Mar 31 Michael Christ, UC Berkeley

Near Equality in the Hausdorff-Young inequality

For any locally compact Abelian group, the Hausdorff-Young inequality states that the Fourier transform maps L^p to L^q, where the two exponents are conjugate and $p \in [1, 2]$. For d, the optimal constant was found Babenko (1961) for q an even integer, and by Beckner (1975) for general exponents. Lieb (1990) showed that all extremizers are Gaussian functions.

We establish a stabler uniqueness theorem, showing that if a function f nearly achieves the optimal constant in the inequality, then f must be close in norm to a Gaussian. This can equivalently be formulated as a precompactness theorem: If $f_\nu = 1$, and if $\hat{f}_\nu \to A_p$ where A_p is the optimal constant in the inequality, then there exists a sequence of norm-preserving symmetries ψ_ν of the inequality such that the sequence $(\hat{\psi}_\nu(f_\nu))$ is precompact in L^p. Such a result can also be viewed as a strengthening of the inequality.

The proof relies on ingredients taken from from additive combinatorics. Central to the reasoning are arithmetic progressions; more exactly, arithmetic progressions of arbitrarily high rank.