated by nilpotents of pure non-zero weight either

contained in Ñ or equal to z+, z−.

In practice, we will apply the above theorem to a list of nilpotent elements, say
v1, . . . , vn, for which the measure µ is p−k-almost invariant. (This list is obtained
by adding to the list from the previous iteration step the new direction found in
Proposition 4.3.) The newly found directions, denoted ṽ1, . . . , ṽn, leave the mea-
sure p−αk+⋆-almost invariant and generate a comparatively sizable ball around the
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identity in the group M̃ (the difference in size between this ball and the amount of
invariance we have is, in logarithmic terms, determined by δ). Note here that the
freedom of the parameter δ is crucial. Indeed, in order to continue the iteration we

wish to apply Proposition 4.3 with the new group M̃ and thus choose δ ‘sufficiently
small’ in relationship to the constant A5 from Proposition 4.3. A fortiori, this as-
serts that the quality of almost invariance is way better than what the assumed
continuity on f would give.

5. Effective generation

The goal of this section is to prove the effective generation result in Theorem 4.4.
We show that there is a dichotomy — either the given list of nilpotents either ‘ef-
fectively generates’ a group together with θp(SL2) or there is a ‘small perturbation’
of the list generating a smaller group, which we then iterate to improve the quality
of the generation in terms of the size of the pertubation.

The main tool for establishing the existence of such a perturbation is an effective
version of a theorem of Greenberg [30, 31] — Theorem 5.4 below. This should be
seen as a version of Hensel’s lifting lemma for not necessarily smooth varieties. It
is crucial for us to have effective dependence of the size of the pertubation in terms
of the polynomials defining the variety.

This section is structured as follows: In §5.1, we prove a few preliminary proper-
ties regarding effective generation. In §5.2, we recall an effective version of Green-
berg’s theorem; the precise form of this theorem we use is taken from [50]. In
§5.3, we establish a simple fact regarding G-orbits in certain representations using
geometric invariant theory. In §5.4, we construct a precursor to the varieties for
which we apply Greenberg’s theorem. In §5.5, we prove an open mapping theorem
for certain affine varieties with an ‘essentially’ transitive G-action (e.g. for closed
G-orbits in linear representations). The rough aim is to show that two nearby Qp-
points on such varieties differ by a small element of Gp. In §5.6, we finally prove
Theorem 4.4.

5.1. First results regarding effective generation. Recall our notion of effective
generation from §4.3. The following statement was used in the outline in §4 in order
to pass from ‘almost invariance’ under a list of nilpotents to ‘almost invariance’
under a ‘small’ group.

Lemma 5.1. There exists A6 > 0 depending only on N with the following property.
Assume p > N and let k ≥ 0. Let M < SLN (Qp) be a closed subgroup with Lie
algebra m. Suppose thatM is k-generated by nilpotents v1, . . . , vdim(m) ∈ m[0]. Then

φ(pZdim(m)
p )−1φ(pZdim(m)

p ) ⊃M [2k +A6]

where φ is given by

φ(t1, . . . , tdim(m)) = exp(t1v1) · · · exp(tdim(m)vdim(m)).

Following our notation for Lie algebras, we set Zp[m] = pmZp for m ≥ 0. We
will make use of a well-known quantitative open mapping lemma (see for instance
also [73, Lemma 53′]) which we summarize as follows.

Lemma 5.2. Let f : Zn
p → Zn

p be an analytic map with Zp-coefficients so that

|det(D0f)| ≥ p−k for some k ≥ 0. Then

f(Zp[k + 1]n) ⊃ f(0) + Zp[2k + 1]n.
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Proof. For concreteness, we will give a self-contained proof using Newton’s algo-
rithm. Let x0 = 0. Let y ∈ f(x0) + Zp[2k + 1]n. We define

x1 = x0 + (Dx0
f)−1(y − f(x0)) ∈ Qn

p

so that
y = f(x0) + (Dx0

f)(x1 − x0)

and x1 − x0 ∈ Zp[k + 1]n. Moreover, by Taylor expansion at x0

∥f(x1)− y∥ ≤ ∥x1 − x0∥2 ≤ p2k∥y − f(x0)∥2

so that ∥f(x1) − y∥ < ∥f(x0) − y∥. Iterating this procedure and taking the limit,
one finds a point x ∈ Zp[k + 1]n with f(x) = y as claimed. □

Proof of Lemma 5.1. By assumption, there is a point t′0 ∈ Zdim(m)
p for which the

derivative Dt′0
φ has a minor of size at least p−k. As p > N , the map φ, its

derivative, and all its minors are polynomial maps with coefficients in Zp. Applying
a Remez-type inequality (see e.g. [50, Lemma 5.4]), it follows that there exists a

point t0 ∈ pZdim(m)
p at which the derivative of φ has a dim(m)-minor of absolute

value at least p−k−A for some A = A(N) > 0.

Set f(·) = log ◦φ(p ·) : Zdim(m)
p → m[1]. This is an analytic map with coefficients

in Zp (since p > N) whose derivative Dt0/pf has determinant of size at least p−k−A.
By Lemma 5.2

f
(
t0/p+ Zp[k +A+ 1]dim(m)

)
⊃ f(t0/p) +m[2k + 2A+ 1].

Taking the exponential, the image of φ on pZdim(m)
p contains

exp
(
f(t0/p) +m[2k + 2A+ 1]

)
= φ(t0)M [2k + 2A+ 1].

Here, the equality follows for instance from the Baker-Campbell-Hausdorff formula
and the fact that m[2k + 2A+ 1] is invariant under brackets with m[1]. Thus,

φ
(
pZdim(m)

p

)−1
φ
(
pZdim(m)

p

)
⊃M [2k + 2A+ 1]φ(t0)

−1φ(t0)M [2k + 2A+ 1]

=M [2k + 2A+ 1]

and we conclude the lemma with A6 = 2A+ 1. □

In the proof of Theorem 1.1, we know precise invariance with respect to a list of
nilpotents effectively generating Hp. The existence of such a list is a property of
the good prime p and the content of the following lemma.

Lemma 5.3. If the good prime p is sufficiently large depending on N , the group
Gp is 0-generated by (not necessarily distinct) nilpotents v1, . . . , vdim(g) ∈ gp[0] of
non-zero pure weight. The same holds for Hp.

Proof. This is certainly well known; for the reader’s convenience and lack of explicit
reference, we present a proof; we prove the lemma for Gp, the proof for Hp is
identical.

Let W denote the set of non-zero weights for A in gp where A is the diagonal

subgroup of the principal SL2 in (3.6). As in §3.4, we let g(λ)p ⊂ gp denote the space

of vectors with weight λ ∈ W. It follows from Lemma 3.6 that g
(λ)
p = gp

(λ) for

all λ.
We first claim that Gp is generated by the unipotent subgroups exp(·v) where

v ∈ gp
(λ) and λ ∈ W. Observe here that Gp is connected since G is simply
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connected, see [83, §3.8]. Recall that the special fiber of a simple factor G′
p of Gp

is an Fp-simple factor Gp
′ of the special fiber Gp. Given any simple factor G′

p,

the projection of θp(SL2) is non-trivial by Lemma 3.7. The subgroup of the factor

generated by all unipotent subgroups for non-zero pure weight is a normal subgroup
and contains the projection of θp(SL2) and so is equal to G′

p. This proves the claim.

Using p≫ 1 and a dimension increase argument (see e.g. [23, Prop. 5.2]), there
exists v1, . . . , vdimG with vi ∈ g(λi), where λi ∈ W for all i, so that

φ : AdimG → Gp

defined by φ(t1, . . . , tdimG) = exp(t1v1) · · · exp(tdimGvdimG) is a dominant map.
The rest of the argument is similar to [20, §6.9]; we recall some of the details.

Using p ≫ 1 and degφ ≪ N⋆ it follows that φ is a separable map. In view of this
and using p ≫ 1 again, a simple pigeonhole argument shows that there is some
t ∈ FdimG

p so that Dtφ has full rank. Define φ : QdimG
p → G(Qp) by lifting φ in

the obvious way. The above discussion implies that there is some t ∈ ZdimG
p so

that det(Dtφ) ∈ Z×
p , as we claimed. □

5.2. An effective version of Greenberg’s theorem. As mentioned, Green-
berg’s theorems [30, 31] can be understood as an analogue of Hensel’s lifting lemma
for non-smooth varieties. Vaguely, one would like to assert that whenever v ∈ Zm

p

is a point with

f1(v) ≡ . . . ≡ fn(v) ≡ 0 (mod pk)

for f1, . . . , fn polynomials over Z, then v is p−⋆k-close to a Zp-point on the variety
{f1 = . . . = fn = 0}. Alternatively, this can be seen as a p-adic analogue of
Lojasiewicz’s inequality for polynomials.

In Greenberg’s work, the dependency on the polynomials f1, . . . , fn is inexplicit
though the method can be effectivized using additionally an effective Nullstellen-
satz. Recall that the height of a polynomial over Z is the maximum of the absolute
values of its coefficients.

Theorem 5.4. Let f1, . . . , fn ∈ Z[t1, . . . , tm] have total degree at most d and height
at most h. There exists A > 0 depending only on n,m, d so that the following holds:
Let p be a prime. Suppose that w1, . . . ,wm ∈ Zp are such that

fj(w1, . . . ,wm) ≡ 0 (mod pk)

for all j and for k ∈ N with k ≥ A logp(h) +A.
Then there exist w ′

1, . . . ,w ′
m ∈ Zp such that fj(w ′

1, . . . ,w ′
m) = 0 for all j and for

all 1 ≤ i ≤ m

w ′
i ≡ wi (mod p⌈k/A⌉).

The proof of Theorem 5.4 can be found in [50, App. A]; it follows Greenberg’s
proof by induction on the dimension making explicit the dependencies on the height.
The base case of the empty variety is a direct consequence of an effective Nullstel-
lensatz — see e.g. [59, Thm. IV].
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5.3. Preliminaries from geometric invariant theory. For the proof it will be
convenient to know that G-orbits of certain specific vectors in representations of G
are closed. We establish these facts here using geometric invariant theory.

Recall the following: suppose we are given a representation M → GL(V ) of a
reductive group M over an algebraically closed field of characteristic zero and a
vector v ∈ V . If M.v \M.v non-empty, there exists a vector v ′ ∈ M.v \M.v and
a cocharacter λ : Gm → M such that limt→0 λ(t).v = v ′. This is a result due to
Mumford; see for instance [63, Ch. 2,§1], [42, Thm. 1.4], or [2, Thm. 4.2] where the
latter contains an elementary proof due to Richardson.

Lemma 5.5. Let M be a reductive group over an algebraically closed field K of
characteristic zero. For r > 0 let constants aijk ∈ K, 1 ≤ i, j, k ≤ r, be given and
assume that there is an (abstract) reductive Lie algebra with structure coefficients
aijk. Let m be the Lie algebra of M and consider the subvariety V of mr consisting
of tuples (vi)1≤i≤r such that [vi, vj ] =

∑
k aijkvk for all 1 ≤ i, j ≤ r. Then for any

point v = (vi)i ∈ V(K) the M-orbit M.v is closed.

Note that we will only apply the lemma for M = G and the variety of sl2-triples
in g3; see Proposition 5.6 below.

Proof. Let v be as in the lemma and suppose by contradiction that M.v \M.v is
non-empty. Then there exists a cocharacter λ : Gm → M with limt→0 λ(t).v =
v ′ ∈ M.v \M.v . By construction, all components vi of v belong to the Lie algebra
of the parabolic subgroup

P = {g ∈ M : lim
t→0

λ(t)gλ(t)−1 exists in M}.

The components v ′
i of v ′ are invariant under the adjoint action by λ(Gm) and hence

belong to the Lie algebra of the centralizer L of λ(Gm) in P. The Lie algebra s
spanned by v1, . . . , vr is a factor of the abstract Lie algebra over K with structure
coefficients (aijk)ijk and hence reductive. Thus, there exists a Levi subalgebra of
Lie(P) containing s. By the Levi-Malcev theorem, there is some u ∈ Ru(P)(K)
such that Ad(u)s is contained in the Levi subalgebra Lie(L). Here, Ru(P) is the
unipotent radical of P. But then necessarily

v ′ = lim
t→0

λ(t).v = lim
t→0

λ(t).(u.v) = u.v

where we used λ(t)uλ(t)−1 → id in the second equality and the fact that u.v is
fixed by λ(Gm) in the third one. This contradicts our choice of v ′ and proves the
lemma. □

5.4. A variety of homomorphisms. The proof of Theorem 4.4 relies on Green-
berg’s theorem in the form given by Theorem 5.4 applied to suitable varieties. We
will now a building block of these varieties, specifically the variety of homomor-
phisms sl2 → g.

Proposition 5.6. Consider the subvariety Eg of g3 defined over Q consisting of
tuples (w+,w0,w−) satisfying the relations

[w0,w+] = 2w+, [w0,w−] = −2w−, [w+,w−] = w0

(i.e. sl2-triples). Then Eg is invariant under the (adjoint) G-action on g3 and con-
sists of finitely many closed orbits under that action. Moreover, the homomorphism
θp defines a point in Eg(Zp) = Eg(Qp) ∩ gp[0]

3.
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As is apparent from the above, the variety Eg of homomorphisms sl2 → g is
defined by polynomials of height ≪ ht(G)⋆.

Proof. It is clear that Eg is G-invariant. By the representation theory of sl2,

there are finitely many SLN (Q)-conjugacy classes of Lie algebra homomorphisms
sl2(Q) → slN (Q). By work of Richardson [72, Thm. 7.1], the intersection of any
such SLN (Q)-conjugacy class with the set of homomorphisms sl2(Q) → g ⊗ Q is
a finite union of G(Q)-conjugacy classes. This shows that Eg consists of finitely
many G-orbits. By Lemma 5.5, any such orbit is closed. Lastly, the point defined
by θp is precisely obtained by applying the derivative of θp to the standard sl2-triple
in sl2(Zp) (we use here a property of the good prime through Lemma 3.3). The
claim follows. □

The variety Eg constructed above might consist of variousG-orbits that could be

e.g. of different dimension (or not Galois conjugate over Q); this can be problematic
for our purposes.

Example 5.7. Consider the variety Esl3 . A non-zero sl2-triple in sl3 corresponds
either to an irreducible or a reducible non-zero three-dimensional representation
of sl2. The so-obtained subvarieties of Esl3 are G-invariant and have different
dimension (8 in the former and 7 in the latter case).

One can show (using Gröbner-based algorithms) that the height of Q-irreducible
components of Eg (or any other affine variety defined over Q) is also polynomially
controlled. In fact, such estimates are used crucially in the proof of Theorem 5.4
given in [50, App. A]. Nevertheless, we employ here a soft argument to control the
height of unions of Q-irreducible components of equal dimension.

Lemma 5.8. Let π : SLN → GLn be a rational representation of SLN defined over
Q and let r, d ≥ 1. Then there exist C,A > 0 satisfying the following statement.

Let V ⊂ An be a G-invariant subvariety defined over Q such that

• V is defined by polynomials f1, . . . , fr ∈ Z[x1, . . . , xn] of height at most
h > 2 and degree at most d, and that

• V consists of finitely many closed G-orbits.

Then for any dimension D the subvariety of V consisting of orbits of dimension
exactly D is defined by at most C many integral polynomial equations of height at
most ChAht(G)A and degree at most C.

Proof. Fix a Q-basis w1, . . . ,wdim(g) of g consisting of integral vectors of height
≪ ht(G). The fact that all orbits are closed implies that for any point x in the
variety the derivative g → TxV of the orbit map G → G.x is surjective.

Consider the n − D + 1-minors of the derivative Dxf := (∂xj
fi(x))1≤i≤r,1≤j≤n

of the polynomial map f = (f1, . . . , fr) : A
n → Ar. The common zero locus of

these minors together with f1, . . . , fr defines the subvariety V′ of V of G-orbits of
dimension at least D. Note that V′ is also defined over Q.

We now impose additional equations to obtain dimension exactly D. Let Π(x)
be the matrix with columns Dπ(w1)x, . . . ,Dπ(wdim(g))x; this is the derivative of the
map (t1, . . . , tdim(g)) → π(exp(

∑
i tiwi))x. The common zero locus of the D + 1-

minors of Π(·) defines a further subvariety V′′ of V′. The geometric components of
V′′ have dimension at most (and hence exactly) D. We have thus found the desired
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subvariety of V and observe that the polynomial equations defining it satisfy the
required properties. □

In the following we let E′
g ⊂ Eg be the union of closed G-orbits of dimension

equal to the dimension of the orbit of the point corresponding to θp as in Proposi-
tion 5.6. Since θp is non-trivial, the latter dimension is non-zero and for any field
K of characteristic zero a point in E′

g(K) yields an embedding sl2(K) → g⊗K. In
view of Lemma 5.8, E′

g is defined by ON (1)-many integral polynomial equations of
height ≪ ht(G)⋆ and degree ON (1).

5.5. An open mapping theorem. Suppose that V is an affine Q-variety con-
sisting of finitely many closed G-orbits. It seems natural to suspect that nearby
points on V(Qp) should be related by a small element of G(Qp). This also entails
a local separation statement for the G-orbits in V. In this subsection, we prove a
version of this making no use of any properties of the specific varieties from §5.4,
our statements depend effectively on the height of polynomials defining V.

Proposition 5.9. Let π : SLN → GLn be a rational representation of SLN defined
over Q and let r, d ≥ 1. There exists A > 0 satisfying the following statement.

Let V ⊂ An be a G-invariant subvariety defined over Q such that

• V is defined by polynomials f1, . . . , fr ∈ Z[x1, . . . , xn] of height at most
h > 2 and degree at most d, and

• V consists of finitely many closed G-orbits of equal dimension.

Let ℓ > 2 be a rational prime. Then there is some k0 ≥ 1 with

ℓk0 ≤ ℓAht(G)AhA

so that for any x, y ∈ V(Zℓ) = V(Qℓ) ∩ Zn
ℓ with

∥x− y∥ < ℓ−2k0

there exists g ∈ Gℓ[0] with π(g)x = y and ∥g − id∥ ≤ ∥x− y∥ℓk0 .

We remark that Proposition 5.9 could be refined in various ways e.g. one can drop
the integral assumption on the points x, y at the cost of including the denominator
in the resulting estimate for g. The version given above is however sufficient for
our purposes.

Proof. Let D be the common dimension of the G-orbits. We first choose the ‘level’
parameter k0. Let J1 ⊂ Q[x1, . . . , xn] be the ideal generated by f1, . . . , fr and all
n−D-minors of the derivative Dxf := (∂xjfi(x))1≤i≤r,1≤j≤n of the polynomial map
f = (f1, . . . , fr) : A

n → Ar. As V is smooth and all components have dimension D,
the zero locus of J1 is empty or, equivalently, J1 = Q[x1, . . . , xn]. By the effective
Nullstellensatz (see e.g. [59, Thm. IV] or [50, §4.11]) there is some non-zero B1 ∈ N
of height at most C1h

A1 which is presented by a linear combination in the relations
fi and the minors with integral polynomial coefficients of height ≪ h⋆ and degree
≪d,r,n 1. Here, A1, C1 > 0 depend only on d, r, n. This implies in particular that if
there were a point x ∈ V(Zℓ) such that all n−D-minors are congruent to 0 modulo
ℓk then B1 ≡ 0mod ℓk. We assume that ℓk0 > C1h

A1 so that B1 ̸≡ 0mod ℓk0 .
We proceed now similarly for the G-action. Fix a Q-basis w1, . . . ,wdim(g) of g

consisting of integral vectors of height ≪ ht(G). Recall that all orbits are closed
and of dimension D. This implies that the derivative g → TxV of the orbit map
G → G.x is surjective for any point x in the variety and the rank of the derivative at
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the identity is D, independent of the point x. Let Π(x) be the matrix with columns
Dπ(w1)x, . . . ,Dπ(wdim(g))x for x ∈ An; for Qℓ-points x, this matrix represents
the derivative of the map (t1, . . . , tdim(g)) → π(exp(

∑
i tiwi))y at zero. Let J2 ⊂

Q[x1, . . . , xn] be the ideal generated by f1, . . . , fr and all D-minors of Π(•). As
before, J2 = Q[x1, . . . , xn]. Now proceed similarly to find a non-zero constant
B2 ∈ Z of height at most C2(ht(G)h)A2 such that if there is a point x ∈ V(Zℓ)
with all D-minors of Π(x) congruent to 0 modulo ℓk then B2 ≡ 0mod ℓk. Again,
assume k0 is sufficiently large, e.g.

k0 = ⌈max{logℓ(C1h
A1), logℓ(C2(ht(G)h)A2)}⌉+ 1,

so that B2 ̸≡ 0mod ℓk0 .
Now let x, y ∈ V(Zℓ) with y−x = ℓav for some primitive integral vector v ∈ Zn

ℓ

and a > 2k0. For all 1 ≤ i ≤ r

0 = fi(y) = fi(x+ ℓav) = ℓa(∂1fi(x), . . . , ∂nfi(x))v +O(ℓ2a)

so that (Dxf)v ∈ ℓaZr
ℓ . By the Smith normal form over the PID Zℓ, there exist

h1 ∈ GLr(Zℓ) and h2 ∈ GLn(Zℓ) such that h1(Dxf)h2 is nonzero only on the
diagonal where it has entries ℓk1 , ℓk2 , . . . , ℓkn−D , 0, . . . , 0. Note that our choice of
k0 implies

∑
i≥1 ki ≤ k0. Thus, (h−1

2 v)i ≡ 0mod ℓa−k0 for all 1 ≤ i ≤ n − D. It

follows that there exist v ′ ∈ Zn
ℓ with

v ≡ v ′ mod ℓa−k0 , (Dxf)v ′ = 0;

Explicitly, take v ′ = h2(0, . . . , 0, (h
−1
2 v)n−D+1, . . .)

t. In other words, what we have
shown above is that the displacement v is close to being tangential.

We shall now try to realize the above perturbation v ′ of the displacement v
within derivatives coming from g. For any t1, . . . , tdim(g) ∈ ℓZℓ we have

π
(
exp(

∑
i

tiwi)
)
x = x+

∑
i

tiDπ(wi)x+O(max
i

|ti|2ℓ)

= x+Π(x)t+O(max
i

|ti|2ℓ)

where t = (t1, . . . , tdim(g))
t. As the image of Π(x) is exactly the tangent space at

the point x (the kernel of Dxf), there exists t ∈ Qdim(g)
ℓ with Π(x)t = ℓav ′. By

using the Smith normal form of Π(x), we conclude that t can be chosen so that

t ∈ ℓa−k0Zdim(g)
ℓ . Then g = exp(

∑
i tiwi) satisfies

π(g)x ≡ x+Π(x)t ≡ x+ ℓav ′ ≡ x+ ℓav ≡ ymod ℓ2a−2k0 .

As 2a − 2k0 > a, we have found a new point on the local G(Qℓ)-orbit through x
which is closer to y than x was.

To conclude we repeat the above procedure. By the above, there exists g1 ∈
G(Zℓ) such that ∥π(g1)x− y∥ < ∥x− y∥ and ∥g1 − id∥ ≤ ∥x− y∥ℓk0 . By induction,
there exist g1, g2, . . . such that

∥π(gn · · · g1)x− y∥ < ∥π(gn−1 · · · g1)x− y∥,

∥gn − id∥ ≤ ∥π(gn−1 · · · g1)x− y∥ℓk0

for every n ≥ 1. In particular, ∥gn · · · g1 − id∥ ≤ ∥x − y∥ℓk0 . Taking the limit we
obtain the proposition. □
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5.6. Proof of Theorem 4.4. The proof of Theorem 4.4 proceeds by induction on
the following statement.

Proposition 5.10. There exists κ2 > 0 with the following property. For n ≤
dim(g) let N = (v1, . . . , vn) ∈ gp[0]

n be a list of nilpotent elements of pure weight.
Let M be the Zariski closure of the group generated by θp(SL2(Qp)) and the one-
parameter unipotent groups {exp(tvi) : t ∈ Qp} for 1 ≤ i ≤ n. Then for any

k ≥ (logp(ht(G)) + 1)/κ2

one of the following is true.

(a) The group M = M(Qp) is k-generated by a list of nilpotents where each
element is contained in the list N or is equal to z+ or z− (cf. (3.5)).

(b) There exist a list of nilpotent elements N ′ = (v ′
1, . . . , v ′

n) ∈ gp[0]
n with

∥v ′
i − vi∥p ≤ p−κ2k for all 1 ≤ i ≤ n

so that the Zariski closure of the group generated by θp(SL2(Qp)) and the
one-parameter groups exp(Qpv ′

i) for 1 ≤ i ≤ n has strictly smaller dimen-
sion than M. Moreover, for each 1 ≤ i ≤ n the nilpotent v ′

i has the same
pure weight as vi and, if vi is highest weight, then so is v ′

i.

Proof. The proof, which will be completed in several steps, relies heavily on the
effective version of Greenberg’s theorem given in Theorem 5.4. We begin by con-
structing a variety of controlled complexity (using §5.4), which serves as the pa-
rameter space.

Step 0: Construction of the parameter space. Let λ1, . . . , λn ∈ Z be
the weights of the nilpotents in N given in the assumptions of the proposition.
Note that there are finitely many options for these weights depending on N . Let
E′

g be the variety defined after the proof of Lemma 5.8. In particular, E′
g consists

of finitely many closed G-orbits and is defined by ON (1)-many integral polynomial
equations of height ≪ ht(G)⋆ and of degree ON (1).

Let V0 ⊂ gn be the variety of nilpotent tuples and let V ⊂ E′
g × V0 be the

subvariety of points ((w+,w0,w−), (z1, . . . , zn)) satisfying the additional equations

[w0, zi] = λizi for all 1 ≤ i ≤ n

as well as [w+, zi] = 0 if the nilpotent element with index 1 ≤ i ≤ n given in
the proposition is of highest weight. When convenient, we write zn+1 = w+ and
zn+2 = w−. By construction, V is G-invariant with a surjective G-equivariant
projection V → E′

g and is defined by ON (1)-many polynomial equations of height
≪ ht(G)⋆ and of degree ON (1).

The data in the proposition gives rise to an ‘initial’ point x0 ∈ Vp[0] = V(Zp);
it consists of the sl2-triple given by Proposition 5.6 and the nilpotents in N (given
by assumption).

Step 1: Construction of a subvariety. We construct the subvariety W ⊂
V of points x = (·, (zi)) ∈ V for which the group generated by the one-parameter
unipotent subgroups {exp(·zi)}1≤i≤n+2 has dimension strictly smaller than d =
dim(M). A priori, it is unclear that this is indeed a subvariety and, if it is, that it
can be defined with polynomials of controlled height.

Fix a list of indices I = (i1, . . . , id) ∈ {1, . . . , n + 2}d (repetitions are allowed).
Given a point x of V and the nilpotent elements zi within it, define the polynomial
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map

ΦI
x : t = (t1, . . . , td) ∈ Ad 7→ exp(t1zi1) · · · exp(tdzid) ∈ G.

The d-minors of DtΦ
I
x are polynomials in Q[V][t]. Let F ⊂ Q[V] be the set of

coefficients of these polynomials where we run over the minors of all derivatives for
all I of length d. Let W be the subvariety of V defined by the polynomials in
F . This will be the subvariety we apply Greenberg’s theorem (Theorem 5.4) to.
Notably, the complexity of W satisfies the analogous bound as V does. Returning
to the initial goal of this step, a simple dimension increase argument shows that
x = (·, (zi)) ∈ W if and only if the group generated by the one-parameter unipotent
subgroups {exp(·zi)} has dimension strictly smaller than d. In particular, W is
invariant under the G-action.

Specializing to the ‘initial’ point x0, one would like some d-minor of the derivative
of one of the maps ΦI

x0 to be large. We shall see that this amounts to saying that
x0 is not too close to W(Qp).

Step 2: Applying Greenberg’s theorem. Let k ≥ 1. Suppose first that
there exists a polynomial f ∈ F for which |f(x0)| ≥ p−k. We prove (a) in this case.
Let I be the index list f is associated to. The so-defined map ΦI

x0 maps into M.

The minor of DtΦ
I
x0 of which f is a coefficient is hence a polynomial in t with one

coefficient of size at least p−k. In particular, there exists t ∈ Zd
p so that DtΦ

I
x0 has

a minor of size at least p−k (using that p is assumed sufficiently large). Therefore
M is k-generated by the nilpotents vi1 , . . . , vid where I = (i1, . . . , id) and where
vn+1 resp. vn+2 are the upper resp. lower nilpotent in the sl2-triple associated to
the principal SL2.

Assume now that |f(x0)| < p−k for all f ∈ F . We apply the effective version
of Greenberg’s theorem in Theorem 5.4 to W and let A > 0 be the corresponding
exponent (which depends only on N). If k is assumed sufficiently large, there exists
a point x ∈ W(Zp) with

∥x − x0∥ ≤ p−k/A.

The same estimate holds true for the images of x , x0 under the projection V → E′
g.

By Proposition 5.9, there exists g ∈ Gp[0] with ∥g− id∥ ≤ p−k/A+⋆ht(G)⋆ such that
g.x and x0 have the same image under the projection. Observe that g.x ∈ W(Qp)

and that, by the estimate on g, ∥g.x − x0∥ ≤ p−k/A+⋆ht(G)⋆. Write

x ′ = g.x = (·, (v ′
i)i≤n+2).

Step 3: Verifying properties in (b). We now show that the nilpotents
v ′
1, . . . , v ′

n satisfy the properties in part (b). Since x ′, x0 project to the same point
in E′

g, the nilpotents v ′
1, . . . , v ′

n satisfy the weight (and highest weight) requirement
of (b).

Let M′ be the group generated by θp(SL2) and the one-parameter unipotent sub-
groups obtained from the nilpotents v ′

1, . . . , v ′
n. It remains to show that dim(M′) <

d = dim(M). Since x ′ ∈ W, the Zariski closure M′′ of the group generated
by the one-parameter subgroups {exp(tv ′

i) : t ∈ Qp} for 1 ≤ i ≤ n + 2 is less
than dim(M). Notice that θp(SL2(Qp)) is 0-generated by v ′

n+1, v ′
n+2, v ′

n+1 where
v ′
n+1 = vn+1, v ′

n+2 = vn+2. Therefore, θp(SL2(Qp)) ⊂ M′′(Qp) and M′′ = M′

which proves (b) and hence the proposition. □
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Proof of Theorem 4.4. The theorem follows from Proposition 5.10 by recursion as
follows.

We begin by applying Proposition 5.10 for k1 = ⌊δk⌋. If Option (a) holds for

this choice, we conclude with Ñ = N and α = 1. Otherwise, there exists N (1) as
in Option (b) so that in particular ∥N (1) −N∥ ≤ p−κ2k1 .

Define recursively kj = ⌊δκ2kj−1⌋ so that

(δκ2)
j−1δk − j ≤ kj ≤ (δκ2)

j−1δk.

At the j-th step of the induction, we are given a list of nilpotents N (j−1) satisfying,
in particular, ∥N (j−1) − N∥ ≤ p−κ2kj−1 . Applying Proposition 5.10 with kj we

either conclude with α = (δκ2)
j−1 and the list N (j−1) or we find a new list N (j).

At each step the group generated as in (b) decreases in dimension and hence the
induction stops after less than dim(g) many steps. □

6. Diophantine points and an effective avoidance principle

In this section, we recall the notion of Diophantine points introduced by E.L.,
Margulis, A.M., and Shah in [50] and the effective avoidance results therein. Given
the desired controlled dependence on G we will also use diameter estimates due to
A.M., Salehi-Golsefidy, and Thillmany [60].

Let S = {∞, p} ⊂ Σ. The definitions in §3.1 transfer seamlessly to QS -points
where we write cS(·) for the corresponding content on Qn

S for QS = R × Qp (see
specifically (3.2)). We write GS = ρ(G(QS)), ΓS = GS ∩ SLN (Z[1/p]), and XS =
ΓS \GS . By strong approximation, there is a quotient map

πS : X → XS .

Indeed, since p is a good prime, all Qp-simple factors of G are Qp-isotropic. We can
thus apply strong approximation forG (recall thatG is assumed simply connected),
the set of places S, and the compact open subgroup

∏
ℓ∈Σ\S Kℓ ⊂

∏′
ℓ∈Σ\S G(Qℓ)

(where Kℓ = ρ−1(SLN (Zℓ)) as in §3.1).

6.1. Bounds on the height in the cusp. SinceG is assumed to beQ-anisotropic,
X is compact. The following lemma establishes an upper bound for the height in
the cusp when X is viewed as a subset of SLN (Q) \ SLN (A).

Proposition 6.1. There exists A7 > 0 such that for any g ∈ G(A) we have

min
w∈QN\{0}

c(ρ(g)w) ≫ ht(G)−A7 .

The proof below uses geometric invariant theory. Recall that, by a result of
Hilbert, the ringQ[x1, . . . , xN ]G ofG-invariant polynomials inQ[x1, . . . , xN ] (where
the action is through ρ) is finitely generated since G is semisimple.

Lemma 6.2. There exist G-invariant polynomials f1, . . . , fr ∈ Z[x1, . . . , xN ] of
height ≪ ht(G)⋆ and degree ON (1) which generate the ring Q[x1, . . . , xN ]G. More-
over, r = ON (1).

Proof. We first claim that there are polynomials f ′1, . . . , f
′
r′ ∈ Q[x1, . . . , xN ] of

degree at most d = ON (1) generating Q[x1, . . . , xN ]G where r′ = ON (1). This
statement depends only on the Q-isomorphism class of the group G and of the
representation over Q. There are finitely many Q-isomorphism classes of simply
connected groups over Q with dimension at most dim(SLN ) and for each such
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class there are finitely many isomorphism classes of representations in each given
dimension. This implies the above initial claim.

The vector space V of G-invariant polynomials of degree at most d is defined
over Q (since G and ρ are). If ρ̂ is the G-action on Q[x1, . . . , xN ] and v1, . . . , vdim(g)

is a Q-basis of g of integral vectors of height ≪ ht(G) then

V =
{
f ∈ Q[x1, . . . , xN ] : deg(f) ≤ d, Dρ̂(vi)f = 0 for all 1 ≤ i ≤ dim(g)

}
.

By construction, V generates Q[x1, . . . , xN ]G. By Siegel’s lemma there exists a
basis f1, . . . , fdim(V ) ∈ Z[x1, . . . , xN ] of V over Q where the coefficients of the
polynomials fi are ≪ ht(G)⋆ in absolute value. This proves the lemma. □

Proof of Proposition 6.1. We first claim that all G-orbits through points in QN are
closed. It follows from geometric invariant theory and, more specifically, a result
of Kempf [42] that for any w ∈ QN with G.w \ G.w non-empty there exists a
cocharacter λ : Gm → G defined over Q with limt→0 λ(t)w ̸∈ G.w . But G is
Q-anisotropic and so the claim follows.

By geometric invariant theory, see e.g. [63, §1.2] or [85, §4.4], there exists for any
two closed G-orbits G.w1 ̸= G.w2 an invariant polynomial f with f(w1) ̸= f(w2).
Equivalently, the closed orbits are separated by some fi where f1, . . . , fr are as in
Lemma 6.2. Without loss of generality, we may assume f1 = 1 and fi(0) = 0 for
all i > 1. We may also suppose that the polynomials fi are homogeneous.

Now let w ∈ QN be non-zero and let fi for i > 1 be such that fi(w) ̸= 0. Then∏
ℓ∈Σ

|fi(w)|ℓ =
∏
ℓ∈Σ

|fi(gℓ.w)|ℓ ≪ ht(G)⋆c(gw)deg(fi).

The left-hand side is equal to 1 since fi(w) ̸= 0 and we deduce that c(gw) ≫
ht(G)−⋆. Hence, the proposition follows. □

6.2. Diameter estimate. The following is a consequence of [60] in combination
with volume and height comparison in Proposition 3.1 (Proposition A.2) and the
estimate of the height in the cusp in Proposition 6.1.

Theorem 6.3. There exists A8 > 0 depending only on N with the following prop-
erty. For any g ∈ G(A) there exists γ ∈ G(Q) such that

• ∥γg∥ℓ = 1 for any prime ℓ ̸= p,
• ∥γg∥p ≤ pA8ht(G)A8 , and
• ∥γg∥∞ ≪ 1.

In particular,

∥γg∥ ≪ pA8ht(G)A8 .

We remark for later purposes that p is only required to be a good prime for X
(and not for YD) to obtain the above theorem.

Proof. It is shown in [60, Thm. 5.5] and its proof that the above theorem holds
when the second item is replaced by

∥γg∥p ≪
(
min
w ̸=0

c(gw)
)−⋆

vol(X)⋆p⋆.

By Proposition 3.1 we have vol(X) ≪ ht(G)⋆ and by Proposition 6.1 we have
minw ̸=0 c(gw) ≫ ht(G)−⋆. Thus, Theorem 6.3 follows. □
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6.3. Diophantine points and effective linearization. A connected Q-subgroup
L ⊂ SLN is said to belong to class H if L(C) is generated by unipotent subgroups,
or equivalently if the radical of L is unipotent. Since G is assumed Q-anisotropic,
any Q-subgroup of ρ(G) of class H is semisimple. We write HG for the collection
of connected semisimple Q-subgroups of ρ(G).

Recall from §3.1 that given L ∈ HG we write vL for one of the two primitive
integral vectors in the rational line

dim(L)∧
Lie(L) ⊂

dim(L)∧
g.

We write ηL : g ∈ SLN 7→ g−1.vL for the right orbit map through vL.

Definition 6.4 ([50]). Let ϵ : R+ → (0, 1) be a monotone decreasing function and
let t ∈ R+. A point ΓSg in XS is called (ϵ, t)-Diophantine (for the action of
U = {u(s)} with generator z as in (3.4)) if for all L ∈ HG with {e} ̸= L ̸= ρ(G)
and cS(ηL(g)) < et

∥z ∧ ηL(g)∥ ≥ ϵ
(
cS(ηL(g))

)
.(6.1)

Here, we wrote z ∧ ηL(g) = z ∧ ηL(g)p for simplicity.
We turn to phrasing the main theorem of [50] in our setting.

Theorem 6.5 ([50]). There exists a constant A9 > 0 depending only on N with
the following property. Let g ∈ GS , t > 0, k > 0, and η ∈ (0, 12 ). Suppose that for
all r > 0

ϵ(r) ≤ r−A9(ht(G)−1η p−1)A9 .

Then at least one of the following is true:

(1) (Many Diophantine points) We have∣∣{|s| ≤ pk : ΓSgu(s) is not (ϵ, t)-Diophantine
}∣∣ ≤ (ht(G)p)A9η

1
A9 pk.

(2) (Obstruction from a class H-subgroup) There exist a non-trivial proper
subgroup L ∈ HG such that for all |s| ≤ pk

cS(ηL(gu(s))) ≤ (ht(G)η−1pet)A9 ,

∥z ∧ ηL(gu(s))∥ ≤ p−k/A9(ht(G)η−1pet)A9 .

(3) (Obstruction from a normal-subgroup) There exist a non-trivial proper nor-
mal Q-subgroup L� ρ(G) such that

∥z ∧ vL∥ ≤ ϵ
(
ht(L)

1
A9 (ht(G)p)−A9η

) 1
A9 .

As phrased, the above uses that G is Q-anisotropic. We have also used The-
orem 6.3 to make the dependency on G in the main theorem of [50] explicit (see
[50, Lemma 2.8]). We have additionally absorbed implicit multiplicative constants
using the fact that p is assumed sufficiently large.

The following corollary of Theorem 6.5 establishes an abundance of Diophantine
points on YD.

Corollary 6.6. There exists a constant A10 > A9 depending only on N with the
following property. Let η ∈ (0, 1/2). Suppose that for all r > 0

ϵ(r) ≤ r−A9(ht(G)−1η p−1)A10(6.2)

For any t > 0 at least one of the following is true:
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(a) (Many Diophantine points) We have

µ
({
y ∈ YD : πS(y) is not (ϵ, t)-Diophantine

})
≤ (ht(G)p)A9η

1
A9 .

(b) (Obstruction from an intermediate semisimple subgroup) There exists a
non-trivial proper semisimple Q-subgroup L < ρ(G) containing ι(H) such
that

cpl([L(A)gD]) = c(ηL(gD)) ≤
(
ht(G)η−1p et

)A10
.

For the proof, we will require the following lemma giving an effective isolation
statement for Lie ideals of g.

Lemma 6.7. For any proper normal Q-subgroup L� ρ(G) we have

∥z ∧ vL∥ = 1.

Proof. Suppose that ∥z∧vL∥ < 1. Since L is normal, this implies that ∥w ∧vL∥ < 1
for any w ∈ h′[0] where h′ = Lie(θp(SL2(Qp))). In particular, the reduction h′ of
h′ modulo p is contained in a proper ideal of g. Since we assumed that ι(H) is not
contained in a proper Q-factor of ρ(G), this contradicts Lemma 3.7. □

Proof of Corollary 6.6. By Theorem 6.3, there exists γ ∈ ρ(G(Q)) so that g = γgD
satisfies

gℓ ∈ SLN (Zℓ) for all ℓ ̸= p, ∥g∞∥ ≪ 1, and ∥gp∥ ≤ pA8ht(G)A8 .

Recall that the U -action on YD is ergodic. There exists

h ∈ g−1
D ι(H(A))gD ∩ {h′ ∈ SLN (A) : ∥h′∥ ≤ 3

2}
such that x = [gh] ∈ YD is Birkhoff generic and satisfies the pointwise ergodic
theorem for the characteristic function of the set of (ϵ, t)-Diophantine points. We
apply Theorem 6.5 to πS(x) for all k ∈ N. One of the options (1)-(3) holds infinitely
often (i.e. for infinitely many k ∈ N). If (1) holds infinitely often, we conclude (a)
(for any A10 ≥ A9).

Assume (2) holds infinitely often. Notice that for any R > 0 there are finitely
many Q-subgroups L′ with c(ηL′(gh)) ≤ R. We may thus assume that (2) holds
infinitely often for some proper subgroup L′ ∈ HG with

c(ηL′(gh)) = cS(ηL′(πS(gh))) ≤ (ht(G)η−1p et)A9 .

Here, we used (gh)ℓ ∈ SLN (Zℓ) for ℓ ̸= p in the first equality. As the second
inequality in (2) holds for infinitely many k, we have ∥z ∧ ηL′(gh))∥ = 0. In
particular, z ∈ Ad(gh)−1Lie(L′) and hence U ⊂ (gh)−1L′gh = (gDh)

−1L(gDh) for
L = γ−1L′γ. By density of xU in YD this shows that

YD = xU = [gh]U = [gDh]U ⊂ [L(A)gDh]

and so YD ⊂ [L(A)gD] since YD is invariant under h. In particular, there exists for
any h′ ∈ H(R) some γ′ ∈ SLN (Q) and m ∈ L(A) with ι(h′) = γ′m. Since h′ℓ = id
for any prime ℓ, this shows γ′ ∈ L(Q) and so ι(h′) ∈ L(R). Thus, ι(H(R)) ⊂ L(R)
and so ι(H) ⊂ L by Zariski-density. By the above bound on c(ηL′(g)) = c(ηL(gD)),
(b) follows.

Assume (3) in Theorem 6.5 holds infinitely often (or once) for some non-trivial
proper normal subgroup L = L′ � ρ(G). Then by Lemma 6.7

p−⋆ht(G)−⋆ ≤ ∥z ∧ vL∥ ≤
(
ht(G)η−1p

)−⋆A10+⋆
ht(L)−⋆
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and so ht(L) ≪
(
ht(G)η−1p

)−⋆A10+⋆
. If A10 > 0 is chosen sufficiently large, this

gives a contradiction as ht(G),ht(L) ≥ 1 and η ∈ (0, 1/2). □

For future convenience, we choose η = η0 > 0 with

(ht(G)p)A9η
1

A9
0 =

1

9
(6.3)

and set

ϵ0(r) := r−A9(ht(G)−1η0p
−1)A10 .(6.4)

In particular, for all r > 0

ϵ0(r) ≫ r−⋆ht(G)−⋆p−⋆.

To simplify the terminology, we will say that x ∈ XS is T -Diophantine if it is
(ϵ0, log(T ))-Diophantine.

Corollary 6.8. Suppose that

mcpl(YD) >
(
ht(G)η−1

0 p
)2A10

.(6.5)

For any n ≥ 0, the set of y ∈ YD with∣∣{|s| ≤ pn : πS(y)u(s) is mcpl(YD)
1

2A10 -Diophantine
}∣∣ ≤ 2

3p
n

has µ-measure at most 1
3 .

Proof. By Corollary 6.6 and in view of the choice of η0 in (6.3), we either have as
in (a)

µ
({
y ∈ YD : πS(y) is not mcpl(YD)

1
2A10 -Diophantine

})
≤ 1

9(6.6)

or as in (b)

mcpl(YD) ≤
(
ht(G)η−1

0 pmcpl(YD)
1

2A10

)A10
.

The latter contradicts our assumption on the minimal complexity in (6.5) and so
(6.6) holds.

Given n ≥ 0 and y ∈ YD set

f(y) = p−n
∣∣{|s| ≤ pn : πS(y)u(s) is not mcpl(YD)

1
2A10 -Diophantine

}∣∣
By U -invariance of µ and (6.6) we have

∫
f dµ ≤ 1

9 . The corollary thus follows from
the Chebyshev inequality. □

7. An effective closing lemma

The main result of this section is the effective closing lemma in Proposition 7.1.
Throughout the section, we fix a Lie subalgebra m ⊂ gp defined over Qp and our
standing assumption is that

(7.1) m is Ad(U)-invariant.

Denote by v̂m ∈ P(∧dim(m)gp) the point corresponding to m. The projective space

P(∧dim(m)gp) is equipped with the metric given by d(v̂ , ŵ) = minα∈Z×
p
∥v − αw∥

for any choice of unit vectors in v ∈ v̂ ,w ∈ ŵ . Note that Gp acts on P(∧dim(m)gp)
through the adjoint representation. We say that m is ε-normalized by an element
g ∈ Gp if

d
(
g.v̂m, v̂m

)
≤ ε.
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We will study this notion further in §8 below. Here, we prove the following.

Proposition 7.1. There exists κ3 ∈ (0, 1) so that the following holds. Let

n ≥ 1
κ3
(logp(ht(G)) + 1).

Assume there is a point y ∈ X and a measurable subset

E ⊂ {r ∈ Qp : |r|p ≤ pn}
with the following properties:

(1) πS(yu(s)) is p
n-Diophantine for all s ∈ E,

(2) |E| > pn(1−κ3), and
(3) for all s, s′ ∈ E, we have

yu(s) = yu(s′)ρ(gss′)

where gss′ ∈ G(R)×Kf satisfies ∥gss′∥∞ ≤ 2 and is so that the Lie algebra
m is p−n-normalized by (gss′)p.

Then m is a semisimple ideal of gp.

For quotients of real groups, an analogous result was obtained in [51] and, in
fact, significantly strengthened using [50]. For our purposes, the above proposition
is sufficient. The proof we give below follows the argument given in [51] by adapting
it to the current p-adic setting; we include it for completeness.

7.1. Almost invariant subalgebras. The following proposition, which is of inde-
pendent interest, will play an important role in the proof of Proposition 7.1. For a
lattice element γ ∈ SLN (Q) the height ht(γ) is the Euclidean norm of the smallest
non-zero multiple of γ with integer coefficients.

Proposition 7.2. For any r > 0 there exist A > 0 and C > 0 (depending on r
and N) with the following property.

Let T > 2, δ > 0, and suppose that we have the following.

(1) {γ1, . . . , γr} ⊂ ρ(G)(Q) with ht(γi) ≤ T .
(2) The Zariski closure of ⟨γ1, . . . , γr⟩ equals ρ(G).
(3) For every 1 ≤ i ≤ r the Lie algebra m is δ-normalized by γi i.e. we have

d(γi.v̂m, v̂m) ≤ δ.(7.2)

Then either

Cδ ≥ (ht(G)p T )−A

or m is an ideal of gp.

The proof invokes the effective version of Greenberg’s theorem (Theorem 5.4)
and the following isolation property for ideals of gp.

Lemma 7.3. There exists A11 > 1 depending only on N so that the following holds.
Suppose that m is a Lie subalgebra of gp and that there exists a Lie ideal m′ of gp
with

d(v̂m′ , v̂m) ≤ p−A11ht(G)−A11 .

Then m = m′ is an ideal.

The proof of Lemma 7.3 is, mutatis mutandis, the proof of [51, Lemma 3.3]; we
omit it here.
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Proof of Proposition 7.2. Take a basis w1, . . . ,ws of the Zp-submodule m[0]. For
any 1 ≤ i ≤ r and 1 ≤ j ≤ s we have

∥Ad(γi)wj ∧ w1 ∧ . . . ∧ . . .ws∥ = ∥Ad(γi)wj∥
∥∥∥ Ad(γi)wj

∥Ad(γi)wj∥
∧ w1 ∧ . . . ∧ ws

∥∥∥
≪ T ⋆δ(7.3)

using ht(γi) ≤ T for the first term and (7.2) for the second. We want to perturb the
vectors w1, . . . ,ws to obtain new vectors nearby that span a subalgebra normalized
by all γi (and hence by G). For this, we define

Z1 =
{
(w ′

1, . . . ,w ′
s) ∈ gs : [w ′

i ,w ′
j ] ∧ w ′

1 ∧ . . . ∧ w ′
s = 0 for all i, j

}
,

Z2 =
{
(w ′

1, . . . ,w ′
s) ∈ gs : Ad(γi)w ′

j ∧ w ′
1 ∧ . . . ∧ w ′

s = 0 for all i, j
}
.

Both Z1 and Z2 are defined by integral equations with height ≪ ht(G)⋆T ⋆. As
m is a Lie algebra, (w1, . . . ,ws) ∈ Z1(Qp). This, (7.3), and Theorem 5.4 imply
that there exists (w ′

1, . . . ,w ′
s) ∈ (Z1 ∩Z2)(Qp) with ∥w ′

i − wi∥ ≪ δ⋆ for all i unless
δ ≫ ht(G)−⋆T−⋆p−⋆. The subspace m′ spanned by w ′

1, . . . ,w ′
s is a Lie algebra

and satisfies d(v̂m′ , v̂m) ≪ δ⋆. Also, as (w ′
1, . . . ,w ′

s) ∈ Z2, the Lie algebra m′

is normalized by all γi and, thus, is a Lie ideal by Zariski density of the group
⟨γ1, . . . , γk⟩ in ρ(G). Lemma 7.3 implies that m needs to be an ideal as well unless,
again, δ ≫ ht(G)−⋆T−⋆p−⋆. This proves the proposition. □

7.2. Proof of Proposition 7.1. We will complete the proof of Proposition 7.1 in
various steps. The proof uses an inductive process to construct a nontrivial group
L < ρ(G) of class H and of controlled height so that a piece of the U -orbit through
y stays very close to a translate of the orbit [L(A)]. Then using our assumption
(1) in Proposition 7.1, we conclude that L = ρ(G). After this is established, the
proposition follows from Proposition 7.2.

Notation and setup for the proof. Let y ∈ X and E be as in the statement
of Proposition 7.1 satisfying |E| > pn(1−κ) for some κ ∈ (0, 1/2) which will be
determined later. In particular, we have for s, s′ ∈ E

yu(s) = yu(s′)ρ(gss′)(7.4)

and

d
(
(gss′)p.v̂m, v̂m

)
≤ p−n.(7.5)

Furthermore, (gss′)ℓ ∈ Kℓ for any ℓ and ∥gss′∥∞ ≤ 2.
We set α = κ1/(2(1+dim(G))) and may determine α instead of κ in the proof below

(depending only on N). For every 0 ≤ j ≤ 1 + dim(G), let

(7.6) αj = α1+dim(G)−j and Rj := p⌈nαj⌉.

We have R1+dim(G) = pn and Rα
j+1 ≤ Rj ≤ Rα

j+1p for every 0 ≤ j ≤ dim(G). In
view of our assumptions on n, we assume that

Rκ
0 ≥ p ht(G).(7.7)



46 M. EINSIEDLER, E. LINDENSTRAUSS, A. MOHAMMADI, AND A. WIESER

A pigeonhole principle argument. We need good density points for E simulta-
neously in all scales Rj for 0 ≤ j ≤ dim(G) + 1. This is obtained using a simple
pigeonholing argument.

We proceed inductively, let j = dim(G). Take a subdivision of

B(0, Rj+1) = {r ∈ Qp : |r|p ≤ Rj+1}
into Rj+1/Rj-disjoint balls B(s,Rj) = {r : |s − r|p ≤ Rj}. By the pigeonhole
principle, there is some tj ∈ B(0, Rj+1) such that∣∣B(tj , Rj) ∩ E

∣∣ ≥ pn(1−κ)Rj

Rj+1
= Rjp

−nκ ≥ pn(α−κ).

Replace B(0, Rdim(G)+1) with B(tdim(G), Rdim(G)) and repeat the above argu-
ment. Iterating this process (dim(G) + 1)-times we get

{t0, . . . , tdim(G)} ⊂ B(0, Rdim(G)+1)

such that the following holds for all 0 ≤ j ≤ dim(G):

(a) tj′ ∈ B(tj , Rj), for all 0 ≤ j′ ≤ j, and

(b)
∣∣B(tj , Rj) ∩ E

∣∣ ≥ pn(αj−κ). (Here, recall that αj > κ.)

Put tdim(G)+1 := 0.

Finding S-arithmetic elements with controlled height. Write y = [g] for
g ∈ ρ(G(A)). Fix some s0 ∈ B(t0, R0) ∩ E and let γ0 ∈ ρ(G(Q)) be so that for
g0 = γ0gu(s0) ∈ ρ(G(A)) we have

(7.8)

g0,ℓ ∈ SLN (Zℓ) for ℓ ̸= p,

∥g0,p∥p ≪ pA8ht(G)A8 , and

∥g0,∞∥∞ ≪ 1.

Note that such a lattice element γ0 exists thanks to Theorem 6.3.
By (7.4) and (7.5) for s′ = s0 there exists for all s ∈ E a lattice element γs ∈

ρ(G(A)) ∩ SLN (Q) ⊂ ρ(G)(Q) so that

γsg0u(−s0)u(s) = g0gs and d(gs,p.v̂m, v̂m) ≤ p−n(7.9)

where gs = ρ(gss0). This and (7.8) in particular imply that γs,ℓ ∈ SLN (Zℓ) for
all ℓ ̸= p. Thus, γs ∈ ΓS . By (7.9), (7.8) and (7.7) we further have for all
s ∈ E ∩ B(tj , Rj)

∥γs∥p ≪ p⋆ht(G)⋆R⋆
j ≪ R⋆

j ,

∥γs∥∞ ≪ 1
(7.10)

and, in particular,

∥γs∥ = max{∥γs∥p, ∥γs∥∞} ≪ R⋆
j ,

ht(γs) ≪ R⋆
j .

Lastly, notice that if γs = γs′ for s, s
′ ∈ E then by (7.9)

u(s) = u(s0)g
−1
0 γ−1

s g0gs = u(s0)g
−1
0 γ−1

s′ g0gs = u(s′)g−1
s′ gs

and so u(s− s′) ∈ SLN (Zp) using (gs)p, (gs′)p ∈ SLN (Zp). By choice of the unipo-

tent subgroup U in (3.4), we have s − s′ ∈ Zp. Since
∣∣B(tj , Rj) ∩ E

∣∣ ≥ pn(αj−κ),
this proves

#{γs : s ∈ B(tj , Rj) ∩ E} ≥ pn(αj−κ).(7.11)
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Finding a controlled semisimple Q-group. For j ∈ {0, . . . ,dim(G)+1}, define

L′
j =

〈
{γs : s ∈ B(tj , Rj) ∩ E}

〉z

and

Lj = the identity component of L′
j .

These are Q-subgroups of ρ(G). Dimension considerations imply that there exists
some 0 ≤ j0 ≤ dim(G), so that Lj0 = Lj0+1. Note that Lj0 is not necessarily in H
(i.e. might not be semisimple). Let L := LH

j0
be the maximal subgroup of class H

which is contained in Lj0 . Since Lj0 is reductive, L = [Lj0 ,Lj0 ]. By (7.10) and [51,
Prop. 2.6] we have

ht(L) ≪ R⋆
j0 .(7.12)

We now investigate properties of L; the goal is to show that L = ρ(G). This
will be established in two steps in Lemmas 7.4 and 7.5.

Lemma 7.4. The group L is non-trivial.

To clarify, it is also true that LH
j ̸= {1} for any j i.e. the special choice of j0

plays no role in this lemma.

Proof of Lemma 7.4. We need to show that Lj0 is not a torus. The idea is to exhibit
a ‘polynomial amount’ of lattice elements in Lj0 and combine this with logarithmic
growth of the number of S-arithmetic lattice elements in tori.

By [51, Lemma 2.4] we have [L′
j0

: Lj0 ] ≪N 1. By (7.11), there exists a coset

γsLj0 , s ∈ B(tj0 , Rj0) ∩ E, which contains ≫ pn(αj0
−κ) many lattice elements γs′

for s′ ∈ B(tj0 , Rj0) ∩ E.
In view of (7.10) we have ∥γs′∥ ≤ CRB

j0
for all s′ ∈ B(tj0 , Rj0) ∩ E and some

B,C > 0 absolute. Now note that

#
{
γ ∈ Lj0(Z[1/p]) : ∥γ∥ ≤ C2R2B

j0

}
≥ #

{
γ−1
s γs′ : s

′ ∈ B(tj0 , Rj0) ∩ E, γs′ ∈ γsLj0

}
≫ pn(αj0−κ) ≥ R

1
2
j0
.

For any Q-torus T < SLN and any R≫ 1 we have (see e.g. [24, Lemma 6.3])

#{γ ∈ T(Z[1/p]) : ∥γ∥ ≤ R} ≪N log(R)⋆.(7.13)

This shows that Lj0 is not a Q-torus assuming (7.7) and hence L is non-trivial. □

Lemma 7.5. We have L = ρ(G).

Proof. Assume contrary to our claim that L ̸= ρ(G).
Case 1: Suppose that L is not normal.
Notice that for any s ∈ B(tj0+1, Rj0+1) the lattice element γs satisfies γ−1

s .vL =
χ(γs)vL for some S-adic unit χ(γs) ∈ Z[1/p]×. Here, we used that L is a nor-
mal subgroup of L′

j0+1 and that γs ∈ SLN (Zℓ) for ℓ ̸= p. By (7.10) we have

|χ(γs)|∞, |χ(γs)|p ≪ R⋆
j0+1. Notice that the number of units u ∈ Z[1/p]× satisfying

the same bound is ≪ log(Rj0+1) ≪ log(Rj0).
For every s ∈ E ∩ B(tj0+1, Rj0+1), put

J(s) :=
{
t ∈ E ∩ B(tj0+1, Rj0+1) : γ

−1
t .vL = γ−1

s .vL
}
.(7.14)
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The above estimate on the number of multiplicative factors χ(γs) implies that there
exists some s ∈ E ∩ B(tj0+1, Rj0+1) so that

(7.15) #J(s) ≫ pn(αj0+1−κ)
(
log(Rj0)

)−1 ≥ Rj0+1R
−2
j0
,

where in the last step we used κ < αj0 .
Let s be so that (7.15) is satisfied. Using (7.8), (7.12) and the given bounds on

gt we have

∥ηL(g0gt)∥ ≪ p⋆ht(G)⋆ht(L) ≪ R⋆
j0

for any t ∈ E. On the other hand, if t ∈ J(s) we have

ηL(g0gt) = ηL
(
γtg0u(−s0)u(t)

)
by (7.9)

= ηL
(
γsg0u(−s0)u(s)u(−s)u(t)

)
by (7.14)

= ηL
(
g0gsu(t− s)

)
by (7.9).

Altogether, we conclude that

∥ηL
(
g0gsu(t− s)

)
∥ ≪ R⋆

j0 for all t ∈ J(s).(7.16)

The above map

t ∈ {|t| ≤ Rj0+1} 7→ ηL
(
g0,pgs,pu(t)

)
is a polynomial map. The Remez inequality (see e.g. [50, Lemma 5.4]) together
with (7.16) and (7.15) implies

∥ηL
(
g0,pgs,pu(t)

)
∥ ≪ R⋆

j0

for all |t|p ≤ Rj0+1. By [50, Prop. 5.8] we obtain that

∥z ∧ ηNH
L
(g0,pgs,p)∥p ≪ R⋆

j0R
−⋆
j0+1.(7.17)

where NL is the normalizer of L in ρ(G) and as before NH
L = [NL,NL].

On the other hand, we have ht(NH
L ) ≪ ht(L)⋆ by [50, Lemma 4.2] and so

c(ηNH
L
(g0gs)) ≪ R⋆

j0
using additionally (7.12) and (7.8). For α sufficiently small,

we have c(ηNH
L
(g0gs)) ≤ Rj0+1. As πS([g0gs]) = πS(yu(s)) is p

n-Diophantine (and

in particular Rj0+1-Diophantine) by assumption, we deduce from the definitions
(see Definition 6.4 and (6.4))

∥z ∧ ηNH
L
(g0,pgs,p)∥ ≥ ϵ0(c(ηNH

L
(g0gs))) ≫ R−⋆

j0
ht(G)−⋆p−⋆ ≫ R−⋆

j0
.(7.18)

The two inequalities (7.17) and (7.18) together yield Rj0+1 ≪ R⋆
j0
. However, for α

sufficiently small in comparison to the exponent, we obtain a contradiction.
Case 2: L is normal
The proof is largely analogous in this case, but necessarily needs to use a dif-

ferent representation. Let (ϱ, v) be a Chevalley pair for the subgroup L of SLN as
in [51, Prop. 2.2]. By restriction to the subspace of L-invariant vectors we obtain
a representation ϱ̂ : ρ(G) → SLm for some m ≪N 1 whose kernel is exactly L.
In particular, the identity component of the image ϱ̂(L′

j0+1) is a Q-torus. Com-
bined with (7.13) and the estimate on the number of connected components in [51,
Lemma 2.4] we get

#{Lγs : s ∈ E ∩ B(tj0+1, Rj0+1)} ≪ log(Rj0)
⋆.

For s ∈ E ∩ B(tj0+1, Rj0+1) let

J(s) = {t ∈ E ∩ B(tj0+1, Rj0+1) : Lγs = Lγt}.
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For some s we have as in the first case #J(s) ≥ Rj0+1R
−2
j0

. For t ∈ J(s)

ϱ(g0gt)
−1v = ϱ

(
γtg0u(−s0)u(t)

)−1
v

= ϱ
(
γsg0u(−s0)u(s)u(−s)u(t)

)−1
v = ϱ

(
g0gsu(t− s)

)−1
v .

By the same argument as in the first case using the Remez inequality and the height
bound on v from [51, Prop. 2.2] we obtain

∥ϱ(g0gsu(t))−1.v∥p ≪ R⋆
j0

for all |t|p ≤ Rj0+1. Using (7.8) and taking the derivative we deduce

∥Dϱ
(
Ad(g0,pgs,p)z

)
v∥ ≪ R⋆

j0R
−⋆
j0+1.

The map w 7→ Dϱ(w)v is a linear map with coefficients controlled by the entries
of v and ‘almost annihilates’ Ad(g0,pgs,p)z. Note also that Dϱ(w)v = 0 implies
w ∈ Lie(L) = l (by definition of the representation). A simple argument involving
the Smith normal form (as e.g. in the proof of Proposition 5.9) then shows that
there exists w ∈ l(Qp) such that ∥w − Ad(g0,pgs,p)z∥ ≪ R⋆

j0
R−⋆

j0+1. Since L is
normal, this implies

∥z ∧ vL∥ ≪ R⋆
j0R

−⋆
j0+1.

From here, one concludes in the same manner as in the first case (or invokes
Lemma 7.3). □

Proof of Proposition 7.2. We use all of the notation from the current section. By
Lemma 7.5 and the construction of L, the group ⟨γs : s ∈ B(tj0 , Rj0)⟩ is Zariski-
dense in ρ(G). In view of [51, Lemma 2.4], we may select s1, . . . , sr ∈ B(tj0 , Rj0)
for some r ≪ dim(G) so that ⟨γs1 , . . . , γsr ⟩ is also Zariski dense. Moreover, by
U -invariance of m and (7.9) we have

d(γsg0,p.v̂m, g0,p.v̂m) = d(γsg0,pu(s− s0).v̂m, g0,p.v̂m) = d(g0,pgs,p.v̂m, g0,p.v̂m)

≪ p⋆ht(G)⋆d(gs,p.v̂m, v̂m) ≤ p⋆ht(G)⋆p−n ≪ R
− 1

2
j0+1.

Thus, (7.2) holds for the Lie algebra Ad(g0,p)m and some δ > 0 with δ ≪ R
− 1

2
j0+1.

The lattice elements γsi satisfy ht(γsi) ≤ T for some T ≪ R⋆
j0

by (7.10). Applying
Proposition 7.2 we conclude for α sufficiently small. □

8. An alignment lemma

In this section we show that whenever x1, x2 = x1g ∈ X are two points where
the ‘small’ displacement g does not ‘almost normalize’ an ‘effectively generated’
group M , then x1, x2 can be moved by m1,m2 ∈ M respectively so that the new
displacement is in an undistorted complement of m. Here, the quotation marks ‘. . .’
are to be understood in the sense of §4 and will be made precise (which will include
different scales).

Recall that an element g ∈ Gp[0] ε-normalizes a subalgebra m ⊂ gp if

d
(
g.v̂m, v̂m

)
≤ ε.

Here, v̂m ∈ P(∧dim(m)gp) denotes the point corresponding to m ⊂ gp and d(·, ·) the
metric as in §7.
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We note that unlike the normalizer of m, which can change drastically under
‘small perturbations’, the notion of ε-normalizer is ‘stable’ under ‘small perturba-
tions’ of the Lie algebra. It is worthwhile noting that points in the ε-normalizer need
not be ε⋆-close to the normalizer. For example, for any nilpotent v ∈ sl2(Zp) and
any k ≥ 0 the normalizer of the nilpotent Lie algebra Qp(v , pkv) ⊂ sl2(Qp)×sl2(Qp)
is a 2-dimensional solvable subgroup of SL2(Qp) × SL2(Qp). On the other hand,
the p−k-normalizer contains e.g. {0} × SL2(Zp).

For any Qp-subgroup M with Hp ⊂ M(Qp) =M we denote its Lie algebra by m
and by rm ⊂ g a choice of undistorted θp(SL2(Qp))-invariant complement to m (see
Lemma 3.8). Recall that given a vector w in a subrepresentation V ⊂ gp we write
wnt for the component in the sum of non-trivial irreducible subrepresentations of
V (see the discussion before Lemma 3.6).

Proposition 8.1 (Alignment). Let k1 > A6 and k2 ≥ 3k1. Let M ⊂ ρ(G) be a
Qp-subgroup containing θp(SL2) so that M = M(Qp) is k1-generated by nilpotents
of pure non-zero weight. Suppose that O1,O2 ⊂ M [3k1] are two subsets of relative
measure at least 2

3 .

Let g ∈ Gp[3k1] be an element that does not p−k2-normalize m. Then there exist
m1 ∈ O1 and m2 ∈ O2 such that exp(w) = m1gm2 satisfies

w ∈ rm[3k1] and ∥wnt∥ ≥ p−4k2 .

Let C < Gp be the centralizer of θp(SL2(Qp)) and let c be its Lie algebra. We
need the following lemma.

Lemma 8.2. Let k1 > A6, k2 ≥ 3k1, and let M ⊂ ρ(G) be a Qp-group containing
θp(SL2). Assume that M = M(Qp) is k1-generated by nilpotents of pure non-zero
weight. Let O ⊂M [3k1] be a subset of relative measure > 1

p .

Suppose that g ∈ Gp[3k1] satisfies

Og ⊂ C[3k1]M [3k1]Gp[4k2].(8.1)

Then m is p−k2-normalized by g.

As an ineffective analogue, the reader may verify that {g ∈ G : Mg ⊂ CM
z} is a

group whose identity component is exactly the identity component of the normalizer
of M (here C is the centralizer of θp(SL2)). Indeed, if g ∈ G is close enough to

the identity and satisfies Mg ⊂ CM
z
then g ∈ CM, i.e. g = cm with c ∈ C and

m ∈ M. It follows from Mg ⊂ CM
z
that c−1Mc ⊂ CM

z
. But this implies that

Ad−1
c fixes the horospherical subalgebras m+ and m−. Hence, Ad−1

c fixes m as the
horospherical subalgebras generate (as a Lie algebra) all of m. It follows that c and,
hence, g are in the normalizer of M.

Proof of Lemma 8.2. We first reduce the claim to the case of g ∈ C[3k1]. Covering
M [3k1] by cosets of M [2k2], one sees that there exists m1 ∈M [3k1] such that

O′ = Om1 ∩M [2k2] ⊂M [2k2]

has relative measure > 1
p . Multiplying m1 by a suitable element of M [2k2] on

the right, we may further assume that O′ contains the identity. In particular,
m−1

1 g ∈ C[3k1]M [3k1]Gp[4k2] (since m
−1
1 ∈ O) and so there exists c ∈ C[3k1] with

c ∈ m−1
1 gM [3k1]Gp[4k2]. The new element c satisfies

(Om1)c ⊂ OgM [3k1]Gp[4k2] ⊂ C[3k1]M [3k1]Gp[4k2].
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As c ∈ m−1
1 gM [3k1]Gp[4k2], it suffices to verify the conclusion of the lemma for c

and Om1. Since c ∈ C[3k1] we have for any v ∈ log(Om1)

exp(Ad−1
c v) ∈ c−1C[3k1]M [3k1]Gp[4k2] = C[3k1]M [3k1]Gp[4k2].(8.2)

For the remainder of the proof, we will only rely on (8.2) for v ∈ log(O′) (so
we will not invoke (8.1) further) and on the fact that c ∈ C[3k1]. The set of
v ∈ m[3k1] satisfying (8.2) is rather complicated in view of the Baker-Campbell-
Hausdorff formula and the higher order commutator terms in that formula. The
situation is entirely different in the (much) smaller neighborhood m[2k2] where
commutator terms are absorbed by Gp[4k2]:

Claim. For any v ∈ m[2k2] we have

Ad−1
c v ∈ (c+m)[2k2] + gp[4k2].(8.3)

Proof of Claim. Notice that for any k ≥ 1 and any c0 ∈ C[k] there exist c1 ∈
exp((c ∩ rm)[k]) and c2 ∈ (C ∩M)[k] with c0 = c1c2. Indeed, the map

c[1] = (rm ∩ c)[1] + (m ∩ c)[1] → C[1], v = v1 + v2 7→ exp(v1) exp(v2)

is surjective by the inverse function theorem as the derivative at zero is the identity.
We first show (8.3) for all vectors in log(O′). Given v ∈ log(O′) we may write

using (8.2) and the above observation

exp(Ad−1
c v) = exp(w1) exp(w2) exp(w3)

for w1 ∈ (c ∩ rm)[3k1], w2 ∈ m[3k1], and w3 ∈ gp[4k2] (where we have absorbed
the occurring (C ∩M)[3k1] term into M [3k1]). By the Baker-Campbell-Hausdorff
formula we have

Ad−1
c v = w1 + w2 +O(max{∥w1∥∥w2∥, p−4k2})

where we abuse the Landau notation O(B) to mean an element of gp of size at
most B. Since ∥w1∥∥w2∥ ≤ max{∥w1∥, ∥w2∥}2 = ∥w1 + w2∥2 (as rm is an undis-
torted complement), w1 + w2 is the highest order term in the above right-hand
side (unless it is of size ≤ p−4k2 , in which case (8.3) certainly holds). Using ad-
ditionally Ad−1

c v ∈ gp[2k2] by definition of O′, we have w1 + w2 ∈ gp[2k2] and
so w1,w2 ∈ gp[2k2] using again that rm is undistorted. In particular, we have
∥w1∥∥w2∥ ≤ p−4k2 and

Ad−1
c v ∈ w1 + w2 + gp[4k2] ⊂ c[2k2] +m[2k2] + gp[4k2].

Hence (8.3) follows for vectors in log(O′).
We upgrade this statement to general vectors in m[2k2] using linearity of (8.3).

Let v1, . . . , vdim(m) be a Zp-basis of m[2k2]. By Fubini’s theorem and using that O′

has relative measure > 1
p , there exist t1, . . . , tdim(m) ∈ Zp and t′1 ∈ Zp such that

t1 − t′1 ∈ Z×
p and

t1v1 + . . .+ tdim(m)vdim(m), t
′
1v1 + t2v2 + . . .+ tdim(m)vdim(m) ∈ log(O′).

Since (8.3) holds for linear combinations of elements of log(O′), we obtain by taking
the difference of the above two vectors that (t1− t′1)Ad−1

c v1 ∈ (c+m)[2k2]+gp[4k2]
and so v1 satisfies (8.3). One proceeds analogously to verify (8.3) for the other basis
vectors v2, . . . , vdim(m). This proves the claim by linearity. □
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We now proceed with the proof of Lemma 8.2. Given any k ≥ 0 and any v ∈ m[k]
we have by the claim that

Ad−1
c v = p−2k2+kAd−1

c (p2k2−kv)

∈ p−2k2+k
(
(c+m)[2k2] + gp[4k2]

)
= (c+m)[k] + gp[2k2 + k].

In particular,

Ad−1
c (m[k]) ⊂ (c+m)[k] + gp[2k2].

Now notice that Ad−1
c v ∈ g+p if v ∈ m+ and Ad−1

c v ∈ g−p if v ∈ m−. Since

(c+m)± = m±, we obtain that

Ad−1
c (m±[k]) ⊂ m±[k] + gp[2k2] ⊂ m[k] + gp[2k2].

or equivalently

c−1M±[k]c ⊂M [k]Gp[2k2](8.4)

We now use effective generation to upgrade (8.4) to a similar statement for
M [3k1]. Recall that M is assumed to be k1-generated by nilpotents of pure non-
zero weight. In particular, any element of M [3k1] can be written as a product of
(at most 2 dim(m) many) elements in M±[1] — see Lemma 5.1. Since M [1]Gp[2k2]
is a group, this and (8.4) for k = 1 implies

c−1M [3k1]c ⊂ (M [1]Gp[2k2]) ∩Gp[3k1] =M [3k1]Gp[2k2].

In particular, Ad−1
c (m[3k1]) ⊂ m[3k1] + gp[2k2] and so

Ad−1
c (m[0]) ⊂ m[0] + gp[2k2 − 3k1].

For a Zp-basis v1, . . . , vdim(m) of m[0] this implies that Ad−1
c vi ≡ v ′

i mod p2k2−3k1

for some v ′
i ∈ m[0]. Notice that the vectors v ′

1, . . . , v ′
dim(m) are linearly independent

modulo p and hence also form a Zp-basis of m[0]. Thus,

c−1.(v1 ∧ . . . ∧ vdim(m)) ≡ v ′
1 ∧ . . . ∧ v ′

dim(m) mod p2k2−3k1

which proves the lemma as k2 ≥ 3k1. □

Proof of Proposition 8.1. Since rm is an undistorted complement, the map Ψ send-
ing v = v1+ v2 with v1 ∈ rm[1] and v2 ∈ m[1] to exp(v1) exp(v2) is a diffeomorphism
gp[1] → Gp[1] whose derivative has unit determinant at every point, with the de-
rivative at zero being the identity. In particular, as g ∈ Gp[3k1], we may write for
m ∈M [3k1]

mg = exp(wm)Φ(m)−1(8.5)

for some wm ∈ rm[3k1] and some Φ(m) ∈M [3k1].

Claim. The map Φ defines a diffeomorphism M [3k1] → M [3k1] whose derivative
has unit determinant at every point. In particular, Φ is measure-preserving.

Proof of Claim. We assume first that g = exp(w) for some w ∈ rm[3k1]. Let
v ∈ m[0]. By the Baker-Campbell-Hausdorff formula we have for |t| < 1

exp(tv) exp(w) = exp(w + tv +O(∥w∥∥v∥|t|) +O(|t|2)).(8.6)
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As Ψ is analytic, so is its inverse Ψ−1 : Gp[1] → gp[1] (cf. [78, Ch. III]). In particular,
we may write for |t| < 1

Ψ−1(exp(tv) exp(w)) = ϕr(t) + ϕm(t)

with analytic curves

ϕr(t) = w + ta1 + t2a2 + . . . ∈ rm[1],

ϕm(t) = tb1 + t2b2 + . . . ∈ m[1].

where we used that w ∈ rm. Using the Baker-Campbell-Hausdorff formula for
exp(ϕr(t)) exp(ϕm(t)) we have

exp
(
ϕr(t)) exp(ϕm(t)

)
= exp

(
w + t(a1 + b1) +O(|t|∥w∥∥b1∥) +O(|t|2)

)
.

Comparing linear terms in t with (8.6) we have

v +O(p−3k1∥v∥) = a1 + b1 +O(p−3k1∥b1∥)

and so, since v ∈ m, ∥b1∥ = ∥v∥ and b1 = v + O(p−3k1∥v∥). This shows the claim
if g ∈ exp(rm[3k1]) and the derivative of Φ is taken at the identity.

The statement for general g and the derivative taken at the identity follows from
writing g = g′m′ for some m′ ∈ M [3k1] and g′ ∈ exp(rm[3k1]). Moreover, taking
the derivative at any other point m ∈ M [3k1] reduces to the already proven part
of the claim by replacing g with mg. The claim follows. □

By the claim, O := O1 ∩ Φ−1(O2) is a subset of relative measure at least 1
3 . By

Lemma 8.2 and since g does not p−k2-normalize m there exists m ∈ O such that
mg ̸∈ C[3k1]M [3k1]Gp[4k2] (as long as k2 ≥ 3k1). In particular, wm defined in
(8.5) satisfies wm ̸∈ c[3k1] + gp[4k2] as otherwise

mg = exp(wm)Φ(m)−1 ∈ C[3k1]Gp[4k2]Φ(m)−1 ⊂ C[3k1]M [3k1]Gp[4k2],

where we used that Gp[4k2] is a normal subgroup of Gp[0]. In other words, we have
asserted that ∥(wm)nt∥ > p−4k2 which proves the proposition for m1 = m ∈ O1 and
m2 = Φ(m) ∈ O2. □

9. Attaining extra almost invariance

In this section, we prove Proposition 4.3 which provides extra almost invari-
ance. To do so, we combine results from previous sections with an effective ergodic
theorem for a version of the averaging operator

f 7→
∫
Zp

f(·u(−s)a(t)−1) ds.

9.1. Spectral input. Recall that the representation of θp(SL2(Qp)) on

L2
0(YD) =

{
f ∈ L2(YD) :

∫
X
f dµ = 0

}
is T-tempered for some T > 0 depending only on dim(H). That is, matrix coeffi-
cients of the T-fold tensor product of L2

0(YD) are in L2+ε
(
θp(SL2(Qp))

)
for every

ε > 0. If H(Qp) has rank at least 2, this follows from property (T ). Otherwise, it
is a strong version of property (τ); see [77, 39, 5, 10, 64, 28]. We also refer to the
discussion in [20, §4].

Similarly, the representation of θp(SL2(Qp)) on L
2
0(X) is T-tempered.



54 M. EINSIEDLER, E. LINDENSTRAUSS, A. MOHAMMADI, AND A. WIESER

9.2. An effective ergodic theorem. In this subsection, we establish an effective
ergodic theorem. Similar results were also crucially used in e.g. [21, 87, 20] though
we use an adaptation here. In particular, we will use L∞-norms to avoid a degree
increase step that was necessary for L2-Sobolev norms.

Recall that given a C1-function f on X we write lev(f) for the level of f , i.e. least
integer L ≥ 1 such that f is invariant under

∏
ℓGℓ[ordℓ(L)]. Moreover, as in the

introduction we fix an inner product on glN (R) and define the C1-norm ∥f∥C1(X) =
∥f∥C1 as the maximum of the sup norms of the function and its partial derivatives
in directions corresponding to an orthonormal basis of g∞. These definitions imply
that for any h ∈ Gp[k] and any C1-function f

sup
x∈X

|f(xh)− f(x)| ≤ 2p−klev(f)∥f∥C1 .(9.1)

Definition 9.1. Let k2 ≥ k1 ≥ 1 be integers. A point x ∈ X is [k1, k2]-typical for
the measure µ if for any k ∈ [k1, k2] ∩ Z and any ball B ⊂ Zp of radius at least

p−
k
8T the average

Dk,Bf(x) :=
1

|B|

∫
B

f(xu(−s)a−k) ds−
∫
f dµ

satisfies

|Dk,Bf(x)| ≤ p−
1

100 dim(G)Tklev(f)∥f∥C1(9.2)

for all f ∈ C1(X). Here, | · | is the Haar probability measure on Zp.

Note that Definition 9.1 requires (9.2) to hold for every C1-function f . It is not
assumed that the point x is in the support of the measure µ. We also note that the
explicit exponent will be of little importance in what follows, though we point out
that it depends only on dim(G) (and not on µ).

Proposition 9.2. There exists A12 ≥ 1 with the following property: For any k0 ≥ 1
with

pk0 ≥ pA12cpl(X)A12(9.3)

the set of points x ∈ X which are not [k0,∞)-typical has µ-measure at most p−
1
4Tk0 .

We will first show the existence of a large set of points for which the averages
in (9.2) are well-behaved with respect to an individual function. (Indeed, combine
Lemma 9.3 below with the Chebyshev inequality.) We will then use a partition of
unity to bootstrap to all functions.

Lemma 9.3. For any f ∈ C1(X) and any ball B ⊂ Zp of radius at least p−k we
have

∥Dk,B(f)∥2L2(µ) ≪ p−
1
2Tklev(f)3∥f∥2∞.

Proof. As the representation of θp(SL2(Qp)) on L
2
0(YD) is T-tempered, we have for

any f ∈ C1(YD) and any s ∈ Qp∣∣⟨u(s).f, f⟩ − µ(f)µ(f)
∣∣ ≪ (1 + |s|)− 1

2T dim⟨θp(SL2(Zp)).f⟩ ∥f∥2L2(µ).

Notice also that the dimension dim⟨θp(SL2(Zp)).f⟩ is at most the index of the
subgroup {

g ∈ SL2(Zp) : θp(g) ∈ Gp[ordp(lev(f))]
}
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in SL2(Zp). Since |SL2(Z/pnZ)| ≤ p3n for any n ≥ 1, we have

dim⟨θp(SL2(Zp)).f⟩ ≤ lev(f)3

In particular, ∣∣⟨u(s).f, f⟩ − µ(f)µ(f)
∣∣ ≪ (1 + |s|)− 1

2T lev(f)3∥f∥2∞.(9.4)

We finally turn to the problem posed in the lemma. Fix f ∈ C1(X), k ≥ 1, and
a ball B of radius equal to p−δk for some δ ≤ 1. Combining Fubini’s theorem and
invariance of µ under the principal SL2 we have for f ∈ C1(X)

∥Dk,B(f)∥2L2(µ) =
1

|B0|2

∫
B2

0

(
⟨aku(s− s′)a−k.f, f⟩L2(µ) − µ(f)µ(f)

)
dsds′,

where B0 is the translate of B containing zero. Notice that one of the two in-
tegration variables s, s′ may be removed by substitution in the above. Also, the
conjugated ball satisfies aku(B0)a

−k = u(p−(2−δ)kZp). Using (9.4) and these ob-
servations

∥Dk,B(f)∥2L2(µ) ≪ p−(2−δ)k

∫
|s|≤p(2−δ)k

(1 + |s|)− 1
2T lev(f)3∥f∥2∞ ds

≪ p−
2−δ
2T klev(f)3∥f∥2∞

proving the lemma. □

We now construct a partition of unity. For this, we control first the injectivity
radius around each point. There exist constants A13 > 0 and c1 > 0 so that for
any x ∈ X and any g ∈ ρ(G(R))(

∥g − id∥ ≤ c1 cpl(X)−A13 and xg = x
)

=⇒ g = id.(9.5)

Indeed, by Proposition 6.1 we have minw∈QN\{0} c(ρ(g)w) ≫ cpl(X)−⋆ for any
g ∈ G(A) (vaguely, there are no short vectors for any coset in the compact space
X). Thus, (9.5) follows from e.g. [60, Lemma 2.3]).

Lemma 9.4. For any L ≥ 1 and any ε ∈ (0, c1 cpl(X)−A13) there exists a smooth
partition of unity {χε,L,i : i ∈ Iε,L} of X with the following properties:

• The number of functions #Iε,L satisfies

#Iε,L ≪ ε− dim(G)LN2

vol(X).

• For any i ∈ Iε,L, the function χε,L,i is invariant under
∏

ℓGℓ[ordℓ(L)].
• For any i ∈ Iε,L, there exists x ∈ X such that χε,L,i is supported on the
neighborhood

x
(
{g ∈ ρ(G(R)) : ∥g − id∥ ≤ ε} ×

∏
ℓ

Gℓ[ordℓ(L)]
)
.

• We have ∥χε,L,i∥C1(X) ≪ ε−1 for all i ∈ Iε,L.

Proof. While such constructions are mostly standard, we give here a proof simplified
by the fact that X is compact. We may as well construct a partition of unity of
the smooth manifold X[L] := X/

∏
ℓGℓ[ordℓ(L)]. Note that X[L] is a compact

manifold of volume ≪ vol(X)LN2

where the volume is intended with respect to a
Riemannian metric induced by the fixed inner product on the Lie algebra. Indeed,

for any prime ℓ the index of Gℓ[ordℓ(L)] in Gℓ[0] is at most ℓordℓ(L)N2

.
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Let P be a measurable partition of X[L] consisting of sets of diameter at most

ε/4. We may assume that the cardinality of P is ≪ ε− dim(G)vol(X)LN2

. Let
m be a Haar measure on ρ(G(R)). Let ϕ be a smooth density on ρ(G(R)) with∫
ϕdm = 1 which is supported on the ball of radius at most ε/2 around the identity

and which satisfies ∥ϕ∥C1(X) ≪ ε−1. For any measurable function f on X[L] the
convolution

ϕ ∗ f(x) =
∫
f(xg)ϕ(g) dm(g)

is smooth. One may now check that {ϕ ∗ (1|P ) : P ∈ P} satisfies the required
properties. □

Proof of Proposition 9.2. Our aim for a given k0 ≥ 1 is to find ‘many’ [k0,∞)-
typical points. For simplicity, we fix constants δ, δ′ ∈ (0, 1) to be determined below
and to be used in the definition of typical points as follows: δ will be the speed of
decay of the averages and δ′ will be appear in the size of the expanded balls.

In view of (9.3) we may assume that k0 satisfies p−δk0 < c1 cpl(X)−A13 . For any
k ≥ k0 and L ≥ 1 let {χk,L,i : i ∈ Ik,L} be the partition of unity from Lemma 9.4,
where we used ε = ε(k) = p−δk and simplified the notation accordingly. Notice
that the estimate

|Dk,Bf(x)| ≤ p−δklev(f)∥f∥C1(X)

is trivial for functions f of level at least 2pδk.
Given any ball B ⊂ Zp of radius at least p−δ′k we have by Lemma 9.3

∥Dk,B(χk,L,i)∥2L2(µ) ≪ p−
1
2TkL3.

In particular, by the Chebyshev inequality

µ
(
{x : |Dk,B(χk,L,i)(x)| > p−δkL(#Ik,L)−1}

)
≪ p2δk−

1
2TkL(#Ik,L)2.(9.6)

Write Bad(k0) for the set of points x ∈ X for which there exists k ≥ k0, a ball

B ⊂ Zp of radius at least p−δ′k, a level L ≤ 2pδk, and some i ∈ Ik,L with

|Dk,B(χL,k,i)(x)| > p−δkL(#Ik,L)−1.

Notice that there are at most 2pδ
′k many balls B ⊂ Zp of radius at least p−δ′k.

Using this and the bound on the number #Ik,L of elements in the partition of unity
from Lemma 9.4 we obtain from (9.6)

µ(Bad(k0)) ≪
∑
k≥k0

p(δ
′+2δ− 1

2T )k
∑

L≤2pδk

L(#Ik,L)3

≪
∑
k≥k0

p(δ
′+(2+3 dim(G))δ− 1

2T )k
∑

L≤2pδk

L1+3N2

vol(X)3

≪
∑
k≥k0

p(δ
′+(2+3N2)δ− 1

2T )kpδk(2+3N2)vol(X)3

≪
∑
k≥k0

p(δ
′+(6N2+4)δ− 1

2T )kvol(X)3.

Thus, for δ = (6N2 + 4)−1(8T)−1 and δ′ = 1
8T we obtain

µ(Bad(k0)) ≪ p−
1
4Tk0vol(X)3.
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In fact, choosing δ slightly smaller (as in Definition 9.1) we can guarantee that

µ(Bad(k0)) ≤ p−
1
4Tk0 in view of (9.3) and Proposition 3.1.

We will now show that any x ̸∈ Bad(k0) is [k0,∞)-typical. So let x ̸∈ Bad(k0) and
suppose that f ∈ C1(X) and k ≥ k0 are given. Recall that if the level L = lev(f)
satisfies L ≤ 2pδk, we are done. So assume otherwise. Write xi for the ‘center
points’ in the definition of the partition of unity {χk,L,i : i ∈ Ik,L}. Then

f =
∑

i∈Ik,L

f(xi)χk,L,i +O
(
p−δk∥f∥C1(X)

)
by the mean value theorem. Moreover, by definition of the set Bad(k0) we have for

any ball B of radius at least p−δ′k∣∣∣ ∑
i∈Ik,L

f(xi)Dk,Bχk,L,i(x)
∣∣∣ ≤ p−δkL∥f∥∞.

Together, these estimates show that

|Dk,Bf(x)| ≪ p−δkL∥f∥C1(X).

Hence the proposition follows by recalling that p is assumed to be sufficiently large
and decreasing δ slightly. □

Proposition 9.5. Suppose that µ is p−k-almost invariant under all elements of a
closed subgroup M0 < Gp[0]. Then for any k0 ≥ 1 with (9.3) the proportion of pairs

(x,m) ∈ X ×M0 for which xm is not [k0, k/(4 dimG)]-typical is at most p−
1
4Tk0 .

In particular, for every n ≥ 1 there exists a subset X ′ ⊂ X with µ(X ′) ≥ 2
3 and

with the following property: For any x ∈ X ′ the measure of the set of s ∈ Qp with
|s| ≤ pn and

vol
(
{m ∈M0 : xu(s)m is [k0,

1
4 dimGk]-typical}

)
≥ 2

3

is at least 2
3p

n. Here, vol(·) denotes the Haar probability measure on M0.

Proof. The proof of the first statement is largely analogous to the proof of Propo-
sition 9.2. Given a smooth function χ on X notice that the translate χ(·u(s)a−k′

)

has level at most p2 dim(G)k′
lev(χ) for any k′ and any s ∈ Zp. Correspondingly, for

any k′ ≥ 0 and for any ball B ⊂ Zp of radius at least p−k′∫
M0

∫
X

|(Dk′,Bχ)(xm)|2 dµ(x) dvol(m)

≤ p−k+2dim(G)k′
lev(χ)∥χ∥2C1(X) + ∥Dk′,Bχ∥2L2(µ)

≪ p−k+2dim(G)k′
lev(χ)∥χ∥2C1(X) + p−

1
2Tk

′
lev(χ)3∥χ∥2∞

≪ p−
1
2Tk

′
lev(χ)3∥χ∥2C1(X)

where we used p−k-almost invariance for the first inequality (cf. Definition 4.1),
Lemma 9.3 for the second, and where we assumed k′ ≤ k/(4 dimG) in the third.
From here, one may proceed in exactly the same fashion as in the proof of Proposi-
tion 9.2. The only minor difference is that the above estimate involves derivatives
of the elements of the partition of unity; these are controlled by Lemma 9.4.

The second statement follows from Fubini’s theorem and the first statement.
Indeed, set for x ∈ YD and |s| ≤ pn

f(x, s) = vol
(
{m ∈M0 : xu(s)m is not [k0, k/(4 dimG)]-typical}

)
.
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By U -invariance of µ, the first statement in the proposition, and since k0 is assumed
sufficiently large, we have

p−n

∫ ∫
|s|≤pn

f(x, s) dsdµ(x) ≤ p−⋆k0 < 1
27 .

By Chebyshev’s inequality, the µ-measure of x ∈ YD with p−n
∫
|s|≤pn f(x, s) ds >

1
9

is less than 1
3 . For any x ∈ YD outside this exceptional set, i.e. with

p−n

∫
|s|≤pn

f(x, s) ds ≤ 1
9 ,

another application of Chebyhev’s inequality shows that∣∣{|s| ≤ pn : f(x, s) ≥ 1
3

}∣∣ ≤ 1
3p

n.

This proves the proposition. □

9.3. An elementary property of almost invariance. In the following, we verify
a few elementary properties of the notion of almost invariance defined in §4.3. We
note that almost invariance under p-adic directions in the Lie algebra is significantly
less well-behaved than almost invariance under archimedean directions (see e.g. [21,
§8] for properties of the latter). For instance, if µ is ‘almost invariant’ under two
vectors v ,w ∈ gp[0] it is unclear to what extent, in general, µ is also ‘almost
invariant’ under their sum v +w (or other linear combinations). Issues arising from
this will be resolved via the effective generation result in Theorem 4.4.

The following properties are direct consequences of the definition (Definition 4.1):

(A1) µ is 2p−k-almost invariant under all g ∈ Gp[k] (see also (4.1)).
(A2) If µ is p−k-almost invariant under g ∈ Gp[0], then for any h ∈ Gp[k

′] the

measure µ is (p−k + 2p−k′
)-almost invariant under gh.

(A3) If µ is p−k1 -almost invariant under g1 ∈ Gp[0] and p−k2-almost invari-

ant under g2 ∈ Gp[0], then µ is also p−k1 -almost invariant under g−1
1 and

(p−k1 + p−k2)-almost invariant under g1g2. (Indeed, lev(f(·g−1
i ) = lev(f)

for any f and i = 1, 2.)
(A4) If µ is p−k-almost invariant under g ∈ Gp and h ∈ θp(SL2(Qp)), then µ is

p−k∥h∥2-almost invariant under gh and hg. (Indeed, the level of f(·h) is
at most ∥h∥2lev(f) for any f .) In particular, if µ is p−k-almost invariant
under v ∈ gp[0] then µ is ∥h∥4p−k-almost invariant under Ad(h)v .

Here, we prove the following (arguably minimalistic) statement.

Proposition 9.6. There exists A14 ≥ 1 with the following property.
Let V ⊂ gp be a subspace invariant under θp(SL2(Qp)) and let

v =
∑
λ>0

vλ ∈ V hw[0] \ V hw[1]

be a vector with pure-weight components vλ ∈ V (λ)[0]. Suppose that µ is p−k-
almost invariant under exp(v). Then there exists a highest weight vector w ∈
V hw[0] \ V hw[1] of pure weight such that µ is p−k/A14+A14-almost invariant under
w .

Proof. In view of the conclusion, we may assume that k > B for some B = B(N) ≥
1 to be determined in the course of the proof. Indeed, recall from (A1) that µ is
trivially p-almost invariant under any vector in gp[0].
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We first claim that there exists v ′ with the same properties as v and with pure
non-zero weight λ such that µ is p−⋆k+⋆-almost invariant under exp(v ′). We find
v ′ by induction and a simple case distinction according to whether or not the
component of largest weight in v is ‘small’.

Let λ0 be maximal with vλ0
̸= 0. If λ0 = 1, we are done, so assume otherwise.

Fix two parameters k1, k2 < k to be determined later (with k1, k2 ≥ ⋆k).
Assume first that ∥vλ0

∥ ≥ p−k1 . By pk2 -fold iteration of exp(v) using (A3), the
measure µ is pk2−k-almost invariant under exp(pk2v). Let

k3 = ⌊(k2 − logp(∥vλ0
∥))/λ0⌋.

Observe that

1 ≥ p−k2+λ0k3∥vλ0
∥ = ∥Ad(ak3)pk2vλ0

∥ > p−λ0

and k3 ≤ 1
λ0
(k1 + k2). In particular,

v ′ = Ad(ak3)pk2vλ0 ∈ V [0] \ V [λ0].

For any smaller weight λ < λ0 we have

∥Ad(ak3)pk2vλ∥ ≤ p−k2+λk3 ≤ p
λ
λ0

k1−(1− λ
λ0

)k2 .

Notice that we have not specified either of the parameters k1, k2 up to this point;
we choose k1 = ⌊ 1

2 (
λ0

λ0−1 − 1)k2⌋ such that ∥Ad(ak3)pk2vλ∥ ≤ p−⋆k2 for any λ <

λ0. By (A4) and the earlier iteration, µ is p⋆k3+k2−k-almost invariant under
exp(Ad(ak3)pk2v) where k3 ≤ k1 + k2 ≤ 2k2 and

Ad(ak3)pk2v = v ′ +O(p−⋆k2).

Thus, µ is also (p−⋆k2 + p⋆k2−k)-almost invariant under exp(v ′) by (A2). Choosing
k2 = ⌊⋆k⌋ appropriately, µ is p−⋆k-almost invariant under exp(v ′). We may also
apply a and iterate by a suitable power of p so that v ′ ∈ V [0] \ V [1] in which
case µ is p−⋆k+⋆-almost invariant under exp(v ′). This proves the claim under the
assumption ∥vλ0∥ ≥ p−k1 .

If ∥vλ0
∥ < p−k1 , the measure µ is (p−k + p−k1)-almost invariant under the el-

ement exp(
∑

λ<λ0
vλ) by (A2). Since k1 ≫ k, µ is p−⋆k-almost invariant under

exp(
∑

λ<λ0
vλ). In that case, we may replace the vector v with

∑
λ<λ0

vλ and
restart the above argument with new parameters.

We now show that µ is p−⋆k+⋆-almost invariant under v ′. We first claim that µ
is p−⋆k+⋆-almost invariant under exp(tλv ′) for all t ∈ Zp. Indeed, µ is |t|⋆p−⋆k+⋆-
almost invariant under a(t) exp(v ′)a(t)−1 = exp(tλv ′) which implies the claim for
|t| ≥ p−⋆k+⋆. Otherwise, the claim follows directly from (A1).

By Hensel’s lemma, any t′ ∈ Zp with t′ ≡ 1mod p is of the form t′ = tλ for
some t ∈ Zp (using p > dim(g) > λ). As µ is p−⋆k+⋆-almost invariant under
exp((tλ1 − tλ2 )v

′) for all t1, t2 ∈ Zp by (A3), this shows that µ is p−⋆k+⋆-almost
invariant under exp(tv ′) for all t ∈ pZp. This proves the proposition. □

9.4. Extra almost invariance from transversal pairs of typical points. The
following proposition establishes ‘additional almost invariance’ assuming the exis-
tence of ‘transversal’ typical points; we will assert the latter in Proposition 9.9
below.
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Proposition 9.7. There exists A15 > 1 depending only on N with the following
property.

Let r ⊂ gp be an undistorted θp(SL2(Qp))-invariant subspace. Let k1, k2 ∈ N
with k2 > k1 > A15. Suppose that there exist two [k1/(3 dim(g)), k2]-typical points
x1, x2 ∈ X so that

x2 = x1g exp(v)

where g ∈ ρ(Kf ) centralizes θp(SL2(Qp)) and where v ∈ r satisfies

∥v∥ ≤ p−k1 and ∥vnt∥ ≥ p−k2 .

Then µ is p−k1/A15-almost invariant under a highest weight vector w ∈ r[0] \ r[1] of
non-zero weight.

We will use the following simple observation relying on polynomial behaviour.

Lemma 9.8. Let r ⊂ gp be a θp(SL2(Qp))-invariant subspace. Write r =
∑

i ri
for irreducible subrepresentations ri as in Lemma 3.5. Let v =

∑
i vi ∈ r[0] where

vi ∈ ri[0]. Then the measure of s ∈ Zp satisfying

∥
(
Ad(u(s))vi

)hw∥ = ∥Ad(u(s))vi∥ = ∥vi∥ for all i(9.7)

is at least 1− dim(r)
p . In particular, there exists s ∈ Zp with (9.7).

Proof. Given any polynomial f ∈ Zp[s] of degree d < p with at least one coefficient
of absolute value one, the measure of {s ∈ Zp : p | f(s)} is exactly the proportion
of zeros of f mod p in Fp. Since f mod p is non-zero, it has at most d zeros and so

|{s ∈ Zp : p ∤ f(s)}| ≥ 1− d/p.

Returning to the problem in the lemma, for every i choose wi ∈ rhwi [0] \ rhwi [1]
and let fi(s) be the polynomial of degree dim(ri)− 1 with(

Ad(u(s))
vi
∥vi∥

)hw

= fi(s)wi.

By Lemma 3.6, each of these polynomials has at least one coefficient of absolute
value one. The lemma thus follows by applying the above general observation to
the polynomial f(s) =

∏
i fi(s) of degree at most dim(r). □

Proof of Proposition 9.7. We assume that k1 > C for some C = C(N) to be deter-
mined.

Write r =
∑

i ri as a direct sum of irreducible subrepresentations with highest
weights λi with r[0] =

∑
i ri[0] in view of Lemma 3.5. Express v =

∑
i vi accordingly

where vi ∈ ri[1] for each i. Let s0 ∈ Zp be as in (9.7) and let k ≥ 0 be minimal
such that

∥Ad(aku(s0))v∥ > p− dim(g)

By the assumptions on vnt, k indeed exists and satisfies k1/ dim(g) ≤ k ≤ k2.
Moreover,

w := (Ad(aku(s0))v)hw = Ad(aku(s0))v +O(p−k).

Let B be the ball around s0 with radius p−⌊ 1
8Tk⌋. Then any s ∈ B also satisfies

(9.7) and we have

Ad(aku(s))v = w +O(p−⋆k).(9.8)
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Indeed, Ad(aku(s))v = (Ad(aku(s))v)hw +O(p−k) and

(Ad(aku(s))v)hw =
∑
i

(Ad(aku(s))vi)hw =
∑
i

p−kλi(Ad(u(s))vi)hw

=
∑
i

p−kλi
(
(Ad(u(s0))vi)hw +O(p−⋆k∥vi∥)

)
=

∑
i

p−kλi(Ad(u(s0))vi)hw +O(p−⋆k) = w +O(p−⋆k)

where in the fourth equality we used that ∥vi∥ ≤ p−kλi by choice of k.
Recall that both points x1, x2 are assumed to be [k1/ dim(g), k2]-typical. Thus,

we have for any f ∈ C1(X)∫
f dµ =

∫
B

f
(
x2u(−s)a−k

)
ds+O(p−⋆klev(f)∥f∥C1(X))

=

∫
B

f
(
x1u(−s)a−kg exp(Ad(aku(s))v)

)
ds+O(p−⋆klev(f)∥f∥C1(X))

=

∫
B

f
(
x1u(−s)a−kg exp(w)

)
ds+O(p−⋆klev(f)∥f∥C1(X))

=

∫
f(·g exp(w)) dµ+O(p−⋆klev(f)∥f∥C1(X)),

where we used (9.8) together with (9.1) for the third equality. This proves that µ
is p−⋆k1-almost invariant under g exp(w) (using p sufficiently large and k ≫ k1).
Note that by construction w = wnt, w ∈ r[0] \ r[dim(g)] and w is centralized by U
i.e. w ∈ rhw.

We claim that µ is in fact p−⋆k1-almost invariant under exp(w) (removing g). To
see this, we apply the above argument for k much smaller than k1. More explicitly,
taking k = ⌊k1/(2 dim(g))⌋ we have ∥Ad(aku(s))v∥ ≤ p−k1/2 for any s ∈ Zp. Thus,
for f ∈ C1(X) using (9.1)

f(x2u(−s)a−k) = f
(
x1u(−s)a−kg exp(Ad(aku(s))v)

)
= f(x1u(−s)a−kg) +O

(
p−k1/3lev(f)∥f∥C1

)
.

Using that x1, x2 are [k1/(3 dim(g)), k2]-typical and proceeding as before, we obtain
that µ is p−⋆k1-almost invariant under g. Hence, µ is p−⋆k1 -almost invariant under
g−1g exp(w) = exp(w) (cf. (A3)).

Since w = whw = wnt, there is some m ≤ dim(g) such that w ′ := pmAd(a)w ∈
r[0] \ r[1]. The measure µ is ≪ p−⋆k1+⋆-almost invariant under exp(w ′) by (A3)
and (A4). The proposition now follows Proposition 9.6 applied to w ′. □

9.5. Proof of Proposition 4.3. We first prove the following technical proposition
which relies on the previous results from §6–§8 (including the effective closing lemma
in Proposition 7.1). Under suitable conditions, it establishes the existence of a
pair of typical points with a ‘transversal’ displacement that is useful in view of
Proposition 9.7.

Proposition 9.9. There exist A16 > 0 depending only on N with the following
property. Let k0 be minimal with (9.3) and let k1 ≥ A16k0. Let k ≥ 1 be a further
integer with

cpl(X)A16pA16 ≤ pk ≤ mcpl(YD)
1/A16 .
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Suppose that M < ρ(G) is a Qp-subgroup containing θp(SL2) such that

(1) M = M(Qp) is k-generated by nilpotents of pure non-zero weight, and
(2) µ is p−k1-almost invariant under M [3k].

Let rm ⊂ gp be an undistorted θ(SL2(Qp))-invariant complement to m = Lie(M).
Then there exist two points x1, x2 ∈ X which are both [k0, k1/(4 dimG)]-typical and
where x2 = x1g for g ∈ ρ(G(A)) satisfying gℓ ∈ SLN (Zℓ) for all ℓ ̸= p, ∥g∞∥ ≤ 2,
and gp = exp(v) for v ∈ rm with

∥v∥ ≤ p−3k, ∥vnt∥ ≥ p−A16k.

Note that, in practice, we will take k1 to be much larger than k so that the
assumption on almost invariance does not follow from mere Lipschitz continuity
(see (4.1)).

Proof of Proposition 9.9. Let vol(·) denote the Haar measure for M normalized for
simplicity such that vol(M [3k]) = 1. We use the specialized notion of Diophantine
points from (6.4). We may assume

mcpl(YD) > (ht(G)p)A
2

= (cpl(X)p)A
2

(9.9)

for some very large power A > 0 (otherwise, there exists no k > 0 as in the
proposition and we conclude). In particular, (6.5) holds. Lastly, we let n > 0 be
an auxiliary integer to be chosen later (essentially as a multiple of k) and assume
it satisfies

(ht(G)p)A ≤ pn ≤ mcpl(YD)
1/A.(9.10)

and

κ3n/(2 dimG) ≥ 3k.(9.11)

We begin by constructing a ‘good’ set of points. In vague words, these will be
points x ∈ X satisfying, in particular, that for many points along a long piece of the
U -trajectory many translates by the almost invariance group M [3k] are ‘typical’.
We also require many points along the U -trajectory to be ‘Diophantine’. For the
precise construction, we combine Corollary 6.8 and Proposition 9.5 (applied for the
group M0 = M [3k]). Thus, we obtain a set Ygood ⊂ YD of µ-measure at least 1

3
with the following properties for any y ∈ Ygood:

• The set of s ∈ Qp with |s| ≤ pn for which πS(y)u(s) is mcpl(YD)
1

2A10 -
Diophantine has measure at least 2

3p
n.

• The measure of the set of s ∈ Qp with |s| ≤ pn and

vol
(
{m ∈M [3k] : yu(s)m is [k0, k1/(4 dimG)]-typical}

)
≥ 2

3

is at least 2
3p

n.

In the following we fix a point y ∈ Ygood and let S ⊂ {s : |s| ≤ pn} be the set of
‘good times’ for this point i.e. so that for all s ∈ S we have

vol({m ∈M [3k] : yu(s)m is [k0, k1/(4 dimG)]-typical}) ≥ 2
3

and πS(y)u(s) is mcpl(YD)
1

2A10 -Diophantine (and in particular pn-Diophantine when
A ≥ 2A10). Note that |S| ≥ 1

3p
n by construction of the set Ygood.

We now use the pigeonhole principle to find two points in the u(S)-orbit of x
which are ‘close’ to each other, but do not lie on the same local M -orbit. In fact,
we will construct them so that their displacement does not ‘almost normalize’ M .



EFFECTIVE EQUIDISTRIBUTION OF SEMISIMPLE ADELIC PERIODS 63

Cover X by balls of the form

B(x) =
{
xg : ∥g∥∞ ≤ 4

3 , gℓ ∈ Gℓ[0] for ℓ ̸= p, gp ∈ Gp[⌈κ3n/(2 dimG)⌉]
}

for x ∈ X. There is a finite cover of X by such balls with multiplicity bounded in
terms of N where the number of balls is ≪ pκ3n/2+⋆vol(X) ≪ pκ3n/2+⋆cpl(X)⋆ by
definition of the volume and Proposition 3.1. In view of our assumption in (9.10),
the number of these balls is less than pκ3n. In particular, there exists x ∈ X such
that

E = {s ∈ S : yu(s) ∈ B(x)}

satisfies |E| > p(1−κ3)n. Note that for any s, s′ ∈ E we have xu(s) = xu(s′)g
for some g ∈ ρ(G(A)) with ∥g∥∞ ≤ 2, gℓ ∈ SLN (Zℓ) for all ℓ ̸= p, and gp ∈
Gp[⌈κ3n/(2 dimG)⌉].

We now wish to apply the effective closing lemma in Proposition 7.1 to the point
y and the set of times E. If the assumption in (3) therein holds, the closing lemma
is indeed applicable and we obtain that m is a semisimple ideal of gp. But this is
impossible by Lemma 3.7 and so (3) cannot hold. Thus, there exist s1, s2 ∈ E such
that

yu(s2) = yu(s1)g

for g ∈ ρ(G(A)) with ∥g∥∞ ≤ 2, gℓ ∈ SLN (Zℓ) for ℓ ̸= p, gp ∈ Gp[⌈κ3n/(2 dimG)⌉]
and, crucially,

d(gp.v̂m, v̂m) > p−n.

In particular, m is not p−n-normalized by gp.
We now apply the alignment lemma in Proposition 8.1 to the above found dis-

placement gp. Since gp ∈ Gp[⌈κ3n/(2 dimG)⌉] and we assumed (9.11), we are able
to apply Proposition 8.1. Explicitly, let O1 ⊂ M [3k] be the subset of points m for
which yu(s1)m

−1 is [k0, k1/(4 dimG)]-typical and let O2 ⊂ M [3k] be the subset
of points m for which yu(s2)m is [k0, k1/(4 dimG)]-typical. Since s1, s2 ∈ S, the
subsets O1,O2 have relative measure at least 2

3 . By Proposition 8.1, there exist
m1 ∈ O1 and m2 ∈ O2 such that m1gpm2 = exp(v) for v ∈ rm with

∥v∥ ≤ p−3k, ∥vnt∥ ≥ p−4n.

We choose n minimal such that (9.11) holds. In particular, this guarantees ∥vnt∥ ≥
p−⋆k. Finally, the two points

x1 = yu(s1)m
−1
1 , x2 = yu(s2)m2

satisfy the requirements of the proposition with displacement exp(v). □

Proof of Proposition 4.3. As in the proposition, let M < ρ(G) be a Qp-subgroup
containing θp(SL2) so that M = M(Qp) < Gp is k-generated by some nilpotents
of pure non-zero weight. Suppose that µ is p−n-almost invariant under M [3k]
for some auxiliary parameter n. When n, k are sufficiently large, we may apply
Proposition 9.9 with k and with n instead of k1. We thus obtain two points x1, x2 ∈
X which are [k0, n/(4 dimG)]-typical so that x2 = x1ρ(g) for g ∈ G(A) satisfying
gℓ ∈ Kℓ for all ℓ ̸= p, ∥g∞∥ ≤ 2, and gp = exp(v) for v ∈ rm with

∥v∥ ≤ p−3k, ∥vnt∥ ≥ p−A16k.
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When k is sufficiently large and A16k ≤ n/(4 dimG), we may apply Proposi-
tion 9.7 and obtain that µ is p−⋆k-almost invariant under a highest weight vector
w ∈ rm[0] \ rm[1] of non-zero weight. This implies Proposition 4.3. □

10. Proof of the main theorems

In this section, we prove Theorems 1.1 and 1.2. For clarity, we shall do so over
F = Q first and then reduce to that case.

10.1. The case F = Q. We adopt our standing assumptions from §4.1 and prove
the following seemingly weaker claim.

Proposition 10.1. There exists A17 > 0 depending only on N so that for any
f ∈ C1(X) we have∣∣∣ ∫

X

f −
∫
YD

f dµ
∣∣∣ ≤ cpl(X)A17pA17

mcpl(YD)1/A17
lev(f)∥f∥C1(X)

Since p can potentially be of size at least log(cpl(YD)), the conclusion of the
above proposition is empty if YD is contained in an intermediate period of com-
plexity at most logarithmic in the complexity of YD. The same is not the case in
e.g. Theorem 1.1. We will remedy this issue later by inducing over intermediate
periods.

We will use the following lemma relying on spectral gap for the ambient space X.

Lemma 10.2. There exists A18 > 0 with the following property. Let k ≥ 1 with
pk ≥ pA18cpl(X)A18 . Suppose that µ is p−A18k-almost invariant under Gp[k]. Then
for any f ∈ C1(X) ∣∣∣ ∫

X

f −
∫
YD

f dµ
∣∣∣ ≤ p−klev(f)∥f∥C1(X).(10.1)

Proof. Fix A = A18 > 0 to be determined in the proof and suppose that µ is p−Ak-
almost invariant under Gp[k] and p

k ≥ pAcpl(X)A. We fix f ∈ C1(X) and wish to
show (10.1). We may assume lev(f) ≤ 2pk as the statement is trivial otherwise.

Fix s ∈ Qp to be determined (of size |s| some small power of pAk). As µ is
p−Ak-almost invariant under Gp[k], we have by (A4)∫

X

∫
Gp[k]

f(xgpu(s)) dgp dµ(x) =

∫
X

f dµ+O
(
|s|⋆p−Aklev(f)∥f∥C1(X)

)
,(10.2)

where dgp denotes the normalized Haar measure on Gp[k].
We estimate the inner integral on the left-hand side of (10.2) using effective

decay of matrix coefficients for L2
0(µX). Let Ωf =

∏
ℓ Ωℓ be the compact open

subgroup of ρ(G(Af )) with Ωℓ = Gℓ[ordℓ(lev(f))] when ℓ ̸= p and Ωp = Gp[k]. Let
ψ be a smooth non-negative function on X with the following properties:

• ψ is invariant under Ωf .
• The support of ψ is contained in

x
(
{g ∈ ρ(G(R)) : ∥g − id∥ < p−2k} × Ωf

)
.

• ∥ψ∥∞ ≪ p⋆k. (The volume of the real manifold X/Ωf is ≪ p⋆k.)
•
∫
X
ψ = 1.
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See also the discussion in the proof of Lemma 9.4; in view of the assumption on k
and (9.5), the above neighborhood of x is injective for A > 0 sufficiently large. By
Lipschitz continuity we conclude that∫

Gp[k]

f(xgpu(s)) dgp =

∫
X

f(yu(s))ψ(y) dµX(y) +O
(
p−2k∥f∥C1(X)

)
= ⟨u(s).f, ψ⟩L2(µX) +O

(
p−2k∥f∥C1(X)

)
.(10.3)

As the representation of θp(SL2(Qp)) on L2
0(X) is T-tempered, we have as in

Lemma 9.3

⟨u(s).f, ψ⟩L2(µX) =

∫
X

f +O
(
(1 + |s|)−⋆lev(f)

3
2 lev(ψ)

3
2 ∥f∥∞∥ψ∥∞

)
=

∫
X

f +O
(
(1 + |s|)−⋆p⋆k∥f∥∞

)
(10.4)

using the above properties of ψ and the assumption that lev(f) ≤ 2pk. Combining
(10.2), (10.3), and (10.4) we obtain∣∣∣ ∫

X

f −
∫
YD

f dµ
∣∣∣ ≪ (

|s|⋆p−Ak + p−2k + (1 + |s|)−⋆p⋆k
)
lev(f)∥f∥C1(X).

For a suitable choice of s ∈ Qp and A > 0 the middle term in the above right-hand
side dominates. For p sufficiently large, this proves the lemma. □

Proof of Proposition 10.1. The reader is advised to first recall the inductive scheme
outlined in §4.2 that we will follow here. Set A = max{A5, 3A18} and δ = 1/(3A).
The following argument alternates between applying Proposition 4.3 and Theo-
rem 4.4.

Initial Step: Starting from the obvious invariance under Hp we find additional

almost invariance. Let k > 0 be maximal with pk ≤ mcpl(YD)
1/A5 . If pk <

pA5cpl(X)A5 , the proposition is trivially true. So we assume otherwise. We take
M = Hp and note that µ is invariant, and in particular p−A5k-almost invariant,
under M [3k]. By Lemma 5.3, M = Hp is 0-generated (and, in particular, k-
generated). Overall, we are in position to apply Proposition 4.3. Thus, there exists
a highest weight vector v ∈ gp[0] of non-zero weight with v mod p ̸∈ hp[0]mod p so

that µ is p−k/A5 -almost invariant under v .
Let N be the list consisting of the nilpotents w1, . . . ,wdim(h) of pure non-zero

weight 0-generating Hp (provided by Lemma 5.3) and the additional direction v .
Now apply Theorem 4.4 with N , with k/A5 (instead of k) and with the above δ.
As before, if (4.4) is not satisfied, we conclude. Else, we obtain a perturbation
v1, . . . , vdim(h) of w1, . . . ,wdim(h) and vdim(h)+1 of v as well as a constant α1 ≫ 1 so
that the following hold:

• ∥vi − wi∥ < p−α1k/A5+dim(G) for 1 ≤ i ≤ dim(h).
• ∥vdim(h)+1 − v∥ < p−α1k/A5+dim(G).
• The vector vdim(h)+1 is a highest weight vector of pure non-zero weight.
• The vectors vi, i ≤ dim(h), are of pure non-zero (possibly negative) weight.
• If M1 is the Zariski closure of the group generated by θp(SL2(Qp)) and
the one-parameter unipotent subgroups {exp(tvi) : t ∈ Qp}1≤i≤dim(h)+1,
then M1 = M1(Qp) is δα1k/A5-generated by nilpotents in gp[0] of pure
non-zero weight. Specifically, this list of nilpotents consists of vectors
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from {v1, . . . , vdim(h)+1} and the upper and lower nilpotent z+, z− from
Dθp(sl2(Qp)).

For convenience, we set k1 = ⌈δα1k/A5⌉ so that k1 ≥ c1k for some constant c1 > 0
depending only on N and so that M1 is k1-generated in the above manner. By the
first bullet point, µ is p−2Ak1-almost invariant under the new directions vi (assuming
that k1 is sufficiently large). By Lemma 5.1, this implies that µ is p−Ak1-almost
invariant under the group M [3k1]. Note that we have used our choice of δ > 0 (and
in particular our freedom to do so) here.

Also, notice that the Lie algebra of the group generated by the one-parameter
groups {exp(tvi) : t ∈ Qp}1≤i≤dim(h) agrees with hp modulo p. Since v mod p ̸∈
hp[0]mod p, this shows that dim(M1) ≥ dim(H) + 1 (or, more precisely, the di-
mension of M1 is at least the dimension of H plus the dimension of the non-trivial
representation generated by the highest weight vector vdim(h)+1).

Inductive Step: Suppose by induction that for i ∈ {dim(h) + 1, . . . ,dim(g)}
we are given ki ≥ cik for some constant ci depending only on N and nilpotents
v1, . . . , vi ∈ gp[0] of pure non-zero weight with the following properties:

• The Lie algebra of the group generated by {exp(tvi) : t ∈ Qp}1≤i≤dim(h)

agrees with the Lie algebra hp modulo p.
• The vectors vdim(h), . . . , vi are highest weight vectors that are linearly in-
dependent modulo p and that are not contained in hp[0]mod p.

• Let Mi the Zariski closure of the group generated by the principal SL2

and the one-parameter unipotent subgroups {exp(tvi) : t ∈ Qp}. Then
Mi = Mi(Qp) is ki-generated by a list of nilpotents so that each element is
contained in {v1, . . . , vi} or is equal to z+ or z−.

• The measure µ is p−Aki -almost invariant under Mi[3ki].

Note that the assumed list (v1, . . . , vi) might not overlap at all with the list attained
at the initial step or the previous step in the induction. Also, note that Mi is not
guaranteed to contain the invariance group Hp.

If Mi is not a proper subgroup, Lemma 10.2 implies the proposition (and the
induction is aborted). So assume that Mi is a proper subgroup. We apply Proposi-
tion 4.3 for the groupMi and for ki. If p

ki is too small, we conclude. Otherwise, we
obtain a highest pure non-zero weight vector v ∈ gp[0] with v mod p ̸∈ mi[0]mod p

under which µ is p−ki/A5 -almost invariant.
Now apply Theorem 4.4 to the list (v1, . . . , vi, v), δ = 1

3A5
(as before), and

k = ki/A5. Again, if k is too small, we conclude. Otherwise, we find a new list
(v ′

1, . . . , v ′
i+1) ∈ gp[0]

i+1 of nilpotent elements and αi ∈ (κ1δ
dim(g), 1] such that

the inductive assumption is satisfied for the nilpotents v ′
1, . . . , v ′

i+1 and for ki+1 =
⌈δαiki/A5⌉.

Finally, we remark that the above induction automatically stops after dim(g)−
dim(h) many steps. This proves the proposition. □

Proof of Theorem 1.1 for F = Q. Recall the setting:

• G is a Q-anisotropic simply connected semisimple group and ρ : G → SLN

is a homomorphism with central kernel defined over Q.
• D = (H, ι, gD) is semisimple simply connected data over Q consistent with
the pair (G, ρ).

• X = [ρ(G(A))] and YD = [ι(H(A))gD] ⊂ X.
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To simplify notation, we will first reduce to the case gD = id. By Theo-
rem 6.3 (based on [60] and Proposition 6.1) using a good prime p0 for X with
p0 ≪ log(cpl(X))2 there exists γ ∈ G(Q) so that

∥ρ(γ)gD∥∞ ≪ 1, ∥ρ(γ)gD∥ℓ = 1 for all ℓ ̸= p0, and ∥ρ(γ)gD∥p0
≪ cpl(X)⋆.

Let g = ρ(γ)gD. Then YD agrees with Y(H,ιγ ,g) where ιγ(·) = ρ(γ)ι(·)ρ(γ)−1. By
the above bounds on g, the theorem follows if we establish it for (H, ιγ , id). Hence,
we assume without loss of generality that gD = id. In the absence of the translate,
we may use the complexity of an orbit and the height of the associated group
interchangably.

Recall e.g. from [87, Lemma 8.6] that there exists A19 > 0 depending only
on N so that ht(L) ≪ ht(G)A19 for any normal subgroup L � G. Set A =
max{2A17, A19}. We prove the following claim by induction on the dimension
of G, which in turn clearly implies the theorem.

Claim. Assuming gD = id we have for all C1-functions f∣∣∣ ∫
X

f −
∫
YD

f
∣∣∣ ≪ cpl(X)A

mcpl(YD)1/A
lev(f)∥f∥C1(X).(10.5)

If ι(H) is contained in a proper normal subgroup L� ρ(G), then

mcpl(YD) ≤ cpl([L(A)]) = ht(L) ≪ cpl(X)A19 .

Thus, the claim in (10.5) is trivial in this case. Assume from now that ι(H) is not
contained in a proper normal subgroup L� ρ(G).

We prove (10.5) by induction on the dimension of G and so may assume that
(10.5) holds for YD considered inside intermediate semisimple orbits. Let B be the
collection of connected semisimple proper Q-subgroups L < ρ(G) with ι(H) < L
and with

ht(L)3A
2

< ht(L′)

for all semisimple Q-subgroups L′ ⪇ L containing ι(H). For convenience, we define
the relative minimal complexity

mcplL(YD) = min
{
cpl([L′(A)]) : ι(H) ⊆ L′ ⊊ L semisimple

}
.(10.6)

Then L ∈ B if and only if cpl([L(A)])3A < mcplL(YD)
1/A.

Let L0 > ι(H) be a connected semisimple Q-subgroup of ρ(G) so that

cpl([L0(A)]) = mcpl(YD).

We construct a subgroup of L0 in the collection B as follows: If L0 ∈ B, we are done.
Otherwise, there exists L1 ⪇ L0 with ht(L1) ≤ ht(L0)

3A2

. Continuing inductively,
we find a sequence of subgroups L0 ⪈ L1 ⪈ . . . which has to terminate after at
most dim(G) steps. Thus, there exists j ≤ dim(G) such that Lj ∈ B and

ht(Lj) ≤ ht(L0)
(3A2)j .

In particular,

mcpl(YD) ≤ cpl([Lj(A)]) ≤ mcpl(YD)
(3A2)dim(G)

(10.7)

For simplicity, we set L := Lj . Note that L = ι(H) is entirely possible and not

ruled out here. Write L̃ for the simply connected cover of L and ιL : L̃ → L for the
covering map. Set D′ = (L̃, ιL, id).
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We wish to show equidistribution with a rate for YD′ in X and for YD in YD′ . For
the former, note that there is by Proposition 3.2 a good prime p for the homogeneous
set YD′ and for X with

p≪ max{log(cpl(X)), log(cpl(YD′))}2 ≪ cpl(X) log(mcpl(YD))
2

where (10.7) was used for the second inequality. Thus, by Proposition 10.1 (noting
also that L is not contained in a proper normal subgroup of G because ι(H) is not)
we have for all C1-functions f on X∣∣∣ ∫

X

f −
∫
YD′

f
∣∣∣ ≪ cpl(X)2A17 log(mcpl(YD))

2A17

mcpl(YD′)1/A17
lev(f)∥f∥C1(X)

≪ cpl(X)2A17

mcpl(YD)1/(2A17)
lev(f)∥f∥C1(X)(10.8)

using also mcpl(YD′) ≥ mcpl(YD).
By the inductive hypothesis, we have for all f ∈ C1(X)∣∣∣ ∫

YD′

f −
∫
YD

f
∣∣∣ ≪ cpl(YD′)A

mcplL(YD)
1/A

lev(f |YD′ )∥f |YD′∥C1(YD′ )

Note that since L ∈ B

mcplL(YD)
1/A ≥ cpl(YD′)3A.

Also, any C1-function f on X is invariant under
∏

ℓGℓ[ordℓ(lev(f))] and hence the
restriction f |YD′ is also invariant under

∏
ℓ Lℓ[ordℓ(lev(f))]. Moreover, ∥f |YD′∥C1(YD′ ) ≪

∥f∥C1(X) where the implicit constant accounts for possibly incompatible choices of
orthonormal bases of the Lie algebras l∞ < g∞. Overall, we obtain∣∣∣ ∫

YD′

f −
∫
YD

f
∣∣∣ ≪ 1

mcpl(YD)2A
lev(f)∥f∥C1(X).(10.9)

Combining (10.8) and (10.9) proves the claim in (10.5). As discussed earlier, the
theorem follows. □

Proof of Theorem 1.2 for F = Q. As in the above proof of Theorem 1.1 for F = Q,
we may assume gD = id. We set A = 2A1

2 (where A1 > 1 is as in Theorem 1.1
for F = Q) and δ = A− dim(G). In view of the assumptions of the theorem, we may
assume Bδ/(2A1) ≥ cpl(X)A1 or equivalently B ≥ cpl(X)A/δ.

For any δ′ > 0 let Cδ′ be the collection of connected semisimple Q-subgroups
L < ρ(G) containing ι(H) and

Bδ′ < mcplL(YD),

where we use the relative minimal complexity mcplL(·) introduced in (10.6) as a
shorthand.

If ρ(G) ∈ Cδ, we have mcpl(YD) ≥ Bδ (by definition of Cδ) and so

cpl(X)A1

mcpl(YD)1/A1
≤ Bδ/(2A1)

Bδ/A1
≤ B−δ/(2A1)

so that the theorem follows from Theorem 1.1 for F = Q with A2 ≥ 3A1/δ (ac-
counting also for implicit constants and using again that B is sufficiently large).

So assume now that ρ(G) ̸∈ Cδ. Thus, there exists a proper semisimple subgroup
L1 < ρ(G) with L1 > ι(H) and cpl([L1(A)]) ≤ Bδ ≤ B (where the exponent has
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worsened by a factor of A). Let L̃1 be the simply connected cover of L1 and let

ιL1
: L̃1 → L1 be the covering map.

If L1 ∈ CAδ, we apply Theorem 1.1 for F = Q with the pair (L̃1, ιL1) instead of
(G, ρ). Thus, we have

cpl([L1(A)])A1

mcplL1
(YD)1/A1

≤ BA1δ

BAδ/A1
≤ B−A1δ

and the theorem follows from Theorem 1.1 for F = Q with A2 ≥ 2/(A1δ).
If L1 ̸∈ CAδ, there exists a proper semisimple subgroup L2 < L1 with

cpl([L2(A)]) ≤ BAδ ≤ B

containing ι(H). We continue like this by induction constructing a sequence of sub-

groups L1 ⪈ L2 ⪈ L3 ⪈ . . . containing ι(H) with cpl([Lj(A)]) ≤ BAj−1δ ≤ B until

we find a subgroup Lj ∈ CAjδ with j < dim(G). Let L̃j be the simply connected

cover of Lj and let ιLj
: L̃j → Lj be the covering map. Applying Theorem 1.1 for

F = Q with the pair (L̃j , ιLj
) we obtain the rate

cpl([Lj(A)])A1

mcplLj
(YD)1/A1

≤ BAj−1δA1

BAjδ/A1
=

BAj−1δA1

B2Aj−1δA1
= B−Aj−1δA1 .

This implies the theorem. □

10.2. The number field case. We finally prove Theorems 1.1 and 1.2 as stated
by reducing them to the already proven case F = Q using restriction of scalars.
So let F be a number field and write DF for the absolute value of its discriminant
disc(F ) and d = [F : Q] for the degree.

Recall first the setup:

• G is an F -anisotropic simply connected semisimple group and ρ : G → SLN

is a homomorphism with finite central kernel defined over F .
• D = (H, ι, gD) is semisimple simply connected data over F that is consistent
with (G, ρ), i.e. ι : H → ρ(G) is a homomorphism with central kernel and
gD ∈ ρ(G(AF )).

We introduce some notation pertaining to restriction of scalars. Set for simplicity
N ′ = N [F : Q] = N d. By Minkowski’s second theorem, we may fix linearly
independent vectors α1, . . . , αd ∈ OF which span a sublattice of index Od(1) and

which have norm ≪d D
1
2

F (under the complete embedding F → Rd). Representing
multiplication by F in this basis we obtain homomorphisms ϑ : F → Matd(Q) and
ϑ : MatN (F ) → MatN ′(Q). These will serve as our explicit realization of restriction
of scalars.

For an F -subspace V ⊂ slN write V ′ = ϑ(V ) for its restriction of scalars. We
write htF (V ) for the height of V and htQ(V

′) for the height of V ′ where the indices
aim to emphasize the field of definition.

Lemma 10.3. For any F -subspace V ⊂ slN we have

D−⋆
F ht(V ′) ≪ ht(V ) ≪ D⋆

Fht(V
′).(10.10)

Proof. This is certainly well-known; we include a proof for lack of explicit reference.
We record first a few elementary properties of ϑ. For any rational prime ℓ and all
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v ∈ MatN (F ) we have

∥ϑ(v)∥ℓ ≪ max
w|ℓ

∥v∥w ≪ ∥ϑ(v)∥ℓ(10.11)

where the implicit constant is 1 at all but Od(1)-many places. Moreover,

D−⋆
F ∥ϑ(v)∥2∞ ≪

∑
w|∞

∥v∥2w ≪ D⋆
F ∥ϑ(v)∥2∞.(10.12)

We turn to proving (10.10) beginning with the upper bound. Apply Siegel’s
lemma to obtain a basis (vi)i≤d dimF (V ) of V

′ consisting of integer vectors such that
∥vi∥∞ ≪ ht(V ′). Note that V ′ is invariant under the F -module structure, i.e. under
ϑ(F ). Pick a subset I = {i1, . . . , idimF (V )} of indices i such that (vi)i∈I are linearly
independent over F and let ui ∈ V with ϑ(ui) = vi. The vectors ui, i ∈ I, span V
and hence by (10.11) and (10.12)

ht(V ) =
∏
w

∥ui1 ∧ . . . ∧ uidimF (V )
∥w ≪ D⋆

Fht(V
′)⋆.

To prove the lower bound in (10.10), we first assume dim(V ) = 1 and let v ∈ V
be an integral vector with

∏
w∤∞ ∥v∥w ≪ DF . We compute the covolume of the

lattice OF .v with respect to the Euclidean norm
∑

w|∞ ∥ · ∥2w. Explicitly, it is given
by |det(⟨αiv , αjv⟩)| where ⟨u, u′⟩ =

∑
w⟨u, u′⟩w. Expanding this expression

det(⟨αiv , αjv⟩) =
∑
τ

(−1)sgn(τ)
∏
i

⟨αiv , ατ(i)v⟩

=
∑
τ

(−1)sgn(τ)
∏
i

∑
σ

σαi
σατ(i)⟨σv , σv⟩

where τ runs over all permutations of {1, . . . , d} and σ runs over all embeddings
σ : F → C. We enumerate these embeddings by σ1, . . . and obtain

det(⟨αiv , αjv⟩) =
∑
τ

(−1)sgn(τ)
∑
τ ′

∏
i

στ′(i)αi
στ′(i)ατ(i)⟨στ′(i)v , στ′(i)v⟩

where τ ′ runs over all self-maps of {1, . . . , d}. The expression∑
τ

(−1)sgn(τ)
∏
i

στ′(i)ατ(i)

vanishes unless τ ′ is bijective in which case its absolute value is ≪ DF . So we may
restrict the summation to permutations τ ′ to obtain

|det(⟨αiv , αjv⟩)| =
∣∣∣∑

τ

(−1)sgn(τ)
∑
τ ′

∏
i

σiατ ′(i)
σiατ◦τ ′(i)⟨σiv , σiv⟩

∣∣∣
≪ D3

FhtF (V ).

By (10.12), this implies (10.10) when dim(V ) = 1.
For dim(V ) > 1, apply a version of Siegel’s lemma over F — see e.g. [3] —

to find a basis ui of V of integral vectors with
∏

i htF (ui) ≪ D⋆
FhtF (V ). Here,

htF (ui) =
∏

w ∥ui∥w. Applying the above calculation for dimension 1, we find
that the covolume of OF .ui with respect to either Euclidean norm in (10.12) is
≪ D⋆

Fht(ui). Taking the product, this yields the lower bound in (10.10) and hence
the lemma. □
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Denote by G′ = ResF/Q(G) the restriction of scalars of G and by

ρ′ : G′ → SLN ′

the homomorphism defined over Q which is induced by ρ. Note that G′ is a simply
connected semisimple Q-group that is Q-anisotropic. Also, ρ′ has finite kernel. The
analogous notation is used for (H, ι) and we write L′ = ResF/Q(L) < slN ′ for any
F -subgroup L < ρ(G) as well. To clarify the proof, we denote by g′ ∈ SLN ′(AQ)
the element corresponding to g ∈ SLN (AF ). Lastly, we use the notation [B] for the
image in SLN (F )\SLN (AF ) resp. SLN ′(Q)\SLN ′(AQ) of a subset B of SLN (AF )
resp. SLN ′(AQ). We set X ′ = [ρ′(G′(AQ))] and Y

′
D = [ι′(H′(AQ))].

Lemma 10.4. We have

D−⋆
F cpl(X ′)⋆ ≪ cpl(X) ≪ D⋆

F cpl(X
′)⋆.(10.13)

Moreover, for any semisimple F -subgroup L < ρ(G) and let g ∈ ρ(G(AF ))

cpl([L(AF )g]) ≪ D⋆
F cpl(X ′)⋆cpl([L′(AF )g

′]).(10.14)

Proof. The estimates in (10.13) are a direct consequence of Lemma 10.3.
For (10.14), notice first that, in view of Theorem 6.3, there exists γ′ ∈ G′(Q)

with (ρ′(γ′)g′)ℓ ∈ SLN ′(Zℓ) for ℓ ̸= p, ∥(ρ′(γ′)g′)∞∥ ≪ 1, and ∥(ρ′(γ′)g′)p∥ ≪
p⋆cpl(X ′)⋆. Here, we may take p to be a good prime in the sense of Proposition 3.2
for X ′ only and so p ≪ (log vol(X ′))2 ≪ (log cpl(X ′))2 (see Proposition 3.1). The
corresponding bounds (with an additional polynomial dependence on DF ) also hold
for g and the element γ ∈ G(F ) corresponding to γ′ (see (10.11) and (10.12)). In

particular, L̃ = γLγ−1 satisfies

cpl([L(AF )g]) ≪ cpl([L̃(AF )])cpl(X
′)⋆ = htQ(L̃)cpl(X

′)⋆D⋆
F

and

cpl([L′(AF )g
′]) ≫ htF (L̃

′)cpl(X ′)−⋆.

This together with Lemma 10.3 applied to the Lie algebra of L̃ yields the lemma. □

Lemma 10.5. Let M > ι(H) be a connected semisimple F -subgroup of ρ(G). Let
L <M′ be a Q-subgroup which contains ι′(H′). Assume further that

(1) ι(H) projects non-trivially onto all F -almost simple factors of M, and
(2) L(Q) ⊂ M′(Q) = M(F ) is Zariski dense in the F -group M.

Then L = M′.

Proof. Let l resp. m′ be the Lie algebra of L resp. M′ over Q. We will show l = m′;
this establishes the claim since M is connected.

For this, we let s′ =
⋂

α∈F α.l where we use that g′ is naturally an F -module.
The Lie algebra s′ is invariant under scalars in F and so s′ = ResF/Q(s) for some
F -subalgebra s of m. By definition, we have [l, s′] ⊂ s′ and in particular

Ad(L(Q))s(F ) = Ad(L(Q))s′(Q) ⊂ s′(Q) = s(F )

when viewing L(Q) as a subgroup of M(F ). In view of our assumption (2), s is a
Lie ideal of m. Notice that s contains the Lie algebra of ι(H) and hence s = m by
assumption (1). We conclude that m′ = s′ ⊂ l ⊂ m′ and the lemma follows. □
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Proof of Theorem 1.1 over general number fields. The theorem follows from its ver-
sion over Q (proven earlier) once we can show that

mcpl(YD) ≪ D⋆
F cpl(X)⋆mcpl(Y ′

D)
⋆.(10.15)

In view of (10.14), problems may arise precisely from subgroups L ⪇ ρ′(G′) with
ι′(H′) < L that do not arise through restriction of scalars; here, we wish to use
Lemma 10.5.

Let mcplerg(Y
′
D) be the minimum over the complexities cpl([L(A)g′]) where L

runs over all connected semisimple Q-subgroups L ⪇ ρ′(G′) with ι′(H′) < L and
for which ι′(H′) is not contained in a proper factor of L. Clearly, mcplerg(Y

′
D) ≥

mcpl(Y ′
D). We claim that conversely

mcplerg(Y
′
D) ≪ cpl(X ′)⋆mcpl(Y ′

D)
⋆.(10.16)

This implies (10.15) (and hence the theorem) since, in view of Lemmas 10.5 and
10.4, we have

mcpl(YD) ≪ |disc(F )|⋆cpl(X)⋆mcplerg(Y
′
D)

⋆.

It remains to show (10.16). By the same argument as in Lemma 10.4 (relying on
Theorem 6.3) we may assume that g′ℓ ∈ SLN ′(Zℓ) for ℓ ̸= p, ∥g′∞∥ ≪ 1, and ∥g′p∥ ≪
cpl(X ′)⋆ where p ≪ (log cpl(X))2. In particular, for any connected semisimple
Q-subgroup L < ρ′(G′)

cpl(X ′)−⋆htQ(L) ≪ cpl([L(A)g′]) ≪ cpl(X ′)⋆htQ(L).

Factors of a semisimple Q-subgroup L < ρ′(G′) have height controlled polynomially
by the height of L (see e.g. [87, Lemma 8.6]). Together, these estimates establish
(10.16) and hence the theorem. □

Proof of Theorem 1.2. As in the above proof of Theorem 1.1, the theorem can be
reduced to the version over Q that we have already established. Alternatively, it
may be deduced from Theorem 1.1 directly as was done earlier for F = Q. □
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Appendix A. Volume and arithmetic complexity

In this appendix we establish, in particular, the volume and complexity compar-
ison of Proposition 3.1. In fact, we will establish a slightly finer result not assuming
that the ambient homogeneous space is compact.

For the following we fix

• a semisimple simply connected group H defined over Q,
• a homomorphism ι : H → SLN with central kernel, and
• an element g ∈ SLN (A).

Set Y = [ι(H(A))g] and H = g−1ι(H(A))g.

The notion of volume. Let us first recall the definition of a volume from [20] which
was already introduced in §3.2. Let Ω ⊂ SLN (A) be an open neighborhood of the
identity with compact closure and define the volume (with respect to Ω) to be

vol(YD) = volΩ(Y ) = mH(Ω ∩H)−1(A.1)

where mH is the Haar measure on H that descends to the invariant probability
measure on Y . A different choice Ω of an open neighborhood of the identity yields
a comparable notion of volume — see the discussion in [20, §2.3].

Remark A.1. Instead of using the group H one might also use the full stabilizer
group of the orbit Y . The full stabilizer group is H ′ = g−1ι(H(A))N(F )g [20,
Lemma 2.2] where N is the normalizer of H. In particular, it is often contains
H as an infinite index subgroup. The volume defined using H ′ turns out to be
comparable to the volume defined using H — see [20, §5.12] which relies on a deep
result of Borel and Prasad [4].

In the following, we assume that Ω is of the form

Ω = Ω∞ ×
∏

pSLN (Zp)

where Ω∞ = exp(Ξ∞) ⊂ SLN (R) for a bounded symmetric open neighborhood
Ξ∞ ⊂ slN (R) of 0 on which exp is a diffeomorphism. In practice, one needs to
assume that Ξ∞ is sufficiently small (depending only on N) — see the discussion
around [20, (5.3),(5.5)].

The notion of complexity. For a Q-subgroup L < SLN with Lie algebra l we let

vL ∈
dim(l)∧

l(Q) ⊂
dim(l)∧

slN (Q)

be a non-zero vector. The height of L is then defined to be ht(L) =
∏

w∈Σ ∥vL∥w
where Σ is the set of places of Q (see also §3.1). As in the introduction, the
complexity of the orbit Y is given by

cpl(Y ) =
∏
w∈Σ

∥g−1
w .vι(H)∥w.

The notion of minimal height. Define

minht(Y ) = min
[g]∈Y

max
v∈Qn\{0}

c(g−1.v)−1

where c(g−1.v) =
∏

w∈Σ ∥g−1.v∥w. The quantity minht(Y ) measures how far up
the cusp the homogeneous set Y is.
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Comparing volume and complexity. The rest of this section is dedicated to the proof
of the following proposition.

Proposition A.2. There exist a constant A20 > 1 depending only on N such that

cpl(Y )1/A20 ≪ vol(Y ) ≪ minht(Y )A20cpl(Y )A20(A.2)

where the implicit constants depend only on N .

Note that Proposition A.2 implies Proposition 3.1 in light of the bound on
minht(Y ) obtained from Proposition 6.1. Since the height in the cusp of Y should,
in principle, be dictated by the amount the translation occurs within the centralizer
of the invariance group, it is conceivable that Proposition A.2 holds without the
polynomial factor in minht(Y ).

For the proof of Proposition A.2, we shall need bounds on the minimal discrim-
inant of a splitting field of H provided by the following lemma.

Lemma A.3. There exists A21 > 0 depending only on N with the following prop-
erty. Let L < SLN be a connected reductive Q-subgroup. Then there exists a
maximal Q-torus T < L with

ht(T) ≪ ht(L)A21 .

Moreover, if F is the (Galois) splitting field of T then

|disc(F )| ≪ ht(T)⋆.

We will use the following simple and well-known lemma.

Lemma A.4. Let f ∈ C[x1, . . . , xn] be a non-zero polynomial of degree d. Then
there exists x ∈ Zn with supi |xi| ≤ dn and f(x) ̸= 0.

Proof. We prove the claim by induction on the number of variables n. If n = 1,
then f has at most d zeroes and the lemma is clear.

Suppose the lemma is known for all polynomials in n− 1 variables and let f be
given. Consider the polynomial

g(x1, . . . , xn) = f(x1, x2 + α2x1, . . . , xn + αnx1).

for some α2, . . . , αn ∈ Z. Then g is of the form g = ϕ(α2, . . . , αn)x
d
1 + g1 for

some non-zero polynomial ϕ of degree at most d and g1 of degree smaller than d
in x1. By assumption we may choose α2, . . . , αn ∈ Z with |αi| ≤ dn−1 such that
ϕ(α2, . . . , αn) ̸= 0. In particular, g(x1, 0, . . . , 0) is a non-constant polynomial in x1
and so we may choose α1 ∈ Z with |α1| ≤ d and g(x1, 0, . . . , 0) ̸= 0. This proves
the lemma with the point (α1, α1α2, . . . , α1αn). □

Proof of Lemma A.3. We may choose the vector vL to be integral (i.e. contained
in ∧dim(L)slN (Z)) and primitive (i.e. ∥vL∥ℓ = 1 for every prime ℓ). In particular,
ht(L) = ∥vL∥∞.

We first prove the following claim.

Claim. There exists a non-trivial ad|l-semisimple integral element w ∈ l = Lie(L)
with ∥w∥∞ ≪ ∥vL∥⋆∞.

Note that ∥vL∥∞ is precisely the covolume of the lattice l(Z) in l(R). By
Minkowski’s second theorem, there exist vectors v1, . . . , vdim(l) ∈ l(Z) which are
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linearly independent and which satisfy ∥vi∥ ≪ ∥vL∥∞ for every i = 1, . . . ,dim(l).
Consider the proper subvariety of Adim(l){

(x1, . . . , xdim(l)) :
∑
i

xivi is ad|l-nilpotent
}

which is defined by polynomials of degree ON (1). By Lemma A.4 applied to any
of these defining polynomials, there exist xi ∈ Z, |xi| ≪ 1, such that w ′ =

∑
i xivi

is not ad|l-nilpotent. In particular, ∥w ′∥∞ ≪ ∥vL∥⋆∞. Note that the center of l
trivially consists of ad|l-nilpotent (but not nilpotent) elements and so w ′ is not
contained in the center. The coefficients of the characteristic polynomial of w ′ are
of size ≪ ∥w ′∥⋆∞. The Jordan decomposition then implies that the semisimple part
w of w ′ is non-zero and satisfies ∥w∥∞ ≪ ∥w ′∥⋆∞ which concludes the claim.

As any semisimple element is contained in the Lie algebra of a maximal torus,
the centralizer l′ of the above constructed element w has the same absolute rank
as l. By the above bound on the size of w , we have ht(l′) ≪ ht(l)⋆ = ht(L)⋆. Note
that l′ is a proper reductive subalgebra of l. Overall, we may as well find a maximal
subalgebra of l′ consisting of semisimple elements. Thus, the first part of the lemma
follows by induction on the dimension.

For the second part, recall that for any element w ∈ slN (R) the coefficients
of the characteristic polynomial are integral polynomials in the entries of w and
have size ≪ ∥w∥⋆∞. We apply this observation to an integral basis (wi)i of t with
∥wi∥∞ ≪ ht(T)⋆. We obtain that for each wi all eigenvalues are of size ≪ ht(T)⋆

(e.g. by Cauchy’s bound on zeros of real polynomials). Since the discriminant of
a compositum of extensions is bounded in terms of the individual extensions, the
splitting field of a Q-torus T < SLN has the required bound. □

Proof of Proposition A.2. A version of (A.2) was established in [20, (B.2)], namely

disc(Y )⋆ ≪ vol(Y ) ≪ disc(Y )⋆(A.3)

where the notion of discriminant disc(Y ) from [20] is equal to cpl(Y ) up to a factor
depending only on H (or rather the quasi-split inner forms of the factors of H).
More specifically,

disc(Y ) =
D(H)

E(H)
cpl(Y )(A.4)

for some numbersD(H) ≥ 1 and 0 < E(H) ≤ 1. In particular, disc(Y ) ≥ cpl(Y ) and
thus cpl(Y )⋆ ≪ vol(Y ) follows. Here, the notation is taken from [20] for the readers’
convenience and, in particular, D(H) does not refer to data of a homogeneous set.
In the remainder of the proof we will show that

D(H) ≪ minht(Y )⋆cpl(Y )⋆ and E(H) ≫ 1.

We note that both of the quantities D(H), E(H) depend only on the SLN (Q)-
conjugacy class of H and not on H itself.

To recall the definition of D(H) from [20, (B.13)], we repeat parts of the dis-
cussion at the beginning of §3.3. As H is simply connected, we may write H =
H1 · · ·Hk where the groups Hi are simply connected Q-almost simple Q-subgroups
of H. Write Hi = ResFi/Q H′

i where Fi/Q is a finite extension and H′
i is an ab-

solutely almost simple group over Fi. Associated to H′
i is a ‘least distorted’ form

of it: let H′
i be the unique quasi-split inner form of H′

i over Q. Let Li/Fi be the
corresponding number field defined as in [67, §0.2]. That is, Li is the splitting field
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of H′
i except in the case where H′

i is a triality form of type 6D4 where it is a degree 3
subfield of the degree 6 Galois splitting field with Galois group S3. Let s(H′

i) be as
defined in [67, §0.4] which is an integer only depending on the root system. Overall,
we set

D(H) =
∏
i

D(Hi), D(Hi) =
(
D

s(H′
i)

Li/Fi
D

dim(Hi)
Fi

) 1
2

.

Here, we write DF for the absolute value of the discriminant of a number field
F and, similarly, we set DL/F to be absolute value of the norm of the relative
discriminant ideal for extensions L/F/Q.

We claim that for every Hi

D(Hi) ≪ minht(Y )⋆cpl(Y )⋆(A.5)

and in particular

D(H) ≪ minht(Y )⋆cpl(Y )⋆.(A.6)

To see (A.5), note that D(Hi) ≪ D⋆
Li

≪ D⋆
L′

i
where L′

i/Q is the Galois closure

of Li/Q. Here, the extension L′
i/Q is the (Galois) splitting field of the quasi-split

group ResFi/Q H′
i. As ResFi/Q H′

i is an inner form of Hi, any splitting field of
Hi contains L′

i and the same is true for any SLN (Q)-conjugate of Hi. Note that
the height of any factor of a semisimple Q-group is controlled polynomially by the
height of the Q-group — see e.g. [87, Lemma 8.6]. Combining this with Lemma A.3
we have

DL′
i
≪ min

γ∈SLN (Q)
ht(γι(Hi)γ

−1)⋆ ≪ min
γ∈SLN (Q)

ht(γι(H)γ−1)⋆.

Let [g] ∈ Y be a coset achieving the minimal height of Y in the cusp. We may
assume g ∈ SLN (R) by strong approximation. By reduction theory, there exists
γ ∈ SLN (Z) such that

∥γg∥∞, ∥(γg)−1∥∞ ≪
(

min
v∈Zn\{0}

∥g−1.v∥
)−⋆

= minht(Y )⋆

Thus,

DL′
i
≪ ht(γ−1ι(H)γ)⋆ ≪ minht(Y )⋆cpl(Y )⋆

proving (A.5) and hence (A.6).
The quantity E(H) is a local product of normalized cardinalities of certain finite

groups associated to the quasi-split inner forms H′
i. We refer to [20, (B.15)] for an

exact definition, but note that it may be expressed as reciprocal of the Dedekind
zeta functions of the fields Li and of certain Dirichlet L-functions at integer values
≥ 2 — see [67, Rem. 3.11] or [61, §5.2]. In particular, E(H) ≫ ζ(2)−⋆ ≫ 1.
Combining this with (A.4) and (A.6) yields

cpl(Y ) ≤ disc(Y ) ≪ minht(Y )⋆cpl(Y )⋆.

In view of (A.3), the proposition follows. □
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[59] D. W. Masser and G. Wüstholz. Fields of large transcendence degree generated by values of

elliptic functions. Invent. Math., 72(3):407–464, 1983.
[60] A. Mohammadi, A. Salehi Golsefidy, and F. Thilmany. Diameter of homogeneous spaces: an

effective account. Math. Ann., 385(3-4):1973–2012, 2023.

[61] Amir Mohammadi and Alireza Salehi Golsefidy. Discrete subgroups acting transitively on
vertices of a Bruhat-Tits building. Duke Math. J., 161(3):483–544, 2012.

[62] Shahar Mozes and Nimish Shah. On the space of ergodic invariant measures of unipotent

flows. Ergodic Theory Dynam. Systems, 15(1):149–159, 1995.
[63] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse

der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)].
Springer-Verlag, Berlin, third edition, 1994.

[64] Hee Oh. Uniform pointwise bounds for matrix coefficients of unitary representations and

applications to Kazhdan constants. Duke Math. J., 113(1):133–192, 2002.
[65] O. T. O’Meara. Introduction to quadratic forms, volume Band 117 of Die Grundlehren der

mathematischen Wissenschaften. Academic Press, Inc., Publishers, New York; Springer-

Verlag, Berlin-Göttingen-Heidelberg, 1963.
[66] Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, volume 139

of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1994. Translated from

the 1991 Russian original by Rachel Rowen.

[67] Gopal Prasad. Volumes of S-arithmetic quotients of semi-simple groups. Inst. Hautes Études

Sci. Publ. Math., 69(1):91–117, 1989. With an appendix by Moshe Jarden and the author.
[68] Marina Ratner. On measure rigidity of unipotent subgroups of semisimple groups. Acta Math.,

165(3-4):229–309, 1990.

[69] Marina Ratner. On Raghunathan’s measure conjecture. Ann. of Math. (2), 134(3):545–607,
1991.

[70] Marina Ratner. Raghunathan’s topological conjecture and distributions of unipotent flows.

Duke Math. J., 63(1):235–280, 1991.
[71] Marina Ratner. Raghunathan’s conjectures for cartesian products of real and p-adic lie groups.

Duke Math. J., 77(2):275–382, 1995.

[72] R. W. Richardson, Jr. Conjugacy classes in Lie algebras and algebraic groups. Ann. of Math.
(2), 86:1–15, 1967.

[73] Alireza Salehi Golsefidy. Super-approximation, II: the p-adic case and the case of bounded
powers of square-free integers. J. Eur. Math. Soc. (JEMS), 21(7):2163–2232, 2019.

[74] Rainer Schulze-Pillot. Representation by integral quadratic forms—a survey. In Algebraic and

arithmetic theory of quadratic forms, volume 344 of Contemp. Math., pages 303–321. Amer.
Math. Soc., Providence, RI, 2004.

[75] Rainer Schulze-Pillot. Local conditions for global representations of quadratic forms. Acta

Arith., 138(3):289–299, 2009.
[76] Rainer Schulze-Pillot. Representation of quadratic forms by integral quadratic forms. In Qua-

dratic and higher degree forms, volume 31 of Dev. Math., pages 233–253. Springer, New York,
2013.

[77] Atle Selberg. On the estimation of Fourier coefficients of modular forms. In Proc. Sympos.

Pure Math., Vol. VIII, pages 1–15. Amer. Math. Soc., Providence, R.I., 1965.

[78] Jean-Pierre Serre. Lie algebras and Lie groups. W. A. Benjamin, Inc., New York-Amsterdam,
1965. Lectures given at Harvard University, 1964.

[79] Nimish A. Shah. Uniformly distributed orbits of certain flows on homogeneous spaces. Math.
Ann., 289(2):315–334, 1991.
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