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Preface

These notes are based on a course entitled “Symplectic geometry and geometric quantization”
taught by Alan Weinstein at the University of California, Berkeley, in the fall semester of
1992 and again at the Centre Emile Borel (Institut Henri Poincaré) in the spring semester
of 1994. The only prerequisite for the course (and for these notes) was a knowledge of
the basic notions from the theory of differentiable manifolds (differential forms, vector fields,
transversality, etc.). The aim of the course was to give students an introduction to the ideas of
microlocal analysis and the related symplectic geometry, with an emphasis on the role which
these ideas play in formalizing the transition between the mathematics of classical dynamics
(hamiltonian flows on symplectic manifolds) and that of quantum mechanics (unitary flows
on Hilbert spaces).

There already exist many books on the subjects treated here, but most of them provide
too much detail for the reader who just wants to find out what the subject is about. These
notes are meant to function as a guide to the literature; we refer to other sources for many
details which are omitted here, and which can be bypassed on a first reading.

The pamphlet [63] is in some sense a precursor to these notes. On the other hand, a much
more complete reference on the subject, written at about the same time, is [28]. An earlier
work, one of the first to treat the connections between classical and quantum mechanics from
a geometric viewpoint, is [41]. The book [29] treats further topics in symplectic geometry
and mechanics, with special attention to the role of symmetry groups, a topic pretty much
ignored in the present notes. For more extensive treatment of the PDE aspects of the subject,
we refer to [43] for a physics-oriented presentation and to the notes [21] and the treatises
[32], [46], and [56]. For “geometric quantization”, one may consult [35], [53], [54], [60] or
[71]. For classical mechanics and symplectic geometry, we suggest [1], [2], [6], [8], [25], [38],
[59]. Finally, two basic references on quantum mechanics itself are [13] and [20].

Although symplectic geometry is like any field of mathematics in having its definitions,
theorems, etc., it is also a special way of looking at a very broad part of mathematics and
its applications. For many “symplecticians”, it is almost a religion. A previous paper by
one of us [64] referred to “the symplectic creed”.1 In these notes, we show how symplectic
geometry arises from the study of semi-classical solutions to the Schrödinger equation, and in
turn provides a geometric foundation for the further analysis of this and other formulations
of quantum mechanics.

These notes are still not in final form, but they have already benefitted from the comments

1We like the following quotation from [4] very much:

In recent years, symplectic and contact geometries have encroached on all areas of mathemat-
ics. As each skylark must display its comb, so every branch of mathematics must finally display
symplectisation. In mathematics there exist operations on different levels: functions acting on
numbers, operators acting on functions, functors acting on operators, and so on. Symplec-
tisation belongs to the small set of highest level operations, acting not on details (functions,
operators, functors), but on all the mathematics at once. Although some such highest level
operations are presently known (for example, algebraisation, Bourbakisation, complexification,
superisation, symplectisation) there is as yet no axiomatic theory describing them.
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and suggestions of many readers, especially Maurice Garay, Jim Morehead, and Dmitry
Roytenberg. We welcome further comments. We would like to thank the Centre Emile Borel
and the Isaac Newton Institute for their hospitality. During the preparation of these notes,
S.B. was supported by NSF graduate and postdoctoral fellowships in mathematics. A.W.
was partially supported by NSF Grants DMS-90-01089 and 93-01089.
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1 Introduction: The Harmonic Oscillator

In these notes, we will take a “spiral” approach toward the quantization problem, beginning
with a very concrete example and its proposed solution, and then returning to the same
kind of problem at progressively higher levels of generality. Specifically, we will start with
the harmonic oscillator as described classically in the phase plane R2 and work toward the
problem of quantizing arbitrary symplectic manifolds. The latter problem has taken on a
new interest in view of recent work by Witten and others in the area of topological quantum
field theory (see for example [7]).

The classical picture

The harmonic oscillator in 1 dimension is described by Newton’s differential equation:

mẍ = −kx.

By a standard procedure, we can convert this second-order ordinary differential equation
into a system of two first-order equations. Introducing the “phase plane” R2 with position
and momentum coordinates (q, p), we set

q = x p = mẋ,

so that Newton’s equation becomes the pair of equations:

q̇ =
p

m
ṗ = −kq.

If we now introduce the hamiltonian function H : R2 → R representing the sum of kinetic
and potential energies,

H(q, p) =
p2

2m
+
kq2

2

then we find

q̇ =
∂H

∂p
ṗ = −∂H

∂q

These simple equations, which can describe a wide variety of classical mechanical systems
with appropriate choices of the function H, are called Hamilton’s equations.2 Hamilton’s
equations define a flow on the phase plane representing the time-evolution of the classical
system at hand; solution curves in the case of the harmonic oscillator are ellipses centered
at the origin, and points in the phase plane move clockwise around each ellipse.

We note two qualitative features of the hamiltonian description of a system:

1. The derivative of H along a solution curve is

dH

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ = −ṗq̇ + q̇ṗ = 0,

2If we had chosen ẋ rather than mẋ as the second coordinate of our phase plane, we would not have
arrived at this universal form of the equations.
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i.e., the value of H is constant along integral curves of the hamiltonian vector field.
SinceH represents the total energy of the system, this property of the flow is interpreted
as the law of conservation of energy.

2. The divergence of the hamiltonian vector field XH = (q̇, ṗ) = (∂H
∂p
,−∂H

∂q
) is

∇ ·XH =
∂2H

∂q ∂p
− ∂2H

∂p ∂q
= 0.

Thus the vector field XH is divergence-free, and its flow preserves area in the phase
plane.

The description of classical hamiltonian mechanics just given is tied to a particular coordinate
system. We shall see in Chapter 3 that the use of differential forms leads to a coordinate-
free description and generalization of the hamiltonian viewpoint in the context of symplectic
geometry.

The quantum mechanical picture

In quantum mechanics, the motion of the harmonic oscillator is described by a complex-
valued wave function ψ(x, t) satisfying the 1-dimensional Schrödinger equation:

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+
k

2
x2ψ.

Here, Planck’s constant ~ has the dimensions of action (energy × time). Interpreting the
right hand side of this equation as the result of applying to the wave function ψ the operator

Ĥ
def
= − ~2

2m

∂2

∂x2
+
k

2
mx2 ,

where mx2 is the operator of multiplication by x2, we may rewrite the Schrödinger equation
as

i~
∂ψ

∂t
= Ĥψ.

A solution ψ of this equation does not represent a classical trajectory; instead, if ψ is
normalized, i.e. ∫

R
ψ∗ψ = 1,

then its square-norm
ρ(x, t) = |ψ(x, t)|2

is interpreted as a probability density for observing the oscillator at the position x at time
t. The wave function ψ(x, t) itself may be viewed alternatively as a t-dependent function of
x, or as a path in the function space C∞(R,C). From the latter point of view, Schrödinger’s
equation defines a vector field on C∞(R,C) representing the time evolution of the quantum
system; a wave function satisfying Schrödinger’s equation then corresponds to an integral
curve of the associated flow.

Like Hamilton’s equations in classical mechanics, the Schrödinger equation is a general
form for the quantum mechanical description of a large class of systems.
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Quantization and the classical limit

The central aim of these notes is to give a geometric interpretation of relationships between
the fundamental equations of classical and quantum mechanics. Based on the present dis-
cussion of the harmonic oscillator, one tenuous connection can be drawn as follows. To the
classical position and momentum observables q, p we associate the differential operators

q 7→ q̂ = mx

p 7→ p̂ = −i~ ∂

∂x
.

The classical hamiltonianH(q, p) = p2/2m+kq2/2 then corresponds naturally to the operator
Ĥ. As soon as we wish to “quantize” a more complicated energy function, such as (1+q2)p2,
we run in to the problem that the operators q̂ and p̂ do not commute with one another, so
that we are forced to choose between (1 + q̂2)p̂2 and p̂2(1 + q̂2), among a number of other
possibilities. The difference between these choices turns out to become small when ~ → 0.
But how can a constant approach zero?

Besides the problem of “quantization of equations,” we will also treat that of “quan-
tization of solutions.” That is, we would like to establish that, for systems which are in
some sense macroscopic, the classical motions described by solutions of Hamilton’s equa-
tions lead to approximate solutions of Schrödinger’s equation. Establishing this relation
between classical and quantum mechanics is important, not only in verifying that the theo-
ries are consistent with the fact that we “see” classical behavior in systems which are “really”
governed by quantum mechanics, but also as a tool for developing approximate solutions to
the quantum equations of motion.

What is the meaning of “macroscopic” in mathematical terms? It turns out that good
approximate solutions of Schrödinger’s equation can be generated from classical information
when ~ is small enough. But how can a constant with physical dimensions be small?

Although there remain some unsettled issues connected with the question, “How can
~ become small?” the answer is essentially the following. For any particular mechanical
system, there are usually characteristic distances, masses, velocities, . . . from which a unit
of action appropriate to the system can be derived, and the classical limit is applicable
when ~ divided by this unit is much less than 1. In these notes, we will often regard ~
mathematically as a formal parameter or a variable rather than as a fixed number.
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2 The WKB Method

A basic technique for obtaining approximate solutions to the Schrödinger equation from
classical motions is called the WKB method, after Wentzel, Kramers, and Brillouin. (Other
names, including Liouville, Green, and Jeffreys are sometimes attached to this method.
References [13] and [47] contain a discussion of some of its history. Also see [5], where the
method is traced all the way back to 1817. For convenience, nevertheless, we will still refer
to the method as WKB.) A good part of what is now called microlocal analysis can be
understood as the extension of the basic WKB idea to more precise approximations and
more general situations, so the following discussion is absolutely central to these notes.

2.1 Some Hamilton-Jacobi preliminaries

In this section we will carry out the first step in the WKB method to obtain an approximate
solution to the “stationary state” eigenvalue problem arising from the Schrödinger equation.
The geometric interpretation of this technique will lead to a correspondence between classical
and quantum mechanics which goes beyond the one described in Chapter 1.

Consider a 1-dimensional system with hamiltonian

H(q, p) =
p2

2m
+ V (q),

where V (x) is a potential (for example the potential kx2/2 for the harmonic oscillator).
Hamilton’s equations now become

q̇ =
p

m
ṗ = −V ′(q).

For fixed ~ ∈ R+, Schrödinger’s equation assumes the form

i~
∂ψ

∂t
= Ĥψ,

where

Ĥ = − ~2

2m

∂2

∂x2
+mV

is the Schrödinger operator.
As a first step toward solving the Schrödinger equation, we look for stationary states,

i.e. solutions of the form
ψ(x, t) = ϕ(x) e−iωt,

so-called because as time evolves, these solutions keep the same form (up to multiplication by
a complex scalar of norm 1). Substituting this expression for ψ in the Schrödinger equation,
we obtain

~ω ϕ(x) e−iωt = (Ĥϕ)(x) e−iωt.

Eliminating the factor e−iωt above, we arrive at the time-independent Schrödinger equa-
tion:

(Ĥ − E)ϕ = 0,
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where E = ~ω. This equation means that ϕ is to be an eigenfunction of the linear differential
operator Ĥ; the eigenvalue E represents the energy of the system, which has a “definite value”
in this state.

Suppose for the moment that the potential V is constant, in which case the force −V ′(x)
is zero, and so we are dealing with a free particle. Trying a solution of the form ϕ(x) = eixξ

for some constant ξ, we find that

(Ĥ − E)ϕ = 0 ⇔ (~ξ)2 = 2m(E − V ).

For V < E, the (real) value of ξ is thus determined up to a choice of sign, and one has an
abundance of exact solutions of the Schrödinger equation which are oscillatory and bounded.
Such a wave function is not square-integrable and as such is said to be “unnormalizable”; it
represents a particle which is equally likely to be anywhere in space, but which has a definite
momentum (since it is an eigenfunction of the momentum operator p̂).3 When E < V , the
constant ξ is imaginary, and there are only real exponential solutions, which are unbounded
and admit no physical interpretation.

The basic idea at this stage of the WKB method is that, if V varies with x, then ξ should
vary with x as well; a more general solution candidate is then

ϕ(x) = eiS(x)/~,

for some real-valued function S known as a phase function. This proposed form of the
solution is the simplest version of the WKB ansatz, and in this case we have

(Ĥ − E)ϕ =

[
(S ′(x))2

2m
+ (V − E)− i~

2m
S ′′(x)

]
eiS(x)/~.

Since we will consider ~ to be “small”, our first-order approximation attempt will ignore the
last term in brackets; to kill the other two terms, we require that S satisfy the eikonal or
Hamilton-Jacobi equation:

H(x, S ′(x)) =
(S ′(x))2

2m
+ V (x) = E,

i.e.
S ′(x) = ±

√
2m(E − V (x)).

To understand the phase function S geometrically, we consider the classical phase4 plane
R2 ' T ∗R with coordinates (q, p). The differential dS = S ′ dx can be viewed as a mapping
dS : R→ T ∗R, where as usual we set p = S ′. Then S satisfies the Hamilton-Jacobi equation
if and only if the image of dS lies in the level manifold H−1(E). This observation establishes
a fundamental link between classical and quantum mechanics:

When the image of dS lies in a level manifold of the classical hamiltonian, the
function S may be taken as the phase function of a first-order approximate solu-
tion of Schrödinger’s equation.

3See [55] for a group-theoretic interpretation of such states.
4These two uses of the term “phase” seem to be unrelated!
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The preceding discussion generalizes easily to higher dimensions. In Rn, the Schrödinger
operator corresponding to the classical hamiltonian

H(q, p) =

∑
p2
i

2m
+ V (q)

is

Ĥ = − ~2

2m
∆ +mV ,

where ∆ denotes the ordinary Laplacian. As before, if we consider a WKB ansatz of the
form ϕ = eiS/~, then

(Ĥ − E)ϕ =

[
‖∇S‖2

2m
+ (V − E)− i~

2m
∆S

]
eiS/~

will be O(~) provided that S satisfies the Hamilton-Jacobi equation:

H

(
x1, . . . , xn,

∂S

∂x1

, . . . ,
∂S

∂xn

)
=
‖∇S(x)‖2

2m
+ V (x) = E.

Since ϕ is of order zero in ~, while (Ĥ − E)ϕ = O(~), the ansatz ϕ again constitutes a
first-order approximate solution to the time-independent Schrödinger equation.

We will call a phase function S : Rn → R admissible if it satisfies the Hamilton-Jacobi
equation. The image L = im(dS) of the differential of an admissible phase function S is
characterized by three geometric properties:

1. L is an n-dimensional submanifold of H−1(E).

2. The pull-back to L of the form αn =
∑

j pjdqj on R2n is exact.

3. The restriction of the canonical projection π : T ∗Rn → Rn to L induces a diffeomor-
phism L ' Rn. In other words, L is projectable.

While many of the basic constructions of microlocal analysis are motivated by operations
on these projectable submanifolds of T ∗Rn ' R2n, applications of the theory require us to
extend the constructions to more general n-dimensional submanifolds of R2n satisfying only
a weakened version of condition (2) above, in which “exact” is replaced by “closed”. Such
submanifolds are called lagrangian.

For example, the level sets for the 1-dimensional harmonic oscillator are lagrangian sub-
manifolds in the phase plane. A regular level curve of the hamiltonian is an ellipse L. Since
L is 1-dimensional, the pull-back to L of the form p dq is closed, but the integral of p dq
around the curve equals the enclosed nonzero area, so its pull-back to L is not exact. It is
also clear that the curve fails to project diffeomorphically onto R. From the classical stand-
point, the behavior of an oscillator is nevertheless completely described by its trajectory,
suggesting that in general the state of a system should be represented by the submanifold
L (projectable or not) rather than by the phase function S. This idea, which we will clarify
later, is the starting point of the geometrical approach to microlocal analysis.
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For now, we want to note an important relationship between lagrangian submanifolds of
R2n and hamiltonian flows. Recall that to a function H : R2n → R, Hamilton’s equations
associate the vector field

XH = q̇
∂

∂q
+ ṗ

∂

∂p
=
∑
j

∂H

∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj
.

A simple computation shows that XH and the form αn are related by the equation

XH dαn = −dH,

i.e.
dαn(XH , v) = −dH(v)

for every tangent vector v. If L is a lagrangian submanifold of a level set of H, then TL
lies in the kernel of dH at all points of L, or, in other words, the 2-form dαn vanishes on
the subspace of TpR2n generated by TpL and XH(p) for each p ∈ L. The restriction of dαn
to the tangent space TpR2n of R2n at any point p defines a nondegenerate, skew-symmetric
bilinear form, and thus, as we will see in the next chapter, subspaces of TpR2n on which dαn
vanishes can be at most n-dimensional. These remarks imply that XH is tangent to L, and
we have the following result.

Hamilton-Jacobi theorem . A function H : R2n → R is locally constant on a lagrangian
submanifold L ⊂ R2n if and only if the hamiltonian vector field XH is tangent to L.

If the lagrangian submanifold L is locally closed, this theorem implies that L is invariant
under the flow of XH .

2.2 The WKB approximation

Returning to our WKB ansatz for a stationary-state solution of the Schrödinger equation,
we recall that if S : Rn → R is an admissible phase function, then ϕ(x) = eiS(x)/~ satisfies

(Ĥ − E)ϕ = O(~).

Up to terms of order ~, in other words, ϕ is an eigenfunction of Ĥ with eigenvalue E.
There is no way to improve the order of approximation simply by making a better choice

of S. It is also clear on physical grounds that our ansatz for ϕ is too restrictive because
it satisfies |ϕ(x)| = 1 for all x. In quantum mechanics, the quantity |ϕ(x)|2 represents the
probability of the particle being at the position x, and there is no reason for this to be
constant; in fact, it is at least intuitively plausible that a particle is more likely to be found
where it moves more slowly, i.e., where its potential energy is higher. We may therefore hope
to find a better approximate solution by multiplying ϕ by an “amplitude function” a

ϕ(x) = eiS(x)/~a(x).
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If S is again an admissible phase function, we now obtain:

(Ĥ − E)ϕ = − 1

2m

[
i~

(
a∆S + 2

∑
j

∂a

∂xj

∂S

∂xj

)
+ ~2∆a

]
eiS/~.

If a is chosen to kill the coefficient of ~ on the right, then ϕ will be an eigenfunction of Ĥ
modulo terms of order O(~2). This condition on a is known as the homogeneous transport
equation:

a∆S + 2
∑
j

∂a

∂xj

∂S

∂xj
= 0.

If S is an admissible phase function, and a is an amplitude which satisfies the homogeneous
transport equation, then the second-order solution ϕ = eiS/~a is called the semi-classical
approximation.

Example 2.1 In 1 dimension, the homogeneous transport equation amounts to

aS ′′ + 2a′S ′ = 0.

Solving this equation directly, we obtain

a2S ′′ + 2aa′S ′ = (a2S ′)′ = 0

⇒ a =
c√
S ′

for some constant c. Since S is assumed to satisfy the Hamilton-Jacobi equation, we have
S ′ =

√
2m(E − V ), and thus

a =
c

[4(E − V )]
1
4

.

If E > V (x) for all x ∈ R, then a is a smooth solution to the homogeneous transport equation.
Notice that a = |ϕ| is largest where V is largest, as our physical reasoning predicted.

Since the expression above for a does not depend explicitly on the phase function S, we
might naively attempt to use the same formula when im(dS) is replaced by a non-projectable
lagrangian submanifold of H−1(E). Consider, for example, the unbounded potential V (x) =
x2 in the case of the harmonic oscillator. For |x| <

√
E, the function a is still well-defined

up to a multiplicative constant. At |x| =
√
E, however, a has (asymptotic) singularities;

observe that these occur precisely at the projected image of those points of L where the
projection itself becomes singular. Outside the interval |x| ≤

√
E, the function a assumes

complex values.

4

To generate better approximate solutions to the eigenfunction problem, we can extend
the procedure above by adding to the original amplitude a = a0 certain appropriately chosen
functions of higher order in ~. Consider the next approximation

ϕ = eiS/~(a0 + a1~).
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Assuming that eiS/~a0 is a semi-classical approximate solution, we obtain:

(Ĥ − E)ϕ = − 1

2m

[
i~2

(
a1∆S + 2

∑
j

∂a1

∂xj

∂S

∂xj
− i∆a0

)
+ ~3∆a1

]
eiS(x)/~.

Evidently, ϕ will be a solution of the time-independent Schrödinger equation modulo terms
of order O(~3) provided that a1 satisfies the inhomogeneous transport equation

a1∆S + 2
∑
j

∂a1

∂xj

∂S

∂xj
= i∆a0.

In general, a solution to the eigenfunction problem modulo terms of order O(~n) is given
by a WKB ansatz of the form

ϕ = eiS/~(a0 + a1~ + · · ·+ an~n),

where S satisfies the Hamilton-Jacobi equation, a0 satisfies the homogeneous transport equa-
tion, and for each k > 0, the function ak satisfies the inhomogeneous transport equation:

ak∆S + 2
∑
j

∂ak
∂xj

∂S

∂xj
= i∆ak−1.

This situation can be described in the terminology of asymptotic series as follows. By an
~-dependent function f~ on Rn we will mean a function f : Rn × R+ → C, where ~ is
viewed as a parameter ~ ranging in R+. Such a function is said to be represented by a
formal asymptotic expansion of the form

∑∞
k=0 ak~k, where each coefficient ak is a smooth

complex-valued function on Rn, if, for each K ∈ Z+, the difference

f~ −
K∑
k=0

ak~k

is O(~K+1) locally uniformly in x. When f~ admits such an expansion, its coefficients ak are
uniquely determined. It is obvious that any ~-dependent function which extends smoothly
to ~ = 0 is represented by an asymptotic series, and a theorem of E.Borel (see [28, p.28])
tells us that, conversely, any asymptotic series can be “summed” to yield such a function.
The principal part of an asymptotic series

∑∞
k=0 ak~k is defined as its first term which is

not identically zero as a function of x. The order of a is the index of its principal part.
If we consider as equivalent any two ~-dependent functions whose difference is O(~∞), i.e.

O(~k) for all k, then each asymptotic series determines a unique equivalence class. A WKB
“solution” to the eigenfunction problem Ĥϕ = Eϕ is then an equivalence class of functions
of the form

ϕ = eiS/~a,

where S is an admissible phase function and a is an ~-dependent function represented by a
formal asymptotic series

a ∼
∞∑
k=p

ak~k
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with the property that its principal part ap satisfies the homogeneous transport equation

ap∆S + 2
∑
j

∂ap
∂xj

∂S

∂xj
= 0,

and for k > p, the ak satisfy the recursive transport equations:

ak∆S + 2
∑
j

∂ak
∂xj

∂S

∂xj
= i∆ak−1.

This means that the ~-dependent function ϕ (or any function equivalent to it) satisfies the
Schrödinger equation up to terms of order O(~∞).

Geometry of the transport equation

In Section 2.1, we saw that a first-order WKB approximate solution ϕ = eiS/~ to the time-
independent Schrödinger equation depended on the choice of an admissible phase function,
i.e., a function S satisfying the Hamilton-Jacobi equation H(x, ∂S

∂x
) = E. The generalized or

geometric version of such a solution was a lagrangian submanifold of the level set H−1(E).
We now wish to interpret and generalize in a similar way the semi-classical approximation
with its amplitude included.

To begin, suppose that a is a function on Rn which satisfies the homogeneous transport
equation:

a∆S + 2
∑
j

∂a

∂xj

∂S

∂xj
= 0.

After multiplying both sides of this equation by a, we can rewrite it as:∑
j

∂

∂xj

(
a2 ∂S

∂xj

)
= 0,

which means that the divergence of the vector field a2∇S is zero. Rather than considering
the transport equation as a condition on the vector field a2∇S (on Rn) per se, we can lift all
of this activity to the lagrangian submanifold L = im(dS). Notice first that the restriction
to L of the hamiltonian vector field associated to H(q, p) =

∑
p2
i /2 + V (q) is

XH |L =
∑
j

(
∂S

∂xj

∂

∂qj
− ∂V

∂qj

∂

∂pj

)
.

The projection X
(x)
H of XH |L onto Rn (the (x) reminds us of the coordinate x on Rn) there-

fore coincides with ∇S, and so the homogeneous transport equation says that a2X
(x)
H is

divergence-free for the canonical density |dx| = |dx1 ∧ · · · ∧ dxn| on Rn. But it is better to
reformulate this condition as:

L
X

(x)
H

(a2|dx|) = 0;
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that is, we transfer the factor of a2 from the vector field X
(x)
H = ∇S to the density |dx|. Since

XH is tangent to L by the Hamilton-Jacobi theorem, and since the Lie derivative is invariant
under diffeomorphism, this equation is satisfied if and only if the pull-back of a2|dx| to L
via the projection π is invariant under the flow of XH .

This observation, together with the fact that it is the square of a which appears in the
density π∗(a2|dx|), suggests that a solution of the homogeneous transport equation should
be represented geometrically by a half-density on L, invariant by XH . (See Appendix A for
a discussion of densities of fractional order.)

In other words, a (geometric) semi-classical state should be defined as a lagrangian sub-
manifold L of R2n equipped with a half-density a. Such a state is stationary when L lies in
a level set of the classical hamiltonian and a is invariant under its flow.

Example 2.2 Recall that in the case of the 1-dimensional harmonic oscillator, stationary
classical states are simply those lagrangian submanifolds of R2 which coincide with the
regular level sets of the classical hamiltonian H(q, p) = (p2 + kq2)/2. There is a unique (up
to a constant) invariant volume element for the hamiltonian flow of H on each level curve
H. Any such level curve L, together with a square root of this volume element, constitutes
a semi-classical stationary state for the harmonic oscillator.

4

Notice that while a solution to the homogeneous transport equation in the case of the 1-
dimensional harmonic oscillator was necessarily singular (see Example 2.1), the semi-classical
state described in the preceding example is a perfectly smooth object everywhere on the
lagrangian submanifold L. The singularities arise only when we try to transfer the half-
density from L down to configuration space. Another substantial advantage of the geometric
interpretation of the semi-classical approximation is that the concept of an invariant half-
density depends only on the hamiltonian vector field XH and not on the function S, so it
makes sense on any lagrangian submanifold of R2n lying in a level set of H.

This discussion leads us to another change of viewpoint, namely that the quantum states
themselves should be represented, not by functions, but by half-densities on configuration
space Rn, i.e. elements of the intrinsic Hilbert space HRn (see Appendix A). Stationary states
are then eigenvectors of the Schrödinger operator Ĥ, which is defined on the space of smooth
half-densities in terms of the old Schrödinger operator on functions, which we will denote
momentarily as Ĥfun, by the equation

Ĥ(a|dx|1/2) = (Ĥfuna)|dx|
1/2.

From this new point of view, we can express the result of our analysis as follows:

If S is an admissible phase function and a is a half-density on L = im(dS) which
is invariant under the flow of the classical hamiltonian, then eiS/~(dS)∗a is a
second-order approximate solution to the time-independent Schrödinger equation.
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In summary, we have noted the following correspondences between classical and quantum
mechanics:

Object Classical version Quantum version

basic space R2n HRn

state lagrangian submanifold of R2n with half-density on Rn

half-density

time-evolution Hamilton’s equations Schrödinger equation

generator of evolution function H on R2n operator Ĥ on smooth
half-densities

stationary state lagrangian submanifold in level set eigenvector of Ĥ
of H with invariant half-density

Proceeding further, we could attempt to interpret a solution of the recursive system of
inhomogeneous transport equations on Rn as an asymptotic half-density on L in order to
arrive at a geometric picture of a complete WKB solution to the Schrödinger equation. This,
however, involves some additional difficulties, notably the lack of a geometric interpretation
of the inhomogeneous transport equations, which lie beyond the scope of these notes. Instead,
we will focus on two aspects of the semi-classical approximation. First, we will extend the
geometric picture presented above to systems with more general phase spaces. This will
require the concept of symplectic manifold, which is introduced in the following chapter.
Second, we will “quantize” semi-classical states in these symplectic manifolds. Specifically,
we will try to construct a space of quantum states corresponding to a general classical
phase space. Then we will try to construct asymptotic quantum states corresponding to
half-densities on lagrangian submanifolds. In particular, we will start with an invariant
half-density on a (possibly non-projectable) lagrangian submanifold of R2n and attempt to
use this data to construct an explicit semi-classical approximate solution to Schrödinger’s
equation on Rn.
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3 Symplectic Manifolds

In this chapter, we will introduce the notion of a symplectic structure on a manifold, moti-
vated for the most part by the situation in R2n. While some discussion will be devoted to
certain general properties of symplectic manifolds, our main goal at this point is to develop
the tools needed to extend the hamiltonian viewpoint to phase spaces associated to general
finite-dimensional configuration spaces, i.e. to cotangent bundles. More general symplectic
manifolds will reappear as the focus of more sophisticated quantization programs in later
chapters. We refer to [6, 29, 63] for thorough discussions of the topics in this chapter.

3.1 Symplectic structures

In Section 2.1, a lagrangian submanifold of R2n was defined as an n-dimensional submanifold
L ⊂ R2n on which the exterior derivative of the form αn =

∑
pi dqi vanishes; to a function

H : R2n → R, we saw that Hamilton’s equations associate a vector field XH on R2n satisfying

XH dαn = −dH.

Finally, our proof of the Hamilton-Jacobi theorem relied on the nondegeneracy of the 2-
form dαn. These points already indicate the central role played by the form dαn in the
study of hamiltonian systems in R2n; the correct generalization of the hamiltonian picture to
arbitrary configuration spaces relies similarly on the use of 2-forms with certain additional
properties. In this section, we first study such forms pointwise, collecting pertinent facts
about nondegenerate, skew-symmetric bilinear forms. We then turn to the definition of
symplectic manifolds.

Linear symplectic structures

Suppose that V is a real, m-dimensional vector space. A bilinear form ω : V × V → R gives
rise to a linear map

ω̃ : V → V ∗

defined by contraction:
ω̃(x)(y) = ω(x, y).

The ω-orthogonal to a subspace W ⊂ V is defined as

W⊥ = {x ∈ V : W ⊂ ker ω̃(x)}.

If ω̃ is an isomorphism, or in other words if V ⊥ = {0}, then the form ω is said to be nonde-
generate; if in addition ω is skew-symmetric, then ω is called a linear symplectic structure on
V . A linear endomorphism of a symplectic vector space (V, ω) which preserves the form ω

is called a linear symplectic transformation, and the group of all such transformations
is denoted by Sp(V ).
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Example 3.1 If E is any real n-dimensional vector space with dual E∗, then a linear sym-
plectic structure on V = E ⊕ E∗ is given by

ω((x, λ), (x′, λ′)) = λ′(x)− λ(x′).

With respect to a basis {xi} of E and a dual basis {λi} of E∗, the form ω is represented by
the matrix

ω =

(
0 I
−I 0

)
.

It follows that if a linear operator on V is given by the real 2n× 2n matrix

T =

(
A B
C D

)
,

then T is symplectic provided that AtC,BtD are symmetric, and AtD − CtB = I. Note in
particular that these conditions are satisfied if A ∈ GL(E), D = (At)−1, and B = C = 0,
and so GL(E) is isomorphic to a subgroup Gl(E) of Sp(V ). More generally, if K : E → F
is an isomorphism, then the association

(x, λ) 7→ (Kx, (K−1)∗λ)

defines a linear symplectomorphism between E⊕E∗ and F ⊕F ∗ equipped with these linear
symplectic structures.

4

Since the determinant of a skew-symmetric m×m matrix is zero if m is odd, the existence
of a linear symplectic structure on a vector space V implies that V is necessarily even-
dimensional and therefore admits a complex structure, i.e. a linear endomorphism J such
that J2 = −I. A complex structure is said to be compatible with a symplectic structure on
V if

ω(Jx, Jy) = ω(x, y)

and
ω(x, Jx) > 0

for all x, y ∈ V . In other words, J is compatible with ω (we also call it ω-compatible)
if J : V → V is a linear symplectomorphism and gJ(·, ·) = ω(·, J ·) defines a symmetric,
positive-definite bilinear form on V .

Theorem 3.2 Every symplectic vector space (V, ω) admits a compatible complex structure.

Proof. Let 〈 , 〉 be a symmetric, positive-definite inner product on V , so that ω is represented
by an invertible skew-adjoint operator K : V → V ; i.e.

ω(x, y) = 〈Kx, y〉.
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The operator K admits a polar decomposition K = RJ , where R =
√
KKt is positive-

definite symmetric, J = R−1K is orthogonal, and RJ = JR. From the skew-symmetry of K
it follows that J t = −J , and so J2 = −JJ t = − id; i.e., J is a complex structure on V .

To see that J is ω-compatible, first note that

ω(Jx, Jy) = 〈KJx, Jy〉 = 〈JKx, Jy〉 = 〈Kx, y〉 = ω(x, y).

Also,
ω(x, Jx) = 〈Kx, Jx〉 = 〈JRx, Jx〉 = 〈Rx, x〉 > 0,

since R and 〈 , 〉 are positive-definite.

2

Corollary 3.3 The collection J of ω-compatible complex structures on a symplectic vector
space (V, ω) is contractible.

Proof. The association J 7→ gJ described above defines a continuous map from J into the
space P of symmetric, positive-definite bilinear forms on V . By the uniqueness of the polar
decomposition, it follows that the map which assigns to a form 〈 , 〉 the complex structure J
constructed in the preceding proof is continuous, and the composition J → P → J of these
maps equals the identity on J . Since P is contractible, this implies the corollary.

2

If J is ω-compatible, a hermitian structure on V is defined by

〈·, ·〉 = gJ(·, ·) + iω(·, ·).

As is easily checked, a linear transformation T ∈ GL(V ) which preserves any two of the
structures ω, gJ , J on V preserves the third and therefore preserves the hermitian structure.
In terms of the automorphism groups Sp(V ), GL(V, J), O(V ), and U(V ) of ω, J, g, and 〈·, ·〉,
this means that the intersection of any two of Sp(V ), GL(V, J), O(V ) equals U(V ).

To determine the Lie algebra sp(V) of Sp(V ), consider a 1-parameter family of maps etA

associated to some linear map A : V → V . For any v, w ∈ V , we have

d

dt

∣∣∣∣
t=0

ω(etAv, etAw) = ω(Av,w) + ω(v, Aw),

and so A ∈ sp(V) if and only if the linear map ω̃ ◦A : V → V ∗ is self-adjoint. Consequently,
dim(V ) = 2k implies dim(sp(V)) = dim(Sp(V)) = k(2k + 1).

Distinguished subspaces

The ω-orthogonal to a subspace W of a symplectic vector space (V, ω) is called the symplectic
orthogonal to W . From the nondegeneracy of the symplectic form, it follows that

W⊥⊥ = W and dimW⊥ = dimV − dimW
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for any subspace W ⊂ V . Also,

(A+B)⊥ = A⊥ ∩B⊥ and (A ∩B)⊥ = A⊥ +B⊥

for any pair of subspaces A,B of V . In particular, B⊥ ⊂ A⊥ whenever A ⊂ B.
Note that the symplectic orthogonal W⊥ might not be an algebraic complement to W .

For instance, if dimW = 1, the skew-symmetry of ω implies that W ⊂ W⊥. More generally,
any subspace contained in its orthogonal will be called isotropic. Dually, we note that if
codimW = 1, then W⊥ is 1-dimensional, hence isotropic, and W⊥ ⊂ W⊥⊥ = W . In
general, spaces W satisfying the condition W⊥ ⊂ W are called coisotropic or involutive.
Finally, if W is self-orthogonal, i.e. W⊥ = W , then the dimension relation above implies that
dimW = 1

2
dimV . Any self-orthogonal subspace is simultaneously isotropic and coisotropic,

and is called lagrangian.
According to these definitions, a subspace W ⊂ V is isotropic if the restriction of the

symplectic form to W is identically zero. At the other extreme, the restriction of ω to certain
subspaces Z ⊂ V may again be nondegenerate; this is equivalent to saying that Z∩Z⊥ = {0}
or Z + Z⊥ = V . Such subspaces are called symplectic.

Example 3.4 In E⊕E∗ with its usual symplectic structure, both E and E∗ are lagrangian
subspaces. It also follows from the definition of this structure that the graph of a linear map
B : E → E∗ is a lagrangian subspace of E ⊕ E∗ if and only if B is self-adjoint.

If (V, ω) is a symplectic vector space, we denote by V ⊕V the vector space V ⊕V equipped
with the symplectic structure ω ⊕ −ω. If T : V → V is a linear symplectic map, then the
graph of T is a lagrangian subspace of V ⊕ V .

The kernel of a nonzero covector α ∈ V ∗ is a codimension-1 coisotropic subspace kerα of
V whose symplectic orthogonal (kerα)⊥ is the distinguished 1-dimensional subspace of kerα
spanned by ω̃−1(α).

4

Example 3.5 Suppose that (V, ω) is a 2n-dimensional symplectic vector space and W ⊂ V
is any isotropic subspace with dim(W ) < n. Since 2n = dim(W ) + dim(W⊥), there exists a
nonzero vector w ∈ W⊥\W . The subspaceW ′ of V spanned byW∪{w} is then isotropic and
dim(W ′) = dim(W )+1. From this observation it follows that for every isotropic subspace W
of a (finite-dimensional) symplectic vector space V which is not lagrangian, there exists an
isotropic subspace W ′ of V which properly contains W . Beginning with any 1-dimensional
subspace of V , we can apply this remark inductively to conclude that every finite-dimensional
symplectic vector space contains a lagrangian subspace.

4

Various subspaces of a symplectic vector space are related as follows.

Lemma 3.6 If L is a lagrangian subspace of a symplectic vector space V , and A ⊂ V is an
arbitrary subspace, then:
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1. L ⊂ A if and only if A⊥ ⊂ L.

2. L is transverse to A if and only if L ∩ A⊥ = {0}.

Proof. Statement (1) follows from the properties of the operation ⊥ and the equation L = L⊥.
Similarly, L+ A = V if and only if (L+ A)⊥ = L ∩ A⊥ = {0}, proving statement (2).

2

Example 3.7 Note that statement (1) of Lemma 3.6 implies that if L ⊂ A, then A⊥ ⊂ A,
and so A is a coisotropic subspace. Conversely, if A is coisotropic, then A⊥ is isotropic,
and Example 3.5 implies that there is a lagrangian subspace L with A⊥ ⊂ L. Passing to
orthogonals, we have L ⊂ A. Thus, a subspace C ⊂ V is coisotropic if and only if it contains
a lagrangian subspace.

Suppose that V is a symplectic vector space with an isotropic subspace I and a lagrangian
subspace L such that I ∩ L = 0. If W ⊂ L is any complementary subspace to I⊥ ∩ L, then
I + L ⊂ W + I⊥, and so W⊥ ∩ I ⊂ I⊥ ∩ L. Thus, W⊥ ∩ I ⊂ I ∩ L = 0. Since I⊥ ∩W = 0
by our choice of W , it follows that I +W is a symplectic subspace of V .

4

A pair L,L′ of transverse lagrangian subspaces of V is said to define a lagrangian
splitting of V . In this case, the map ω̃ defines an isomorphism L′ ' L∗, which in turn
gives rise to a linear symplectomorphism between V and L⊕L∗ equipped with its canonical
symplectic structure (see Example 3.1). If J is a ω-compatible complex structure on V and
L ⊂ V a lagrangian subspace, then L, JL is a lagrangian splitting. By Example 3.5, every
symplectic vector space contains a lagrangian subspace, and since every n-dimensional vector
space is isomorphic to Rn, the preceding remarks prove the following linear “normal form”
result:

Theorem 3.8 Every 2n-dimensional symplectic vector space is linearly symplectomorphic
to (R2n, ωn).

Theorem 3.2 also implies the following useful result.

Lemma 3.9 Suppose that V is a symplectic vector space with a ω-compatible complex struc-
ture J and let Tε : V → V be given by Tε(x) = x+ εJx.

1. If L,L′ are any lagrangian subspaces of V , then Lε = Tε(L) is a lagrangian subspace
transverse to L′ for small ε > 0.

2. For any two lagrangian subspaces L,L′ of V , there is a lagrangian subspace L′′ trans-
verse to both L′ and L.

Proof. It is easy to check that Tε is a conformal linear symplectic map, i.e. an isomorphism
of V satisfying ω(Tεx, Tεy) = (1 + ε2)ω(x, y). Thus, Lε is a lagrangian subspace for all
ε > 0. Using the inner-product gJ on V induced by J , we can choose orthonormal bases
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{vi}, {wi} of L′ and L, respectively, so that for i = 1, · · · , k, the vectors vi = wi span L∩L′.
Then {wi + εJwi} form a basis of Lε, and L′, Lε are transverse precisely when the matrix
M = {ω(vi, wj + εJwj)} = {ω(vi, wj) + ε gJ(vi, wj)} is nonsingular. Our choice of bases
implies that

M =

(
ε · id 0

0 A+ ε ·B

)
whereA = {ω(vi, wj)}ni,j=k+1 andB is some (n−k)×(n−k) matrix. Setting I = span{vi}ni=k+1

and W = span{wi}ni=k+1, we can apply Example 3.7 to conclude that A is nonsingular, and
assertion (1) follows.

To prove (2), observe that for small ε > 0, the lagrangian subspace Lε is transverse to
L,L′ by (1).

2

In fact, the statement of preceding lemma can be improved as follows. Let {Li} be a count-
able family of lagrangian subspaces, and let Ai, Bi be the matrices obtained with respect to L
as in the proof above. For each i, the function t 7→ det(Ai+tBi) is a nonzero polynomial and
therefore has finitely many zeros. Consequently, the lagrangian subspace Tt(L) is transverse
to all Li for almost every t ∈ R.

The lagrangian grassmannian

The collection of all unoriented lagrangian subspaces of a 2n-dimensional symplectic vector
space V is called the lagrangian grassmannian L(V ) of V . A natural action of the group
Sp(V ) on L(V ), denoted  : Sp(V )× L(V )→ L(V ) is defined by (T, L) = L(T ) = T (L).

Lemma 3.10 The unitary group associated to an ω-compatible complex structure J on V
acts transitively on L(V ).

Proof. For arbitrary L1, L2 ∈ L(V ), an orthogonal transformation L1 → L2 induces a
symplectic transformation L1 ⊕ L∗1 → L2 ⊕ L∗2 in the manner of Example 3.1, which in turn
gives rise to a unitary transformation L1 ⊕ JL1 → L2 ⊕ JL2 mapping L1 onto L2.

2

The stabilizer of L ∈ L(V ) under the U(V )-action is evidently the orthogonal subgroup of
Gl(L) defined with respect to the inner-product and splitting L⊕JL of V induced by J (see
Example 3.1). Thus, a (non-canonical) identification of the lagrangian grassmannian with
the homogeneous space U(n)/O(n) is obtained from the map

U(V )
L→ L(V ).

The choice of J also defines a complex determinant U(V )
det2J→ S1, which induces a fibration

L(V ) → S1 with 1-connected fiber SU(n)/SO(n), giving an isomorphism of fundamental
groups

π1(L(V )) ' π1(S
1) ' Z.
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This isomorphism does not depend on the choices of J and L made above. Independence of J
follows from the fact that J is connected (Corollary 3.3). On the other hand, connectedness
of the unitary group together with Lemma 3.10 gives independence of L.

Passing to homology and dualizing, we obtain a natural homomorphism

H1(S1; Z)→ H1(L(V ); Z).

The image of the canonical generator of H1(S1; Z) under this map is called the universal
Maslov class, µV . The result of the following example will be useful when we extend our
discussion of the Maslov class from vector spaces to vector bundles.

Example 3.11 If (V, ω) is any symplectic vector space with ω-compatible complex structure
J and lagrangian subspace L, then a check of the preceding definitions shows that

mL((T, L′)) = mL(L′) · det2
J(T )

for any T ∈ U(V ) and L′ ∈ L(V ). (Recall that  : Sp(V )×L(V )→ L(V ) denotes the natural
action of Sp(V ) on L(V )).

Now consider any topological space M . If f1, f2 : M → L(V ) are continuous maps, then
the definition of the universal Maslov class shows that (f ∗1 − f ∗2 )µV equals the pull-back of
the canonical generator of H1(S1; R) by the map

(mL ◦ f1)(mL ◦ f2)
−1.

(Here we use the fact that when S1 is identified with the unit complex numbers, the mul-
tiplication map S1 × S1 → S1 induces the diagonal map H1(S1) → H1(S1) ⊕ H1(S1) '
H1(S1 × S1) on cohomology). If T : M → Sp(V ) is any map, we set (T · fi) = (T, fi).
Since Sp(V ) deformation retracts onto U(V ), it follows that T is homotopic to a map
T ′ : M → U(V ), and so ((T · f1)

∗ − (T · f2)
∗)µV is obtained via pull-back by

(mL ◦ (T ′ · f1))(mL ◦ (T ′ · f2))
−1.

From the first paragraph, it follows that this product equals (mL◦f1)(mL◦f2)
−1, from which

we conclude that
(f ∗1 − f ∗2 )µV = ((T · f1)

∗ − (T · f2)
∗)µV .

4

Symplectic manifolds

To motivate the definition of a symplectic manifold, we first recall some features of the
differential form −dαn = ωn =

∑n
j=1 dqj ∧ dpj which appeared in our earlier discussion.

First, we note that
∑n

j=1 dqj ∧ dpj defines a linear symplectic structure on the tangent space
of R2n at each point. In fact:

ωn

(
∂

∂qj
,
∂

∂pk

)
= δjk ωn

(
∂

∂qj
,
∂

∂qk

)
= 0 ωn

(
∂

∂pj
,
∂

∂pk

)
= 0
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and so

ω̃n

(
∂

∂qj

)
= dpj ω̃n

(
∂

∂pj

)
= −dqj,

from which it is clear that ω̃n is invertible.
Next, we recall that the hamiltonian vector field associated via Hamilton’s equations to

H : R2n → R satisfies
XH ωn = dH,

or in other words,
XH = ω̃−1

n (dH),

so we see that the symplectic form ωn is all that we need to obtain XH from H. This
description of the hamiltonian vector field leads immediately to the following two invariance
results. First note that by the skew-symmetry of ωn,

LXH
H = XH ·H = ωn(XH , XH) = 0,

implying that XH is tangent to the level sets of H. This again reflects the fact that the flow
of XH preserves energy. Since ωn is closed, we also have by Cartan’s formula (see [1])

LXH
ωn = d(XH ωn) +XH dωn = d2H = 0.

This equation implies that the flow of XH preserves the form ωn and therefore generalizes our
earlier remark that the hamiltonian vector field associated to the 1-dimensional harmonic
oscillator is divergence-free.

We now see what is needed to do hamiltonian mechanics on manifolds. A 2-form ω on a
manifold P is a smooth family of bilinear forms on the tangent spaces of P . By assuming that
each of these bilinear forms is nondegenerate, we guarantee that the equation XH = ω̃−1(dH)
defines a hamiltonian vector field uniquely for any H. Computing the Lie derivative of H
with respect to XH

LXH
H = XH ·H = ω̃(XH)(XH) = ω(XH , XH) = 0,

we see that the conservation of energy follows from the skew-symmetry of the form ω.
Finally, invariance of ω under the hamiltonian flow is satisfied if

LXH
ω = d(XH ω) +XH dω = 0.

Here, the term d(XH ω) = d2H is automatically zero; to guarantee the vanishing of the
second term, we impose the condition that ω be closed.

Thus we make the following definition:

Definition 3.12 A symplectic structure on a manifold P is a closed, nondegenerate
2-form ω on P .
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The condition that ω be nondegenerate means that ω̃ defines an isomorphism of vector
bundles TP → T ∗P , or equivalently, that the top exterior power of ω is a volume form on
P , or finally, that ω defines a linear symplectic structure on each tangent space of P .

An immediate example of a symplectic manifold is furnished by R2n with its standard
structure ωn =

∑n
j=1 dqj ∧ dpj (a differential form with constant coefficients and not just

a single bilinear form). Darboux’s theorem (Section 4.3) will tell us that this is the local
model for the general case. In the next section, we will see that the cotangent bundle of any
smooth manifold carries a natural symplectic structure.

Generalizing our earlier discussion of distinguished subspaces of a symplectic vector space,
we call a submanifold C ⊂ P (co-)isotropic provided that each tangent space TpC of C is a
(co-)isotropic subspace of TpP . When C is coisotropic, the subspaces Cp = (TpC)⊥ comprise
a subbundle (TC)⊥ of TC known as the characteristic distribution of C. It is integrable
because ω is closed. Of particular interest in our discussion will be lagrangian submanifolds
of P , which are (co-)isotropic submanifolds of dimension 1

2
dim(P ). More generally, if L is a

smooth manifold of dimension 1
2
dim(P ) and ι : L → P is an immersion such that ι∗ω = 0,

we will call the pair (L, ι) a lagrangian immersion.

Example 3.13 If C ⊂ P is a hypersurface, then C is a coisotropic submanifold. A simple
check of definitions shows that if H : P → R is a smooth function having C as a regular level
set, then the hamiltonian vector field XH is tangent to the characteristic foliation of C.

If (L, ι) is a lagrangian immersion whose image is contained in C, then Lemma 3.6 implies
that for each p ∈ L, the characteristic subspace Cι(p) ⊂ Tι(p)C is contained in ι∗TpL, and thus
XH induces a smooth, nonsingular vector field XH,ι on L. In view of the remarks above, this
assertion generalizes the Hamilton-Jacobi theorem (see the end of Section 2.1) to arbitrary
symplectic manifolds and lagrangian immersions.

4

New symplectic manifolds can be manufactured from known examples by dualizing and by
taking products. The symplectic dual of a manifold (P, ω) consists of the same underlying
manifold endowed with the symplectic structure −ω. Evidently P and its dual P share the
same (co-)isotropic submanifolds. Given two symplectic manifolds (P1, ω1) and (P2, ω2), their
product P1×P2 admits a symplectic structure given by the sum ω1⊕ω2. More explicitly, this
form is the sum of the pull-backs of ω1 and ω2 by the projections of P1×P2 to P1 and P2. As
is easily verified, the product of (co-)isotropic submanifolds of P1 and P2 is a (co-)isotropic
submanifold of P1 × P2.

A symplectomorphism from (P1, ω1) to (P2, ω2) is a smooth diffeomorphism f : P1 →
P2 compatible with the symplectic structures: f ∗ω2 = ω1. A useful connection among duals,
products, and symplectomorphisms is provided by the following lemma.

Lemma 3.14 A diffeomorphism f : P1 → P2 between symplectic manifolds is a symplecto-
morphism if and only if its graph is a lagrangian submanifold of the product P2 × P 1.

The collection Aut(P, ω) of symplectomorphisms of P becomes an infinite-dimensional Lie
group when endowed with the C∞ topology (see [49]). In this case, the corresponding Lie
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algebra is the space χ(P, ω) of smooth vector fields X on P satisfying

LXω = 0.

Since LXω = d(X ω), the association X 7→ X ω defines an isomorphism between χ(P, ω)
and the space of closed 1-forms on P ; those X which map to exact 1-forms are simply the
hamiltonian vector fields on P . The elements of χ(P, ω) are called locally hamiltonian
vector fields or symplectic vector fields.

Example 3.15 A linear symplectic form ω on a vector space V induces a symplectic struc-
ture (also denoted ω) on V via the canonical identification of TV with V ×V . The symplectic
group Sp(V ) then embeds naturally in Aut(V, ω), and the Lie algebra sp(V) identifies with
the subalgebra of χ(V, ω) consisting of vector fields of the form

X(v) = Av

for some A ∈ sp(V). Note that these are precisely the hamiltonian vector fields of the
homogeneous quadratic polynomials on V , i.e. functions satisfying Q(tv) = t2Q(v) for all
real t. Consequently, sp(V) is canonically identified with the space of such functions via the
correspondence

A↔ QA(v) =
1

2
ω(Av, v).

4

Symplectic vector bundles

Since a symplectic form on a 2n-manifold P defines a smooth family of linear symplectic
forms on the fibers of TP , the frame bundle of P can be reduced to a principal Sp(n) bundle
over P . More generally, any vector bundle E → B with this structure is called a symplectic
vector bundle. Two symplectic vector bundles E,F are said to be symplectomorphic if
there exists a vector bundle isomorphism E → F which preserves their symplectic structures.

Example 3.16 If F → B is any vector bundle, then the sum F ⊕ F ∗ carries a natural
symplectic vector bundle structure, defined in analogy with Example 3.1.

4

With the aid of an arbitrary riemannian metric, the proof of Theorem 3.2 can be gener-
alized by a fiberwise construction as follows.

Theorem 3.17 Every symplectic vector bundle admits a compatible complex vector bundle
structure.

Example 3.18 Despite Theorem 3.17, there exist examples of symplectic manifolds which
are not complex (the almost complex structure coming from the theorem cannot be made
integrable), and of complex manifolds which are not symplectic. (See [27] and the numerous
earlier references cited therein.) Note, however, that the Kähler form of any Kähler manifold
is a symplectic form.
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A lagrangian subbundle of a symplectic vector bundle E is a subbundle L ⊂ E such
that Lx is a lagrangian subspace of Ex for all x ∈ B. If E admits a lagrangian subbundle,
then E is symplectomorphic to L⊕L∗, and the frame bundle of E admits a further reduction
to a principal GL(n) bundle over B (compare Example 3.1).

Example 3.19 If L is a lagrangian submanifold of a symplectic manifold P , then the re-
stricted tangent bundle TLP is a symplectic vector bundle over L, and TL ⊂ TLP is a
lagrangian subbundle. Also note that if C ⊂ P is any submanifold such that TC contains a
lagrangian subbundle of TCP , then C is coisotropic (see Lemma 3.6).

4

In general, the automorphism group of a symplectic vector bundle E does not act tran-
sitively on the lagrangian subbundles of E. Nevertheless, a pair of transverse lagrangian
subbundles can be related as follows.

Theorem 3.20 Let E → B be a symplectic vector bundle and suppose that L,L′ are la-
grangian subbundles such that Lx is transverse to L′x for each x ∈ B. Then there exists a
compatible complex structure J on E satisfying JL = L′.

Proof. Let J0 be any compatible complex structure on E. Since L′ and J0L are both
transverse to L, we can find a symplectomorphism T : L ⊕ L′ → L ⊕ J0L which preserves
the subbundle L and maps L′ to J0L. A simple check of the definition then shows that
J = T−1J0T is a compatible complex structure on E which satisfies JL = L′.

2

Example 3.21 If E is a symplectic vector bundle over M , then any pair L,L′ of lagrangian
subbundles of E define a cohomology class µ(L,L′) ∈ H1(M ; Z) as follows.

Assuming first that E admits a symplectic trivialization f : E → M × V for some
symplectic vector space V , we denote by fL, fL′ : M → L(V ) the maps induced by the
lagrangian subbundles f(L), f(L′) of M × V . Then

µ(L,L′) = (f ∗L − f ∗L′)µV ,

where µV ∈ H1(L(V ); Z) is the universal Maslov class. From Example 3.11 it follows that
this class is independent of the choice of trivialization f .

For nontrivial E, we note that since the symplectic group Sp(V ) is connected, it follows
that for any loop γ : S1 → M , the pull-back bundle γ∗E is trivial. Thus µ(L,L′) is well-
defined by the requirement that for every smooth loop γ in M ,

γ∗µ(L,L′) = µ(γ∗L, γ∗L′).

4
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Example 3.22 As a particular case of Example 3.21, we consider the symplectic manifold
R2n ' T ∗Rn with its standard symplectic structure. Then the tangent bundle T (R2n) is
a symplectic vector bundle over R2n with a natural “vertical” lagrangian subbundle V Rn

defined as the kernel of π∗, where π : T ∗Rn → Rn is the natural projection.
If ι : L→ R2n is a lagrangian immersion, then the symplectic vector bundle ι∗T (T ∗(Rn))

has two lagrangian subbundles, the image L1 of ι∗ : TL → ι∗T (T ∗(Rn)) and L2 = ι∗V Rn.
The class µL,ι = µ(L1, L2) ∈ H1(L; Z) is called the Maslov class of (L, ι).

A check of these definitions shows that the Maslov class of (L, ι) equals the pull-back of
the universal Maslov class µn ∈ H1(L(R2n); Z) by the Gauss map G : L → L(R2n) defined
by G(p) = ι∗TpL ⊂ R2n. (See [3] for an interpretation of the Maslov class of a loop γ in
L as an intersection index of the loop G ◦ γ with a singular subvariety in the lagrangian
grassmannian).

4

3.2 Cotangent bundles

The cotangent bundle T ∗M of any smooth manifold M is equipped with a natural 1-form,
known as the Liouville form, defined by the formula

αM((x, b))(v) = b(π∗v),

where π : T ∗M →M is the canonical projection. In local coordinates (x1, · · · , xn) on M and
corresponding coordinates (q1, · · · , qn, p1, · · · , pn) on T ∗M , the equations

qj(x, b) = xj(x) pj(x, b) = b

(
∂

∂xj

)
imply that

αM =
n∑
j=1

pj dqj.

Thus, −dαM =
∑n

j=1 dqj ∧ dpj in these coordinates, from which it follows that the form
ωM = −dαM is a symplectic structure on T ∗M . Note that if M = Rn, then ωM is just the
symplectic structure ωn on T ∗Rn ' R2n discussed previously, and αM = αn.

Lagrangian immersions and the Liouville class

Given a lagrangian immersion ι : L → T ∗M , we set πL = π ◦ ι, where π : T ∗M → M
is the natural projection. Critical points and critical values of πL are called respectively
singular points and caustic points of L. Finally, (L, ι) is said to be projectable if
πL is a diffeomorphism. A nice property of the Liouville 1-form is that it can be used to
parametrize the set of projectable lagrangian submanifolds. To do this, we use the notation
ιϕ to denote a 1-form ϕ on M when we want to think of it as a map from M to T ∗M .
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Lemma 3.23 Let ϕ ∈ Ω1(M). Then

ι∗ϕαM = ϕ.

Proof. Because ιϕ is a section of T ∗M , it satisfies π ◦ ιϕ = idM . By the definition of αM , it
follows that for each v ∈ TpM ,

ι∗ϕαM(p)(v) = αM(ιϕ(p))(ιϕ∗v) = 〈ιϕ(p), π∗(ιϕ∗v)〉 = 〈ιϕ(p), v〉.

2

For this reason, αM is often described as the “tautological” 1-form on T ∗M . Taking exterior
derivatives on both sides of the equation in Lemma 3.23, we get

dϕ = dι∗ϕαM = ι∗ϕdαM = −ι∗ϕωM .

From this equation we see that the image of ϕ is a lagrangian submanifold of T ∗M precisely
when the form ϕ is closed. This proves

Proposition 3.24 The relation ϕ ↔ (M, ιϕ) defines a natural bijective correspondence be-
tween the the vector space of closed 1-forms on M and the set of projectable lagrangian
submanifolds of T ∗M .

Generalizing our WKB terminology, we will call S : M → R a phase function for a
projectable lagrangian embedding (L, ι) ⊂ T ∗M provided that ι(L) = dS(M). The preceding
remarks imply a simple link between phase functions and the Liouville form:

Lemma 3.25 If (L, ι) ⊂ T ∗M is a projectable lagrangian embedding, then S : M → R is a
phase function for L if and only if d(S ◦ πL ◦ ι) = ι∗αM .

Thus, L is the image of an exact 1-form on M if and only if the restriction of the Liouville
form to L is itself exact. This motivates the following definition.

Definition 3.26 If L,M are n-manifolds and ι : L→ T ∗M is an immersion such that ι∗αM
is exact, then ι is called an exact lagrangian immersion.

If ι : L → T ∗M is an exact lagrangian immersion, then Lemma 3.25 suggests that the
primitive of ι∗αM is a sort of generalized phase function for (L, ι) which lives on the manifold
L itself. We will return to this important viewpoint in the next chapter.

Example 3.27 A simple application of Stokes’ theorem shows that an embedded circle in
the phase plane cannot be exact, although it is the image of an exact lagrangian immersion
of R.

A general class of exact lagrangian submanifolds can be identified as follows. Associated
to a smooth submanifold N ⊂M is the submanifold

N⊥ = {(x, p) ∈ T ∗M : x ∈ N, TxN ⊂ ker(p)},

known as the conormal bundle to N . From this definition it follows easily that dimT ∗M =
2 dimN⊥, while the Liouville form of T ∗M vanishes on N⊥ for any N .

If F is a smooth foliation of M , then the union of the conormal bundles to the leaves of F
is a smooth submanifold of T ∗M foliated by lagrangian submanifolds and is thus coisotropic
(see Example 3.19).
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4

Although many lagrangian immersions ι : L → T ∗M are not exact, the form ι∗αM is
always closed, since dι∗αM = ι∗ωM = 0. The deRham cohomology class λL,ι ∈ H1(L; R)
induced by this form will play an important role in the quantization procedures of the next
chapter and is known as the Liouville class of (L, ι).

Example 3.28 To generalize the picture described in Example 3.27, we consider a smooth
manifold M , together with a submanifold N ⊂M and a closed 1-form β on N . Then

N⊥
β = {(x, p) ∈ T ∗M : x ∈ N p|TxN = β(x)}

is a lagrangian submanifold of T ∗M whose Liouville class equals [π∗Nβ] ∈ H1(N⊥
β ; R), where

πN : N⊥
β → N is here the restriction of the natural projection π : T ∗M →M .

4

Fiber-preserving symplectomorphisms

On each fiber of the projection π : T ∗M →M , the pull-back of αM vanishes, so the fibers are
lagrangian submanifolds. Thus, the vertical bundle VM = ker π∗ is a lagrangian subbundle
of T (T ∗M). Since αM vanishes on the zero section ZM ⊂ T ∗M , it follows that ZM is
lagrangian as well, and the subbundles TZM and VM define a canonical lagrangian splitting
of T (T ∗M) over ZM .

A 1-form β on M defines a diffeomorphism fβ of T ∗M by fiber-wise affine translation

fβ(x, p) = (x, p+ β(x)).

It is easy to see that this map satisfies

f ∗βαM = αM + π∗β,

so fβ is a symplectomorphism of T ∗M if and only if β is closed.

Theorem 3.29 If a symplectomorphism f : T ∗M → T ∗M preserves each fiber of the pro-
jection π : T ∗M →M , then f = fβ for a closed 1-form β on M .

Proof. Fix a point (x0, p0) ∈ T ∗M and let ψ be a closed 1-form on M such that ψ(x0) =
(x0, p0). Since f is symplectic, the form µ = f ◦ ψ is also closed, and thus the map

h = f−1
µ ◦ f ◦ fψ

is a symplectomorphism of T ∗M which preserves fibers and fixes the zero section ZM ⊂ T ∗M .
Moreover, since the derivative Dh preserves the lagrangian splitting of T (T ∗M) along ZM
and equals the identity on TZM , we can conclude from Example 3.1 that Dh is the identity
at all points of ZM . Consequently, the fiber-derivative of f at the arbitrary point (x0, p0)
equals the identity, so f is a translation on each fiber. Defining β(x) = f(x, 0), we have
f = fβ.
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2

If β is a closed 1-form on M , then the flow ft of the vector field Xβ = −ω̃−1
M (π∗β) is

symplectic; since VM ⊂ kerπ∗β, the Hamilton-Jacobi theorem implies furthermore that the
flow ft satisfies the hypotheses of Theorem 3.29.

Corollary 3.30 For any closed 1-form β on M , the time-1 map f = f1 of the flow of Xβ

equals fβ.

Proof. By Theorem 3.29, the assertion will follow provided that we can show that f ∗αM =
αM + π∗β. To this end, note that the definition of the Lie derivative shows that f satisfies

f ∗αM = αM +

∫ 1

0

d

dt
(f ∗t αM) dt = αM +

∫ 1

0

f ∗t (LXβ
αM) dt.

By Cartan’s formula for the Lie derivative, we have

LXβ
αM = d(Xβ αM)−Xβ ωM = π∗β,

the latter equality following from the fact that Xβ ⊂ VM ⊂ kerαM and dαM = −ωM .
Another application of Cartan’s formula, combined with the assumption that β is closed
shows that

LXβ
π∗β = 0,

and so f ∗t π
∗β = π∗β for all t. Inserting these computations into the expression for f ∗αM

above, we obtain
f ∗αM = αM + π∗β.

2

Using Theorem 3.29, we can furthermore classify all fiber-preserving symplectomorphisms
from T ∗M to T ∗N .

Corollary 3.31 Any fiber-preserving symplectomorphism F : T ∗M → T ∗N can be realized
as the composition of a fiber-translation in T ∗M with the cotangent lift of a diffeomorphism
N →M .

Proof. By composing F with a fiber-translation in T ∗M we may assume that F maps the
zero section of T ∗M to that of T ∗N . The restriction of F−1 to the zero sections then induces
a diffeomorphism f : N → M such that the composition F ◦ (f−1)∗ is a fiber-preserving
symplectomorphism of T ∗N which fixes the zero section. From the preceding theorem, we
conclude that F = f ∗.

2
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The Schwartz transform

If M,N are smooth manifolds, then the map SM,N : T ∗M × T ∗N → T ∗(M ×N) defined in
local coordinates by

((x, ξ), (y, η)) 7→ (x, y,−ξ, η)
is a symplectomorphism which we will call the Schwartz transform.5 An elementary, but
fundamental property of this mapping can be described as follows.

Proposition 3.32 If M,N are smooth manifolds, then the Schwartz transform SM,N satis-
fies

(SM,N)∗αM×N = αM ⊕−αN .
In particular, SM,N induces a diffeomorphism of zero sections

ZM × ZN ' ZM×N

and an isomorphism of vertical bundles

VM ⊕ V N ' V (M ×N).

Using the Schwartz transform, we associate to any symplectomorphism F : T ∗M → T ∗N
the lagrangian embedding ιF : T ∗M → T ∗(M ×N) defined as the composition of SM,N with
the graph ΓF : T ∗M → T ∗M × T ∗N .

Example 3.33 By Corollary 3.31, a fiber-preserving symplectomorphism F : T ∗M → T ∗N
equals the composition of fiber-wise translation by a closed 1-form β onM with the cotangent
lift of a diffeomorphism g : N → M . A computation shows that if Γ ⊂ M ×N is the graph
of g and p : Γ → M is the natural projection, then the image of the composition of the
lagrangian embedding (T ∗M, ιF ) with the Schwartz transform SM,N equals the submanifold
Γ⊥p∗β ⊂ T ∗(M × N) defined in Example 3.28. In particular, if F is the cotangent lift of g,
then the image of (T ∗M, ιF ) equals the conormal bundle of Γ.

4

Finally, we note that multiplying the cotangent vectors in T ∗M by −1 defines a sym-
plectomorphism T ∗M → T ∗M which can be combined with the Schwartz transform SM,N

to arrive at the usual symplectomorphism T ∗M × T ∗N ' T ∗(M ×N). Thus in the special
case of cotangent bundles, dualizing and taking products leads to nothing new.

3.3 Mechanics on manifolds

With the techniques of symplectic geometry at our disposal, we are ready to extend our
discussion of mechanics to more general configuration spaces. Our description begins with a
comparison of the classical and quantum viewpoints, largely parallelling the earlier material
on the 1-dimensional harmonic oscillator given in the introduction. We then turn to the
semi-classical approximation and its geometric counterpart in this new context, setting the
stage for the quantization problem in the next chapter.

5The name comes from the relation of this construction to the Schwartz kernels of operators (see Sec-
tion 6.2).
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The classical picture

The hamiltonian description of classical motions in a configuration space M begins with the
classical phase space T ∗M . A riemannian metric g = (gij) on M induces an inner product
on the fibers of the cotangent bundle T ∗M , and a “kinetic energy” function which in local
coordinates (q, p) is given by

kM(q, p) =
1

2

∑
i,j

gij(q) pipj,

where gij is the inverse matrix to gij. Regular level sets of kM are sphere bundles over M .
The hamiltonian flow associated to kM is called the co-geodesic flow due to its relation
with the riemannian structure of M described in the following theorem.

Theorem 3.34 If M is a riemannian manifold, then integral curves of the co-geodesic flow
project via π to geodesics on M .

A proof of this theorem can be given in local coordinates by using Hamilton’s equations

q̇i =
∂H

∂pi
=
∑
j

gijpj ṗi = −∂H
∂qi

= −1

2

∑
u,v

∂guv

∂qi
pupv

to derive the geodesic equation
q̈k +

∑
i,j

Γkij q̇iq̇j = 0.

For details, see [36].
In physical terms, Theorem 3.34 states that a free particle on a manifold must move along

a geodesic. A smooth, real-valued potential V : M → R induces the hamiltonian function

H(q, p) = kM(q, p) + V (q)

on T ∗M . Integral curves of the hamiltonian flow of H then project to classical trajectories
of a particle on M subject to the potential V .

The quantum mechanical picture

For the time being, we will assume that the Schrödinger operator on a riemannian manifold
M with potential function V is defined in analogy with the flat case of Rn with its standard
metric. That is, we first define the operator on the function space C∞(M) by

Ĥ = − ~2

2m
∆ +mV ,

where ∆ denotes the Laplace-Beltrami operator. As before, Ĥ induces a (densely defined)
operator Ĥ on the intrinsic Hilbert space HM of M by the equation

Ĥ(a|dx|1/2) = (Ĥa)|dx|1/2,
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where |dx| is the natural density associated to the metric on M , and the time-independent
Schrödinger equation on M assumes the familiar form

(Ĥ − E)ϕ = 0.

The advantage of this viewpoint is that both the classical state space T ∗M and the quantum
state space HM are objects intrinsically associated to the underlying differential manifold
M . The dynamics on both objects are determined by the choice of metric on M .

The semi-classical approximation

The basic WKB technique for constructing semi-classical solutions to the Schrödinger equa-
tion on M proceeds as in Section 2.2. Specifically, a half-density of the form eiS/ha is a
second-order approximate solution of the eigenvector problem (Ĥ −E)ϕ = 0 provided that
the phase function S : M → R satisfies the Hamilton-Jacobi equation

H ◦ ιdS = E,

and the half-density a satisfies the homogeneous transport equation, which assumes the
coordinate-free form

a∆S + 2L∇S a = 0.

We can formulate this construction abstractly by considering first a projectable, exact
lagrangian embedding ι : L → T ∗M . By definition, this means that πL = π ◦ ι is a diffeo-
morphism, where π : T ∗M →M is the natural projection, and Lemma 3.25 implies that for
any primitive φ : L→ R of ι∗αM , the composition S = φ ◦ π−1

L is a phase function for (L, ι).
Now if H : T ∗M → R is any smooth function, then (L, ι) satisfies the Hamilton-Jacobi

equation provided that E is a regular value of H and

H ◦ ι = E.

In this case, the embedding ι and hamiltonian vector field XH of H induce a nonsingular
vector field XH,ι on L (see Example 3.13). If a is a half-density on L, then the requirement
that (π−1

L )∗a satisfy the homogeneous transport equation on M becomes

LXH,ι
a = 0.

If these conditions are satisfied, then the half-density eiφ/~a on L can be quantized (i.e.
pulled-back) to yield a second-order approximate solution (π−1

L )∗eiφ/~a to the Schrödinger
equation on M , as above.

This interpretation of the WKB approximation leads us to consider a semi-classical state
as a quadruple (L, ι, φ, a) comprised of a projectable, exact lagrangian embedding ι : L →
T ∗M , a “generalized” phase function φ : L → R satisfying dφ = ι∗αM , and a half-density a
on L. Our correspondence table now assumes the form
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Object Classical version Quantum version

basic space T ∗M HM

state (L, ι, φ, a) as above on M

time-evolution Hamilton’s equations Schrödinger equation

generator of evolution function H on T ∗M operator Ĥ on HM

stationary state state (L, ι, φ, a) such that eigenvector of Ĥ
H ◦ ι = E and LXH,ι

a = 0

Since the Hamilton-Jacobi and transport equations above make sense for any triple (L, ι, a)
consisting of an arbitrary lagrangian immersion ι : L→ T ∗M and a half-density a on L, it is
tempting to regard (L, ι, a) as a further generalization of the concept of semi-classical state in
T ∗M , in which we drop the conditions of projectability and exactness. Our goal in the next
chapter will be to determine when and how such “geometric” semi-classical states can be
used to construct “analytical” semi-classical approximate solutions to the time-independent
Schrödinger equation.
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4 Quantization in Cotangent Bundles

This chapter deals with the problem of constructing semi-classical approximate solutions to
the time-independent Schrödinger equation from the data contained in a “geometric” semi-
classical state. The starting point will be a lagrangian immersion ι : L→ T ∗M whose image
in contained in a regular level set of the classical hamiltonian H associated to some metric
and potential on the configuration space M . Given a half-density a on L which is invariant
under the flow induced by H, our goal is to use this data in order to construct, in a more or
less systematic way, an approximate solution to Schrödinger’s equation on M .

This process will be referred to as quantization. (It is, of course, only one of many
operations which go by this name.) As we shall see, the question of whether or not a given
semi-classical state (L, ι, a) can be quantized is answered largely in terms of the geometry of
the lagrangian immersion (L, ι). For this reason, we will often speak loosely of “quantizing
lagrangian submanifolds” or “quantizable lagrangian submanifolds.”

4.1 Prequantization

The simplest quantization procedure consists of pulling-back half-densities from projectable
lagrangian embeddings in T ∗M . As seen in Chapter 3, a triple (L, ι, a) for which ι : L→ T ∗M
is a projectable exact lagrangian embedding is quantized by choosing a primitive φ of ι∗αM
and forming the half-density

I~(L, ι, a)
def
= (π−1

L )∗eiφ/~a

on M . The choice of φ is unique only up to an additive constant, which leads to an ambiguity
in the overall phase of I~(L, ι, a). (This ambiguity was overcome in Chapter 3 by including
the choice of φ in the definition of a semi-classical state).

To generalize this procedure, suppose now that ι : L → T ∗M is a projectable, but not
necessarily exact lagrangian embedding. Since the 1-form ι∗αM on L is closed, it is locally
exact by the Poincaré lemma, and so we can choose a good cover {Lj} of L (see Appendix C)
and functions φj : Lj → R such that dφj = ι∗αM |Lj

. Given a half-density a on L, we set
aj = a|Lj

and define a half-density on πL(Lj) by quantizing (Lj, ι|Lj
, φj, aj) in the sense

above:
Ij = (π−1

Lj
)∗eiφj/~aj.

To quantize (L, ι, a), we must piece together the Ij to form a well-defined global half-density
I~(L, ι, a) on M . This is possible for arbitrary a provided that the functions φj can be chosen
so that the oscillatory coefficients eiφj/~ agree where their domains overlap; that is, we must
have

φj − φk ∈ Z~
def
= 2π~ · Z

on each Lj ∩ Lk. According to the discussion in Appendix C, this is precisely the condition
that the Liouville class λL,ι be ~-integral. At this point, however, we are forced to confront
once more the nature of ~. If it is a formal variable, the notion of ~-integrality is meaningless.
If ~ denotes a number ranging over an interval of the real numbers, then the Liouville class
will be 2π~ times an integral class for all ~ only if it is zero, i.e. only for an exact lagrangian
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submanifold. Since we are specifically trying to go beyond the exact case, this interpretation
is not acceptable either. Instead, we will make the following compromise.

Definition 4.1 A projectable lagrangian submanifold (L, ι) ⊂ T ∗M is quantizable if its
Liouville class λL,ι is ~-integral for some ~ ∈ R+. The values of ~ for which this condition
holds will be called admissible for (L, ι).

If L is quantizable but not exact, the set of all admissible ~ forms a sequence converging to
zero, consisting of the numbers ~0/k, where ~0 is the largest such number, and k runs over
the positive integers. If L is exact, all ~ > 0 are admissible.

Example 4.2 Let M = S1 and consider the closed 1-form β = p dθ on S1, for p ∈ R. The
cohomology class represented by this form is ~-integral provided that

p

∫
S1

dθ ∈ Z~,

and so the admissible values of ~ are the numbers {p/k : k ∈ Z+}. Geometrically this means
that all horizontal circles in the cylinder T ∗S1 are quantizable in the sense defined above,
but with differing sets of admissible ~.

The situation changes as soon as we consider the closed 1-form τ = a dθ1 + b dθ2 on the
torus S1 × S1. If τ is ~-integral for some ~ ∈ R+, then a/~ and b/~ are both integers,
meaning that a/b is a rational number if b 6= 0. In general, the condition that closed 1-form
β on a manifold M be quantizable is equivalent to the requirement that the ratio of any
two nonzero periods of β be rational. (A period of a closed 1-form β on M is any number
obtained by integrating β around some closed loop in M). Thus, the class of projectable
quantizable lagrangian submanifolds of T ∗M is rather limited whenever dim(H1(M ; R)) > 1.

4

The simple quantization technique described above does not generalize immediately to
non-projectable immersed lagrangian submanifolds (L, ι) ⊂ T ∗M , since πL cannot be used to
push-forward half-densities from L to M . For the time being, however, we will focus on the
set of regular points of πL in order to pass from half-densities on L to half-densities defined
near non-caustic points of L. Regardless of how this is to be carried out, it is desirable that
quantization be linear with respect to half-densities:

I~(L, ι, sa1 + a2) = s · I~(L, ι, a1) + I~(L, ι, a2).

Certainly this condition holds for the procedure we have been using in the projectable case,
and it is reasonable to adopt as a general rule. One consequence is

I~(L, ι, 0) = 0.

If a semi-classical state is represented by the union of a disjoint pair (L1, ι1, a1), (L2, ι2, a2)
of lagrangian submanifolds carrying half-densities, then by linearity we should have

I~(L1 ∪ L2, ι1 ∪ ι2, (a1, a2)) = I~(L1 ∪ L2, ι1 ∪ ι2, (a1, 0)) + I~(L1 ∪ L2, ι1 ∪ ι2, (0, a2))

= I~(L1, ι1, a1) + I~(L2, ι2, a2).
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Now consider an arbitrary immersed lagrangian submanifold (L, ι) ⊂ T ∗M and half-
density a on L. If p ∈ πL(L) is non-caustic and πL is proper, then there is a contractible
neighborhood U ⊂ M of p for which π−1

L (U) consists of finitely many disjoint open subsets
Lj ⊂ L such that each (Lj, ι|Lj

) is a projectable lagrangian submanifold of T ∗U . Choosing a
generalized phase function φj : Lj → R for each Lj, we note that by the preceding remarks,
the quantization of (L, ι, a) should look something like∑

j

(π−1
Lj

)∗eiφj/~a

on U . As before, the requirement that φj be a generalized phase function for Lj determines
each φj only up to an additive constant, and so the meaning of the preceding sum is ambigu-
ous. To quantize half-densities on L consistently, we must therefore decide how to specify
the relative phases of the oscillatory coefficients eiφj/~.

If L is exact, then we may use any function φ : L→ R satisfying dφ = ι∗αM to fix phases,
as in the following example.

Example 4.3 For L = R, the lagrangian embedding ι : L → T ∗R given by ι(x) = (x2, x)
has a singular point at x = 0, and we denote by L+, L− the right and left projectable
components of L, respectively (these correspond to the upper and lower components of the
parabola ι(L)). A phase function φ : L→ R for (L, ι) is given by

φ(x) = 2x3/3.

If a = B(x) |dx|1/2 is any half-density on L, then since

(π−1
L )∗

∂

∂q
= ±2−1q−1/2 ∂

∂x
,

the transformation rule for half-densities implies

(π−1
L+

)∗a = 2−1/2 q−1/4B(q1/2) |dq|1/2 (π−1
L−

)∗a = 2−1/2q−1/4B(−q1/2) |dq|1/2.

Thus, the prequantization of (L, ι, a) is given for q > 0 by

I~(L, ι, a)(q) =
(
e2iq

3/2/3~B(q1/2) + e−2iq3/2/3~B(−q1/2)
)

2−1/2q−1/4 |dq|1/2.

The parabola ι(L) lies in the regular level set H−1(0) of the hamiltonian for a constant
force field

H(q, p) =
1

2
(p2 − q),

and it is easy to check that the induced vector field XH,ι on L equals XH,ι = (1/2) ∂/∂x.
Thus, a half-density a on L is invariant under the flow of XH,ι if and only if a = B |dx|1/2
for some B ∈ R. From the expression above, we obtain

I~(L, ι, a) =
(
e2iq

3/2/3~ + e−2iq3/2/3~
)

2−1/2 q1/4B |dq|1/2
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as a semi-classical approximate solution to the Schrödinger equation

−~2

2

∂2ψ

∂x2
− x

2
ψ = Eψ.

Unfortunately, this solution blows up at q = 0 (and is not defined for q < 0), so we have more
work ahead of us. In particular, we have no way as yet to check that letting φ be continuous
at 0 as a function on L is the right way to assure that we have a good approximation in the
immediate vicinity of q = 0. In fact, we will see later that this is the wrong choice!

4

Since exactness is only used to insure that the function eiφ/~ is well-defined on L, we can treat
certain non-exact cases in a similar way. For this purpose, we make the following provisional
definition, generalizing Definition 4.1.

Definition 4.4 An immersed lagrangian submanfold (L, ι) ⊂ T ∗M is said to be prequan-
tizable if its Liouville class λL,ι is ~-integral for some ~ ∈ R+. The values of ~ for which
this condition holds will again be called admissible for (L, ι).

If ~ is admissible for some prequantizable lagrangian immersion (L, ι), then there exists a
good cover {Vj} of the manifold L and functions φj : Vj → R such that dφj = ι∗αM |Vj

and
φj − φk ∈ Z~ on each Vj ∩ Vk. Consequently, the φj describe a single function φ : L→ T~ =
R/Z~ which satisfies dφ = ι∗αM and which defines a global oscillatory function eiφ/~ on L. If
a is a half-density on L, we can now quantize (L, ι, φ, a) by summing the pull-backs of eiφ/~a
to M . In the previous notation, the value of I~(L, ι, φ, a) on U is defined as∑

j

(π−1
Vj

)∗eiφ/~a.

Example 4.5 Consider the 1-dimensional harmonic oscillator with hamiltonian

H(q, p) =
1

2
(q2 + p2).

According to Definition 4.4, a number ~ ∈ R+ is admissible for the level set H−1(E) provided
that ∫

H−1(E)

α1 = 2πE ∈ Z~.

Thus, energy levels of the 1-dimensional harmonic oscillator corresponding to level sets for
which a particular value of ~ is admissible are given by E = n~. As one can read in any
textbook on quantum mechanics, the actual quantum energy levels are E = (n + 1/2)~.
The additional 1/2 can be explained geometrically in terms of the non-projectability of the
classical energy level curves, as we shall soon see.

4
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Prequantum bundles and contact manifolds

Prequantizability can be described geometrically in terms of principal T~ bundles with con-
nection over T ∗M . It is customary to make the following definition.

Definition 4.6 For fixed ~ ∈ R+, the prequantum T~ bundle associated to a cotangent
bundle (T ∗M,ωM) consists of the trivial principal bundle QM,~ = T ∗M × T~ together with
the connection 1-form ϕ = −π∗αM + dσ.

Here, σ denotes the multiple-valued linear variable in T~ and π : QM,~ → T ∗M is the bundle
projection. If ι : L → T ∗M is any lagrangian immersion, then the curvature of the induced
connection on ι∗QM,~ coincides with ι∗ωM and therefore vanishes. The holonomy of this
connection is represented by the mod-Z~ reduction of the Liouville class λL,ι.

From the prequantum standpoint, the basic geometric object representing a classical
state is therefore a quadruple (L, ι, a, φ) consisting of a lagrangian immersion ι : L→ T ∗M ,
a half-density a on L, and a parallel lift φ of L to the T~ bundle ι∗QM,~. If we associate
to QM,~ the prequantum line bundle EM,~ by means of the representation x 7→ e−ix/~ of T~
in U(1), then φ induces a parallel section of ι∗EM,~ corresponding to the (inverse of the)
oscillatory function eiφ/~ on L which appeared in the preceding section. This remark proves
the following geometric characterization of prequantizability.

Theorem 4.7 An immersed lagrangian submanifold (L, ι) ⊂ T ∗M is prequantizable if and
only if there exists a nonzero parallel section over L of the line bundle ι∗EM,~ for some ~ > 0.

Prequantum T~ bundles and parallel lifts of lagrangian submanfolds constitute our first
examples of the fundamental objects of contact geometry, the odd-dimensional counter-
part of symplectic geometry. Digressing briefly from quantization, we assemble here a few
facts about contact manifolds.

Definition 4.8 A contact form on a (2n+1)-dimensional manifold Q is a 1-form ϕ such
that ϕ ∧ (dϕ)n vanishes nowhere on Q. A manifold endowed with a contact form is called a
strict contact manifold.

To interpret the condition on ϕ we note first that the kernel of any nowhere vanishing 1-form
ϕ defines a 2n-dimensional distribution in Q. If ξ, η are (local) vector fields lying in this
distribution, we have

dϕ(ξ, η) = ξ · ϕ(η)− η · ϕ(ξ)− ϕ([ξ, η]) = −ϕ([ξ, η]).

This says that the distribution is integrable (in the sense of Frobenius) iff dϕ is zero on
ker(ϕ). The condition ϕ ∧ (dϕ)n 6= 0, on the other hand, means that the kernel of dϕ is
1-dimensional and everywhere transverse to ker(ϕ). Consequently, dϕ is a linear symplectic
form on ker(ϕ), and the “largest” integral submanifolds of ker(ϕ) are n-dimensional (i.e.
ker(ϕ) is “maximally non-integrable”).

Definition 4.9 A legendrian submanifold of a 2n+1-dimensional strict contact manifold
(Q,ϕ) is an n-dimensional integral submanifold for ϕ.
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If ϕ is a contact form and f a nowhere-vanishing function on Q, then f ·ϕ is again a contact
form which is said to be equivalent to ϕ, since they have the same legendrian submanifolds.
This leads to the following definition.

Definition 4.10 A contact structure on a manifold M is a codimension one subbundle
E ⊂ TM which is locally defined by contact forms, and a manifold endowed with such a
structure is called simply a contact manifold.

When the quotient TM/E is trivial, E is the kernel of a globally defined contact form. Such
a contact structure is called coorientable.

Our basic example of a strict contact manifold is furnished by a prequantum T~ bundle
QM,~ over a cotangent bundle T ∗M ; the image of a parallel lift of a lagrangian immersion
ι : L → T ∗M to QM,~ is an immersed legendrian submanifold of QM,~. Although we will
not pursue the idea in these notes, a possible generalization of the quantization procedure
described above might therefore begin by re-interpreting geometric semi-classical states as
triples (R, , a) consisting of a legendrian immersion (R, ) in a contact manifold together
with a half-density a on R.

4.2 The Maslov correction

It turns out that the naive quantization procedure of the preceding section is incorrect,
since it ignores a certain structure which arises from the relation of L to the fibers of the
projection T ∗M

π→M . This factor will be incorporated into our quantization procedure using
a procedure due to Maslov. To begin, we will illustrate this idea in the case of lagrangian
submanifolds of the phase plane.

Given a lagrangian immersion ι : L → T ∗R ' R2, we denote by πp the composition of ι
with the projection of R2 onto the p-axis. If πp is a diffeomorphism, then (L, ι) is said to be
p-projectable, in which case there exists an “alternate” generalized phase function τ : L→ R
satisfying dτ = ι∗(−q dp), obtained by thinking of R2 as the cotangent bundle of p-space.

A simple example of an embedded lagrangian submanifold of T ∗R which does not project
diffeomorphically onto the q-axis is a vertical line, or fiber, of the form ι(x) = (q0, x) for x ∈
R. Since the wave function corresponding to a constant half-density a on L should correspond
to a probability distribution describing the position of a particle at q0 with completely
indeterminate momentum, it should be a delta function supported at q0. Following an idea
of Maslov, we analyze this situation by pretending that p is position and q momentum, and
then quantizing to obtain a function on p-space. Using the phase function τ(x) = −q0x on
L, we obtain

(π−1
p )∗eiτ/~ |dx|1/2 = e−iq0p/~q0 |dp|1/2.

The result is exactly the asymptotic Fourier transform (see Appendix B) of the delta function
which we guessed above!

In its simplest form, Maslov’s technique is to suppose that (L, ι) ⊂ T ∗R is p-projectable,
so that dτ = ι∗(−q dp) for some phase function τ on L. If a is a half-density on L, we define
a function B on p-space by the equation

B |dp|1/2 = (π−1
p )∗eiτ/~a.
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The Maslov quantization of (L, ι, τ, a) is then given by the half-density

J~(L, ι, τ, a)
def
= F−1

~ (B) |dq|1/2

on q-space, where F~ denotes the asymptotic Fourier transform. To relate this procedure to
our earlier quantization by pull-back, we must compare the results in the case of lagrangian
submanifolds L ⊂ R2 which are bi-projectable, i.e. projectable in both the q- and p-directions.
For simplicity, we begin with the example of linear lagrangian subspaces.

Example 4.11 For real k 6= 0, consider the lagrangian embedding ι : R → T ∗R given by
ι(x) = (x, kx). Generalized phase functions on (L, ι) for the forms p dq and −q dp are given
by φ(x) = kx2/2 and τ(x) = −kx2/2, respectively. If a is a constant half-density on L, then
the transformation rule for half-densities implies

(π−1
L )∗a = A |dq|1/2 (π−1

p )∗a = |k|−1/2A |dp|1/2

for a real constant A determined by a. Quantization by pull-back therefore gives

I~(L, ι, φ, a) = eikq
2/2~A |dq|1/2.

On the other hand, we have (πp)
∗τ(p) = −p2/2k, and a computation6 shows that

F−1
~ ((π−1

p )∗eiτ/~)(q) = |k|1/2e−iπ·sgn(k)/4eikq
2/2~,

and so Maslov’s technique yields

J~(L, ι, τ, a) = e−iπ·sgn(k)/4I~(L, ι, φ, a).

Thus, the half-density obtained from (L, ι, a) by Maslov quantization differs from the simple
pull-back by a constant phase shift.

4

To establish a similar correspondence in somewhat greater generality, consider an arbi-
trary bi-projectable lagrangian embedding (L, ι) ⊂ R2 with phase functions φ and τ corre-
sponding to p dq and −q dp, respectively. For simplicity, we will assume that the additive
constants in φ and τ are chosen so that

φ = τ + ι∗(qp).

Next, let S(q) and T (p) be the functions defined on q- and p-space by pull-back:

S = φ ◦ π−1
L T = τ ◦ π−1

p ,

so that S and T satisfy the Legendre transform relation (see [2])

S(q) = −p(q)T ′(p(q)) + T (p(q)),

6See, for example, [32, Vol.1, Thm.7.6.1] .
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where p(q) = S ′(q). From this relation, it follows easily that

T ′′(p(q)) = −(S ′′(q))−1.

A half-density a on L determines functions A(q) and B(p) such that

(π−1
L )∗a = A |dq|1/2 (π−1

p )∗a = B |dp|1/2

and
A(q) = |S ′′(q)|1/2B(p(q)).

For each q, we must now compare the Maslov half-density

J~(L, ι, τ, a) = (2π~)−1/2

∫
R
ei(pq+T (p))/~B(p) dp |dq|1/2

with that obtained by pull-back:

I~(L, ι, φ, a) = eiS/~A |dq|1/2.

To this end, we set k(q) = T ′′(p(q)) and apply the principle of stationary phase (see Ap-
pendix B). The critical point of the exponent pq+T (p) occurs where q = −T ′(p), i.e. where
p = S ′(q) = p(q). Hence,∫

R
ei(pq+T (p))/~B(p) dp = (2π~)1/2e−iπ·sgn(k)/4 eiS(q)/~|k(q)|−1/2B(p(q)) +O(~3/2).

Thus
J~(L, ι, τ, a) = e−iπ·sgn(k)/4I~(L, ι, φ, a) +O(~).

For bi-projectable (L, ι), we therefore conclude that Maslov’s technique coincides with quan-
tization by pull-back up to a constant phase factor and terms of order ~.

The essential difference between the naive prequantization of Section 4.1 and the Maslov
quantization of a p-projectable lagrangian embedding (L, ι) which is not q-projectable lies
in the relative phase constants of the summands of I~(L, ι, a), as illustrated by the following
example.

Example 4.12 A phase function associated to −q dp for the lagrangian embedding ι(x) =
(x2, x) of L = R into R2 is given by τ(x) = −x3/3. The Maslov quantization of a half-density
a = B(x) |dx|1/2 on L is thus

J~(L, ι, τ, a) = F−1
~

(
e−ip

3/3~B(p)
)
|dq|1/2,

since (π−1
p )∗a = B(p) |dp|1/2. For each q > 0, critical points of the function R(p) = pq− p3/3

occur precisely when q = p2, i.e. when (q, p) ∈ ι(L), and an application of the principle of
stationary phase therefore yields two terms corresponding to the upper and lower halves of
L. Specifically, we have

J~(L, ι, τ, a) =
(
e−iπ/4 e2iq

3/2/3~B(−q1/2) + eiπ/4 e−2iq3/2/3~B(q1/2)
)

2−1/2q−1/4|dq|1/2 +O(~).
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Compare this with the result of Example 4.3. The extra phase factors of e∓iπ/4 make
J~(L, ι, τ, a) essentially different from the prequantization of (L, ι, a). However, while the
term of order 0 of J~(L, ι, τ, a) is, like I~(L, ι, φ, a), singular at the caustic point q = 0, the
full expression for J~(L, ι, τ, a) as an integral is perfectly smooth there, at least if a has
compact support. This smoothness at caustics is a clear advantage of Maslov quantization.

4

The relative phase factor in the preceding example can be attributed to the fact that the
function T (p) = −p3/3 has an inflection point at p = 0. More precisely, since T ′ is convex,
a factor of eiπ/2 arises in passing from the upper to the lower half of the parabola; if T ′ were
concave, the situation would be reversed.

The preceding observation leads us to assign an index to closed, immersed curves in the
phase plane. A p-dependent phase function T for L ⊂ R2 will have inflection points at
precisely those p for which (T ′(p), p) is a singular point of L. Moreover, the sign of T ′′ at
nearby points depends only on L and not on the choice of T . With these remarks in mind,
suppose that (L, ι) is a closed, immersed curve in R2 which is non-degenerate in the sense
that if T is a p-dependent phase function for a subset of L, then T ′ has only non-degenerate
critical points. Under this assumption, sgn(T ′′) changes by ±2 in the vicinity of a critical
point of T ′, and we can assign an index to (L, ι) by summing these changes while traversing
L in a prescribed direction. The result is twice an integer known as the Maslov index mL,ι

of (L, ι). (Compare [3]).

Example 4.13 The computation of the Maslov index can be interpreted geometrically if
we first observe that the non-degeneracy condition requires L to remain on the same side of
a fiber π−1(q) near a singular point. Since the index only involves the sign of T ′′, it follows
from Example 4.12 that the integer 1 should be assigned to a critical point of πL which is
traversed in the −p direction to the right of the fiber. In other words, downward motion to
the right of the fiber is positive, while the sign changes if either the direction of motion or
the side of the fiber is reversed, but not if both are.

A circle in the phase plane has a right and a left singular point, both of which are positive
according our rule when the circle is traversed counterclockwise. The Maslov index of the
circle therefore equals 2. In fact, the same is true of any closed embedded curve traversed
counterclockwise. On the other hand, a figure-eight has Maslov index zero.

The reader is invited to check that if L is a circle with a fixed orientation ν ∈ H1(L; Z),
then mL,ι equals 〈µL,ι, ν〉, where µL,ι is the Maslov class of (L, ι) defined in Example 3.22.

4

Our goal is now to modify the prequantization procedure for arbitrary lagrangian sub-
manifolds of the phase plane by incorporating the Maslov index. The basic idea is as follows.
Given an immersed lagrangian submanifold (L, ι) ⊂ R2, we first choose a good cover {Lj}
of L such that the image of each Lj under ι is either q- or p-projectable and no intersection
Lj ∩ Lk contains a critical point of πL. Next, we fix a partition of unity {hj} subordinate
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to {Lj}. To quantize a half-density a on L, we quantize each (Lj, ι, a · hj) to obtain a half-
density Ij on R either by pull-back or by Maslov’s technique. As before, we would then like
to define the quantization of (L, ι, a) as the sum

I~(L, ι, a) =
∑
j

Ij.

In order to specify the relative phases of the Ij, and to make this definition independent of
the choice of cover {Lj} and partition of unity, we will require that I~(L, ι, a) coincide up
to order ~ with the usual quantization by pull-back for any half-density a supported in a
projectable subset of L. This condition can be precisely formulated in terms of the Maslov
index and Liouville class of (L, ι) as follows.

On an open interval U of non-caustic points, each half-density Ij is the sum of the pull-
back of half-densities on each component of Lj∩π−1

L (U). If Lj is quantized by pull-back, this
statement is obvious; if Maslov’s technique is applied to Lj, it follows from an application of
the principle of stationary phase as in Example 4.12. On Lj ∩ π−1

L (U), these half-densities
are of the form

Ĩj = e−iπsj/4 eiφj/~ a.

Here, φ is a real-valued function on Lj satisfying dφj = ι∗α1, while sj are integers depending
only on the component of Lj ∩ π−1

L (U) in question. (More precisely, sj is zero if Lj is
q-projectable and is quantized by pull-back; otherwise sj equals sgn(T ′′) for a suitable p-
dependent phase function). For I~(L, ι, a) to be well-defined, we must choose the functions
φj so that Ĩj = Ĩk on each intersection Lj ∩Lk regardless of the particular half-density a. In
other words, we require

ei(φj−φk)/~ e−iπ(sj−sk)/4 = 1

at each point of Lj ∩ Lk. Since φj − φk is constant on Lj ∩ Lk, we can define ajk as the
(constant) value of (φj − φk)− π~(sj − sk)/4 on Lj ∩ Lk, so that our requirement becomes

ajk ∈ Z~.

Evidently, this condition can be fulfilled on any arc of a curve in the phase plane. If L is
a circle, then this condition implies that the sum of any of the ajk lies in Z~, or, in other
words, that the Maslov index mL,ι of (L, ι) satisfies

π~
2
mL,ι +

∫
L

ι∗α1 ∈ Z~.

This is the simplest version of the Maslov quantization condition.

Example 4.14 Returning to the harmonic oscillator of Example 4.5, we see that the level
set H−1(E) satisfies the Maslov condition provided that for some integer n,

E = (n+ 1/2)~.

Allowable energy levels in this case therefore correspond to the Bohr-Sommerfeld condition,
which actually gives the precise energy levels for the quantum harmonic oscillator.

4
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A general quantization scheme

Motivated by the simple results above, our aim in the next sections will be to develop a
systematic method for quantizing lagrangian submanifolds of cotangent bundles. The basis
of this method will again be Maslov’s technique, which relies in this context on the concept
of generalized phase functions.

Local parametrizations of an immersed lagrangian submanifold (L, ι) ⊂ T ∗M defined by
such phase functions will first enable us to quantize a given half-density locally on L by
means of a slightly more general version of the (inverse) asymptotic Fourier transform. The
result will be a collection of half-densities on M . In order for these half-densities to piece
together appropriately, it is necessary and sufficient that L satisfy a general version of the
Maslov quantization condition, which we formulate in the next section using the Maslov
class.

4.3 Phase functions and lagrangian submanifolds

In this section, we generalize the concept of phase functions to non-projectable lagrangian
submanifolds of cotangent bundles. Roughly speaking, the idea is the following. As we
saw in Chapter 3, a projectable lagrangian submanifold of T ∗N can be locally parametrized
by the differential of a function f on U ⊂ N , viewed as a mapping df : U → T ∗N . For
each p ∈ U , the meaning of dfp as an element of T ∗pN is that for any smooth curve γ in N

satisfying γ(0) = p, we have 〈dfp, γ̇(0)〉
def
= (f◦γ)′(0). To parametrize more general lagrangian

submanifolds of T ∗N in a similar way, we can begin with a function ϕ : U×Rm → R together
with a point p̃ = (p, v) ∈ U×Rm and attempt to define dϕp̃ ∈ T ∗pN by 〈dϕp̃, γ̇(0)〉 = (ϕ◦γ̃)′(0)
for any lift γ̃ of γ to the product U × Rm such that γ̃(0) = p̃. In general, this fails, since
the value of the directional derivative (ϕ ◦ γ̃)′(0) depends on the lift γ̃. If, however, the
fiber-derivative ∂ϕ/∂θ vanishes at p̃, the expression for dϕp̃ produces a well-defined element
of T ∗pN . As we shall see, the assumption that the map ∂ϕ/∂θ : U × Rm → Rm is transverse
to 0 implies that the fiber critical set

Σϕ =

{
p̃ ∈ U × Rm :

∂ϕ

∂θ
= 0

}
is a smooth submanifold of U × Rm, and the assignment p̃ 7→ dϕp̃ defines a lagrangian
immersion of Σϕ into T ∗N . In general, the restriction of the projection U ×Rm → U to Σϕ

is non-injective, and thus the image of Σϕ is a non-projectable lagrangian submanifold. From
the point of view of the WKB method, this generalization amounts to replacing Maslov’s
ansatz

(2π~)−n/2
∫

Rn

ei(〈p,q〉+T (p))/~a(p) dp |dq|1/2

for the solution of Schrödinger’s equation by the more general form

(2π~)−m/2
∫

Rm

eiφ(q,θ)/~ a(q, θ)|dθ||dq|1/2,
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where θ is an auxiliary variable in Rm which may have nothing to do with the variable p dual
to q. An advantage of this generalization will be to allow a calculus which is more clearly
invariant under changes of coordinates, unlike the previous Fourier transform picture, which
requires linear structures on p- and q-space.

To begin, we fix some notation and terminology.7 Let M,B be smooth manifolds, and
let pM : B →M be a smooth submersion. Dualizing the inclusion E = ker(pM∗)

ι→ TB gives
rise to an exact sequence of vector bundles over B

0← E∗ ι∗← T ∗B ← E⊥ ← 0

where E⊥ ⊂ T ∗B denotes the annihilator of E. The fiber-derivative of a function φ : B →
R is the composition dθφ = ι∗ ◦ dφ, and its fiber critical set is defined as

Σφ = (dθφ)−1ZE∗ .

(We will denote the zero section of a vector bundle F by ZF ). The function φ is said to
be nondegenerate if its fiber derivative is transverse to ZE∗ , in which case Σφ is a smooth
submanifold of B. At points of Σφ, the section dθφ has a well-defined intrinsic derivative (see
[26]), denoted ∇dθφ, which induces for nondegenerate φ an exact sequence of vector bundles
over Σφ

0→ TΣφ → TΣφ
B

∇dθφ→ E∗|Σφ
→ 0.

The fiber-hessian Hφ of φ at p ∈ Σφ is defined as the composition ∇dθφ ◦ ι : Ep → E∗
p .

The bundle E⊥ may be identified with the pull-back p∗MT
∗M , giving rise to a natural

projection E⊥ p→ T ∗M . On the fiber-critical set Σφ, the differential dφ defines a section of
E⊥ whose composition with p we denote by λφ : Σφ → T ∗M .

Theorem 4.15 If φ is nondegenerate, then the map λφ : Σφ → T ∗M is an exact lagrangian
immersion.

Proof. Since E⊥ is the union of the conormal bundles of the fibers of pM , it follows from
Example 3.19 that E⊥ is a coisotropic submanifold of T ∗B. Moreover, the characteristic
distribution C⊥ of E⊥ is tangent to the fibers of the mapping E⊥ → T ∗M .

The nondegeneracy assumption on φ is equivalent to the requirement that the lagrangian
submanifold (dφ)(B) of T ∗B be transverse to E⊥. By Lemma 3.6(2), this implies that the
section (dφ)(B)|Σφ

= (dφ)(B) ∩E⊥ is nowhere tangent to the distribution C⊥ and therefore
immerses into T ∗M . To complete the proof, we note that the equality

λ∗φαM = dφ|Σφ

implies that Lφ is exact lagrangian.

2

7Some readers may find it instructive to follow the ensuing discussion by writing everything in local
coordinates.
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From the preceding definitions, it follows that the nullity k of the fiber-hessian at p ∈ Σφ

equals dim(TpΣφ∩Ep), which in turn equals the dimension of the kernel of (π◦λφ)∗ on TpΣφ.
This means in particular that the dimension of the fibers of B must be at least k; if the fiber
dimension of B equals k, then the phase function φ is said to be reduced at p. This occurs
when its fiber-hessian vanishes at p.

Example 4.16 Suppose that M = R and consider the function φ(x, θ) = xθ + θ3/3 on
B = R×R. Here, dθφ = θ2 + x, and ∇(dθφ) = 2θdθ+ dx. Evidently the phase function φ is
nondegenerate, and its fiber critical set consists of the parabola x = −θ2, which fails to be
x-projectable precisely when x = 0. This is just the value of x for which φ(x, ·) acquires a
degenerate critical point.

4

A phase function which generates a neighborhood of a point in a lagrangian submanifold
is not unique per se, but it is unique up to “stable equivalence,” a concept which we now
define. To begin, we introduce the following terminology.

Definition 4.17 A triple (B, pB, φ) is called a Morse family over a manifold M if pB :
B → M is a smooth (possibly non-surjective) submersion, and φ is a nondegenerate phase
function on B such that λφ is an embedding. A Morse family is said to be reduced at p ∈ B
if φ is a reduced phase function at p.

We will say that the lagrangian submanifold im(λφ) = Lφ is generated by the Morse family
(B, pB, φ). If ι : L → T ∗M is a lagrangian immersion and p ∈ L, then we denote by
M(L, ι, p) the class of Morse families (B, pB, φ) which generate ι(U) for some neighborhood
U ⊂ L of p. For such Morse families, we denote by gφ : U → Σφ the diffeomorphism defined
by gφ = λ−1

φ ◦ ι.
If (B, pB, φ) ∈ M(L, ι, p), then the following operations produce further elements of

M(L, ι, p).

1. Addition: For any c ∈ R, (B, pB, φ+ c) ∈M(L, ι, p).

2. Composition: If pB′ : B′ → M is a second submersion and g : B′ → B is a fiber-
preserving diffeomorphism, then (B′, pB′ , φ ◦ g) ∈M(L, ι, p).

3. Suspension: The suspension of (B, pB, φ) by a nondegenerate quadratic form Q on
Rn is defined as the Morse family comprised of the submersion p̃B : B × Rn → M

given by composing pB with the projection along Rn, together with the phase function
φ̃ = φ + Q. Evidently the fiber-critical set of φ̃ equals the product Σφ × {0}, and
λφ̃(b, 0) = λφ(b) for all (b, 0) ∈ Σφ̃. Thus (B × Rn, p̃B, φ̃) ∈M(L, ι, p).

4. Restriction: If B′ is any open subset of B containing λ−1
φ (p), then the restrictions of

pB and φ to B′ define a Morse family on M which belongs to M(L, ι, p).

These operations generate an equivalence relation among Morse families called stable equiv-
alence. The central result of this section is the following.
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Theorem 4.18 Let ι : L→ T ∗M be a lagrangian immersion, and let p ∈ L. Then:

1. The class M(L, ι, p) contains a reduced Morse family over M .

2. Any two members of M(L, ι, p) are stably equivalent.

The next two subsections are devoted to the proof of this theorem.

Symplectic normal forms

The purpose of this section is to develop several results needed to prove Theorem 4.18, all of
which more or less rely on the so-called deformation method. This method was introduced
by Moser in [45] (it probably has a longer history) and applied to a variety of problems of
symplectic geometry in [62]. We will prove the following theorem.

Theorem 4.19 Let (P, ω) be a symplectic manifold, ι : L→ P a lagrangian immersion, and
E a lagrangian subbundle of ι∗TP which is complementary to the image of ι∗ : TL→ ι∗TP .
Then there is a symplectic immersion ψ of a neighborhood U of the zero section Z ⊂ T ∗L
into P such that ψ = ι◦π on Z and which maps the vertical subbundle VZL ⊂ TZ(T ∗L) onto
E.

As a result of the existence of compatible complex structures on ι∗P , lagrangian subbundles
of ι∗P complementary to the image of ι∗ : TL → ι∗TP always exist. Thus, Theorem 4.19
implies the following nonlinear “normal form” result, which states that, near any of its
lagrangian submanifolds L, a symplectic manifold looks like a neighborhood of the zero
section in T ∗L.

Corollary 4.20 If L is a lagrangian submanifold of P , then a neighborhood of L in P is
symplectomorphic to a neighborhood of the zero section in T ∗L, by a map which is the identity
on L.

Theorem 4.19 may be combined with Proposition 3.24 to yield:

Corollary 4.21 The map ψ gives a 1-1 correspondence between a neighborhood of L in the
space of all lagrangian submanifolds of (P, ω) and a neighborhood of the zero section in the
space Z1(L) of closed 1-forms on L.

The proof of Theorem 4.19 will rely on the following

Relative Darboux theorem [62] . Let N be a submanifold of a manifold P , and let
ω0, ω1 be two symplectic forms on P which coincide on TNP . Then there are neighborhoods
U and V of N and a diffeomorphism f : U → V such that

1. f ∗ω1 = ω0

2. f |N = id and Tf |TNP = id.
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Proof. Define a 1-parameter family of closed forms on P by

ωt = ω0 + t(ω1 − ω0).

Since all ωt agree on the submanifold N , there is a neighborhood of N in P (which for our
purposes we may assume to be P itself) on which all ωt are nondegenerate.

To find f satisfying f ∗ω1 = ω0, we will construct a time-dependent vector field Xt for
which the isotopy ft that it generates satisfies f ∗t ωt = ω0 for all t ∈ [0, 1]. By the usual
properties of the Lie derivative, it is necessary and sufficient that such a vector field solve
the equation

0 =
d

dt
(f ∗t ωt) = f ∗t

(
dωt
dt

)
+ f ∗t (LXtωt) = f ∗t (ω1 − ω0 + d(Xt ωt)).

In order to fix N , we also want Xt|N = 0. These conditions will be satisfied if we set
Xt = −ω̃−1

t (ϕ) for a 1-form ϕ on a neighborhood of N in P , vanishing on N , such that
dϕ = ω1 − ω0. If the submanifold N consisted of a single point, the form ϕ would be easy
to find, since the closed 2-form ω1−ω0 is locally exact by the classical Poincaré lemma. For
more general submanifolds, we use a more general version of this lemma:

Relative Poincaré lemma . Let N be a submanifold of P , and let β be a closed k-form on
P which vanishes on TN . Then there is a form ϕ on a neighborhood of N such that dϕ = β
and which vanishes on TNP . Furthermore, if β vanishes on TNP , then ϕ can be chosen so
that its first derivatives vanish along N .
Proof. Since the statement is local aroundN , we will identify P with a tubular neighborhood
of N in P and let ht : P → P be a smooth isotopy such that

h1 = id h0 = fiberwise projection of P onto N.

Since β vanishes on N , we have

β = h∗1β − h∗0β =

∫ 1

0

d

dt
(h∗tβ) dt =

∫ 1

0

h∗t (LYtβ) dt,

where Yt is the (time-dependent) vector field which generates the isotopy ht for t > 0. By
Cartan’s formula and the fact that β is closed, the last expression is equal to∫ 1

0

h∗t d(Yt β) dt = d

(∫ 1

0

h∗t (Yt β) dt

)
.

Our assertion follows if we take ϕ =
∫ 1

0
h∗t (Yt β) dt.

2

If (P, ω) is a symplectic manifold and gt : P → P a continuous family of diffeomorphisms,
then homotopy invariance for deRham cohomology implies that the forms ωt = g∗tω lie in
the same cohomology class for all t. By the same method of proof as in the relative Darboux
theorem, we can deduce the following converse result:
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Corollary 4.22 (Moser [45]) If {ωt} is a family of symplectic structures on a compact
manifold P and ωt1 − ωt2 is exact for all t1, t2, then there is a diffeomorphism f : P → P
with f ∗1ω1 = ω0.

By restricting to a neighborhood of a point in N , Givental [6] proves an equivalence theorem
like the relative Darboux theorem under the weaker hypothesis that ω0 and ω1 coincide on
TN , i.e. just for vectors tangent to N . In contrast to Corollary 4.22, McDuff [40] describes
a family ωt of symplectic forms on a compact six-dimensional manifold P such that ω1 − ω0

is exact, but there is no diffeomorphism f : P → P at all satisfying f ∗ω1 = ω0. Of course,
for intermediate t, the form ωt − ω0 is not exact.

Proof of Theorem 4.19. Beginning with the lagrangian immersion ι : L → P , we let
f : Z → P denote the composition ι ◦π, where Z is the zero section of T ∗L and π : T ∗L→ L
is the natural projection. Using Theorem 3.20, we then choose a ω-compatible complex
structure J on f ∗TP which satisfies J(f∗TZ) = E, where E is the lagrangian subbundle given
in the statement of the theorem. Similarly, we choose a ωL-compatible complex structure J ′

on TZ(T ∗L) which rotates TZ into VZL. Now consider the symplectic bundle map

TZ(T ∗L)
f̃→ f ∗TP

given by f̃(v ⊕ J ′w) = f∗v ⊕ J(f∗w) for v, w ∈ TZ. In a neighborhood U ⊂ T ∗L of Z, we
can extend f to obtain an immersion F : U → P which satisfies F∗ = f̃ on TZ(T ∗L). To
finish the proof of the normal form theorem, we apply the relative Darboux theorem to the
forms ωL and F ∗(ω) on U .

2

Next, we turn to two generalizations of the classical Morse lemma (see Appendix B)
which require the following version of Taylor’s theorem.

Lemma 4.23 Let N ⊂ B be a submanifold defined by the vanishing of functions g1, · · · , gk
whose differentials are linearly independent along N . If f is any function such that f and
df vanish at all points of N , then there exist functions cij such that

f =
∑
i,j

cijgigj

on a neighborhood of N .

Parametrized Morse lemma . Let f : M × Rk → R satisfy the condition that for
each x ∈ M , (x, 0) is a nondegenerate critical point for f |{x}×Rk . Then for each x0 ∈ M ,
there exists a neighborhood U of (x0, 0), a nondegenerate quadratic form Q on Rk, and a
diffeomorphism u of U fixing M ×{0} and preserving fibers of the projection to M such that

f(u(x, θ)) = f(x, 0) +Q(θ).
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Proof. By a preliminary change of coordinates linear on fibers, we may assume that

f(x, θ) = f(x, 0) +Q(θ) + a(x, θ)

where the error term a(x, θ) is O(|θ|3) for each x. To find the diffeomorphism u we apply
the deformation method. Define ft = f − (1− t)a. We seek a vector field Xt tangent to the
fibers x = constant which generates an isotopy ut fixing M × {0} and satisfying ft ◦ ut = f0

for all t ∈ [0, 1]. This means that Xt should be of the form

Xt =
∑
i

hit
∂

∂θi
,

for certain smooth functions hit which vanish on M × {0}, and it should satisfy

0 =
d

dt
(ft ◦ ut) = u∗t (Xt · ft + a)

for all t ∈ [0, 1]. Evidently, the latter condition will be met if Xt is chosen so that

Xt · ft + a = 0.

To determine Xt, we invoke Lemma 4.23 in order to find smooth functions cijt which vanish
on M × {0} and satisfy

a =
∑

cijt
∂ft
∂θi

∂ft
∂θj

.

The required condition ∑
i

hit
∂ft
∂θi

= −
∑
i,j

cijt
∂ft
∂θi

∂ft
∂θj

will be satisfied if we set

hit = −
∑
j

cijt
∂ft
∂θj

,

which vanishes (to second order) on M × {0}.
2

If φ is a phase function on M × Rn+k whose fiber-hessian Hφ has rank k at a point b ∈ Σφ,

then by the lower-semicontinuity of rankHφ, there exists an integrable subbundle F

↪→ E =

ker(pM∗) such that the fiber-hessian ∗ ◦∇dθφ ◦  : F → F ∗ is nondegenerate at each zero of
the section ∗◦dθφ in a neighborhood of b. A change of coordinates near b and an application
of the parametrized Morse lemma then proves:

Thom splitting theorem . Let φ be a function on B = M × Rn+k whose fiber-hessian
Hφ has rank k at a point b ∈ Σφ. Then there exists a fiber-preserving diffeomorphism g of
B, a function η : M × Rn → R, and a nondegenerate quadratic form Q on Rk such that

(φ ◦ g)(x, θ, θ′) = η(x, θ) +Q(θ′)

in a neighborhood of b in B. The function η is totally degenerate in the sense that its
fiber-hessian is identically zero at b.

2
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Existence and stable equivalence of Morse families

Returning to the proof of Theorem 4.18, we first note the following reinterpretation of the
Thom splitting theorem in the terminology of Morse families.

Theorem 4.24 Any Morse family in M(L, ι, p) is stably equivalent to a reduced Morse
family in M(L, ι, p).

To show that M(L, ι, p) is nonempty, we first prove

Theorem 4.25 Suppose that ι : L → T ∗M is an exact lagrangian immersion such that
ι∗T (T ∗M) admits a lagrangian subbundle F transverse to both ι∗VM and ι∗TL. Then L is
generated by a Morse family over M .

Proof. By Theorem 4.19, there exists a symplectic immersion ψ from a neighborhood U of
the zero section Z ⊂ T ∗L into T ∗M which satisfies ψ = ι ◦ π on Z and which maps VZL
onto the subbundle F . Since ψ is symplectic, the 1-form ψ∗αM − αL is closed on U . Its
restriction to Z is exact because αL is zero on Z. By the relative Poincaré lemma, there
exists a function φ on U satisfying dφ = ψ∗αM − αL.

To complete the proof, we first note that the restriction of dφ to a fiber of the compo-
sition of ψ with the projection π′ : T ∗M → M equals −αL. Combined with the definition
of αL, a computation (using the transversality hypothesis) now shows that there exists a
neighborhood B of Z within U such that (B, π′(ψ(B)), π′ ◦ψ, φ) is a Morse family such that
Σφ = Z and λφ = ι ◦ π for the projection π : T ∗L→ L.

2

Proof of Theorem 4.18. Using Lemma 3.9 we can construct a subbundle F which satisfies
the hypotheses of the preceding theorem over a neighborhood of any p in L. Consequently,
there exists a Morse family generating a neighborhood of p, and so the class M(L, ι, p) is
nonempty. Combined with Theorem 4.24, this proves part (1) of Theorem 4.18.

To prove part (2), it suffices by Theorem 4.24 to show that any two reduced Morse
families in M(L, ι, p) are stably equivalent. Since this property is local near p, we may
assume that M = Rm and and that φ, φ̃ are both defined on Rm × Rk. Consider the
mappings F, F̃ : Rm × Rk → Rm × Rm defined by

F (x, y) =

(
x,
∂φ

∂x
(x, y)

)
F̃ (x, y) =

(
x,
∂φ̃

∂x
(x, y)

)
.

By the assumption that φ, φ̃ are nondegenerate phase functions, it follows that F and F̃ are
embeddings near q = λ−1

φ (p) and q̃ = λ−1

φ̃
(p) respectively. Moreover, F coincides with the

map λφ on the fiber-critical set Σφ near q, and similarly for F̃ . Since the Morse families
are reduced, it follows that the images of DFq and DF̃q̃ coincide in Tp(Rm × Rm). By an
application of the implicit function theorem, we can therefore find a fiber-preserving map g
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of Rm×Rm whose restriction to some neighborhood B of q is a diffeomorphism which sends
Σφ to Σφ̃ and in particular g(q) = q̃.

Recall from the proof of Theorem 4.15 that the identity

dφ = λ∗φαM

holds on the fiber critical set Σφ. Since λφ = λφ̃ ◦ g, this identity implies that dφ = d(φ̃ ◦ g)
on Σφ, and so the phase functions φ and φ̃ ◦ g differ by an additive constant (which we may
assume to be zero) at points of Σφ. In order for g to define an equivalence between φ and
φ̃, this property would have to be valid on all of B. While there is no reason to expect this
of g itself, we will construct a similar diffeomorphism with this property by appealing once
again to the deformation method:

Let φ0 = φ, φ1 = φ̃ ◦ g. Then Σφ0 = Σφ1 = Σ and λφ0 = λφ1 . Moreover φ1 − φ0 vanishes
to second order along Σ, and so there exist functions cij defined near b such that

φ1 − φ0 =
∑
i,j

cij
∂φ0

∂θi

∂φ0

∂θj

in a neighborhood of Σφ.
As before, we seek a vector field Xt generating an isotopy ft that satisfies f ∗t φt = φ0 for

all t ∈ [0, 1]; to insure that each ft fixes Σ and preserves fibers, we must also require that Xt

be of the form

Xt =
∑
i,j

hij
∂φ0

∂θi

∂

∂θj

for certain functions hij which vanish on Σ.
To arrive at an equation for these coefficients, we note that the equation

0 =
d

dt
(f ∗t φt) = f ∗t (Xt · φt + φ1 − φ0)

will be satisfied provided that
0 = Xt · φt + φ1 − φ0,

i.e.

0 =
∑
i,j

cij
∂φ0

∂θi

∂φ0

∂θj
+
∑
i,j

hij
∂φ0

∂θi

∂

∂θj

(
φ0 + t

∑
u,v

cuv
∂φ0

∂θu

∂φ0

∂θv

)
.

This equation holds if
0 = C +H(I + S),

where C = (cij), H = (hij), and S is a matrix function which vanishes at b for all t, since φ0

is reduced. Hence we can solve for H in a neighborhood of b. This completes the proof.

2
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Maslov objects

If ι : L → T ∗M is any lagrangian immersion, then the symplectic vector bundle ι∗T (T ∗M)
over L has two lagrangian subbundles, L1 = ι∗TL and L2 = ι∗VM . The Maslov class of
(L, ι) is defined as the degree-1 cohomology class

µL,ι = µ(L1, L2) ∈ H1(L; R)

described in Example 3.21. From this definition, it follows that, unlike the Liouville classes,
the Maslov classes of two immersions (L, ι) and (L, ι′) are equal whenever ι and ι′ are
homotopic through lagrangian immersions.

Associated to any Morse family (B, pB, φ) over a manifold M is an index function indφ :
Lφ → Z defined by

indφ(p) = index(Hφλ−1
φ (p)),

where the index of a quadratic form is, as usual, the dimension of the largest subspace on
which it is negative-definite. Since the fiber-hessian is nondegenerate where Lφ is projectable
(see the discussion following Theorem 4.15), the index function indφ is constant on any
connected projectable subset of Lφ. From Theorem 4.18, it follows furthermore that any two
index functions indφ, indφ′ differ by an integer on each connected component of Lφ ∩ Lφ′ .

Example 4.26 Consider φ(x, θ) = θ3/3 + θ(x2 − 1). We have ∂φ/∂θ = θ2 + x2 − 1; thus
the fiber critical set Σφ is the circle θ2 + x2 = 1, and its image under λφ is the figure-eight.
The caustic set of the projection L → R consists of the points (−1, 0), (1, 0). To compute
the index function corresponding to φ, we note that

∂2φ

∂θ2
= 2θ;

consequently indφ(x, p) = 0 for (x, p) lying on the upper right part of the curve and
ind(x, p) = 1 for (x, p) on the upper left. Since this loop is generated by a single phase
function, there is a corresponding global index function, and the index of the loop is neces-
sarily zero.

A different situation occurs in the case of a circle. The circle has two caustics, and the
jump experienced by any index function as one passes through a caustic is given by the
example just computed: passing through the right caustic in the +p direction decreases the
index by 1, while passing through the left caustic in the same direction increases the index
by 1. Traversing the circle in a counterclockwise direction, we see that the total index must
change by −2. Consequently, the circle does not admit a global generating function.

Of course, the Liouville class of the circle is also nonzero. However, it is easy to deform
the circle to a closed curve with two transverse self-intersections which has zero Liouville
class, but still admits no global phase function, since its Maslov class is nonzero.

4
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As a degree-1 cohomology class on L, the Maslov class determines via the exponential
map R → U(1) an isomorphism class of flat hermitian line bundles over L. A canonical
representative of this class can be constructed as follows. First, we consider the union

M(L, ι) =
⋃
p∈L

M(L, ι, p)

with the discrete topology. On the subset of L×M(L, ι)×Z consisting of all (p, (B, pB, φ), n)
such that (B, pB, φ) ∈ M(L, ι, p), we now introduce an equivalence relation ∼ by setting
(p, (B, pB, φ), n) ∼ (p̃, (B̃, pB̃, φ̃), ñ) provided that p = p̃ and

n+ indφ(p) = ñ+ indφ̃(p).

The quotient space with respect to this relation is a principal Z-bundle ML,ι over L which
we will call the Maslov principal bundle.

Associated to the Maslov principal bundle via the representation n 7→ eiπn/2 of Z in U(1) is
a complex line bundleML,ι over L called the Maslov line bundle. Having discrete structure
group, this line bundle carries a natural flat connection with holonomy in {eiπn/2} ' Z4.
Our main use of the Maslov line bundle will be to modify the half-densities on L in order to
incorporate the Maslov correction into our quantization scheme.

4.4 WKB quantization

In this section we will combine the tools assembled in the preceding sections into a technique
for quantizing half-densities on lagrangian submanifolds of arbitrary cotangent bundles.

The phase bundle associated to an immersed lagrangian submanifold ι : L→ T ∗M and
~ > 0 is defined as the tensor product

ΦL,ι,~
def
= ML,ι ⊗ ι∗EM,~,

where we recall that EM,~ is the prequantum line bundle over T ∗M (see Section 4.1). Observe
that the product of the natural flat connections onML,ι and ι∗EM,~ defines a flat connection
on the phase bundle whose holonomy is represented by the mod-Z~ reduction of the real
cohomology class

λL,ι + π~µL,ι/2 ∈ Ȟ1(L; R),

which we call the phase class of (L, ι). The phase bundle ΦL,ι,~ can be described explicitly
as the collection of all quintuples (p, t, (B, pB, φ), n, z) where (p, t, n, z) ∈ L × T~ × Z × C
and (B, pB, φ) ∈M(L, ι, p), modulo the equivalence relation ∼ given by

(p, t, (B, pB, φ), n, z) ∼ (p̃, t̃, (B̃, pB̃, φ̃), ñ, z̃)

whenever p = p̃ and

z · e−it/~ eiπ(n+indφ(p))/2 = z̃ · e−it̃/~ eiπ(ñ+indφ̃(p))/2.
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A Morse family (B, pB, φ) which generates an open subset Lφ of L defines a nonvanishing
parallel section of ΦL,ι,~ over Lφ by

sφ,~(p) = [p, 0, (B, pB, φ), 0, e−iφ(y)/~],

where λφ(y) = p. A check of these definitions shows that whenever ι(p) = λφ(y) = λφ̃(ỹ),

sφ,~(p) e
iφ(y)/~ e−iπ indφ(p)/2 = sφ̃,~(p) e

iφ̃(ỹ)/~ e−iπ indφ̃(p)/2.

For each ~ ∈ R+, we denote by Γpar(ΦL,ι,~) the space of parallel sections of ΦL,ι,~. If, for
a particular ~, the phase class of (L, ι) is ~-integral, then Γpar(ΦL,ι,~) is a complex vector
space isomorphic to C. Otherwise, Γpar(ΦL,ι,~) consists of a single point (the zero section of
ΦL,ι,~). The product

ΓL,ι =
∏
~>0

Γpar(ΦL,ι,~)

then has the structure of a C-module. An element s ∈ ΓL,ι is then a (generally discontinuous)
function which assigns to each ~ > 0 an element s~ in Γpar(ΦL,ι,~), so that the map p 7→ s~(p)
defines a parallel section of ΦL,ι,~. The symbol space of (L, ι) is defined as the complex
vector space

SL,ι
def
= |Ω|1/2L⊗C ΓL,ι.

The amplitude bundle Aφ associated to a Morse family (B, pB, φ) over a smooth man-
ifold M is defined as the complex line bundle

Aφ = |Λ|1/2B ⊗ |Λ|1/2E

over B, where E again denotes the subbundle ker(pB∗) of TB. An amplitude is a section a of
Aφ. We will say that a is properly supported provided that the restriction of pB : B →M
to Supp(a) is a proper map. The purpose of the space of amplitudes is to define a relation
between half-densities on M and symbols on the subset Lφ of L generated by φ. To describe
this relation, we begin by noting that from the exact sequence of vector bundles

0→ E → TB → p∗BTM → 0

over B, it follows that |Λ|1/2B is naturally isomorphic to |Λ|1/2p∗BTM ⊗ |Λ|1/2E. This in
turn gives rise to the natural isomorphism

Aφ ' |Λ|1/2p∗BTM ⊗ |Λ|E.

The image of an amplitude a on B under this isomorphism can be written as p∗B|dx|1/2 ⊗ σ,
where σ is a family of 1-densities on the fibers of pB, i.e., σx is a density on each nonempty
p−1
B (x). By fiber-integration we pass to a half-density on M :

I~(φ, a)(x) = (2π~)−n/2e−inπ/4

(∫
p−1

B (x)

eiφ/~ σx

)
|dx|1/2,
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where n = dim(p−1
B (x)), setting I~(φ, a)(x) = 0 if p−1

B (x) = ∅. When a is properly supported,
we may differentiate under the integral to conclude that I~(φ, a) is a smooth half-density on
M .

To pass geometrically from a to a symbol on Lφ, we first recall from Section 4.3 that
the nondegeneracy of φ gives rise to the following exact sequence of vector bundles over the
fiber-critical set Σφ

0→ TΣφ → TΣφ
B

∇dθφ→ E∗|Σ → 0.

Since |Λ|−1/2E is naturally isomorphic to |Λ|1/2E∗, this sequence induces an isomorphism
of the restriction of Aφ to Σφ with |Λ|1/2Σφ. If the restriction of a to Σφ corresponds to a
half-density a on Σφ under this isomorphism, the associated symbol on Lφ is defined as

sa
def
= g∗φa⊗ sφ.

(Here we recall from the discussion following Definition 4.17 that gφ is a diffeomorphism
from a neighborhood of p in L onto Σφ defined by the composition λ−1

φ ◦ ι. Also, for each
~, the section sφ,~ is the canonical element of Γpar(ΦLφ,ι,~) defined above). When (L, ι) is
projectable, the symbol sa and the half-density I~(φ, a) are linked by the following theorem.

Theorem 4.27 Suppose that two Morse families (B, pB, φ), (B̃, pB̃, φ̃) generate the same
projectable lagrangian embedding (L, ι), and let a, ã be amplitudes on B, B̃, respectively.
Then sa = sã on L if and only if

|I~(φ, a)− I~(φ̃, ã)| = O(~)

locally uniformly on V .

Proof. By Theorem 4.18, the Morse families (B, pB, φ), (B̃, pB̃, φ̃) are stably equivalent, and
so there exists a diffeomorphism g : Σφ → Σφ̃ defined as the composition g = gφ̃ ◦ g

−1
φ . A

check of the definitions shows that the symbols sa and sã are equal precisely when

g∗
(
a · eiφ/~e−iπ indφ /2

)
= ã · eiφ̃/~e−iπ ind φ̃/2,

where a is the half-density on Σφ induced by the amplitude a, and similarly for ã. Since
φ̃ = φ ◦ g, up to a constant, Lemma B.3 implies that this occurs precisely when

| detaxHφ|1/2e−iφ/~ eiπ indφ /2 = | detãxHφ̃|1/2e−iφ̃/~ eiπ indφ̃ /2. (∗)

Since (L, ι) is projectable, we can apply the principle of stationary phase to each fiber of
the projection pB : B →M to obtain

I~(φ, a)(x) =
eiφ/~ e−iπ indφ /2

| detaxHφ|1/2
+O(~)

and similarly for I~(φ̃, ã)(x). The theorem follows by comparing these expressions with (∗)
above.
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2

Morse families provide a general means for locally quantizing symbols on an immersed
lagrangian submanifold (L, ι) ⊂ T ∗M . Suppose that (B, pB, φ) is a Morse family such
that the phase function φ generates an open subset Lφ ⊂ L, and consider a symbol s on
L supported in Lφ. Then there exists a unique half-density a supported in Lφ such that
s = sφ ⊗ a, and (gφ)∗a may be canonically identified with a section of the amplitude bundle
of B over the fiber-critical set Σφ, which we can extend to an amplitude a on B, compactly
supported in fibers. We then set

I~(L, ι, s) = I~(φ, a)(x).

From Theorem 4.27 we draw two conclusions about this tentative definition when Lφ is
projectable. First, we note that if (B̃, pB̃, φ̃) is a second Morse family which generates Lφ,
and ã is an amplitude on B̃ obtained as above, then sa = sa′ = s, and so

|I~(φ, a)− I~(φ̃, ã)| = O(~).

Thus, I~(L, ι, s) is well-defined, up to O(~) terms. Furthermore, we note that Theorem 4.27
asserts that this choice of I~(L, ι, s) coincides with pull-back.

To quantize an arbitrary symbol s on L, we first fix a locally finite cover {Lj} of L, such
that each Lj is generated by a Morse family (Bj, pBj

, φj), and choose a partition of unity
{hj} subordinate to {Lj}. We then set

I~(L, ι, s) =
∑
j

I~(L, ι, hj · s).

Using the remarks above, it is easy to check that up to O(~) terms, this definition depends
only on the semi-classical state (L, ι, s).

Of course, although the technique above enables us to quantize all symbols on L in a
consistent way, the existence of nonzero symbols requires that the phase bundle ΦL,ι admit
nontrivial parallel sections, i.e. that the phase class of (L, ι) be ~-integral. For this reason,
we introduce the following terminology.

Definition 4.28 An immersed lagrangian submanifold ι : L→ T ∗M is called quantizable
if, for some ~ ∈ R+, its phase bundle ΦL,ι admits a global parallel section, or, equivalently,
if its phase class is ~-integral. The set of ~ for which this condition holds will be called
admissible for L.

This definition is known as the Maslov quantization condition. Note that it is a straight-
forward generalization of the condition derived in the preceding section.

Example 4.29 Let N be a closed submanifold of a smooth manifold M , and let U be a
tubular neighborhood of N , i.e., U is the image of the normal bundle νN ⊂ TNM under an
embedding ψ : νN → M satisfying ψ = π on the zero section of νN , where π : νN → N is
the natural projection. Consider the Morse family (r∗N⊥, pN , φ), where r = π ◦ ψ−1 is a
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retraction of U onto N , pN denotes the natural submersion r∗N⊥ → M , and φ : r∗N⊥ → R
is defined by

φ(p) = 〈p, ψ−1(pN(p))〉.

Since ψ is an embedding, a computation shows that the fiber critical set of φ is given by
Σφ = p−1

N (N) = N⊥, and the map λφ : N⊥ → T ∗M equals the inclusion. Thus, the conormal
bundle of N is a lagrangian submanifold of T ∗M which admits a global generating function,
and therefore both the Liouville and Maslov classes of N⊥ are zero. In particular, this
implies that the conormal bundle of any submanifold of M satisfies the Maslov quantization
condition.

4

Quantum states as distributions

Unfortunately, the interpretation of I~(L, ι, s) at regular values of πL is not valid at caustics.
Indeed, this remark is suggested by the fact that I~(L, ι, s) is smooth, whereas we saw in
Section 2.2 that classical solutions to the transport equation are singular at caustic points.
The basic technical difficulty is that the principle of stationary phase (the basic underpinning
of Theorem 4.27) no longer applies to the integral∫

p−1
B (x)

eiφ/~σx

when x is a caustic point, since the phase function φ has a degenerate critical point in the
fiber p−1

B (x).

Example 4.30 The fiber critical set of the phase function φ(x, θ) = θ3/3 + xθ consists of
the parabola x = −θ2, at whose points the fiber-hessian assumes the form ∂2φ/∂θ2 = 2x.
The origin is therefore a degenerate critical point for φ, and stationary phase cannot be used
to estimate the integral ∫

R
eiθ

3/3~a(0, θ) dθ.

4

A more appropriate way to interpret the expression I~(L, ι, s) in the presence of caustic points
is as a family of distributional half-densities on M defined as follows. For each Morse family
(B, pB, φ) ∈M(L, ι) and compactly supported amplitude a on B, we define a distributional
half-density on M by

〈I~(φ, a), u〉 = (2π~)−b/2e−iπb/4
∫
B

eiφ/~a⊗ p∗Bu,

where b = dim(B) and u ∈ |Ω|1/20 M . The family I~(L, ι, s) then consists of all distributional
half-densities I~ on M obtained by choosing a locally finite open cover {Lj} of L and a
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partition of unity {hj} subordinate to {Lj}. Then set

I~ =
k∑
j=1

I~(φj, aj).

The family I~(L, ι, s) consists of those distributional half-densities obtained in this way using
amplitudes aj such that saj

= s over each Lφj
.

Although the class I~(L, ι, s) may appear very large, a link among its members can be
described as follows. We first prove

Theorem 4.31 Suppose that two Morse families (B, pB, φ), (B̃, pB̃, φ̃) generate the same
lagrangian embedding (L, ι), and let a, ã be amplitudes on B, B̃, respectively. If ψ : M → R
is a smooth function whose differential intersects ι(L) at exactly one point ι(p) transversely,
then sa(p) = sã(p) if and only if∣∣∣〈I~(φ, a), e−iψ/~u〉 − 〈I~(φ̃, ã), e−iψ/~u〉

∣∣∣ = O(~).

Proof. Set R = φ− ψ ◦ pB. Since ψ ◦ pB is constant on the fibers of pB, the function R is a
phase function having the same fiber critical set as φ.

As in the proof of Theorem 4.27, equality of the symbols sa and sã occurs precisely when
the diffeomorphism g : Σφ → Σφ̃ satisfies

g∗
(
ay · eiφ(y)/~e−iπ indφ(p)/2

)
= ãỹ · eiφ̃(ỹ)/~e−iπ ind φ̃(p)/2,

where a is the half-density on Σφ induced by the amplitude a, and similarly for ã. Since
R̃ = R ◦ g, up to a constant, Lemma B.3 shows that this condition is equivalent to

| detaR
′′(y)|1/2e−iφ(y)/~ eiπ indφ(p)/2 = | detã R̃

′′(ỹ)|1/2e−iφ̃(ỹ)/~ eiπ indφ̃(p)/2.

Since g is fiber-preserving, we have R(y) − R̃(ỹ) = φ(y) − φ̃(ỹ). Moreover, it is easy
to check that stable equivalence of the Morse families (B, pB, φ), (B̃, pB̃, φ̃) implies that
indφ(p)− indφ̃(ỹ) = indR′′(y)− ind R̃′′(ỹ), and so the preceding equation gives

eiR(y)/~ e−iπ indR′′(y)/2

| detaR′′(y)|1/2
=
eiR̃(ỹ)/~ e−iπ ind R̃′′(ỹ)/2

| detã R̃′′(ỹ)|1/2
. (∗∗)

The critical point y of R is nondegenerate precisely when the intersection of ι(L) with
im(dψ) is transverse. In this case, an application of the principle of stationary phase gives

〈I~(φ, a), e−iψ/~u〉 =
eiR(y)/~ e−iπ indR′′(y)/2

| detaR′′(y)|1/2
+O(~)

and similarly for 〈I~(φ̃, ã), e−iψ/~u〉. Comparing this expression with (∗∗) above completes
the proof.

2
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Now consider a semi-classical state (L, ι, s). As before, we let {Lj} be a locally finite
cover of L such that each Lj is generated by a Morse family (Bj, pBj

, φj) over M , and choose
a partition of unity {hj} subordinate to {Lj}. We then define

〈I~(L, ι, s), e
−iψ/~u〉 def=

∑
j

〈I~(φj, aj), e
−iψ/~u〉,

where aj is the amplitude on Bj obtained in the usual way from the symbol hj ·s on Lj. When
the image of dψ is transverse to L, then, up to O(~), the principal part of 〈I~(L, ι, s), e

−iψ/~〉
depends only on the principal part of s. For a thorough exposition of this topic, we refer to
[21, 28, 31].

Example 4.32 Suppose that (B, pB, φ) is a Morse family over a manifold M , and suppose
that S : V → R is a smooth function. By setting S̃ = S ◦ pB, we obtain a new Morse
family (B, pB, φ − S̃) for which Σφ = Σφ−S̃ and λφ = fdS ◦ λφ−S̃, where fdS is the fiberwise
translation map defined by dS.

Note in particular that if dS(pB(x)) = λφ(x) for some x ∈ Σφ, then x is a critical point
of φ − S̃. This critical point is nondegenerate provided that λφ−S̃ is transverse to the zero
section of T ∗M near x, or, equivalently, if λφ is transverse to the image of dS near x.

4

By allowing I~(φ, a) to be a distribution, we can sometimes define it even when a does
not have compact support.

Equivalent semi-classical states

A further important modification of our quantization picture is based on the conceptual
distinction between an “immersion” and an “immersed submanifold”. In terms of our dis-
cussion, this means the following. If ι : L → T ∗M and ι′ : L′ → T ∗M are lagrangian
immersions, we will say that (L, ι) and (L′, ι′) are equivalent provided that there exists a
diffeomorphism f : L → L′ such that ι = ι′ ◦ f . In this way, any lagrangian immersion
ι : L→ T ∗M defines an equivalence class of lagrangian immersions in T ∗M which, for nota-
tional simplicity we will denote by L. We refer to the equivalence class L as an immersed
lagrangian submanifold of T ∗M .

A check of the definitions shows that the main objects in our quantization scheme behave
nicely with respect to this notion of equivalence. On the classical level, a diffeomorphism
f : L→ L′ as above induces an isomorphism of symbol spaces

SL,ι
f∗→ SL′,ι′ .

Thus, a symbol on the immersed lagrangian submanifold L is well-defined as an equivalence
class of symbols on the members of L. Moreover, if E is a regular value of some hamiltonian
function H on T ∗M , then the Hamilton-Jacobi equation

H ◦ ι = E
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defines a condition on the class L which we denote by H(L) = E. In this case, the vector
fields XH,ι and XH,ι′ induced on (L, ι), (L′, ι′) by the hamiltonian vector field of H (see
Example 3.13) satisfy XH,ι′ = f∗XH,ι, and therefore the homogeneous transport equation

LXH,ι
s = 0

is a well-defined condition on (L, s) which we denote by LXH
s = 0.

From these remarks, we are led to view the equivalence class (L, s) as a semi-classical
state in T ∗M . The state is stationary with respect to a classical hamiltonian H on T ∗M
provided that (L, s) satisfies the associated Hamilton-Jacobi and homogeneous transport
equations, as described above. On the quantum level, it is easy to check that for any
members (L, ι, s), (L′, ι′, s′) of the equivalence class (L, s), we have

I~(L, ι, s) = I~(L
′, ι′, s′),

and thus we may define the quantization of (L, s) as the (unique) distributional half-density
I~(L, s) on M obtained by quantizing any member of (L, s). If (L, s) is a stationary semi-
classical state, then I~(L, s) is a semi-classical approximate solution to the time-independent
Schrödinger equation on M .

Our list of classical and quantum correspondences now assumes the form:

Object Classical version Quantum version

basic space T ∗M HM

state (L, s) as above distributional half-density
on M

time-evolution Hamilton’s equations Schrödinger equation

generator of evolution function H on T ∗M operator Ĥ on HM

stationary state state (L, s) satisfying eigenvector of Ĥ
H(L) = E and LXH

s = 0

With these correspondences between classical and quantum mechanics in mind, we are fur-
ther led to define a semi-classical state in an arbitrary symplectic manifold (P, ω) to be an
immersed lagrangian submanifold equipped with a half-density and possibly some “phase
object” corresponding to a parallel section of the phase bundle in the cotangent bundle case.
Note, however, that it is unclear what the quantum states are which are approximated by
these geometric objects, since there is no underlying configuration space on which the states
can live. Extending some notion of quantum state to arbitrary symplectic manifolds is one
of the central goals of geometric quantization.
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5 The Symplectic Category

There are many symplectic manifolds which are not cotangent bundles. For instance, an
important process known as symplectic reduction generates many examples of such manifolds,
starting with cotangent bundles. We begin this section with a discussion of reduction and
then turn to the classical and quantum viewpoints in the context of general symplectic
manifolds, concluding with Dirac’s formulation of the quantization problem.

5.1 Symplectic reduction

The technique of symplectic reduction geometrizes the process in mechanics in which first
integrals of the hamiltonian are used to eliminate variables in Hamilton’s equations.

Linear symplectic reduction

Degenerate skew-symmetric bilinear forms yield symplectic vector spaces in the following
way.

Lemma 5.1 A skew-symmetric bilinear form ω on a vector space Y induces a symplectic
structure on Y/Y ⊥.

Proof. First note that ω gives rise to a skew-symmetric bilinear form ω′ on Y/Y ⊥ by the
equation

ω′([x], [y]) = ω(x, y).

To prove the nondegeneracy of ω′, we use the following commutative diagram, where π is
the projection.

Y ∗ π∗←−−− (Y/Y ⊥)∗

ω̃

x xω̃′
Y

π−−−→ Y/Y ⊥

If ω̃′([x]) = 0, then ω̃(x) = 0, and so x ∈ Y ⊥ and hence [x] = 0.

2

The symplectic quotient space Y/Y ⊥ described in this lemma is known as the (linear) re-
duced space associated to Y . A special case of linear reduction arises when Y is a coisotropic
subspace of a symplectic vector space and ω equals the restriction of the symplectic form to
Y . Lagrangian subspaces behave remarkably well with respect to this reduction.

Lemma 5.2 Let V be a symplectic vector space and L,C ⊂ V a lagrangian and a coisotropic
subspace respectively. Then

LC = L ∩ C + C⊥

is a lagrangian subspace of V contained in C, and

LC = (L ∩ C)/(L ∩ C⊥)

is a lagrangian subspace of C/C⊥.
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Proof. Note that
(LC)⊥ = (L+ C⊥) ∩ C.

Since by assumption C⊥ ⊂ C, the self-orthogonality of LC follows from the simple fact that
if E,F,G are any three subspaces of V , then (E+F )∩G = E ∩G+F if and only if F ⊂ G.

Next, we observe that since LC = LC/C⊥, the second assertion follows from the equality

L⊥C = (LC)⊥/C⊥.

2

Example 5.3 If (V, ω), (V ′, ω′) are symplectic vector spaces and L is a lagrangian subspace
of V , then then C = V ′ ⊕ L is a coisotropic subspace of the direct sum V ′ ⊕ V (see Exam-
ple 3.4), and C⊥ = 0⊕ L. Consequently, the linear reduced space C/C⊥ equals (V ′, ω′).

Now suppose that V and V ′ are of equal dimension and T : V → V ′ is a linear symplectic
map. If ΓT ⊂ V ′⊕V is the lagrangian subspace defined by the graph of T , then the reduced
lagrangian subspace (ΓT )C of C/C⊥ equals T (L) ⊂ V ′.

4

Observe that if C is a coisotropic subspace of (V, ω), then C⊥⊕V/C also carries a natural
symplectic structure induced by ω. This gives rise to the following decomposition of V .

Lemma 5.4 If (V, ω) is a symplectic vector space with a coisotropic subspace C, then there
exists a linear symplectomorphism

V → C⊥ ⊕ V/C ⊕ C/C⊥.

Proof. Let J be a ω-compatible complex structure on V , and set A = JC⊥ and B =
C ∩JC. Then A,B are orthogonal to C,C⊥ with respect to the inner-product gJ on V . The
projections V → V/C and C → C/C⊥ restricted to A,B give rise to an isomorphism

V = C⊥ + A+B → C⊥ ⊕ V/C ⊕ C/C⊥.

2

Recall that if L,L′ are lagrangian subspaces of a symplectic vector space V and W ⊂ V

is a lagrangian subspace transverse to both L and L′, then there exists a natural linear
symplectomorphism from V to L⊕L∗ which sends W onto the subspace 0⊕L∗ and L′ onto
the graph of some self-adjoint linear map T : L → L∗. Denoting by QT the quadratic form
QT on L induced by T , we define

ind(L,L′;W ) = indexQT sgn(L,L′;W ) = signatureQT

These quantities will be useful in our study of the Maslov bundle under reduction, and we
collect some useful facts about them in the following examples.

65



Example 5.5 To begin, we leave to the reader the job of checking the following elementary
identities for the case when the lagrangian subspaces L,L′ are themselves transverse:

sgn(L,L′;W ) = − sgn(L′, L;W ) = − sgn(L,W ;L′).

4

Example 5.6 Suppose that V is a finite-dimensional vector space with a subspace E ⊂ V
and its algebraic orthogonal E⊥ ⊂ V ∗. Then C = V ⊕E⊥ is a coisotropic subspace of V ⊕V ∗

with its usual symplectic structure, and C⊥ = E ⊕ 0. The reduced symplectic vector space
is then

C/C⊥ = (V/E)⊕ E⊥.

The composition of a self-adjoint linear map A : V ∗ → V with the projection V → V/E

restricts to a self-adjoint linear map AE : E⊥ → V/E (note that V/E identifies canonically
with (E⊥)∗). Evidently, the lagrangian subspace W of V ⊕V ∗ given by the graph of A passes
under reduction by C to the graph WC of AE. Now if we denote by L,L′ the lagrangian
subspaces V ⊕ 0 and 0 ⊕ V ∗, respectively, then LC = (V/E) ⊕ 0 and L′C = 0 ⊕ E⊥. If Q∗

denotes the quadratic form on V ∗ defined by A, we therefore have

sgn(Q∗) = sgn(L′,W ;L) and sgn(Q∗|E⊥) = sgn(L′C ,WC ;LC).

From [21, p.130] we recall that if Q∗ is nondegenerate and Q is the quadratic form it induces
on V , then

sgn(Q) = sgn(Q|E) + sgn(Q∗|E⊥).

Combined with the preceding equations, this formula gives

sgn(L′,W ;L) = sgn(Q|E) + sgn(L′C ,WC ;LC).

4

Presymplectic structures and reduction

By definition, a symplectic form is closed and nondegenerate. In some sense, the next best
structure a manifold M may possess along these lines is a closed two-form ω of constant
rank, i.e., with the dimension of the orthogonal (TxM)⊥ the same for all x ∈ M . In this
case, ω is called a presymplectic structure on M with characteristic subbundle (TM)⊥.

Theorem 5.7 The characteristic subbundle of a presymplectic manifold (M,ω) is integrable.

Proof. Leaving for the reader the verification that (TM)⊥ is actually a subbundle of TM ,
we recall that Lie brackets and inner products are related by the formula

[X, Y ] ω = LX(Y ω)− Y LXω.

If the vector field Y belongs to (TM)⊥, then the first term on the right hand side of this
equation vanishes identically. If X belongs to (TM)⊥, then Cartan’s formula combined with
the assumption that ω is closed implies that ω is invariant under the flow of X. This means
that LXω = 0, so the second term vanishes as well, and [X, Y ] lies in (TM)⊥.
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2

The foliationM⊥ defined by the characteristic subbundle of M is known as the characteris-
tic foliation of M . If the quotient space M/M⊥ is a smooth manifold, then we say that M
is reducible. A pointwise application of Lemma 5.2, together with the fact that LXω = 0
for characteristic X, shows that the presymplectic structure ω induces a smooth, nonde-
generate 2-form ωM on M/M⊥. Since dω = 0 by hypothesis, and since the quotient map
M → M/M⊥ is a submersion, the form ωM is necessarily closed and therefore symplectic.
The symplectic manifold (M/M⊥, ωM) is called the reduced manifold of M .

For the most part, we will be interested in presymplectic manifolds which arise as
coisotropic submanifolds of some symplectic manifold (P, ω). Recall that a submanifold
C ⊂ P is called coisotropic if, for each p ∈ C, the tangent space TpC contains its symplectic
orthogonal

(TpC)⊥ = {v ∈ TpP : ω(v, w) = 0 for all w ∈ TpC}.
In this case, we can view C as an abstract manifold and note that if ω′ is the pull-back
of the symplectic form ω by the natural inclusion C ↪→ P , then ker(ω′) = (TC)⊥. Since
dim(TC)⊥ = dim(P )− dim(C) is constant, the form ω′ defines a presymplectic structure on
P .

Example 5.8 As noted in Example 3.13, the hamiltonian flow associated to a function
H : R2n → R generates the characteristic foliation of any regular energy surface H−1(E).
The corresponding reduced symplectic manifold (when it exists) will be the symplectic model
for the space of quantum states of energy E.

If P,Q are symplectic manifolds, and L is a lagrangian submanifold of Q, then P ×L is a
coisotropic submanifold of P ×Q whose characteristic foliation consists of leaves of the form
{p} × L for p ∈ P . The product P × L is therefore reducible, and the reduction projection
coincides with the usual cartesian projection P × L→ P .

4

Our goal for the remainder of this section is to describe two operations on immersed
lagrangian submanifolds defined by a reducible coisotropic submanifold; in effect, these op-
erations will be nonlinear analogs of the mappings L 7→ LC and L 7→ LC described in the
linear setting in Lemma 5.2. To begin, we recall that the fiber product of two maps
ι : N → V and  : M → V is defined as the subset

N ×V M = (ι× )−1∆V

of N ×M , where ι ×  : N ×M → V × V is the product map and ∆V ⊂ V × V is the
diagonal. This gives rise to the following commutative diagram

N ×V M
rM−−−→ M

rN

y y
N

ι−−−→ V

where rM , rN denote the restrictions of the cartesian projections N×M →M,N to the fiber
product N ×V M .
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Definition 5.9 If N,M, V are smooth manifolds, then two smooth maps ι : N → V and
 : M → V are said to intersect cleanly provided that their fiber product N ×V M is a
submanifold of N ×M and

ι∗TN ∩ ∗TM = ( ◦ rM)∗T (N ×V M)

as subbundles of ( ◦ rM)∗TV .

For brevity, we will say that a map ι : N → V intersects a submanifold W ⊂ V cleanly if ι
and the inclusion map W ↪→ V intersect cleanly.

Example 5.10 1. If the product ι ×  of two smooth maps ι : N → V and  : M → V
is transverse to the diagonal ∆V , then ι and  intersect cleanly. A particular case of this
situation occurs when  is a submersion and ι is any smooth map.

2. Suppose that ι : N → V and  : M → V are any smooth maps whose fiber product N×VM
is a smooth submanifold of N×M . Then for any tangent vector (v, w) of N×V M , the vector
(ι × )∗(v, w) is tangent to the diagonal in V × V , and so ι∗v = ∗w. Since rM∗(v, w) = w,
it follows that rM∗(v, w) = 0 only if w = 0, in which case ι∗v = ∗w = 0. Thus, if ι is an
immersion, we can conclude that rM : N ×V M →M is an immersion as well.

In particular, if ι and  are cleanly intersecting immersions, then the maps rN and rM
are themselves immersions.

3. A basic example of two maps which do not intersect cleanly is provided by two embedded
curves in the plane which intersect tangentially at a single point.

4

The usefulness of clean intersection in symplectic geometry lies in its compatibility with
symplectic orthogonalization, as in the following lemma.

Lemma 5.11 Let P be a symplectic manifold. If a lagrangian immersion ι : L → P inter-
sects a coisotropic submanifold C ⊂ P cleanly, then the map (pC ◦ rC) : L×P C → C/C⊥ has
constant rank.

Proof. Let F,G denote the lagrangian and coisotropic subbundles r∗LTL and r∗CTC of the
symplectic vector bundle r∗CTP over the fiber product L×P C. The kernel of (pC ◦ rC)∗ then
equals

G⊥ ∩ rC∗T (L×P C).

The clean intersection hypothesis implies that rC∗T (L ×P C) = F ∩ G, and so the basic
properties of symplectic orthogonalization applied fiberwise to these bundles give

ker(pC ◦ rC)∗ = G⊥ ∩G ∩ F
= G⊥ ∩ F
= (G+ F )⊥.
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Since F ∩ G has constant rank, the internal sum F + G and its orthogonal (F + G)⊥ also
have constant rank, indicating that the dimension of ker(pC ◦rC)∗ is independent of the base
point in L×P C. In fact, we have dim(ker(pC ◦ rC)∗) = dim(L) + dim(L×P C)− dim(C).

2

If the quotient of L×P C by the fibers of the map pC ◦ rC is a smooth, Hausdorff manifold,
then we obtain an induced immersion ιC from the reduced space LC of L×P C into C/C⊥.
In this case, we define LC as the fiber product of ιC and the quotient map pC : C → C/C⊥.
By C : LC → C/C⊥ we denote the restriction of the cartesian projection LC × C → C to
LC .

Recall from Chapter 4 that an immersed submanifold N of a manifold V is an equivalence
class N of immersions, where ι : N → V is considered equivalent to ι′ : N ′ → V provided that
there exists a diffeomorphism f : N → N ′ which intertwines ι and ι′, i.e. ι = ι′ ◦f . Evidently,
if a member ι : N → V of the equivalence class N intersects a smooth map  : M → V cleanly,
then the same is true of any other member of N . In this case, we will say that the immersed
submanifold N and the map  : M → V intersect cleanly.

With these remarks in mind, we will say that a coisotropic submanifold C and an im-
mersed lagrangian submanifold L in a symplectic manifold P form a reducible pair (C,L)
provided that C is reducible, and L,C intersect cleanly. We leave it to the reader to check
that any reducible pair (C,L) in P induces immersed submanifolds LC and LC of C/C⊥ and
P , respectively.

Theorem 5.12 If (C,L) is a reducible pair in a symplectic manifold P , then LC and LC

are immersed lagrangian submanifolds of C/C⊥ and P , respectively.

Proof. Let ι : L → P be a fixed element of L. Since LC is the quotient of L ×P C by the
fibers of pC ◦ rC , the induced map ιC : LC → C/C⊥ is a smooth immersion. A pointwise
application of Lemma 5.2 shows that this immersion is lagrangian.

Since ιC : LC → C/C⊥ is an immersion, Example 5.10(2) implies that the map C :
LC → C is a smooth immersion, and a pointwise application of Lemma 5.2 implies that this
immersion is lagrangian.

Finally, since the immersed submanifolds LC and LC are well-defined by the reducible
pair (C,L), it follows that these are immersed lagrangian submanifolds.

2

Example 5.13 If (M, g) is a riemannian manifold, all of whose geodesics are closed and
have the same length, then for each E > 0, the constant energy hypersurface C = k−1

M (E)
(see Section 3.2) is reducible, and the reduced manifold CM = C/C⊥ is the space of oriented
geodesics on M . The tangent space to CM at a point p identifies naturally with the space
of Jacobi fields normal to the geodesic represented by p. Moreover, it is easy to check that
for any pair J1, J2 of normal Jacobi fields along p, the symplectic form on CM is given in
terms of the metric by

ω(J1, J2) = g(J1, J
′
2)− g(J ′1, J2).
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For further details, see [12].
The conormal bundle N⊥ to a smooth submanifold N ⊂M is a lagrangian submanifold

of T ∗M which intersects C cleanly. More precisely, N⊥ ∩ C is a sphere bundle over N
transverse to the characteristic foliation of C. From Theorem 5.12 it therefore follows that
the space of geodesics in M normal to N at some point comprises an immersed lagrangian
submanifold of CM .

To give a concrete case of this example, we consider the sphere Sn equipped with its stan-
dard metric. Each oriented geodesic in Sn identifies naturally with an oriented 2-dimensional
subspace of Rn+1, and therefore CSn is represented by the grassmannian Gr+(2, n+ 1).

4

Example 5.14 Note that the standard symplectic structure on R2n+2 is equivalent to the
imaginary part of the standard hermitian metric on Cn+1. The unit sphere S2n+1 is a
coisotropic submanifold of Cn+1, the reduction of which is complex projective space CP n.
Since the symplectic form on Cn+1 is invariant under unitary transformations, the resulting
symplectic form on CP n is invariant under transformations induced by unitary transforma-
tions.

The maximal real subspace Rn+1 ⊂ Cn+1 is a lagrangian submanifold of Cn+1 whose inter-
section with S2n+1 is clean and coincides with the real unit sphere Sn. From Theorem 5.12,
it follows that the real projective space RP n is a lagrangian submanifold of CP n.

4

Conormal submanifolds

A particular example of symplectic reduction which we will use in the next chapter begins
with the following set-up. Suppose thatM is a smooth manifold, and let N ⊂M be a smooth
submanifold equipped with a tangent distribution F , i.e., a subbundle of TN ⊂ TNM . By
CN we denote the annihilator of F , that is

CN = {(x, p) ∈ T ∗M : x ∈ N, Fx ⊂ ker(p)}.

By definition, CN is a subbundle of T ∗NM , but we wish to consider various properties of CN
when it is viewed as a smooth submanifold of the symplectic manifold (T ∗M,ωM). We begin
with the following lemma.

Lemma 5.15 In the notation above, the annihilator CN is a coisotropic submanifold of T ∗M
if and only if the distribution F is integrable.

Proof. If F is integrable, then we can consider its leaves as submanifolds of M via the
inclusion N →M . The conormal bundles of the leaves define a foliation of CN by lagrangian
submanifolds; by Lemma 3.6, this implies that CN is coisotropic.

Now let Z denote the intersection of CN with the zero section of T ∗M . Then the natural
projection T ∗M →M maps Z diffeomorphically onto N , and moreover, TZCN = TN ⊕F⊥,
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where F⊥ is the subbundle of VZM which annihilates F . From the natural lagrangian
splitting of T (T ∗M) along the zero section of T ∗M , it follows that

(TZCN)⊥ = F ⊕ (TN)⊥,

and thus the intersections of Z with the isotropic leaves of CN are integral manifolds of the
distribution F . This completes the proof.

2

Lemma 5.16 If the leaf space N/F is a smooth, Hausdorff manifold, then the reduced space
CN/C⊥ is canonically symplectomorphic to T ∗(N/F).

Proof. Since, by definition, each (x, p) ∈ CN contains the subspace Fx of TxN in its kernel,
it follows that (x, p) defines an element of T ∗(N/F). This gives a well-defined surjective
submersion f : CN → T ∗(N/F), and it is easy to check that the level sets of this map are the
fibers of the projection CN → CN/C⊥. Thus we get a diffeomorphism CN/C⊥ → T ∗(N/F).

To prove that the preceding diffeomorphism is symplectic, it suffices to note that by the
commutative diagram

CN
f−−−→ T ∗(N/F)y y

N −−−→ N/F
the Liouville forms of T ∗M and T ∗(N/F) are related by αM |CN

= f ∗αN/F .

2

Example 5.17 Suppose that F is a foliation of a manifold N . By Lemma 5.15, it follows
that the annihilator CN ⊂ T ∗N of F is a coisotropic submanifold which, by definition,
contains the conormal bundle F⊥ to any leaf F of F . Since F⊥ is a lagrangian submanifold
of T ∗N , Lemma 3.6 implies that F⊥ is foliated by isotropic leaves of CN . Moreover, the
proof of Lemma 5.16 shows that each such leaf projects diffeomorphically onto F , and so the
bundle F⊥ is equipped in this way with a flat Ehresmann connection (see Ehresmann [22])
known as the Bott connection associated to the foliation F .

4

Example 5.18 As a special case of Example 5.17, suppose that (B, pB, φ) is a Morse family
over a manifold M , and let CB ⊂ T ∗B be the conormal bundle to the fibers of the submersion
pB : B → V . If L ⊂ T ∗B is the lagrangian submanifold given by the image of the differential
dφ, then the nondegeneracy condition on φ implies that L intersects CB transversally along a
submanifold I which maps diffeomorphically onto the fiber critical set Σφ under the natural
projection π : T ∗B → B. The lagrangian immersion λφ : Σφ → T ∗M equals the composition

Σφ
π−1

→ L ∩ CB
pCB→ CV /C⊥.

In other words, Theorem 4.15 can be reformulated as an application of Theorem 5.12 when
the lagrangian submanifold im(dφ) is transverse to E, i.e., when φ is nondegenerate.
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4

We remark that since CN is a bundle over N , the intersection TCN ∩ VM is a (constant
rank) subbundle of TCN . A check of the definitions shows that this subbundle is mapped
onto V (N/F) under the quotient map CN → T ∗(N/F) described above.

Example 5.19 An important special case of Examples 5.6 and 5.18 arises when (B, V, pV , φ)
is a Morse family which generates a lagrangian submanifold in L ⊂ T ∗M and x ∈ B is a
(nondegenerate) critical point of φ, so that p = λφ(x) lies in the zero section ZM of T ∗M .
Denoting by x′ the point in the zero section of T ∗B lying over x, we recall that Tx′(T

∗B)
admits the natural lagrangian splitting TxB ⊕ T ∗xB. Let let E ⊂ TxB be the kernel of the
linearized projection pB∗ : TB → TM .

Now suppose that Q is the nondegenerate quadratic form on TxB defined by the hessian
of φ. By definition, the restriction of Q to E equals the form induced by the fiber-hessian
Hφx of φ at x, and so

ind(Q|E) = indHφx.

On the other hand, it is easy to check that the tangent space to the conormal submanifold
CV defined in Example 5.18 at x equals the coisotropic subspace C = TxB ⊕ E⊥, so that
the last formula in Example 5.6 implies that the Morse index ιM(x, φ) of the critical point
x satisfies

ιM(x, φ) = indHφx + ind(VpM,TpL;TpZM).

4

Reduction and the Maslov bundle

Using linear reduction we can give a useful alternative description of the Maslov bundle of
an immersed lagrangian submanifold L in T ∗M . Given two lagrangian subspaces L,L′ of a
symplectic vector space V , we denote by LL,L′ the subset of the lagrangian grassmannian
L(V ) comprised of those lagrangian subspaces which are transverse to both L and L′. For
W,W ′ ∈ LL,L′ , the cross index of the quadruple (L,L′;W,W ′) is defined as the integer

σ(L,L′;W,W ′) = ind(L,L′;W )− ind(L,L′;W ′).

Immediately from this definition and Example 5.5, we obtain the following “cocycle” property
of the cross index.

Lemma 5.20 If L,L′ are lagrangian subspaces of V and W,W ′,W ′′ ∈ LL,L′, then

σ(L,L′;W,W ′) + σ(L,L′;W ′,W ′′) + σ(L,L′;W ′′,W ) = 0.

2
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We denote by FL,L′(V ) the space of functions f : LL,L′ → Z such that

f(W )− f(W ′) = σ(L,L′;W,W ′)

for all W,W ′ ∈ LL,L′ . Since any such function is determined up to an additive constant by
its value at a single point of LL,L′ , it follows that Z acts simply and transitively by addition
on FL,L′(V ).

Now we may assign a principal Z bundle to a triple (E, λ, λ′), where E is a symplectic
vector bundle and λ, λ′ are lagrangian subbundles. Associated to E is its lagrangian grass-
mannian bundle L(E) whose fiber over x ∈M is simply L(Ex). The lagrangian subbundles
λ, λ′ then correspond to smooth sections of L(E), and we denote by Mλ,λ′(E) the principal
Z bundle whose fiber over x ∈M equals Fλx,λ′x(Ex).

A special case of this set-up occurs when L is an immersed lagrangian submanifold of
T ∗M so that E = ι∗T (T ∗M) is a symplectic vector bundle over L. Natural lagrangian
subbundles of E are then given by λ = ι∗TL and λ′ = ι∗VM .

Theorem 5.21 In the notation above, the Maslov bundle ML,ι is canonically isomorphic to
Mλ,λ′(E).

Proof. Let (B, pB, φ) be a Morse family over a manifold M , fix a point x in the fiber
critical set Σφ, and set p = λφ(x). From Example 4.32, we recall that if S : M → R is a
smooth function such that the image of dS intersects λφ(Σφ) transversely at p, then x is a
nondegenerate critical point of φ− S̃, where S̃ = S ◦ pB. From Example 5.19 it follows that
the Morse index ιM(x, φ− S̃) at x is given by

ιM(x, φ− S̃) = indHφx + ind(Vp′M,Tp′Lφ−S;Tp′ZM),

where p′ = p − dS(pV (x)) and Lφ−S̃ is the lagrangian submanifold generated by φ − S̃.
Fiberwise translation by dS does not change the index on the right, and moreover it maps
Tp′Lφ−S to TpLφ, the subspace Vp′M to the vertical subspace VpM at p, and Tp′ZM to the
tangent space Y of the image of dS at p. Thus, the preceding equation and Example 5.5
imply

ιM(x, S) = indHφx + ind(TpLφ, VpM ;Y ).

Now if Y is any lagrangian subspace of Tp(T
∗M) transverse to VpM , then there exists a

function S : V → R such that Y = im dS(pV (x)). A function fφ : LTpLφ,VpM → Z is obtained
by setting

fφ(Y ) = ιM(x, φ− SY ).

From the discussion above, it follows that this function satisfies

fφ(Y )− fφ(Y ′) = σ(TpLφ, VpM ;Y, Y ′).

Using these remarks, we define a map L×M(L, ι)×Z→Mλ,λ′(E) by sending the triple
(p, (B, pB, φ), n) to the function (p, fφ). From the preceding paragraph and the definition of
Mλ,λ′(E), it follows that this map passes to an isomorphism of principal Z bundles ML,ι →
Mλ,λ′(E).
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2

We refer to [3] and [31] for a proof that the Maslov bundle described above is equivalent
to the Maslov bundle constructed using index functions in Chapter 4. For the remainder
of this section, our goal is to establish the following property of the bundle Mλ,λ′(E) under
symplectic reduction. The proofs are rather technical and can be passed over in a first
reading.

Theorem 5.22 Suppose that E is a symplectic vector bundle over M with lagrangian sub-
bundles λ, λ′ and a coisotropic subbundle η. If λ ∩ η and λ′ ∩ η have constant rank, then
Mλ,λ′(E) is canonically isomorphic to Mλη ,λ′η(η/η

⊥).

The starting point of the proof is the following special case of the theorem.

Lemma 5.23 Suppose that E is a symplectic vector bundle with lagrangian subbundles λ, λ′

and a coisotropic subbundle η. If λ, λ′ ⊂ η, then Mλ,λ′(E) is canonically isomorphic to
Mλη ,λ′η(η/η

⊥).

Proof. First consider a symplectic vector space V with lagrangian subspaces L,L′ and a
coisotropic subspace C. If L,L′ ⊂ C, then there exists a natural linear symplectomorphism
of reduced spaces

(LC + L′C)/(LC + L′C)⊥ → (L+ L′)/(L+ L′)⊥

which maps LC/(LC + L′C)⊥ onto L/(L + L′)⊥ and L′C/(LC + L′C)⊥ onto L′/(L + L′)⊥.
Moreover, if W ∈ LL,L′ , then LC is transverse to LC , L

′
C and WC/(LC + L′C)⊥ maps onto

W/(L+ L′)⊥ under the symplectomorphism above. Thus,

ind(L,L′;W ) = ind(LC , L
′
C ;WC).

Using this remark, we can define the isomorphism Mλ,λ′(E) → Mλη ,λ′η(η/η
⊥) fiberwise

by sending (x, f) ∈Mλ,λ′(E) to (x, fη), where

fη(Wηx) = f(W )

for each W ∈ Lλx,λ′x .

2

Lemma 5.24 Suppose that E is a symplectic vector bundle over Y . If λ, λ′ are lagrangian
subbundles such that λ ∩ λ′ has constant rank, then Mλ,λ′(E) is canonically isomorphic to
Y × Z.

Proof. If λ, λ′ are fiberwise transverse, then there exists a vector bundle symplectomorphism
E → λ⊕ λ∗ which maps λ onto λ⊕ 0 and λ′ onto 0⊕ λ∗. Any choice of a positive-definite
quadratic form on λ is induced by a section T of Hom(λ, λ∗) comprised of self-adjoint maps.
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The lagrangian subbundle λ′′ of E which maps to the subbundle of λ ⊕ λ∗ defined by the
graph of T is then transverse to λ, λ′ and clearly satisfies

ind(λx, λ
′
x;λ

′′
x) = 0

for all x ∈ Y . A natural section s(x) = (x, f) of Mλ,λ′(E) is therefore given by

f(λ′′x) = 0.

In general, our hypotheses imply that η = λ + λ′ is a coisotropic subbundle of E which
contains the lagrangian subbundles λ and λ′. By Lemma 5.23, the bundle Mλ,λ′(E) is
canonically isomorphic to Mλη ,λ′η(η/η

⊥). Since λη, λ
′
η are transverse lagrangian subbundles

of η/η⊥, the latter bundle has a canonical trivialization, and the assertion follows.

2

Proof of Theorem 5.22. An application of the cocycle identity of Lemma 5.20 shows
that if λ, λ′, λ′′ are lagrangian subbundles of a symplectic vector bundle E, then Mλ,λ′(E) is
canonically isomorphic to the principal-bundle product (see Appendix D for the definition)
Mλ,λ′′(E) × Mλ′′,λ′(E). Applying this remark, we obtain the following canonical isomor-
phisms:

Mλ,λ̃(E) ' Mλ,λη(E)×Mλη ,λ̃(E)

' Mλ,λ̃(E)×
(
Mλη ,λ̃η(E)×Mλ̃,λ̃η(E)

)
.

From the assumption that λ∩η has constant rank, it follows that λ∩λη has constant rank, and
thusMλ,λη(E) is canonically trivial by Lemma 5.24. Similarly, Mλ̃,λ̃η(E) is canonically trivial.
Combined with the canonical isomorphisms above, this shows that Mλ,λ̃(E) is canonically

isomorphic to Mλη ,λ̃η(E). Since the lagrangian subbundles λη, λ̃η of E are contained in the
coisotropic subbundle η, Lemma 5.23 implies thatMλη ,λ̃η(E) is in turn canonically isomorphic
to Mλη ,λ̃η

(η/η⊥), completing the proof.

2

Example 5.25 Suppose that E,E ′ are trivial symplectic vector bundles over M with la-
grangian subbundles λ ⊂ E and λ′ ⊂ E ′, and let T be a section of the bundle Homω(E,E

′)
of symplectic vector bundle maps. The graph of the section T defines a lagrangian subbundle
λΓ(T ) of E ′⊕E, while the restriction of T to the subbundle λ defines a lagrangian subbundle
T (λ) of E ′.

It is easy to check that the lagrangian subbundles λΓ(T ) and λ′⊕λ intersect the coisotropic
subbundle E ′ ⊕ λ along constant rank subbundles, whereas their reductions by E ′ ⊕ λ are
given by T (λ) and λ′, respectively. Thus, Theorem 5.22 implies that MLΓ(T ),L

′⊕L(E ′ ⊕ E)
and MT (L),L′(E

′) are canonically isomorphic.

4
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Example 5.26 Any symplectomorphism F : T ∗M → T ∗N induces a lagrangian embedding
ιF : T ∗M → T ∗(M ×N), defined as the composition of the graph ΓF : T ∗M → T ∗N × T ∗M
of F with the Schwartz transform SM,N : T ∗N × T ∗M → T ∗(M ×N). A second lagrangian
embedding zF : M → T ∗N is defined by the composition of F with the zero section s0 : M →
T ∗M . Observe that these definitions imply that the Liouville class λM,zF

of the embedding
(M, zF ) identifies with λT ∗M,ιF under the natural isomorphism H1(M ; R) ' H1(T ∗M ; R)
induced by the projection T ∗M →M .

To see that a similar relation holds for the Maslov classes of (M, zF ) and (T ∗M, ιF ),
consider the symplectic vector bundles E = s∗0 T (T ∗M) and E ′ = z∗F T (T ∗N) over M , along
with the section T of Homω(E,E

′) defined by the restriction of F∗ to TZ(T ∗M). Moreover, we
have the lagrangian subbundles λ = s∗0 VM of E and λ′ = z∗F V N of E ′, and the lagrangian
subbundles λΓ(T ) ⊂ E ′ ⊕ E and T (λ) ⊂ E ′, as described in Example 5.25. Theorem 5.21
shows that s∗0MT ∗M,ιF is canonically isomorphic to MλΓT

,λ′⊕λ(E
′ ⊕ E) and that MM,zF

is
canonically isomorphic to MT (λ),λ′(E

′). Thus, it follows from Example 5.25 that the Maslov
classes are also related by pull-back: s∗0 µT ∗M,ιF = µM,zF

.

4

Example 5.27 We can apply the conclusion of the preceding example to fiber-preserving
symplectomorphisms f : T ∗M → T ∗N . From Section 3.2, we recall that any such f is equal
to a fiberwise translation of T ∗M by a closed 1-form β on M composed with the cotangent
lift of some diffeomorphism N → M . Evidently, the phase class of the induced lagrangian
embedding (M, zf ) equals [β] ∈ Ȟ1(M ; R), and thus ~ ∈ R+ is admissible for the lagrangian
embeddings (M, zf ), (T

∗M, ιf ) if and only if [β] is ~-integral.

4

5.2 The symplectic category

To systematize the geometric aspects of quantization in arbitrary symplectic manifolds, we
now introduce the symplectic category S. As objects of S we take the class of all smooth,
finite-dimensional symplectic manifolds. Given two objects (P, ω) (Q,ω′) of S, we define
their product as the symplectic manifold (P × Q, π∗1ω + π∗2ω

′), where π1, π2 denote the
cartesian projections. The symplectic dual of an object (P, ω) is the object (P,−ω).

From Lemma 3.14, we recall that a smooth diffeomorphism from a symplectic manifold
P to a symplectic manfold Q is a symplectomorphism if and only if its graph is a lagrangian
submanifold of Q × P . More generally, an immersed lagrangian submanifold of Q × P is
called a canonical relation from P to Q. The morphism set Hom(P,Q) is then defined
to consist of all canonical relations in Q × P . Since immersed lagrangian submanifolds of
the product Q× P coincide with those of its dual, we can therefore define the adjoint of a
canonical relation L ⊂ Hom(P,Q) as the element L∗ ∈ Hom(Q,P ) represented by the same
equivalence class L of immersions into the product P ×Q.

Composition of morphisms is unfortunately not defined for all L1 ∈ Hom(P,Q) and
L2 ∈ Hom(Q,R), and so S is therefore not a true category. Nevertheless, we can describe
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a sufficient condition for the composability of two canonical relations as follows. By Exam-
ple 5.8, the product R ×∆Q × P is a reducible coisotropic submanifold of R ×Q×Q× P ,
where ∆Q denotes the diagonal in Q×Q. The product L2×L1 of the canonical relations L1

and L2 is a well-defined immersed lagrangian submanifold of R × Q × Q × P , and we will
call L2×L1 clean if (R×∆Q×P ,L2×L1) is a reducible pair. Applying Theorem 5.12, we
then obtain

Proposition 5.28 If L2×L1 is clean, then L2 ◦L1 is an immersed lagrangian submanifold
of R× P , i.e. L2 ◦ L1 ∈ Hom(P,R).

2

Associativity of compositions holds in the symplectic category in the sense that for canonical
relations L1, L2, L3, the equation

L1 ◦ (L2 ◦ L3) = (L1 ◦ L2) ◦ L3

is valid provided that both sides are defined.
Among the members of S, there is a minimal object Z, the zero-dimensional symplectic

manifold consisting of a single point ∗ equipped with the null symplectic structure. Mor-
phisms from Z to any other object P ∈ S identify naturally with immersed lagrangian
submanifolds of P . Thus, the “elements” of P are its immersed lagrangian submanifolds,
and in particular, we may identify the set Hom(P,Q) of morphisms with the “elements” of
Q× P for any P,Q ∈ S.8

A canonical relation L ∈ Hom(P,Q) is said to be a monomorphism if the projection
of L onto P is surjective and the projection of L onto Q is injective, in the usual sense.
Equivalently, L is a monomorphism if L∗ ◦ L = idP . Dually, one defines an epimorphism
in the symplectic category as a canonical relation L for which L ◦ L∗ = idP . From these
definitions we see that a canonical relation is an isomorphism if and only if it is the graph
of a symplectomorphism.

Canonical lifts of relations

The full subcategory of S consisting of cotangent bundles possesses some special properties
due to the Schwartz transform SM,N : T ∗N × T ∗M → T ∗(M × N), which enables us to
identify canonical relations in Hom(T ∗M,T ∗N) with immersed lagrangian submanifolds in
T ∗(M ×N).

Example 5.29 A smooth relation between two manifolds M,N is a smooth submanifold S
of the product M ×N . Under the Schwartz transform, the conormal bundle of S identifies
with a canonical relation LS ∈ Hom(T ∗N, T ∗M) called the cotangent lift of S. In view of
Example 3.27, this definition generalizes tangent lifts of diffeomorphisms. Note in particular

8Another point of view is to define Hom(P,Q), not as a set, but rather as the object Q × P in the
symplectic category; then the composition Hom(P,Q)× Hom(Q,R) → Hom(P,R) is the canonical relation
which is the product of three diagonals.
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that although a smooth map f : M → N does not in general give rise to a well-defined
transformation T ∗N → T ∗M , its graph in M ×N nevertheless generates a canonical relation
Lf ∈ Hom(T ∗N, T ∗M).

Example 5.30 The diagonal embedding ∆ : M → M × M induces a canonical relation
L∆ ∈ Hom(T ∗(M ×M), T ∗M) which in local coordinates assumes the form

L∆ = {((x, α), (x, x, β, γ)) : x ∈M and α, β, γ ∈ T ∗xM satisfy α = β + γ}.

In other words, L∆ is the graph of addition in the cotangent bundle. If L1, L2 ∈ Hom(∗, T ∗M)
and L2 × L1 is identified with an element of Hom(∗, T ∗(M ×M)) by the usual symplecto-
morphism T ∗M × T ∗M → T ∗(M ×M), then the sum L1 + L2 ∈ Hom(∗, T ∗M) is defined
as

L1 + L2 = L∆ ◦ (L2 × L1).

Note that if L1, L2 coincide with the images of closed 1-forms ϕ1, ϕ2 on M , then L1 + L2

equals the image of ϕ1 + ϕ2.
The dual of the isomorphism T ∗M × T ∗M → T ∗(M ×M) identifies L∆ with an element

L′∆ ∈ Hom(T ∗M,Hom(T ∗M,T ∗M)). This canonical relation satisfies L1+L2 = L′∆(L1)(L2),
and if L is the image of a closed 1-form ϕ on M , then

L′∆(L) = fϕ,

where fϕ is the fiberwise translation mapping introduced in Section 3.2.

4

Example 5.31 (The Legendre transform) As a particular example of this situation, let
V be a smooth manifold, and consider the fiber product TV ×V T ∗V along with its natural
inclusion ι : TV ×V T ∗V ↪→ TV × T ∗V and “evaluation” function ev : TV ×V T ∗V → R given
by

ev((x, v), (x, p)) = 〈p, v〉.

If L ⊂ T ∗(TV ×V T ∗V ) is the lagrangian submanifold given by the image of the differential
d(ev), then the push-forward Lleg = ι∗L defines an isomorphism in Hom(T ∗(TM), T ∗(T ∗M))
given in local coordinates by

((x, v), (ξ, η)) 7→ ((x, η), (ξ,−v)).

As noted in [57], this canonical relation can be viewed as a geometric representative of the
Legendre transform in the following sense: If L : TM → R is a hyperregular Lagrangian
function, in the sense that its fiber-derivative defines a diffeomorphism TM → T ∗M , then
the composition of Lleg with the image of dL equals the image of dH, where H : T ∗M → R
is the classical Legendre transform of L.

4
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Morphisms associated with coisotropic submanifolds

If C ⊂ P is a reducible coisotropic submanifold, then the reduction relation RC ∈
Hom(P,C/C⊥) is defined as the composition of the quotient map C → C/C⊥ and the inclu-
sion C/C⊥ → P . Somewhat more concretely, the relation RC is the subset

{([x], x) : x ∈ C}

of C/C⊥ × P , where [x] is the leaf of the characteristic foliation passing through x ∈ C.
Evidently RC is an epimorphism, and so RC ◦ R∗

C = idP . On the other hand, RC is not a
monomorphism unless C = P , and we define the projection relation KC ∈ Hom(P, P ) as
the composition R∗

C ◦RC , i.e.

KC = {(x, y) : x, y ∈ C, [x] = [y]}.

By associativity, we have KC = KC ◦ KC , and K∗
C = KC . Thus, KC is like an orthogonal

projection operator.
These relations give a simple interpretation of Theorem 5.12 in the symplectic category.

If L is an immersed lagrangian submanifold of P , i.e. L ∈ Hom(Z, P ), then L is composable
with both RC and KC , provided that it intersects C cleanly. In this case, we have

LC = RC ◦ L LC = KC ◦ L.

In particular, KC fixes any lagrangian submanifold of C.

Example 5.32 Suppose that F is a foliation on a manifold B whose leaf space BF is smooth.
In the notation of Example 5.17, we then find that if T ∗(B/F) is canonically identified with
the reduced space E/C⊥, then the reduction relation RE is the Schwartz transform of the
conormal bundle to the graph of the projection B → B/F .

4

5.3 Symplectic manifolds and mechanics

In general, an arbitrary symplectic manifold has no associated “configuration space,” and
therefore the classical and quantum mechanical viewpoints must be adapted to this new
context based on the available structure.

The classical picture

The central objects in the classical picture of mechanics on an arbitrary symplectic manifold
(P, ω) are the semi-classical states, represented as before by lagrangian submanifolds of P
equipped with half-densities, and the vector space of observables C∞(P ).

With respect to pointwise multiplication, C∞(P ) forms a commutative associative alge-
bra. Additionally, the symplectic form on P induces a Lie algebra structure on C∞(P ) given
by the Poisson bracket

{f, g} = Xg · f,

79



where Xg = ω̃−1(dg) denotes the hamiltonian vector field associated to g. These structures
satisfy the compatibility condition

{fh, g} = f {h, g}+ {f, g}h,

and are referred to collectively by calling C∞(P ) the Poisson algebra of P .
The classical system evolves along the trajectories of the vector field XH associated to

the choice of a hamiltonian H : P → R. If f is any observable, then Hamilton’s equations
assume the form

ḟ = {H, f}.
Note that in local Darboux coordinates, the Poisson bracket is given by

{f, g} =
∑
j

(
∂f

∂qj
· ∂g
∂pj
− ∂f

∂pj
· ∂g
∂qj

)
.

Setting f = qj or f = pj in the Poisson bracket form of Hamilton’s equations above yields
their familiar form, as in Section 3.3.

Two functions f, g ∈ C∞(P ) are said to be in involution if {f, g} = 0, in which case the
hamiltonian flows of f and g commute. An observable in involution with the hamiltonian
H is called a first integral or constant of the motion of the system. A collection fi
of functions in involution on P is said to be complete if the vanishing of {fi, g} for all i
implies that g is a function of the form g(x) = h(f1(x), · · · , fn(x)).

The quantum mechanical picture

Quantum mechanical observables should be the vector space A(HP ) of self-adjoint linear op-
erators on some complex Hilbert space HP associated to P . The structure of a commutative,
non-associative algebra is defined on A by Jordan multiplication:

A ◦B =
1

2
(AB +BA),

representing the quantum analog of pointwise multiplication in the Poisson algebra of P .
Similarly, the ~-dependent commutator

[A,B]~ =
i

~
(AB −BA)

defines a Lie algebra structure on A analogous to the Poisson bracket on C∞(P ).
Quantum mechanical states are vectors in HP . The time-evolution of the quantum system

is determined by a choice of energy operator Ĥ, which acts on states via the Schrödinger
equation:

ψ̇ =
i

~
Ĥψ.

A collection {Aj} of quantum observables is said to be complete if any operator B which
commutes with each Aj is a multiple of the identity. This condition is equivalent to the
irreducibility of {Aj}, in other words, no nontrivial subspace of HP is invariant with respect
to each j.
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Quantization

Although neither an underlying configuration manifold nor its intrinsic Hilbert space is
generally available in the context of arbitrary symplectic manifolds, the basic goal of quan-
tization remains the same as in the case of cotangent bundles: starting with a symplectic
manifold P , we wish to identify a ∗-algebra A of operators which give the quantum analog
of the “system” at hand. Early approaches to this problem were based on the principle
that, regardless of how the algebra A is identified, the correspondence between classical and
quantum observables should be described by a linear map from the Poisson algebra C∞(P )
to A which satisfies the following criteria known as the Dirac axioms

Definition 5.33 A linear map ρ : C∞(P )→ S(HP ) is called a quantization provided that
it satisfies

1. ρ(1) = identity.

2. ρ({f, g}) = [ρ(f), ρ(g)]~

3. For some complete set of functions f1, · · · , fn in involution, the operators
ρ(f1), · · · , ρ(fn) form a complete commuting set.

As was eventually proven by Groenwald and Van Hove (see [1] for a proof), a quantization
of all classical observables in this sense does not exist in general.

To make the basic quantization problem more tractable, we first enlarge the class of
classical objects to be quantized, but then relax the criteria by which quantum and classical
objects are to correspond. Based on an idea of Weyl and von Neumann, we first replace
the classical observables by the groups of which they are the infinitesimal generators. The
basic classical objects are then symplectomorphisms, which should be represented by unitary
operators on quantum Hilbert spaces.

A general formulation of the quantization problem is then to define a “functor” from
the symplectic category to the category of (hermitian) linear spaces. This means that to
each symplectic manifold P we should try to assign a Hilbert space HP in such a way that
HP is dual to HP , and HP×Q is canonically isomorphic to a (completed) tensor product
HP ⊗̂HQ. However this is accomplished, each canonical relation L ∈ Hom(P,Q) must then
be assigned to a linear operator TL ∈ Hom(HP ,HQ) ' HQ ⊗ H∗

P in a way which commutes
with compositions, i.e.,

TL̃◦L = TL̃ ◦ TL
for each L̃ ∈ Hom(Q,R). In these abstract terms, our classical and quantum correspondences
can be expressed as follows.
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Object Classical version Quantum version

basic spaces symplectic manifold (P, ω) hermitian vector space HP

Q× P HQ⊗̂HP

Q× P Hom(HP ,HQ)
point ∗ C

state lagrangian submanifold L element of HP

space of observables Poisson algebra C∞(P ) symmetric operators on HP

At this stage, two relevant observations are apparent from our earlier study of WKB
quantization. First, in addition to just a lagrangian submanifold L ⊂ P , it may require
more data (such as a symbol) to determine an element of HP in a consistent way. Second,
the Hilbert space HP may carry some sort of filtration (e.g. by powers of ~ or by degree
of smoothness), and the quantization may be “correct” only to within a certain degree of
accuracy as measured by the filtration. By “correctness” we mean that composition of
canonical relations should correspond to composition of operators. As we have already seen,
it is too much to require that this condition be satisfied exactly. The best we can hope for
is a functorial relation, rather than a mapping, from the classical to the quantum category.
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6 Fourier Integral Operators

For our first examples of a quantization theory which gives a functorial relation between
the classical (symplectic) category and the quantum category of hermitian vector spaces, we
return to WKB quantization in cotangent bundles. In this context, semi-classical states are
represented by pairs (L, s) consisting of an immersed lagrangian submanifold L in T ∗(M×N)
equipped with a symbol s. Our discussion begins by defining a suitable notion of composition
for such states. The WKB quantization I~(L, s) of the state (L, s) is then regarded as the
Schwartz kernel of the corresponding operator in Hom(HM ,HN). A particular concrete case
of this classical-quantum correspondence is given by the symbol calculus of Fourier integral
operators.

6.1 Compositions of semi-classical states

In Section 4.4, we defined a semi-classical state in a cotangent bundle T ∗M as a pair (L, s)
consisting of a quantizable lagrangian submanifold L ⊂ T ∗M and a symbol s on L. In this
section, we study certain natural transformations of semi-classical states.

Reduction of semi-classical states

We will say that a reducible pair (C,L) in a symplectic manifold P is properly reducible
if the quotient of I = L×P C by its characteristic foliation is a smooth, Hausdorff manifold
and the map I → LC is proper.

Lemma 6.1 If (C,L) is a properly reducible pair in a symplectic manifold P , then there
exists a natural linear map

|Ω|1/2L⊗ |Ω|1/2C → |Ω|1/2LC .

Proof. First note that if V is a symplectic vector space, together with a lagrangian subspace
L and a coisotropic subspace C, then the exact sequence

0→ L ∩ C⊥ → L ∩ C → LC → 0

gives rise to the isomorphism

|Λ|1/2LC ⊗ |Λ|1/2(L ∩ C⊥) ' |Λ|1/2(L ∩ C).

The linear maps v 7→ (v,−v) and (x, y) 7→ x+ y define a second exact sequence

0→ L ∩ C → L⊕ C → L+ C → 0,

from which we get

|Λ|1/2LC ⊗ |Λ|1/2(L ∩ C⊥)⊗ |Λ|1/2(L+ C) ' |Λ|1/2L⊗ |Λ|1/2C.
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Finally, the exact sequence

0→ (L+ C)⊥ → V
ω̃→ (L+ C)∗ → 0

combined with the half-density on V induced by the symplectic form defines a natural
isomorphism

|Λ|1/2(L+ C) ' |Λ|1/2(L+ C)⊥.

Since L ∩ C⊥ = (L+ C)⊥, we arrive at

|Λ|1/2LC ⊗ |Λ|(L ∩ C⊥) ' |Λ|1/2L⊗ |Λ|1/2C.

Now consider a properly reducible pair (C,L) in a symplectic manifold P . By the pre-
ceding computations, there is a linear map

|Ω|1/2L⊗ |Ω|1/2C → |Ω|1/2LC ⊗ |Ω|(FI).

Since the quotient map I → LC is proper, integration over its fibers is well-defined and gives
the desired linear map

|Ω|1/2L⊗ |Ω|1/2C → |Ω|1/2LC .

2

Let M be a smooth manifold and consider a submanifold N ⊂ M equipped with a
foliation F such that the leaf space NF is a smooth, Hausdorff manifold. From Section 5.1
we recall that the integrability of F implies that

CN = {(x, p) ∈ T ∗M : x ∈ N, Fx ⊂ ker(p)}

is a coisotropic submanifold of T ∗M whose reduced space is the cotangent bundle T ∗NF of
the leaf space NF . If L is an immersed lagrangian submanifold of T ∗M such that (CN , L)
form a reducible pair, then we denote by I the fiber product L ×T ∗M CN of L and CN and
consider the following commutative diagram

L −−−→ T ∗M

rL

x ι

x
I

rCN−−−→ CN

π

y ypC

LC
−−−→ T ∗N

Our goal is describe how a symbol s on L naturally induces a symbol sC on LC .

Lemma 6.2 In the notation of the diagram above, there is a natural isomorphism

r∗LΦL,~ → π∗ΦLC ,~.
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Proof. From the proof of Lemma 5.16 it follows easily that the pull-back to I of the Liouville
forms on T ∗M and T ∗N coincide, and thus, the pull-back to I of the prequantum line bundles
over T ∗M and T ∗N are canonically isomorphic.

Similarly, let E be the symplectic vector bundle over I given by the pull-back of T (T ∗M).
Lagrangian subbundles λ, λ′ of E are then induced by the immersed lagrangian submanifold
L and the vertical subbundle VM of T (T ∗M). By definition, the pull-back of the Maslov
bundle of L to I is canonically isomorphic to the bundle Mλ,λ′(E).

Now the tangent bundle of CN induces a coisotropic subbundle C of E, and one must
check that the pull-back of the Maslov bundle of LC to I is canonically isomorphic to
MλC ,λ

′
C
(C/C⊥). From Theorem 5.22 we therefore obtain a canonical isomorphism of r∗LML

with π∗MLC
. By tensoring this isomorphism with the isomorphism of prequantum bundles

described in the preceding paragraph, we arrive at the desired isomorphism of phase bundles.

2

A parallel section s of ΦL,~ pulls back to a parallel section of r∗LΦLC ,~, which, under the
isomorphism of Lemma 6.2, identifies with a parallel section of π∗ΦLC ,~. Since parallel
sections of π∗ΦLC ,~ identify naturally with parallel sections of ΦLC ,~, we obtain a map

(parallel sections of ΦL,~)→ (parallel sections of ΦLC ,~).

By tensoring with the map of density spaces given above, we obtain, for each half-density σ
on C, a natural map of symbol spaces

SL → SLC
.

We will denote the image of a symbol s on L under this map by sC,σ.

Composition of semi-classical states

If L1, L2 are immersed lagrangian submanifolds of T ∗M,T ∗N , then their product L2×L1 gives
a well-defined immersed lagrangian submanifold of T ∗(M ×N) via the Schwartz transform
SM,N : T ∗N×T ∗M → T ∗(M×N). By the fundamental properties of the Schwartz transform
described in Proposition 3.32, it follows easily that the phase bundle ΦL2×L1,~ is canonically
isomorphic to the external tensor product ΦL2,~ �Φ−1

L1,~. From the discussion in Appendix A

we also have a linear isomorphism of density bundles |Λ|1/2(L2 × L1)→ |Λ|1/2L2 � |Λ|1/2L1,
and thus there is a natural linear map of symbol spaces

SL2 ⊗ SL1 → SL2×L1

which we denote by (s1, s2)→ s2 � s∗1.

Definition 6.3 The product of semi-classical states (L1, s1), (L2, s2) in T ∗M,T ∗N is the
semi-classical state (L2 × L1, s2 � s∗1) in T ∗(M ×N).

2
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Turning to compositions, we first note that if M,V are smooth manifolds, then the
Schwartz transform SM,V : T ∗V × T ∗M → T ∗(M × V ) identifies each canonical relation in
Hom(T ∗M,T ∗V ) with an immersed lagrangian submanifold in T ∗(M × V ). Our goal is now
to describe how semi-classical states (L, s) in T ∗(M × N) and (L′, s′) in T ∗(N × V ) define
a semi-classical state in T ∗(M × V ) when L,L′ are composable as canonical relations in
Hom(T ∗M,T ∗N) and Hom(T ∗N, T ∗V ), respectively.

We begin with the following commutative diagram

T ∗V × T ∗N × T ∗N × T ∗M −−−→ T ∗(M ×N ×N × V )y y
T ∗V × T ∗M −−−→ T ∗(M × V )

where the upper horizontal arrow denotes the composition SM×N ◦(SN,V ×SM,N) of Schwartz
tranforms, and the lower horizontal arrow equals the Schwartz transform SM,V . The left
vertical arrow represents the reduction relation defined by the coisotropic submanifold C =
T ∗V × ∆T ∗N × T ∗M , while the right vertical arrow is the reduction relation defined by
the image of C under the Schwartz transform. L′ ◦ L ∈ Hom(T ∗M,T ∗V ) is defined as the
reduction of L2 × L1 by the coisotropic submanifold T ∗V ×∆T ∗N × T ∗M of T ∗V × T ∗N ×
T ∗N × T ∗M . Under the Schwartz transform,

T ∗V × T ∗N × T ∗N × T ∗M → T ∗(M ×N ×N × V ),

the submanifold T ∗V ×∆T ∗N × T ∗M maps to the conormal submanifold CV,N,M of T ∗(V ×
N×N×M) defined by V ×∆N×M ⊂ V ×N×N×M and its product foliation by subsets of
the form v×∆N×m for (v,m) ∈ V ×M . Thus, the Schwartz transform of L2×L1 reduces by
CV,N,M to yield the image of L2◦L1 under the Schwartz transform T ∗V ×T ∗M → T ∗(V ×M).

From Lemma 6.1, it follows that for any properly reducible pair L1, L2, we obtain a
natural linear map of symbol spaces

SL2 ⊗ SL1 → SL2◦L1

given by the composition of the product map above and the reduction map SL2×L1 → SL2◦L1

defined by the natural half-density on CV,N,M induced by the symplectic forms on T ∗V, T ∗N ,
and T ∗M . We denote the image of s2 � s1 under this map by s2 ◦ s1.

We will say that semi-classical states (L1, s1) in T ∗(M × N) and (L2, s2) in T ∗(N × V )
are composable if the conormal submanifold CV,N,M and immersed lagrangian submanifold
L2 × L1 form a properly reducible pair.

Definition 6.4 If a semi-classical state (L1, s1) in T ∗(M × N) is composable with a semi-
classical state (L2, s2) in T ∗(N × V ), then their composition is defined as the semi-classical
state (L2 ◦ L1, s2 ◦ s1) in T ∗(M × V ).

2
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Example 6.5 Consider a semi-classical state (LF , s̃) in T ∗(M×N), where LF is the Schwartz
transform of the graph of a symplectomorphism F : T ∗M → T ∗N . If L is an immersed la-
grangian submanifold of T ∗M , then Definition 6.4 provides that for each symbol s ∈ SL,
the semi-classical state (L, s) in T ∗M is transformed by F into the semi-classical state
(LF ◦ L, s̃ ◦ s) in T ∗N .

To make this correspondence more explicit, let us choose a particular lagrangian immer-
sion ι : L→ T ∗M representing L (see the discussion in Section 4.4). We then note that the
natural half-density |ωnM |1/2 on LF ≈ T ∗M enables us to identify the symbol space SLF

with
the product

ΓLF
⊗C C

∞(LF ,C).

Given a parallel section s̃ and smooth complex-valued function h on LF , we find by a com-
putation that the isomorphism SL → SLF ◦L determined by the symbol s̃ = s̃⊗ h is given by
s⊗a 7→ s′⊗ (a · ι∗h), where a is any half-density on L and s′ is the unique parallel section of
ΦLF ◦L,~ such that ι∗s̃ 7→ s′⊗ s−1 under the canonical isomorphism ι∗ΦLF ,~ ' ΦLF ◦L,~⊗Φ−1

L,~.

4

Example 6.6 As a special case of Example 6.5, note that if the symplectomorphism F :
T ∗M → T ∗N is the cotangent lift of a diffeomorphism M → N , then for each ~ > 0, the
phase bundle of of LF admits a canonical parallel section, and so the symbol space SLF

identifies naturally with R+ × C∞(LF ,C). If h ∈ C∞(LF ,C), then with this identification,
the composition of (LF , h) with a semi-classical state (L, s) equals the semi-classical state
(LF ◦ L, (h ◦ ι) · s).

Similarly, if β is a closed 1-form on M and the symplectomorphism F : T ∗M → T ∗M
equals fiberwise translation by β, then ~ ∈ R+ is admissible for LF if and only if [β] is
~-integral. For such ~, each parallel section of the phase bundle ΦLF ,~ identifies with an
oscillatory function of the form ceiS/~ for c ∈ R and some S : M → T~ satisfying S∗dσ =
β. A computation then shows that the composition of a semi-classical state of the form
(LF , e

iS/~ ⊗ h) with (L, ι, s) yields the semi-classical state (LF ◦ L, ei(S◦πL)/~(h ◦ ι) · s).

4

6.2 WKB quantization and compositions

To define the composition of semi-classical states (L, s) ∈ Hom(T ∗M,T ∗N) and (L̃, s̃) ∈
Hom(T ∗N, T ∗V ) as a semi-classical state (L̃ ◦ L, s̃ ◦ s) ∈ Hom(T ∗M,T ∗V ), we used the
Schwartz transform to identify the immersed lagrangian submanifold L̃ ◦ L ∈ T ∗V × T ∗M
with an immersed lagrangian submanifold in T ∗(M × V ), since it is the cotangent bundle
structure of the latter space which gives meaning to “symbols” (in the sense of Chapter 4)
on L̃ ◦ L. On the quantum level, an analogous correspondence is furnished by the Schwartz
kernel theorem.

Let M be a smooth manifold and let |Ω|1/20 M be equipped with the topology of C∞

convergence on compact sets. A distributional half-density on M is then a continuous,
C-linear functional on |Ω|1/20 M . We denote the space of distributional half-densities on M
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by |Ω|1/2−∞M , and we equip this space with the weak∗ topology. If N is another smooth

manifold, a kernel is any element of |Ω|1/2−∞(M × N). A kernel K defines a linear map

K : |Ω|1/20 M → |Ω|1/2−∞N by duality via the equation

〈K(u), v〉 def= 〈K, u⊗ v〉 (∗)

Schwartz kernel theorem . Every K ∈ |Ω|1/2−∞(M×N) defines a linear map K : |Ω|1/20 M →
|Ω|1/2−∞N by (∗) above, which is continuous in the sense that K(φj)→ 0 in |Ω|1/2−∞N if φj → 0

in |Ω|1/20 M . Conversely, to every such linear map, there is precisely one distribution K such
that (∗) is valid.

2

Of course, each w ∈ |Ω|1/2N defines an element w̃ ∈ |Ω|1/2−∞N by the equation

〈w̃, v〉 =

∫
N

v ⊗ w.

In all of the examples we will consider, the image of the map K will lie within the subspace
of |Ω|1/2−∞N represented by elements of |Ω|1/2N in this way, and so we can consider K as

a continuous linear map |Ω|1/20 M → |Ω|1/20 N , thereby giving a (densely defined) operator
HM → HN on the intrinsic Hilbert spaces of M,N . In practical terms, the value of the half-
density Ku at each y ∈ N can be computed in these cases by, roughly speaking, integrating
the product K ⊗ u over the submanifold {y} ×M of N ×M . Thus, in the same way that
the Schwartz transform provides a natural correspondence

Hom(T ∗M,T ∗N)↔ T ∗(M ×N),

the Schwartz kernel theorem gives the identification

|Ω|1/2−∞(M ×N)↔ Hom(HM ,HN)

~-differential operators

With respect to linear coordinates {xj} on Rn, we define ~-dependent operators

Dj
def
= −i~ ∂

∂xj
.

An ~-differential operator of asymptotic order9 k ∈ Z is then an asymptotic series of the
form

P~ =
∞∑
m=0

Pm ~m+k,

9Note that this order generally differs from the order of a differential operator.
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where each Pm is a polynomial in the operators Dj. By formally substituting ξj for Dj in
each term of P~, we obtain an ~-dependent function σP~ on T ∗Rn, known as the symbol of
P~, which is related to P~ by the asymptotic Fourier inversion formula: for any compactly
supported oscillatory test function e−iψ/~u (we permit ψ = 0), we have

(P~e
−iψ/~u)(x) = (2π~)−n

∫ ∫
ei(〈x−y,ξ〉−ψ)/~σP~(x, ξ)u(y) dy dξ.

The principal symbol p~ of the operator P~ is defined as the symbol of the first nonvanishing
term in its series expansion, i.e.,

p~(x, ξ) = σPm0
(x, ξ) ~m0+k

if Pm = 0 for all m < m0 and Pm0 6= 0. By replacing σP~ by p~ in the formula above, we
obtain

(P~e
−iψ/~u)(x) = (2π~)−n

∫ ∫
ei(〈x−y,ξ〉−ψ)/~p~(x, y, ξ)u(y) dy dξ +O(~m0+k+1)

where p~ is of course independent of y. (Later we will drop this assumption to obtain a more
symmetric calculus). For fixed x, the function (y, ξ) 7→ 〈x − y, ξ〉 − ψ has a nondegenerate
critical point when y = x and ξ = dψ(x). An application of the principle of stationary phase
therefore gives

(P~e
−iψ/~u)(x) = e−iψ(x))/~u(x) · p~(x, x, dψ(x))hm0+k +O(~m0+k+1) (∗∗)

To interpret this expression in the context of WKB quantization, we first note that the phase
function φ(x, y, ξ) = 〈x − y, ξ〉 on B = Rn × Rn × (Rn)∗, together with V = Rn × Rn and
the cartesian projection pV : B → V define a Morse family (B, V, pV , φ) which generates
the conormal bundle to the diagonal ∆ ⊂ Rn × Rn. The principal symbol p~, written as a
function of the variables (x, y, ξ) defines an amplitude a = p~ · |dx dy|1/2|dξ| on B, whose
restriction to the fiber-critical set Σφ = {(x, x, ξ) : 〈x, ξ〉 = 0} induces a well-defined symbol
sP = p~(x, x, ξ) on L∆.

Now, e−iψ/~u = I~(L, s), where L is the projectable lagrangian submanifold of T ∗Rn

defined by im(dψ), and s is obtained from the pull-back of u to L. By Example 6.6, we have
(L, s) = (L∆ ◦ L, sP ◦ s), that is, composition with (L∆, sP ) multiplies the symbol s by the
values of the principal symbol p~ on L ' Σφ. Combined with the preceding equation, this
gives

(P~e
−iψ/~u)(x) = I~(L∆ ◦ L, sP ◦ s) · ~m0+k +O(~m0+k+1).

The Schwartz kernel for the operator P~ is given by the distribution family I~(L∆, sP ).

An ~-differential operator on a manifold M is an operator P~ on |Ω|1/20 M which coincides
in local coordinates with a series of the form P~ as above. While the symbol of P~ depends
on the choice of local coordinates, its principal symbol p~ is a well-defined function on the
cotangent bundle T ∗M . Using a global generating function for the conormal bundle of
∆ ⊂ M ×M (see Example 4.29) and arguing as above, we obtain the following geometric
version of (∗∗) above:
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Theorem 6.7 If (L, s) is an exact, projectable semi-classical state in T ∗M and P~ is an
~-differential operator of order k on M , then:

P~(I~(L, s)) = I~(L∆ ◦ L, sP ◦ s) +O(~m0+k+1),

where sP is the symbol on L∆ induced by the principal symbol p~ of P~.

Roughly speaking, this theorem asserts that polynomial functions on the identity relation L∆

quantize as the Schwartz kernel of differential operators on M . As usual, this correspondence
is only asymptotic; many differential operators share the same principal symbol, and their
actions on a given function coincide only up to terms of higher order in ~.

As a particular case of Theorem 6.7, the vanishing of the principal symbol p~ on L implies
that

P~(I~(L, s)) = O(~m0+k+1),

i.e., that I~(L, s) is a first-order approximate solution to the equation P~u = 0. This remark
suggests the quantum analog of certain coisotropic submanifolds of T ∗M . The zero set of the
principal symbol p~ is called the characteristic variety of the operator P~. If 0 is a regular
value of p~, then CP~ = p−1

~ (0) is a coisotropic submanifold of T ∗M , and semi-classical states
contained in CP~ represent solutions of the asymptotic differential equation P~u = 0. In this
sense, CP~ , or, more properly, the reduced manifold of CP~ , corresponds to the kernel of P~
in HM , and the projection relation KCP~

quantizes as the orthogonal projection onto this
subspace.

A familiar illustration of these concepts is provided by the WKB approximation.

Example 6.8 Recall that the Schrödinger operator associated to a given potential V on a
riemannian manifold M is given by

Ĥ = − ~2

2m
∆ +mV .

For E > 0, the time-independent Schrödinger equation is then

P~ψ = 0,

where P~ = Ĥ −E is the zeroth-order asymptotic differential operator on M with principal
symbol

p~(x, θ) = −|θ|
2

2m
+ (V (x)− E).

The characteristic variety of p~ is simply the level set H−1(E) of the classical hamiltonian
of the system, and as in previous sections we see that first-order approximate solutions to
the time-independent Schrödinger equation arise from semi-classical states represented by
quantizable lagrangian submanifolds in CP~ .

4
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The difficulty of quantizing more general symbols on the identity relation L∆ lies in the
convergence of the integral

(P~u)(x) = (2π~)n
∫ ∫

ei〈x−y,θ〉/~a(x, y, ξ)u(y) dξ dy.

For differential operators, integration over the phase variables θ was well-defined due to the
fact that the symbol of a differential operator has a polynomial growth rate with respect to
these variables. Weakening this condition while still guaranteeing that the integral converges
leads to the definition of pseudodifferential operators.

In Rn, an ~-pseudodifferential operator of order µ is given by

(Au)(x) = (2π~)n
∫ ∫

ei〈x−y,θ〉/~a~(x, θ)u(y) dθ dy,

where the symbol a(x, θ) is an asymptotic series in ~ of the form

a~(x, θ) ∼
∑

aj(x, θ)~µ+j.

Each coefficient aj is a smooth function on Rn × Rn \ {0} and is positively homogeneous of
degree µ− j, i.e.,

aj(x, cθ) = cµ−jaj(x, θ)

for c > 0. As in the special case of differential operators, the invariance of pseudodifferential
operators under coordinate changes enables one to extend this theory to any smooth manifold
M . In this case, the principal symbol of a pseudodifferential operator is a well-defined
function on T ∗M , and there is a corresponding version of Theorem 6.7 (see for example
[51]).

Fourier integral operators

In its simplest form, the theory of Fourier integral operators provides a means for quantizing
half-densities on more general lagrangian submanifolds L of T ∗M by replacing the function
(x, y, ξ) 7→ 〈x − y, ξ〉 in the definition of pseudodifferential operators by a phase function
which generates L:

(Au)(x) = (2π~)n
∫ ∫

eiφ(x,y,ξ)/~a(x, y, ξ)u(y) dξ dy.

As before, the class of quantizable half-densities (and canonical relations) is constrained
by the necessary conditions for this integral to converge. In this section, we will only be
concerned with a few specialized cases; a detailed description of this theory can be found in
[21, 28, 31, 43, 56].

Perhaps the simplest generalization of the picture of (pseudo)differential operators given
above is provided by quantizing semi-classical states whose underlying lagrangian subman-
ifolds are conormal bundles. Let M be a smooth manifold with a smooth submanifold N .
As constructed in Example 4.29, the conormal bundle LN ⊂ T ∗N is generated by a single
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Morse family (B, V, pV , φ) with the properties that V is a tubular neighborhood of N in M
and B is a vector bundle over V with fiber dimension equal to the codimension of N in M .
As in the case of (pseudo)differential operators, an amplitude a on B having an asymptotic
expansion in terms which are positively homogeneous with respect to the natural R+ action
on the fibers of pV : B → V gives rise to a well-defined distributional half-density family
I~(L, s) on M .

It is easy to see that the fiber-critical set Σφ is invariant under the R+ action on B, and
that the identification LN ' Σφ defined by λφ is equivariant with respect to the natural
R+ action on LN . Consequently, positively homogeneous symbols on LN induce positively
homogeneous amplitudes on B of the same order, and we can proceed to define I~(L, s) as
before by requiring that s be homogeneous.

When M = X × Y is a product manifold, the distributions I~(L, s) represent Schwartz

kernels for continuous linear operators |Ω|1/20 X → |Ω|1/2∞ Y . Under certain additional restric-
tions on N which are always fulfilled, for example, when N is the graph of a diffeomorphism
X → Y , these operators map |Ω|1/20 X to |Ω|1/20 Y and extend continuously to |Ω|1/2−∞X. More-
over, they satisfy the composition law

I~(L̃, s̃) ◦ I~(L, s) = I~(L̃ ◦ L, s̃ ◦ s).

Example 6.9 If X, Y are smooth manifolds and f : X → Y is a smooth diffeomorphism,
then the procedure described above can be applied to the graph Γf of f , viewed as a
smooth submanifold of X × Y . The family I~(Lf , s) of distributions on X × Y defined
above corresponds via the Schwartz kernel theorem to a family of continuous linear maps
|Ω|1/20 X → |Ω|1/2−∞Y

A diffeomorphism f : X → Y induces a unitary operator on intrinsic Hilbert spaces given
by pull-back:

(f ∗)−1 : HX → HY .

At the same time, f gives rise to a symplectomorphism of cotangent bundles:

(T ∗f)−1 : T ∗X → T ∗Y.

Of course, the more interesting Fourier integral operators from |Ω|1/2X to |Ω|1/2Y come
from quantizing canonical relations from T ∗X to T ∗Y which do not arise from diffeomor-
phisms from X to Y . For instance, quantizing the hamiltonian flow {ϕt} of a hamiltonian
H on T ∗X gives the solution operators exp(−itĤ/~) of the Schrödinger equation.

4
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7 Geometric Quantization

7.1 Prequantization

In the preceding chapter, we observed that the characteristic variety C = CP~ of a differential
operator P~ on a riemannian manifold M represents the classical analog of the kernel of P~ in
HM , in the sense that semi-classical states contained in C quantize to first-order approximate
solutions of the equation P~ = 0. When C is reducible, the lagrangian submanifolds of M
contained in C correspond to lagrangian submanifolds of the reduced manifold C/C⊥. This
suggests that if C is reducible, then a quantum Hilbert space HC somehow associated to the
reduced manifold C/C⊥ should map isometrically onto the kernel of P~ via an appropriate
quantization of the adjoint reduction relation R∗

C ∈ Hom(C/C⊥, T ∗M). Before turning to a
systematic means for defining HC , let us consider what conditions the reduced manifold C/C⊥
must satisfy in order that quantizations of the reduction and projection relations be well-
defined for arbitrary quantizable semi-classical states. Specifically, we ask what assumptions
on C guarantee that the classical projection operation KC preserves the class of quantizable
lagrangian submanifolds in T ∗M .

For the time being, we will ignore the Maslov correction and assume that C/C⊥ is simply-
connected. A simple argument then shows that KC preserves the class of prequantizable
lagrangian submanifolds provided that the Liouville class of each C⊥ leaf is ~-integral.

To interpret this condition in terms of C/C⊥, first note that if C/C⊥ is simply-connected,
any class [a] ∈ H2(C/C⊥; Z) is represented by a continuous map

(D, ∂D)
f→ (C/C⊥, [I])

for a fixed leaf I of C⊥. By the homotopy lifting property, f lifts to a continuous map

(D, ∂D)
f̃→ (C, I).

Applying Stokes’ theorem, we then have∫
[a]

ωC =

∫
∂D

f̃ ∗αM ∈ Z~

by the assumption that the Liouville class of I is ~-integral. Thus, we conclude that KC

preserves prequantizable lagrangian submanifolds provided that the reduced symplectic form
ωC is itself ~-integral. In this case, the reduced manifold C/C⊥ is said to be prequantizable.

Example 7.1 From Example 5.13 we recall that the standard metric on the unit n-sphere
Sn induces a kinetic energy function kn whose constant energy surfaces CE are reducible
coisotropic submanifolds of T ∗Sn for E > 0. Each leaf of the characteristic foliation of CE
is a circle S which projects diffeomorphically to a great circle in Sn. If γ parametrizes a
such a geodesic, then its lift to a parametrization of S satisfies γ̇ = (2E)−1/2Xkn . Since
αM(Xkn) = 2E, the Liouville class of S is determined by the number∫

S

αM = 2π · (2E)1/2.

Thus CE is prequantizable if and only if E = (n~)2/2 (compare Example 4.2).
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By Theorem D.2, this condition is equivalent to the existence of a principal T~ bundle
Q over C/C⊥. In fact, the bundle Q can be constructed explicitly from the prequantum
T~ bundle QM over T ∗M by noting that for any leaf I of C⊥, the mod-Z~ reduction of λI
represents the holonomy of QM |I ; if λI is ~-integral, there exists a parallel section of QM

over I. If C/C⊥ is prequantizable, parallel sections over the leaves of C⊥ define a foliation
Q of QM |L whose leaf space is a principal T~ bundle Q over C/C⊥. The connection on Q
induced by the connection on QM has curvature equal to the reduced symplectic form ωC .

A linear mapping ρ : C∞(P ) → S(HP ) satisfying the first two Dirac axioms will be
called a prequantization of the classical system represented by P . The basic example of
prequantization is that of cotangent bundles due to Segal [52], Koopman, and Van Hove.
In this case, the prequantum Hilbert space is taken to be the completion of the space of
smooth, complex-valued functions on the cotangent bundle P = T ∗M itself, with respect to
the inner-product

〈f, g〉 =

∫
P

f g ωnM .

The mapping C∞(P )→ S(HP ) is then given explicitly by the formula

ρ(f) = −i~Xf +mL(f),

where as usual mL(f) denotes multiplication by the lagrangian L(f) = f − αM(Xf ). Clearly
the map ρ is linear and satisfies the first Dirac axiom; verification of the second is also
straightforward and will be carried out in somewhat more generality below.

The Segal prequantization is an important first step towards attempts at (pre)-quantizing
more general symplectic manifolds. Roughly speaking, the idea is the following: Although
the symplectic form of an arbitrary symplectic manifold (P, ω) is not exact, we can choose
a covering of P by open sets Uj on which the restriction of the symplectic form satisfies
ω = −dαj for appropriately chosen 1-forms αj on Uj. In direct analogy with the Segal
prequantization, we can then associate to a function f ∈ C∞(P ) the operator

ρ(f)j = −i~Xf +mLj(f),

on C∞(Uj). In order to associate a “global” operator to f , we hope to piece these local
operators together. One way of doing this would be to impose the condition that each ρ(f)j
and ρ(f)k coincide as operators on the function space C∞(Uj ∩Uk). This essentially requires
that the 1-forms αj agree on overlaps, and we arrive at nothing new.

A true generalization of the Segal construction due to Kostant and Souriau is achieved
by first reinterpreting ρ(f) as an operator on sections of a line bundle over P = T ∗M . More
precisely, let E be the complex line bundle over P associated to the trivial principal T~
bundle Q = P × T~ via the representation x 7→ e−ix/~ of T~ in U(1). The space of sections
of E identifies canonically with C∞(P ) by means of the constant section s = 1, and we have

ρ(f) = −i~∇Xf
+mf ,
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where ∇ denotes the connection on E induced by the connection 1-form ϕ = −αM+dσ on Q.
Returning to the general case, we find that the operators ρ(f)j enjoy a similar interpretation
provided that −αj + dσ defines a local representative of a connection 1-form on a (possi-
bly nontrivial) principal T~ bundle Q over P . The curvature of such a bundle necessarily
coincides with the symplectic form on P ; according to the discussion in Appendix C, this
condition can be satisfied if and only if ω is ~-integral.

Definition 7.2 A prequantization of a symplectic manifold (P, ω) is a principal T~ bundle
Q over P equipped with a connection 1-form ϕ having curvature ω.

The upshot of the Kostant-Souriau construction is that prequantizable symplectic manifolds
have prequantizable Poisson algebras. While a direct proof of this fact follows the outline of
the preceding paragraph, we will study prequantizable manifolds in somewhat more detail
below. The prequantum Hilbert space in this case will be the completion of the vector
space of smooth sections of a hermitian line bundle associated to Q. Although several more
modifications of this choice must be made in order to arrive at a reasonable substitute for
the intrinsic Hilbert space of the base of a cotangent bundle, this is an important first step
in our general quantization program.

For the remainder of this section, we will focus on geometric properties of prequantum
circle bundles and prove that their existence coincides with the prequantizability of C∞(P ).

Automorphisms of (Q,ϕ)

Let P be a prequantizable symplectic manifold with prequantum T~ bundleQ and connection
ϕ. To a function f ∈ C∞(P ), we associate an operator on C∞(Q):

ξf = Xf − fX,

where Xf denotes the horizontal lift of the hamiltonian vector field of f , and X is the
fundamental vector field on Q defined by the equations

X ϕ = 1 X dϕ = 0.

A direct computation shows that the connection form ϕ is invariant under the flow of ξ
(k)
f .

Conversely, if Lξϕ = 0 for some vector field ξ on Q, then we can decompose ξ into its
horizontal and vertical parts:

ξ = ξ − gX

for some real-valued function g on Q satisfying dg = ξ dϕ. From the definition of X it
follows that X · g = 0 and [ξ,X] = 0, and consequently, [ξ,X] = 0. Thus, ξ is the horizontal
lift of Xg, and so ξ = ξg. Moreover, the requirement that the curvature of ϕ equal the
symplectic form ω implies

[ξf , ξg] = [Xf , Xg] + ω(Xf , Xg)X − 2{f, g}X = ξ{f,g}.
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The association f 7→ ξf therefore defines a Lie algebra isomorphism between the Poisson
algebra C∞(P ) and the space χ(Q,ϕ) of ϕ-preserving vector fields on Q with the standard
Lie bracket. This produces the exact sequence of Lie algebras

0→ R→ χ(Q,ϕ)→ χ(P, ω)→ H1(P ; R)→ 0,

where H1(P ; R) is assigned the trivial bracket, and the image of χ(Q,ϕ) in χ(P, ω) consists
precisely of the hamiltonian vector fields on P . This sequence can be integrated to give
an exact sequence of automorphism groups as follows. Let (Q,ϕ) be a prequantization of
(P, ω), and let Aut(Q,ϕ),Aut(P, ω) denote those groups of diffeomorphisms which preserve
ϕ, ω respectively. By the definition of X it follows that every F ∈ Aut(Q,ϕ) preserves X and
is therefore T~-equivariant. In particular, this means that F is the lift of a diffeomorphism f
of P ; from the fact that π∗ω = dϕ it follows furthermore that f ∗ω = ω, that is, f ∈ Aut(P, ω).
The association F 7→ f defines a group homomorphism

Aut(Q,ϕ)→ Aut(P, ω).

To determine its kernel, we simply note that the identity map on P is covered by precisely
those automorphisms of Q given by the action of elements of T~ on its connected components.
This implies that the kernel is isomorphic to H0(P,T~); if P (and hence Q) is connected,
this is just the circle T~ and we have the exact sequence

0→ T~ → Aut(Q,ϕ)→ Aut(P, ω),

i.e. Aut(Q,ϕ) is a central extension of Aut(P, ω) by T~. We interpret this observation to
mean that an automorphism of Q is determined “up to phase” by an automorphism of P .

If we equip the space C∞(Q) of complex-valued functions on Q with the inner-product

〈u, v〉 =

∫
Q

u v µ,

where µ denotes the volume form ϕ∧ (dϕ)n on Q, then each F ∈ Aut(Q,ϕ) preserves µ, and
therefore defines a unitary operator UF on C∞(Q) by composition:

UF (u) = u ◦ F.

Clearly the correspondence F 7→ UF defines a unitary representation of Aut(Q,ϕ) on L2(Q);
from the exact sequence above, we therefore obtain a projective unitary representation of the
image of Aut(Q,ϕ) in Aut(P, ω).

Example 7.3 Translations of R2n are generated by the hamiltonian vector fields associated
to linear functionals on R2n. A basis for this space is given by the vector fields

Xqi = − ∂

∂pi
Xpi

=
∂

∂qi
,

which assume the form

ξqi = − ∂

∂pi
− qiX ξpi

=
∂

∂qi
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when lifted to Q = R2n × T~ via the Segal prescription ξf = Xf − L(f)X, where again
L(f) = f − αM(Xf ). Our earlier results show that [ξqi , ξpj

] = ξ{qi,pj} = δijX, and so the
vector fields ξqi , ξpi

generate a Lie subalgebra hn ⊂ χ(Q,ϕ) isomorphic to R2n × R with
bracket given by

[(v, a), (w, b)] = (0, ω(v, w)).

By exponentiating, we find that hn corresponds to a subgroup Hn ⊂ Aut(Q,ϕ) which
comprises a central extension of the translation group:

0→ T~ → Hn → R2n → 0.

The groupHn is known as the Heisenberg group of R2n with its usual symplectic structure.
In explicit terms, Hn is diffeomorphic to R2n × T~, with group multiplication given by

(Q,P, σ) · (Q′, P ′, σ′) = (Q+Q′, P + P ′, σ′) = (Q+Q′, P + P ′, σ + σ′ +
∑
j

Pj ·Q′
j).

4

Kostant-Souriau prequantization

To prequantize the Poisson algebra C∞(P ), we first recall that complex line bundles Ek
associated to Q arise via representations of T~ in U(1) of the form x 7→ eikx/~. Smooth
sections of Ek identify with functions on Q satisfying the equivariance condition

f(p · a) = e−ika/~f(p)

for a ∈ T~; in other words, the space of sections of Ek is isomorphic to the −ik/~-eigenspace
Ek of the fundamental vector field X. Under this correspondence, covariant differentiation
by a vector field η on P is given simply by the Lie derivative with respect to the horizontal
lift η of η to Q.

To each f ∈ C∞(P ) and integer k, we assign an operator on C∞(Q) by

ξ
(k)
f = −i~

k
ξf .

Since [ξf , X] = 0, the operator ξ
(k)
f restricts to an operator on each eigenspace Ek of X having

the form

ρk(f) = −i~
k
Xf +mf .

Evidently the map ρk satisfies the first Dirac axiom; moreover

ρk({f, g}) = k [ρk(f), ρk(g)]~.

To verify that ρk(f) is self-adjoint, is suffices to prove that ρk(f) acts as a symmetric operator
on the real subspace of Ek. For this purpose, we note that if the hamiltonian vector field of
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f is integrable (for example, if f is compactly supported), then the fact that ξf preserves ϕ
implies that

〈ξf · u, v〉 = −〈u, ξf · v〉

for real-valued functions u, v on Q. Combined with the definition of ρk, conjugate-symmetry
of the inner-product implies that

〈ρk(f) · u, v〉 = 〈u, ρk(f) · v〉.

We now define the prequantum line bundle associated to Q as E = E−1, equipped
with a hermitian metric 〈 , 〉 compatible with its induced connection, and let HP denote
the L2 completion of the space of compactly supported sections of E with respect to the
inner-product

〈s1, s2〉 =

∫
P

〈s1, s2〉ωn.

For each f ∈ C∞(P ), the operator ρ−1(f) extends to an essentially self-adjoint operator on
HP ; from the general remarks above, it follows that ρ−1 defines a prequantization of the
Poisson algebra C∞(P ).

7.2 Polarizations and the metaplectic correction

The Kostant-Souriau prequantization of symplectic manifolds fails to satisfy the third Dirac
axiom and is therefore not a quantization. In fact, the position and momentum operators

ρ(q) = −i~ ∂

∂p
+mq ρ(p) = −i~ ∂

∂q

on T ∗R both commute with ∂/∂p and therefore do not form a complete set. According to
our earliest concepts of quantization (see the Introduction), the operator corresponding to q
should act by multiplication alone, whereas q̂ involves the spurious ∂/∂p term. If we restrict
to the p-independent subspace C∞

q (R2) ' C∞(R), however, this difficulty is overcome: on
C∞
q (R2),

ρ(q) = mq ρ(p) = −i~ ∂

∂q
.

This association agrees with our earlier heuristic quantization of the classical position and
momentum observables and suggests in general that the space of sections of a prequantum
line bundle E is too “large” for the third Dirac axiom to be satisfied. Indeed, in quantum
mechanics, wave functions depend on only half of the phase space variables, whereas the
space of sections of E has the “size” of the space of functions on P . For an interpretation of
this argument in terms of the Heisenberg uncertainty principle, see [53].

From the standpoint of WKB quantization, the appropriate quantum state space asso-
ciated with a classical configuration space M is (the L2 completion of) |Ω|1/20 M , which we
temporarily identify with C∞(M) using a metric on M . Since the Liouville form αM vanishes
on each fiber of the projection T ∗M

π→M , we can interpret C∞(M) as the space of sections
of the prequantum line bundle E over T ∗M which are parallel along each fiber of π. In other
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words, the correct adjustment to the size of the prequantum Hilbert space is determined by
the (canonical) foliation of T ∗M by lagrangian submanifolds.

This adjustment is generalized in the framework of geometric quantization by the intro-
duction of the following concept.

Definition 7.4 A polarization of a symplectic manifold (P, ω) is an involutive lagrangian
subbundle F of TCP .

Here, TCP denotes the complexification of the tangent bundle of P , equipped with the
complex-valued symplectic form ωC given by the complex-linear extension of ω to TCP . In-
tegrability of F means that locally on P there exist complex-valued functions whose hamil-
tonian vector fields (with respect to ωC) span F . The quantum state space associated to P
is then given by the space of sections s of a prequantum line bundle E over P which are
covariantly constant along F . That is, for each complex vector field X on P lying in F , we
have ∇X s = 0.

Real polarizations

The standard polarization of a classical phase space T ∗M is given by the complexification
F = VM ⊕ iV M of the vertical subbundle of T (T ∗M). In this case, the polarization F
satisfies F = F , meaning that Fp is a totally real subspace of TC,p(T

∗M) for each p ∈
T ∗M . In general, any polarization F of a symplectic manifold P which satisfies F = F
is the complexification of an integrable lagrangian subbundle of TP and is called a real
polarization of P .

Example 7.5 The most basic examples of real polarizations are given by either the planes
q=constant or p=constant in R2n. These correspond to the δq and eiπ〈p,·〉/~ bases of L2(Rn)
respectively, in the sense that

f =

∫
Rn

f(q) δ(q) dq = (2π~)−n/2
∫

Rn

eiπ〈p,q〉/~f̂ dp.

Covariant differentiation along vector fields X tangent to the q=constant polarization Fq
is given by the ordinary Lie derivative with respect to X, and so the space of Fq-parallel
sections of the prequantum line bundle E identifies with the space of smooth functions on
q-space. For the p=constant polarization Fp, we consider covariant derivatives of the form

∇ ∂
∂q

=

(
∂

∂q
− p ∂

∂σ

)
.

A Fp-parallel section ψ of E must therefore satisfy

∂ψ

∂q
− 2πipψ

and is therefore of the form ψ(q, p) = v(p)eiπ〈p,q〉/~. Note that the Fp representation of the
free-particle H(q, p) = p2/2 is ρ(H) = mp2/2, and so the p-polarization appears to be better
adapted to this case.

99



4

A real polarization F of a symplectic 2n-manifold P defines a subspace F(P ) ⊂ C∞(P )
of functions constant along the leaves of F . According to the Hamilton-Jacobi theorem, the
hamiltonian vector field of any member of F(P ) is contained in F . Thus {f, g} = 0 for
any f, g ∈ F(P ), i.e., F(P ) is an abelian Poisson subalgebra of C∞(P ). By modifying the
normal form results of Chapter 4, one can furthermore prove

Theorem 7.6 Every real polarization is locally isomorphic to the q=constant polarization
on R2n.

By pulling back the position functions qi to P , we have

Corollary 7.7 For each p ∈ P , there exist fi ∈ F(P ), i = 1, · · · , n, such that the hamilto-
nian vector fields Xi span F in a neighborhood of p.

An affine structure on a manifold M is a curvature- and torsion-free connection on TM .
Since any polarization-preserving symplectic transformation of T ∗Rn ' R2n is affine on fibers
(see Theorem 3.29), we have the following result.

Corollary 7.8 Each leaf of any real polarization carries a natural affine structure.

The main remark we wish to make for the moment is that our earlier prequantization ρ−1

of C∞(P ) now represents the subalgebra F(P ) ⊂ C∞(P ) as multiplication operators on HF .
Since any f ∈ F(P ) has the property that its hamiltonian vector field Xf lies completely
within the polarization F , it follows that ∇Xf

s = 0 for all s ∈ HF . By the definition of ρ−1,
this implies that ρ−1(f) = mf , the multiplication operator on HF . More generally, those
functions whose hamiltonian vector fields have flows which leave the polarization invariant
(not necessarily leaf by leaf) are those which are “affine” along the leaves.

Example 7.9 Following [28], we call a polarization F on P fibrating if each leaf of F is
simply-connected and the leaf space PF = P/F is a smooth manifold. In this case, the
quotient map p : P → PF satisfies F = ker p∗, and so p∗T ∗PF identifies with the normal
bundle F⊥ ⊂ T ∗P . Since F is a lagrangian distribution, the map ω̃ : TP → T ∗P sends F to
F⊥ as well, thus defining a natural identification

F ' p∗T ∗PF .

A function H : P → R constant on the leaves of F induces a function HF on PF satisfying

dH = p∗dHF .

From this remark, it follows that a section s of F over a leaf L is parallel with respect to
the connection described above if and only if (ω̃ ◦ s) defines a fixed element of T ∗{L}PF .

Similarly, if E is a prequantum line bundle over P , we may use parallel sections of E over
the leaves of F to construct a foliation of the total space of E. The quotient of E by this
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foliation defines a hermitian line bundle EF over the leaf space PF whose sections identify
with F -parallel sections of E.

The simplest example of a fibrating polarization is given by the vertical polarization FM
of a cotangent bundle T ∗M . The basic geometry of this situation remains the same if the
symplectic structure on T ∗M is perturbed by a form on M . More precisely, given a closed
2-form η on M , we can “twist” the standard symplectic structure on T ∗M as follows:

ω = ωM + π∗η.

Since π∗η vanishes on the fibers of the projection, ω is a symplectic form on T ∗M and ker π∗
is again a polarization. This general type of symplectic manifold is known as a twisted
cotangent bundle. A check of definitions shows that the standard and twisted symplectic
structures on T ∗M are equivalent precisely when their difference is the pull-back of an exact
form on M . Moreover, the symplectic manifold (T ∗M,ωM + π∗η) is prequantizable if and
only if the cohomology class of η in H2(M ; R) is ~-integral. Finally, an application of
Corollary 7.8 proves that if each leaf of a fibrating polarization F on a symplectic manifold
(P, ω), is complete, then (P, ω) is symplectomorphic to a twisted symplectic structure on
T ∗PF .

4

Complex polarizations

Associated to any polarization F are the distributions

DC = F ∩ F EC = F + F

which arise as the complexifications of distributions D,E in TP . Although their dimensions
vary in general from point to point, D and E are pointwise ω-orthogonal, i.e.

D⊥
x = Ex

for all x ∈ P . From the definition of F , the distribution D is involutive. The polarization
F is called strongly admissible provided that E is involutive, the leaf spaces PD and PE
are smooth manifolds, and the natural projection

PD
π→ PE

is a submersion. In this case, each fiber of π carries a Kähler structure, and geometric quan-
tization attempts to construct a quantum state space for P from sections of an appropriate
line bundle over P which are parallel along D and holomorphic along the fibers of π. For a
discussion of quantization in this general setting, we refer to [53].

A polarization satisfying F ∩F = {0} is called totally complex and identifies with the
graph of a complex structure J on P , i.e.,

F = {(v, iJv) : v ∈ TP}
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under the identification TCP ' TP ⊕ iTP . We emphasize that J is a genuine complex
structure on P due to the integrability condition on the polarization F . Moreover, J is
compatible in the usual sense with the symplectic form ω on P , so the hermitian metric
〈 , 〉 = gJ + iω is a Kähler structure on P . In this section, we will only cite two examples
involving totally complex F , in which case PD = P is Kähler, and PE = {pt}.

Example 7.10 Consider the complex plane C with its usual complex and symplectic struc-
tures. With respect to Darboux coordinates (q, p), the Cauchy-Riemann operator is defined
as

∂

∂z
=

1

2

(
∂

∂q
+ i

∂

∂p

)
.

A function f : C→ C is holomorphic if ∂f/∂z = 0.
If we identify sections of the (trivial) prequantum line bundle E with smooth, complex-

valued functions on C, then F -parallel sections correspond to those functions annihilated by
the covariant derivative

∇ ∂
∂z

= 2
∂

∂z
+mz.

To determine the general form of these sections, we note that ∇ ∂
∂z
ψ = 0 if and only if for

some branch of the logarithm,
∂

∂z
logψ = −z

2
,

or

logψ = −zz
2

+ h

for some holomorphic function h. Hence

ψ(z) = ϕe−|z|
2/2

with ϕ holomorphic is the general form for F -parallel sections of E. The space HC thus
identifies with the space of holomorphic ϕ : C→ C satisfying

‖ϕ‖ =

∫
C
|ϕ(z)|2 e−|z|2 dz <∞,

or, in other words, the space of holomorphic functions which are square-integrable with
respect to the measure e−|z|

2
dz, known as the Fock or Bargman-Segal space. For a func-

tion to be quantizable in this picture, its hamiltonian flow must preserve both the metric
and symplectic structure of C and therefore consist solely of euclidean motions. Among
such functions are the usual position and momentum observables, as well as the harmonic
oscillator.

4

Example 7.11 If (P, ω) is any prequantizable symplectic manifold with a totally complex
polarization F , then the prequantum line bundle E associated to ω can be given the structure
of a holomorphic line bundle by taking the (0, 1) component of the connection on E with
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respect to the complex structure J arising from F . The space HF of F -parallel sections of E
then equals the space of holomorphic sections of E and is therefore completely determined
by the complex geometry of P .

Using some machinery from algebraic geometry (see [15]), it can be shown that for com-
pact P , the space HP is finite-dimensional and that its dimension is given asymptotically by
the symplectic volume of P . More precisely, we note that for k ∈ Z+, the line bundle E⊗k

defines a holomorphic prequantum line bundle associated with (P, kω). For sufficiently large
k, the dimension of the quantum state space HPk

of holomorphic sections of E⊗k is given by
the Hirzebruch-Riemann-Roch formula:

dim HPk
=

∫
P

ekω Td(P ),

where Td denotes the Todd polynomial in the total Chern class of P . The first conclusion
to be drawn from this fact is that for k large, dim HPk

is a symplectic invariant of P inde-
pendent of its complex structure. Roughly speaking, k plays the role of ~−1, and so “large
k” means that we are approaching the classical limit. A second point to note is that dim HPk

is a polynomial in k (or ~−1) whose leading-order term is∫
P

(kω)n

n!
= kn volP.

Consequently the number of quantum states is determined asymptotically by the volume of
P .

4

Metalinear structures and half-forms

For the remainder of this chapter, we will focus on the quantization of symplectic manifolds
P equipped with a prequantum line bundle E and a “sufficiently nice” real polarization F .
Although the space HF of F -parallel sections of E appears to have the right “size” in the
simplest examples, there are still several problems to be resolved before we have a suitable
quantum state space. The first arises as soon as we attempt to define a pre-Hilbert space
structure on HF . On P , the square of an F -parallel section s is constant along the leaves of
F , and thus the integral

‖s‖2 =

∫
P

〈s, s〉ωn

diverges in general. On the other hand, there is no canonical measure on the leaf space PF
with which to integrate the induced function 〈s, s〉.

Regardless of how this first difficulty is resolved, we will again try to quantize the Poisson
algebra C∞(P ) by representing elements of Aut(P, ω) as (projective) unitary operators on
HF . The most obvious quantization of a symplectomorphism f : P → P (or more general
canonical relation), however, is an operator from HF to Hf(F). If f does not preserve the
polarization F , then these spaces are distinct. Thus, we will need some means for canonically
identifying the quantum state spaces HF associated to different polarizations of P .
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Finally, the polarization F may have multiply-connected leaves, over most of which the
prequantum line bundle may admit only the trivial parallel section. A preliminary solution
to this problem is to admit “distributional” states, such as are given by F -parallel sections
of E whose restrictions to each leaf are smooth. Leaves on which E has trivial holonomy are
then said to comprise the Bohr-Sommerfeld subvariety of the pair (P,F).

Example 7.12 Consider the punctured phase plane Ṙ2 = R2 \ {0} polarized by level sets
of the harmonic oscillator H(q, p) = (q2 + p2)/2. The holonomy of the usual prequantum
line bundle on the level set H−1(E) is given by the mod-Z~ reduction of the area it encloses;
thus the Bohr-Sommerfeld variety consists of those circles of energy E = n~. As in the
case of WKB prequantization, these energy levels do not correspond to actual physical
measurements, and so we will again need to incorporate a sort of Maslov correction.

4

The solution to manhy of these difficulties relies on the use of a metaplectic structure on
P , a concept which we now introduce. Let P be a principal G bundle over a manifold M .
A meta G-bundle associated to P and a central extension

1→ K → G̃
ρ→ G→ 1

of G is a principal G̃ bundle P̃ over M together with a map Φ : P̃ → P satisfying the
equivariance condition

Φ(p · a) = Φ(p) · ρ(a)

for all a ∈ G̃. Two meta G-bundles (P̃1,Φ1), (P̃2,Φ2) over P are considered equivalent if
there exists a G̃-equivariant diffeomorphism ψ : P̃1 → P̃2 such that Φ1 = Φ2 ◦ ψ.

Example 7.13 A riemannian structure together with an orientation of an n-manifold M
defines a bundle of oriented orthonormal frames in TM , i.e. an SO(n)-structure on M . A
spin structure on M is then a meta SO(n)-bundle corresponding to the extension

1→ K → Spin(n)→ SO(n)→ 1

given by the double cover Spin(n) of SO(n). An orientable manifold admits a spin structure
if and only if its second Stiefel-Whitney class vanishes.

4

Example 7.14 Since π1(Sp(n)) ' Z, there exists a unique connected double-covering group
of Sp(n), known as the metaplectic group Mp(n). A symplectic 2n-plane bundle F admits
a reduction of its structure group from GL(2n) to Sp(n); a metaplectic structure on F

then corresponds to a lifting of the symplectic frame bundle to a principal Mp(n) bundle. In
general, a symplectic vector bundle admits a metaplectic structure if and only if its second
Stiefel-Whitney class vanishes.

A symplectic manifold P whose tangent bundle is equipped with a metaplectic structure
is called a metaplectic manifold. If the Stiefel-Whitney class w2(P ) is zero, metaplectic
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structures are classified by the set H1(P ; Z2) (see [28]). We emphasize that this classification
depends on the bundle of metaplectic frames and its covering map to the bundle of symplectic
frames. To see this explicitly in a special case, note that up to topological equivalence, the
punctured plane Ṙ2 admits only trivial Sp(1) and Mp(1) principal bundles, since both Sp(1)
and Mp(1) are connected. On the other hand, a metaplectic structure

Φ: Ṙ2 ×Mp(1)→ Ṙ2 × Sp(1)

is defined for any choice of continuous map s : Ṙ2 → Sp(1) by

Φ(p,A) = (p, s(p) · ρ(A))

for A ∈Mp(1). Two such maps s0, s1 define equivalent metaplectic structures if and only if
(s1)

−1 · s0 admits a continuous lift s̃ : Ṙ2 →Mp(1), in which case an equivalence is given by
the map ψ : Ṙ2 ×Mp(1)→ Ṙ2 ×Mp(1) defined as

ψ(p,A) = (p, s̃(p) · A)

By the usual homotopy theory for continuous groups, this occurs precisely when [s0] = [s1]
as elements of π1(Sp(1))/ρ#π1(Mp(1)) ' Z2.

4

Example 7.15 Lying within the metaplectic group is a double-cover Ml(n) of the subgroup
Gl(n) preserving the usual lagrangian splitting of R2n. The double covering of GL(n) then
induced by the identification GL(n) ' Gl(n) (see Example 3.1) is called the metalinear
group ML(n). It is trivial as a topological covering, but as a group it is not the direct
product GL(n)× Z2. More explicitly, the group ML(n) is isomorphic to the direct product
GL+(n)× Z4 with the covering map ML(n)

ρ→ GL(n) given by

ρ(A, a) = A · eiπa.

A metalinear lifting of the frames of an n-plane bundle E is called a metalinear structure
on E. If E is orientable, its structure group can be reduced to GL+(n), which can be
interpreted as the identity component of ML(n) in order to give a metalinear structure on
E. More generally, a vector bundle admits a metalinear structure if and only if the square
of its first Stiefel-Whitney class is zero (see [28]).

4

The importance of the metalinear group for our purposes is that it admits 1-dimensional
representations which are not the lifts of representations of GL(n). Bundles associated to
metalinear structures via these representations will be the key to the metaplectic correction
of the prequantization procedure. First note that by means of the quotient homomorphism

ML(n)→ML(n)/GL+(n) ' Z4,
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we can associate a principal Z4 bundle to any metalinear structure (MB(E),Φ) on a vector
bundle F . From the representation

a 7→ eiπa/2

of Z4 in U(1), we then obtain a complex line bundle Λ1/2F called the bundle of half-forms
associated to the triple (F,MB(F ),Φ). The reason for this terminology is that the bundle
Λ1/2F can be constructed directly from the metalinear frame bundle via the representation
ML(n)→ C∗ given by the square-root of (det ◦ρ)

(A, a) 7→ (detA)1/2eiπa/2.

A section of Λ1/2F then identifies with a complex-valued function λ on MB(F ) satisfying

λ(e) = (detA)1/2eiπa/2 · λ(e · (A, a)),

and therefore represents, loosely speaking, the square-root of a volume form on F . By
inverting and conjugating the preceding representation of ML(n), one similarly defines the
bundles Λ1/2F and Λ−1/2F of conjugate and negative half-forms on F . Evidently, the product
of two half-forms on F yields an n-form; similarly, a half-form λ and a conjugate half-form
µ can be multiplied to give a 1-density λµ on the bundle F .

An important link between metalinear and metaplectic structures on symplectic mani-
folds can be described as follows.

Theorem 7.16 Let (P, ω) be a symplectic 2n-manifold and L ⊂ TP a lagrangian subbundle.
Then TP admits a metaplectic structure if and only if L admits a metalinear structure.

Proof. If J is any ω-compatible almost complex structure on P , then TP = L⊕JL ' L⊕L.
By the Whitney product theorem, we then have

w2(P ) = w1(L)2,

and our assertion follows from the remarks in the preceding examples.
More explicitly, we may use L and J to reduce the structure group of TP to the subgroup

Gl(n) ⊂ Sp(n) corresponding to GL(n). The resulting frame bundle is isomorphic to the
frame bundle of L, and thus, a metalinear structure on L can be enlarged to a metaplectic
structure on TP , while a metaplectic structure on TP reduces to a metalinear structure on
L.

2

Now let P be a metaplectic manifold equipped with a prequantum line bundle E and a
real polarization F . By the preceding theorem, F inherits a metalinear structure from the
metaplectic structure on TP , and thus Λ−1/2F is defined; it is equipped with a natural flat
connection inherited from the one on F .

Definition 7.17 The quantum state space HF associated to P is the space of sections of
E ⊗ Λ−1/2F which are covariantly constant and along each leaf of F .
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In the following examples, we will sketch how in certain cases this definition enables us to
overcome the difficulties mentioned at the beginning of this section.

Example 7.18 We first return to Example 7.12 to illustrate how the introduction of half-
forms also enables us to incorporate the Bohr-Sommerfeld correction in the case of the
1-dimensional harmonic oscillator.

To quantize the punctured plane Ṙ2 with its polarization by circles centered at the origin,
we will use the trivial metaplectic structure on Ṙ2 (see Example 7.14). In this case, both the
trivial Mp(1) and Sp(1) bundles over Ṙ2 can be identified with the set of triples (r, θ, a ·eiφ),
where a, r > 0 and 0 ≤ θ, φ ≤ 2π, and the covering map Ṙ2 ×Mp(1)→ Ṙ2 × Sp(1) is given
by

(r, θ, a · eiφ) 7→ (r, θ, a · e2iφ).
The pull-back of Ṙ2× Sp(1) of T Ṙ2 to the circle Sr of radius r can be reduced to the trivial
Gl(1) principal bundle over Sr0 by means of the lagrangian splitting TSr0 ⊕JTSr0 . In terms
of the identifications above, the subbundle Ṙ2 ×Gl(1) equal the subset

{(r, θ, a · eiθ) : r = r0, a > 0, 0 ≤ θ ≤ 2π}

of Ṙ2 × Sp(1) while its corresponding metalinear bundle equals the subset

{(r, θ, a · ei(θ/2+cπ)) : r = r0, a > 0, 0 ≤ θ ≤ 2π, c ∈ {0, 1}}

of Ṙ2 ×Mp(1). Note that this is a nontrivial Ml(1) bundle over Sr0 .
From the expression for the covering map given above, it follows easily that the parallel

transport of a negative half-form associated to TSr0 around Sr0 amounts to multiplication
by −1. Consequently, the bundle E ⊗ Λ−1/2F admits a parallel section over Sr0 precisely
when

πr2
0 =

∫
Sr0

p dq = π~(2n+ 1)

for some integer n. That is, the Bohr-Sommerfeld variety consists of circles of energy E =
(n + 1/2)π~, in accordance with the corrected Bohr-Sommerfeld quantization conditions
described in Chapter 4.

4

Example 7.19 Over each leaf L of the polarization F , the Bott connection on TL described
in Example 5.17 defines a foliation of the preimage of L in B(F). As proven in [28], the
quotient of B(F) by this leaf-wise foliation defines a metalinear structure on the leaf space
PF in such a way that half-forms on PF are in 1-1 correspondence with F -parallel negative
half-forms on F . In this way, the quantum state space HF identifies with the space of
compactly supported sections of

EF ⊗ Λ1/2PF .

The latter space is equipped with a natural inner-product

〈s1 ⊗ λ1, s2 ⊗ λ2〉 =

∫
PF

〈s1, s2〉λ1λ2.

Note that integration is well-defined, since λ1λ2 is a density on PF .
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4

Blattner-Kostant-Sternberg kernels

If F1 and F2 are fibrating polarizations of P with the property that F1,x is transverse to
F2,x at each x ∈ P , then the quantum state spaces HF1 and HF2 can be related as follows.
By assumption, the symplectic form defines an isomorphism of F1 with F∗2 ; similarly, the
metaplectic structure on P defines a natural isomorphism between the space of half-forms
on F2 and the space of conjugate half-forms on F1 (see [28]). Using this identification, we
can pair a half-form λ1 on F1 with a half-form λ2 on F2 to obtain a function (λ1, λ2) on P .
If we identify elements σ1, σ2 of HF1 and HF2 with Fi-parallel sections si ⊗ λi of E ⊗ Λ1/2Fi
on P , then a sesquilinear pairing HF1 × HF2 → C is defined by

〈〈σ1, σ2〉〉 =
1

(2π~)n/2

∫
P

〈s1, s2〉 (λ1, λ2)ω
n,

where dim(P ) = 2n. This pairing is nondegenerate and thus determines a linear operator
B : HF2 → HF1 satisfying

〈〈σ1, σ2〉〉 = 〈σ1, Bσ2〉

for all σ1 ∈ H1 and σ2 ∈ H2. This construction, which can be extended to more general pairs
of polarizations, is due to Blattner, Kostant, and Sternberg defines a sesquilinear pairing on
the associated quantum state spaces via a Blattner-Kostant-Sternberg kernel.

Example 7.20 The basic example of a Blattner-Kostant-Sternberg kernel arises from the
classical Fourier transform. From Example 7.5, we recall that for the q =constant polariza-
tion Fq of R2n, the space HFq consists of p-independent functions σq(q, p) = u(q) on R2n,
which we may identify with the space of smooth functions on q-space. Similarly, if Fp is the
p =constant polarization, then a smooth function v(p) on p-space identifies with an element
σp(q, p) = v(p)ei〈q,p〉/~ of HFp . The sesquilinear pairing described above is therefore given by

〈〈σq, σp〉〉 =
1

(2π~)n/2

∫
R2n

ei〈q,p〉/~u(q) v(p) |dq dp|.

Note that this corresponds to the usual association of a distribution v̂(q) on q-space to a
function v(p) on p-space via the inverse asymptotic Fourier transform.

4

Given a symplectic manifold P with the structures above, geometric quantization at-
tempts to represent the Poisson algebra C∞(P ) on HF as follows. First, if the hamiltonian
flow ϕt of f ∈ C∞(P ) preserves F , then it lifts to a 1-parameter family ϕ̃t of operators on
smooth sections of E ⊗ Λ1/2F . The quantum operator associated to F is then

ρ(f)σ = i~
d

dt
(ϕ̃tσ)|t=0.

In particular, ρ(f) acts as pointwise multiplication for any f ∈ F(P ).
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For those f ∈ C∞(P ) whose hamiltonian flow does not preserve F , we assume that
for t ∈ (0, ε), the differential Dϕt maps F into a polarization Ft for which there exists a
Blattner-Kostant-Sternberg kernel and a corresponding operator Ut : HFt → HF . The flow
ϕt defines an operator ϕ̃t : HF → HFt , and the quantum operator ρ(f) is defined as

ρ(f)σ = i~
d

dt
((Ut ◦ ϕ̃t)σ)|t=0.

We refer to [28] for further details.

7.3 Quantization of semi-classical states

In this brief section, we suppose that P is a metaplectic manifold with a prequantum line
bundle E and a fibrating polarization F . Our goal is to comment briefly on how an ele-
ment of HF can be constructed from a “semi-classical state” in P consisting of a lagrangian
submanifold L ⊂ P with some extra structure, such as a half-density or half-form with
coefficients in a prequantum line bundle over P .

Example 7.21 If L ⊂ P intersects each leaf of F transversely in at most one point, then
the section s of E⊗Λ−1/2F over L corresponding to a section of E⊗|Λ|1/2L can be extended
to a section s̃ over P which is covariantly constant on each leaf and which vanishes on leaves
which are disjoint from L. In this way, we can regard s̃ as the quantization of the pair (L, s).

We can generalize this viewpoint by considering a lagrangian submanifold L which has
possibly multiple transverse intersections with the leaves of F (that is, each intersection of
L with a leaf of F is transverse). If s is again a section of E ⊗ Λ−1/2F over L, then we
can construct and element of HF by “superposition”. More precisely, we think of L as the
union of lagrangian submanifolds Lj, such that each Lj intersects any leaf of F at most
once. Applying the procedure above to each (Lj, s|Lj

) and summing the results produces an
element of HF as long as this sum converges.

Finally, if L is a union of leaves of F and s is a section of E ⊗ Λ−1/2F over L which is
covariantly constant along each leaf of F , then we can pair it with arbitrary elements of HF
by integration over L, thus obtaining a linear functional on HF , which, via the inner product
on HF , can be considered as a generalized section.

4

Example 7.22 To indicate briefly how “distributional” elements of HF arising as in the
preceding example are paired, we consider the following situation. Let (L, s) be a semi-
classical state in R2n such that L equals the zero section of R2n ' T ∗Rn and s is any section
of E⊗Λ−1/2Fq over L. Similarly, let L̃ be the fiber of T ∗Rn over 0 ∈ Rn along with a constant
section s̃ of E ⊗ Λ−1/2Fq over L̃. According to the preceding example, the quantization of
(L, s) is given by an ordinary smooth function on Rn, whereas the quantization of (L̃, s̃) is
“concentrated” at the origin of Rn.

The meaning of this last statement is made more precise by the fact that if T : R2n → R2n

is a linear symplectomorphism, then the associated quantum operator HFq → HT (Fq) is
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required to be unitary. By choosing T so that both L and L̃ are transverse to T (Fq), we can
quantize (L, s) and (L̃, s̃) with respect to this new polarization to obtain smooth functions
on the leaf space R2n

T (Fq) whose pairing is defined by integration. In terms of HFq , this means

that, up to a normalization, the quantum state obtained from (L̃, s̃) is a Dirac δ-function
concentrated at the origin of Rn.

4
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8 Algebraic Quantization

An approach to quantization going back to Dirac and recently revived in [9][10][11] is based
on the idea that the multiplicative structure of the ∗-algebra of quantum observables is more
central to quantization than the representation of observables as operators on Hilbert space,
and that most of quantum mechanics can be done without regards for the precise nature of
observables. Quantum observables comprise a noncommutative algebra A which is assumed
to belong to a family A~ of algebras, all with a common underlying vector space, but with
an ~-dependent multiplication ∗~. As ~ → 0, the algebra A~ approaches a commutative
algebra A0, which may be interpreted as the algebra of functions on a classical phase space.
Additionally, it is assumed that the ∗~-commutator approaches the Poisson bracket in the
limit of large quantum numbers:

{f, g} = lim
~→0

(f ∗~ g − g ∗~ f)/i~.

The abstract goal of algebraic quantization is to construct the family A~ of noncommutative
algebras from a Poisson algebra. In this chapter, we sketch two approaches towards this
goal, known as deformation quantization and the method of symplectic groupoids.

8.1 Poisson algebras and Poisson manifolds

The main objects in algebraic quantization theory are Poisson algebras and Poisson mani-
folds.

Definition 8.1 A Poisson algebra is a real vector space A equipped with a commutative,
associative algebra structure

(f, g) 7→ fg

and a Lie algebra structure
(f, g) 7→ {f, g}

which satisfy the compatibility condition

{fg, h} = f {g, h}+ {f, h} g.

A Poisson manifold is a manifold P whose function space C∞(P ) is a Poisson algebra
with respect to the usual pointwise multiplication of functions and a prescribed Lie algebra
structure.

If P,Q are Poisson manifolds, a smooth map ψ : P → Q is called a Poisson map provided
that it preserves Poisson brackets, i.e. {f, g} = {f ◦ψ, g ◦ψ} for all f, g ∈ C∞(Q). Similarly,
ψ is called an anti-Poisson map if {f, g} = −{f ◦ ψ, g ◦ ψ} for all f, g ∈ C∞(Q).

On a Poisson manifold, the Leibniz identity implies that the Poisson bracket is given by
a skew-symmetric contravariant tensor field π via the formula

{f, g} = π(df, dg).

The main examples of Poisson manifolds we will be concerned with are the following.
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Example 8.2 1. Any smooth manifold M is a Poisson manifold when C∞(M) is given the
trivial bracket {f, g} = 0.

2. Any symplectic manifold is a Poisson manifold with respect to its standard Poisson
structure

{f, g} = Xg · f.

3. Let g be a finite-dimensional Lie algebra with dual g∗. The differential of a smooth
function F : g∗ × g∗ → R is a map DF : g∗ × g∗ → g × g whose composition with the Lie
bracket on g defines a smooth map [DF ] : g∗ × g∗ → g. The Lie-Poisson operator on
C∞(g∗ × g∗) is the differential operator D defined by

DF =
1

2
〈[DF ](x,y), x+ y〉.

The dual space g∗ is then a Poisson manifold when equipped with the Lie-Poisson bracket

{f, g} = ∆∗D(f � g),

where ∆: g∗ → g∗ × g∗ is the diagonal and f, g ∈ C∞(g∗). More concretely,

{f, g}(µ) = µ([Df,Dg]),

where µ ∈ g∗, and Df,Dg : g∗ → g∗∗ ' g are the differentials of f and g.

4. If V is a finite-dimensional vector space and π is a skew-symmetric bilinear form on V ∗,
then

{f, g} def= π(df, dg)

defines a Poisson algebra structure on C∞(V ), making V a Poisson manifold.

4

8.2 Deformation quantization

The aim of deformation quantization is to describe the family ∗~ of quantum products on a
Poisson algebra A as an asymptotic series (in ~) of products on A. In accordance with the
introductory remarks above, the zeroth and first order terms of this series are determined
by the Poisson algebra structure of A; the role of the higher-order terms is roughly speaking
to give a more precise ~-dependent path from classical to quantum mechanics.

Definition 8.3 Let A be a complex vector space equipped with a commutative associative
algebra structure, and let ∗~ be a family of associative multiplications on A given by a formal
power series

f ∗~ g =
∞∑
j=0

Bj(f, g) ~j

where each Bj : A×A → A is a bilinear map. Then ∗~ is called a ∗-deformation of A if
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1. B0(f, g) equals the product in A.

2. Bj(g, f) = (−1)jB(f, g)

3. Bj(1, f) = 0 for j ≥ 1

4. Bj is a differential operator in each argument.

5. (f ∗~ g) ∗~ h = f ∗~ (g ∗~ h)

For condition (5) to make sense, we must extend the product ∗~ in the obvious way from A
to the space A[[~]] of formal power series. We emphasize that the power series above is not
in general assumed to converge for ~ 6= 0. Instead it should be viewed as an “asymptotic
expansion” for the product, and manipulations of this series will be purely formal.

In any case, conditions (1-5) imply that

{f, g} def= 1

2i
B1(f, g)

defines a Poisson algebra structure on A. This observation suggests the question of whether
every Poisson structure on a function algebra C∞(P ) can be realized as the first order term
in a ∗-deformation of A.

Example 8.4 If V is a finite-dimensional real vector space and π : V ∗ × V ∗ → R is a
skew-symmetric bilinear form on V ∗, then the Hessian of π at 0 ∈ V ∗ × V ∗ is a linear map
A = Hπ : V ∗ × V ∗ → V × V . We define the Poisson operator associated to π as the
second-order differential operator on C∞(V × V )

Dπ = 〈A(∂/∂y∗, ∂/∂z∗), (∂/∂y, ∂/∂z)〉,

where (y, z) are linear coordinates on V ×V arising from a single set of linear coordinates on
V , and (y∗, z∗) are dual to (y, z). The Moyal-Weyl operator is then the pseudodifferential
operator given by exponentiation:

Mπ,~ = e−i~Dπ/2.

Pointwise multiplication of functions in f, g ∈ C∞(R2n) can be defined as the pull-back

f · g = ∆∗ f � g,

where ∆ : R2n → R2n × R2n is the diagonal embedding, and (f � g)(y, z) = f(y) g(z) for
f, g ∈ C∞(R2n). Similarly, a straightforward computation shows that the Poisson operator
is related to the Poisson bracket induced by π via the equation

{f, g} = ∆∗D(f � g).

The diagonal pull-back
f ∗~ g = ∆∗M~(f � g)
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of the Moyal operator defines a ∗-deformation of the Poisson algebra C∞(V ) called the
Moyal-Weyl product. In terms of the linear coordinates (y, z) on V × V , the operator Bj

in the expansion of the Moyal-Weyl product is

Bj(f, g) =
1

j!

(
i

2

∑
r,s

πr,s
∂

∂yr

∂

∂zs

)j

f(y)g(z)

∣∣∣∣∣∣
y=z=x

.

If π is nondegenerate, then an application of the principle of stationary phase shows that
an integral expression for f ∗~ g is given by

(f ∗~ g)(x) =

∫ ∫
ei~Q(y−x,z−x)f(y) g(z) dy dz,

where Q is the skew-symmetric bilinear form on V induced by π.

4

A Poisson manifold P is called regular if its Poisson tensor π has constant rank, in
which case a theorem of Lie [39] asserts that P is locally isomorphic to a vector space with a
constant Poisson structure. In view of Example 8.4, any regular Poisson manifold is locally
deformation quantizable. To construct a ∗-product on all of C∞(P ), one may therefore
attempt to “patch together” the local deformations to arrive at a global ∗-product.

This technique has succeeded. A theorem of DeWilde and Lecomte [19] asserts that the
Poisson algebra of any finite-dimensional symplectic manifold admits a ∗-deformation. Using
similar techniques, Mélotte [44] extended their result to arbitrary regular Poisson manifolds.
A simplified proof of these results has recently been given by Fedosov [23] (see [68] for a
survey of deformation quantization, emphasizing Fedosov’s construction).

8.3 Symplectic groupoids

The method of symplectic groupoids also attempts to directly construct a noncommutative
algebra A~ of quantum observables without explicitly identifying a quantum state space.
Unlike deformation quantization, however, this approach involves a geometric procedure
which attempts to construct A~ for a particular value of ~ and in particular incorporates
geometric objects with certain quantum properties.

Groupoids

In this section we collect some basic definitions and examples of groupoids and their coun-
terparts in symplectic geometry.

Definition 8.5 A groupoid is a set Γ endowed with a product map (x, y) → xy defined
on a subset Γ2 ⊂ Γ × Γ called the set of composable pairs, and an inverse map ι : Γ → Γ
satisfying the conditions

1. ι2 = id
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2. If (x, y), (y, z) ∈ Γ2, then (xy, z), (x, yz) ∈ Γ2, and (xy)z = x(yz).

3. (ι(x), x) ∈ Γ2 for all x ∈ Γ, and if (x, y) ∈ Γ2, then ι(x) (xy) = y.

4. (x, ι(x)) ∈ Γ2 for all x ∈ Γ, and if (z, x) ∈ Γ2, then (zx)ι(x) = z.

Note that by (3), the map ι is bijective and thus inverses in Γ are unique. An element x
of Γ can be thought of as an arrow with source α(x) = ι(x)x and target β(x) = xι(x); a
pair (x, y) then belongs to Γ2 if and only if the source of y equals the target of x. The set
Γ0 of all sources (and targets) is called the base of Γ, and Γ is said to be a groupoid over
Γ0. Elements of Γ0 are units of Γ in the sense that xα(x) = x and β(x)x = x for all x ∈ Γ.
Finally, the multiplication relation of Γ is the subset

m = {(xy, x, y) : (x, y) ∈ Γ2}

of Γ× Γ× Γ. In abstract terms, a groupoid is a small category in which all morphisms have
inverses.

Example 8.6 1. Any group is a groupoid over its identity element, and conversely, any
groupoid whose base is a singleton comprises a group.

2. A disjoint union of groupoids is a groupoid over the union of their bases. If Γ is a groupoid
with base Γ0 and Γ′0 ⊂ Γ0, then Γ′ = {x ∈ Γ : α(x), β(x) ∈ Γ′0} is a groupoid over Γ′0.

3. Combining (1) and (2), we see that any vector bundle E defines a groupoid Γ(E) over its
zero section.

4. The pair groupoid associated to a set X consists of Γ = X × X, endowed with the
multiplication (x, y) · (y, z) = (x, z). Thus Γ0 is the diagonal, and α, β are the projections
α(x, y) = (y, y) and β(x, y) = (x, x). In this groupoid, there is exactly one arrow from any
object to another.

4

We will be interested in groupoids with some geometric structures. Maintaining the notation
above, we make the following definition.

Definition 8.7 A groupoid Γ is called a Lie groupoid if

1. Γ0 is a submanifold of Γ.

2. The mappings α, β : Γ→ Γ0 are submersions.

3. Multiplication Γ2 → Γ and inversion Γ
ι→ Γ are smooth.

Condition (2) implies that the map α× β is transverse to the diagonal ∆ in Γ0× Γ0, and so
both Γ2 = (α× β)−1(∆) ⊂ Γ× Γ and the multiplication relation m ⊂ Γ× Γ× Γ are smooth
submanifolds.

A submanifold L of Γ is called unitary if the restriction of α and β to L are diffeomor-
phisms L→ Γ0. The unitary submanifolds form a group under the natural multiplication of
subsets.
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Definition 8.8 A Lie groupoid Γ is called a symplectic groupoid if Γ is a symplectic
manifold and the multiplication relation m is a lagrangian submanifold of Γ× Γ× Γ.

Two immediate consequences of this definition and the calculus of canonical relations are that
Γ0 is lagrangian, and ι : Γ→ Γ is anti-symplectic, i.e., its graph is a lagrangian submanifold
of Γ × Γ. Thus, a symplectic groupoid Γ is characterized by the three canonical relations
(recall that Z is a point):

Γ0 ∈ Hom(Z,Γ) Lι ∈ Hom(Γ,Γ) m ∈ Hom(Γ× Γ,Γ)

linked by the equation
Γ0 = m ◦ Lι.

As a consequence of the axioms and the assumption that m is lagrangian, there is a unique
Poisson structure on the base Γ0 of a symplectic groupoid Γ such that α : Γ→ Γ0 is a Poisson
map and β : Γ → Γ0 is anti-Poisson. This Poisson structure gives meaning to the following
concept.

Definition 8.9 A symplectic groupoid Γ is said to integrate a Poisson manifold P if there
exists a Poisson isomorphism from the base Γ0 of Γ onto P .

If there exists a groupoid Γ which integrates P , we will say that P is integrable and refer
to Γ as a symplectic groupoid over P .

Example 8.10 1. A simple example of a Lie groupoid is given by any Lie group. From
the requirement that the base of a symplectic groupoid be a lagrangian submanfold, only
discrete Lie groups can be symplectic groupoids.

2. If M is any manifold with the zero Poisson structure, then T ∗M , equipped with the group-
oid structure of a vector bundle and its standard symplectic structure, defines a symplectic
groupoid over M .

3. If P is any symplectic manifold, then the pair groupoid structure on P × P defines a
symplectic groupoid over P . Its unitary lagrangian submanifolds are precisely the graphs of
symplectomorphisms of P .

4. If g is any Lie algebra, then the dual space g∗ with its Lie-Poisson structure is integrable.
For any Lie group G whose Lie algebra is g, we define a groupoid structure on T ∗G by taking
α and β to be the right and left translations of covectors to the fiber at the identity e ∈ G..
A simple computation shows that the base of T ∗G is its fiber at the identity, while Lι and m

identify with the conormal bundles to the inversion and multiplication relations of G under
the identifications T ∗G×T ∗G ' T ∗(G×G) T ∗G×T ∗G×T ∗G ' T ∗(G×G×G). Equipped
with these operations and its usual symplectic structure, T ∗G is a symplectic groupoid over
g∗.

4
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Quantization via symplectic groupoids

From our discussion of geometric quantization, we know that certain symplectic manifolds
quantize to give vector spaces V , and lagrangian submanifolds correspond to elements in V .
If we wish V to be an associative ∗-algebra with unit element, like the algebras of quan-
tum mechanics, then the underlying symplectic manifold must possess a groupoid structure
compatible with its symplectic structure.

The first step in the quantization of a Poisson manifold P by the method of symplectic
groupoids is to construct a symplectic groupoid (Γ,Γ0, ι,m) over P . This is known as the
integration problem for Poisson manifolds. Using the techniques of geometric quantization
(prequantizations, polarizations), we then attempt to associate a vector space AΓ to Γ in
such a way that the canonical relations Γ0, Lι, and m quantize as elements of AΓ,AΓ ⊗A∗Γ,
and AΓ⊗A∗Γ⊗A∗Γ which define the structure of an associative ∗-algebra on AΓ. If successful,
it is in this sense that the symplectic groupoid Γ represents a classical model for the quantum
algebra AΓ.

To conclude this chapter, we will give several examples illustrating the spirit of the
symplectic groupoid method. Throughout, we will only deal with groupoids Γ equipped
with reasonable (e.g. fibrating) polarizations, so that the construction of the vector space
AΓ follows unambiguously from the procedure defined in the preceding chapter.

Example 8.11 Consider a trivial Poisson manifold M and its associated symplectic group-
oid T ∗M . As described in the preceding example, the identity relation Γ0 coincides with
the zero section of T ∗M ; under the identifications T ∗M × T ∗M ' T ∗(M ×M) and T ∗M ×
T ∗M ×T ∗M ' T ∗(M ×M ×M), the relations Lι and m identify with the conormal bundles
of the diagonals ∆2 ⊂M ×M and ∆3 ⊂M ×M ×M respectively.

As in Chapter 7, we may identify the quantum Hilbert spaces associated to T ∗M,T ∗(M×
M), and T ∗(M×M×M) with (completions of) the function spaces C∞(M), C∞(M×M) and
C∞(M×M×M). The relation Γ0 then quantizes as the function 1 on M . Since Lι and m are
the conormal bundles of the diagonals in M×M and M×M×M , respectively, our heuristic
discussion in Section 7.3 shows that, after an appropriate normalization, these relations are
quantized by the δ-functions δ(x, y) and δ(x, z)δ(y, z) supported on the diagonals ∆2 and
∆3 respectively. Thus, the quantization of the groupoid Γ yields the usual identity element,
complex conjugation, and pointwise multiplication in the associative ∗-algebra C∞(M,C).

4

Example 8.12 Arguing as in the preceding example, we find that the quantization of the
canonical relations Γ0, Lι, and m associated to the groupoid T ∗G of Example yields the
distributions δ(e) on G, δ(g1, g

−1
1 ) on G×G, and δ(g1g2, g1, g2) on G×G×G. If the Haar

measure on G is used to identify the quantum Hilbert space HG with C∞(G,C), then the
relations Γ0, Lι and m quantize as evaluation (at e ∈ G), anti-involution f(g) 7→ f(g−1), and
convolution.

There is actually a flaw in the preceding two examples, since geometric quantizaton
produces half-densities rather than functions, and furthermore, the natural domain of the
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convolution operation on a group consists not of functions but of densities. It appears then
that the construction of V itself, and not just the multiplication, should depend on the
groupoid structure on Γ.

Although the two multiplications associated with the two groupoid structures on T ∗G
described above live on different spaces, it is possible to relate them more closely by dualizing
one of them, say convolution. In this way, we obtain the coproduct ∆ on C∞(G) defined as
a map from C∞(G) to C∞(G)⊗ C∞(G) = C∞(G×G) by the formula (∆f)(x, y) = f(xy).
The coproduct satisfies a coassociative law and is related to pointwise multiplication by the
simple identity ∆(fg) = ∆(f)∆(g), making C∞(G) into a Hopf algebra. The compatibility
between the two structures on C∞(G) reflects a compatibility between the two groupoid
structures on T ∗G.

4

Example 8.13 If we take P = R2n with its standard symplectic structure, there is a po-
larization of P × P which does not depend on any polarization of P but only on the affine
structure. In fact, the polarization comes from the isomorphism of Γ = R2n × R2n with
T ∗R2n given by

(x, y) 7→ ((x+ y)/2, ω̃n(y − x)).

Using this polarization to quantize Γ, we get as V the space of smooth functions on the
diagonal, which we identify with R2n itself, and the multiplication on V turns out to be the
Moyal product (see Example 8.4).

4

Example 8.14 If V is any finite-dimensional vector space, then a skew-adjoint linear map
π : V ∗ → V defines a skew-symmetric bilinear form on V ∗ and thus a translation-invariant
Poisson structure on V . If T is a torus equal to the quotient of V by some lattice, then
T inherits a translation-invariant Poisson structure from V . A symplectic groupoid which
integrates T is given by the cotangent bundle T ∗T, with Γ0 equals the zero section of T ∗T,
and Lι equals the conormal bundle of the diagonal in T× T. To describe the multiplication
relation, we identify T ∗T with T × V ∗ and let m ⊂ T ∗(T × T × T ) consist of all triples
(q, q′, q′′, p, p′, p′′) such that q′′ = q′ + 1

2
T (p′ + p′′) and

q = q′ +
1

2
T (p′′) p = p′ + p′′.

When the map T is zero, the Poisson structure on T is trivial, and the groupoid product
quantized to the usual pointwise multiplication of functions on T. Otherwise one gets a
noncommutative multiplication on C∞(T) which is precisely that of (the functions on) a
noncommutative torus, one of the basic examples of noncommutative geometry. (The
relation between Poisson tori and noncommutative tori was studied from the point of view
of deformation quantization in [50]).

4
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A Densities

An n-form ν on an n-dimensional manifold M can be viewed as a scalar function on the
space of bases in the tangent bundle which satisfies

ν(eA) = ν(e) · det(A),

where e = (e1, · · · , en) is any frame in a tangent space of M and A = (aij) is any invertible
n × n matrix. Because the “change of variables” formula for integration involves absolute
values of Jacobians, integration of n-forms on M requires a choice of orientation. The use of
densities instead of forms circumvents this need.

A density on a real vector space V of dimension n is a complex-valued function η, defined
on the set B(V ) of bases in V , which satisfies η(eA) = η(e) · | det(A)|. The collection of such
functions is denoted |Λ|V . This concept can be generalized as follows.

Definition A.1 For α ∈ C, an α-density on V is a map λ : B(V )→ C such that

λ(eA) = λ(e) · | det(A)|α.

We denote the vector space of α-densities on V by |Λ|αV. Since GL(V ) acts transitively on
B(V ), an α-density is determined by its value on a single basis. As a result, |Λ|αV is a
1-dimensional complex vector space.

Operations on densities

1. If σ ∈ |Λ|αV and β ∈ C, then σβ is a well-defined αβ-density on V .

2. A linear map T : V → V ∗ induces a real-valued 1-density ‖T‖ on V given by

‖T‖ e def= | det(〈Tei, ej〉)|1/2.

Equivalently, any real bilinear form ω on V induces a 1-density ‖ω̃‖ on V .

3. Multiplication of densities is defined by multiplication of their values and gives rise to a
bilinear map:

|Λ|αV × |Λ|βV → |Λ|α+βV.

4. If W is a subspace of V , then a basis of V , unique up to transformation by a matrix of
determinant ±1, is determined by a choice of bases for W and V/W . Consequently, there is
a natural product

|Λ|αW × |Λ|α(V/W )→ |Λ|αV

In particular, if V = V1 ⊕ V2, then there is a natural product

|Λ|αV1 × |Λ|αV2 → |Λ|αV.
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5. Operations 3 and 4 induce natural isomorphisms

|Λ|αV ⊗ |Λ|βV → |Λ|α+βV

|Λ|αW ⊗ |Λ|α(V/W )→ |Λ|αV.

|Λ|αV1 ⊗ |Λ|αV2 → |Λ|α(V1 ⊕ V2)

6. If T : V → V ′ is an isomorphism, there is a well-defined isomorphism

T∗ : |Λ|αV → |Λ|αV ′.

7. A natural map B(V )
∗→ B(V ∗) is defined by associating to each basis e of V its dual

basis e∗. Since (eA)∗ = e∗(A∗)−1 for any A ∈ GL(V ), the map ∗ gives rise to a natural
isomorphism

|Λ|αV → |Λ|−αV ∗.

Example A.2 Suppose that A,C are vector spaces and

0→ A→ A⊕ C F→ C∗ → 0

is an exact sequence such that F |C = T . By the operations described above, we obtain an
isomorphism

|Λ|αA ' |Λ|αA⊗ |Λ|2αC

given explicitly by
σ 7→ σ ⊗ ‖T‖2α = | detθ T |α σ ⊗ θ2α,

where θ is any real-valued 1-density on C, and the positive real number | detθ T | is defined
by the equation

| detθ T |1/2 θ = ‖T‖.

4

It is easy to check that the association V 7→ |Λ|αV defines a differentiable functor, so we
can associate the α-density bundle |Λ|αE to any smooth vector bundle E over a manifold
M . The remarks above imply that if

0→ E → F → G→ 0

is an exact sequence of vector bundles over M , then there is a natural density-bundle iso-
morphism

|Λ|αE ⊗ |Λ|αG ' |Λ|αF.

We denote by |Ω|αE the vector space of smooth sections of |Λ|αE and by |Ω|αcE the space of
smooth, compactly-supported sections. The density spaces associated to the tangent bundle
of M are denoted |Ω|αM . An n-form on an n-manifold M induces an α-density |ν|α in the
manner of (4) above.
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A natural mapping |Ω|1cM → C is defined by integration

σ 7→
∫
M

σ.

Similarly, a pre-Hilbert space structure on the space |Ω|1/2c M of smooth, compactly-supported
half-densities on M is defined by

〈σ, τ〉 =

∫
M

σ τ.

The completion HM of this space is called the intrinsic Hilbert space of M .

B The method of stationary phase

We begin with a few useful formulas involving the asymptotic Fourier transform. Let S
denote the usual Schwartz space of rapidly decreasing, complex valued functions on Rn. For
u ∈ S, the asymptotic Fourier transform and its inverse are defined respectively as

(F~u)(ξ) = (2π~)−
n
2

∫
Rn

e−i〈x,ξ〉/~u(x) dx

(F−1
~ v)(x) = (2π~)−

n
2

∫
(Rn)∗

ei〈x,ξ〉/~v(ξ) dξ

To see that these transforms are actually inverse to one another, note that the change of
variables η = ξ/~ gives

(2π~)−
n
2

∫
(Rn)∗

ei〈x,ξ〉/~(F~u)(ξ) dξ = (2π)−n
∫ ∫

ei〈x−y,η〉u(y) dy dη,

which equals u(x) by the usual Fourier inversion formula. This observation also verifies the
asymptotic inversion formula:

u(x) = (2π~)−n
∫ ∫

ei〈x−y,ξ〉/~u(y) dy dξ.

A simple application of this formula shows that the asymptotic differential operator Dj =
−i~∂j satisfies the familiar equations

F~(Dju) = ξjF~u F~(xju) = −DjF~u.

A similar check of definitions proves the asymptotic Parseval formula:∫
Rn

u v dx =

∫
(Rn)∗

F~uF~v dξ.

We study next the asymptotic behavior of integrals of the form

I~ =

∫
Rn

eiR(x)/~a(x) |dx| a ∈ C∞
0 (Rn), R ∈ C∞(Rn)

as ~→ 0. As a first step, we will prove that if the critical point set of R is not contained in
the support of a, then I~ is rapidly decreasing in ~:
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Lemma B.1 If dR 6= 0 on Supp(a), then I~ = O(~∞) as ~→ 0.

Proof. Suppose for the moment that Rx1 = ∂R/∂x1 6= 0 on Supp(a). Then

eiR/~a = −i~ a

Rx1

∂

∂x1

eiR/~,

and so integration by parts with respect to the x1-variable gives

|I~| = ~
∣∣∣∣∫

Rn

eiR/~
∂

∂x1

(
a

Rx1

)
|dx|

∣∣∣∣ ,
implying that I~ is O(~). Our assertion follows by noting that (a/Qx1)x1 ∈ C∞

0 (Rn) and
repeating the same argument.

For the general case, we can use a partition of unity to break up Supp(a) into finitely
many domains as above and then applying the same argument (with x1 possibly replaced by
another coordinate) to each piece.

2

The upshot of this lemma is that the main (asymptotic) contribution to the integral I~
must come from the critical points of R.

Lemma B.2 If the quadratic form Q is nondegenerate, then for each nonnegative integer
K, ∫

Rn

eiQ/~a |dx| = (2π~)n/2
eiπ sgn(Q)/4

| det|dx| T |1/2
K∑
k=0

1

k!
(Dka)(0) ~k +O

(
~K+1+n/2

)
,

where T : Rn → (Rn)∗ is the self-adjoint map associated to Q and D is the second-order
differential operator given by

D =
i

2

∑
j,k

T−1
jk

∂

∂xj

∂

∂xk
.

Proof. From [32, Vol.1, Thm.7.6.1], we recall that for ξ ∈ (Rn)∗,∫
Rn

e−i〈x,ξ〉eiQ(x)/~ dx = (2π~)n/2
eiπsgn(Q)/4e−i~Q

∗(ξ)

| det|dx| T |1/2
,

where Q∗(ξ) = 〈T−1ξ, ξ〉/2 and the determinant det|dx| T is defined as in Appendix A. Con-
sequently, the asymptotic Fourier transform of the function x 7→ eiQ(x)/~ equals

ξ 7→ eiπsgn(Q)/4e−Q
∗(ξ)/~

| det|dx| T |1/2
.

Combining this expression with the asymptotic Parseval formula, we obtain

I~ =

∫
Rn

eiQ/~a |dx| = eiπ·sgn(Q)/4

| det|dx| T |1/2

∫
(Rn)∗

e−iQ
∗/~ F~a (ξ) dξ.
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A simple computation shows that F~a (ξ) = F~a (−ξ); the change of variables ξ 7→ −ξ
doesn’t affect the integral, and consequently we have

I~ =
eiπ·sgn(Q)/4

| det|dx| T |−1/2

∫
(Rn)∗

e−iQ
∗(ξ)/~F~a (ξ) dξ.

To deal with the integral on the right, we use the the Taylor series expansion (with remainder)
of e−iQ

∗/~ to write∫
(Rn)∗

e−iQ
∗/~F~a(ξ) dξ =

∞∑
k=0

1

k!

(
−i
~

)k ∫
(Rn)∗

(Q∗(ξ))k F~a(ξ) dξ

= (2π~)n/2
K∑
k=0

1

k!

(
−i
~

)k
F−1

~ ((Q∗)k F~a)(0) +O
(
~K+1+n

2

)
= (2π~)n/2

K∑
k=0

1

k!
(Dka)(0)~k +O

(
~K+1+n

2

)
,

the last expression on the right following from the asymptotic Fourier inversion formula.

2

We now wish to apply this lemma to evaluate integrals of the form

I~ =

∫
M

eiR/~ σ,

where M is a smooth n-manifold equipped with a compactly supported density σ, and
R : M → R is a smooth function. To this end, we require the following two lemmas. Recall
that the hessian of R : M → R at a critical point p ∈ M is a well-defined self-adjoint
linear map R′′(p) : TpM → T ∗pM . The critical point p is called nondegenerate if R′′(p) is an
isomorphism. In this case, the function R has the following normal form near p.

Morse Lemma . If p is a nondegenerate critical point of a function R : M → R, then
there exists a nondegenerate quadratic form Q on Rn and an embedding g : U → M , where
U is a neighborhood of 0 in Rn, such that g(0) = p and

(R ◦ g)(x) = R(p) +Q(x).

2

(This theorem is a special case of the Parametrized Morse Lemma, proven in Section 4.3).
If g : M ′ →M is any diffeomorphism, then the “change of variables” formula states that∫

M ′
g∗
(
eiR/~ σ

)
=

∫
M

eiR/~ σ.

The same role in the stationary phase formula will be played by the following lemma.
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Lemma B.3 In the notation above, suppose that p ∈ M is a critical point of R and set
p′ = g−1(p). If σ′ is any density on M ′ such that σ′p′ = (g∗σ)p′, then

| detσ′(R ◦ g)′′(p′)| = | detσ R
′′(p)|.

2

Finally, we mention that definition of | detσ(R)′′(p)| implies furthermore that

f(p) · | detfσ R
′′(p)|1/2 = | detσ R

′′(p)|1/2

for any function f on M . Combining these observations, we obtain

Principle of Stationary Phase . Let M be a smooth n-manifold and σ ∈ |Ω|cM . If
R : M → R has only nondegenerate critical points pj, j = 1, · · · , k in Supp(σ), then∫

M

eiR/~ σ = (2π~)n/2
k∑
j=1

eiR(pj)/~ eiπ·sgn(R′′(pj))/4

| detσ(R′′ (pj))|1/2
+O(~1+n/2).

2

C Čech cohomology

This appendix will give some of the basic definitions of Čech cohomology for manifolds and
describe its relation to deRham cohomology. A more general treatment is available in [14].

An open cover U = {Uα}α∈I of a manifold M is said to be good if every intersection of
finitely many members of U is either contractible or empty. For ease of notation, we will
denote by Uα0..αk

the intersection
⋂k
i=0 Uαi

.
If Γ is an abelian group, a Γ-valued Čech cochain with respect to the cover U is then a

rule which assigns an element cα0,..,αk
of Γ to every list (α0, .., αk) for which the intersection

Uα0..αk
is nonempty. The group of all such cochains is denoted Ck

U(M,Γ), and a coboundary
operator

δk : Ck
U(M,Γ)→ Ck+1

U (M,Γ)

is defined by

δk(c)(α0, .., αk+1) =
k+1∑
j=0

(−1)jc(α0, .., α̂j, .., αk+1).

where the symbol ̂ indicates which member of the list is to be deleted. The groups of
degree-k Čech cocycles and coboundaries are defined respectively by

Žk
U(M ; Γ) = ker(δk) B̌k

U(M ; Γ) = im(δk−1),

and the k-th Čech cohomology group of M with coefficients in Γ and relative to the covering
U is the quotient

Ȟk
U(M ; Γ) = Žk

U(M ; Γ)/B̌k
U(M ; Γ).
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Now consider a closed k-form ω ∈ Zk
DR(M). Since each Uα is contractible, there exists

on each Uα a (k − 1)-form ϕα satisfying dϕα = ω. For any indices α, β, we have

d(ϕα − ϕβ) = 0

on Uαβ. Since Uαβ is itself contractible, there exist (k − 2)-forms ψαβ defined on Uαβ such
that

dψαβ = ϕα − ϕβ
and

d(ψαβ + ψβγ − ψαγ) = 0

on the set Uαβγ for any indices α, β, γ. Continuing in this way, we see that ω determines a
Čech k-cocycle with coefficients in R. This association defines for each k ∈ Z+ a homomor-
phism

Zk
DR(M)

w→ Ȟk
U(M ; R).

Theorem C.1 ([61]) The map w induces an isomorphism between the deRham cohomology
of M and the Čech cohomology of M with real coefficients.

One consequence of this theorem is that Ȟk
U(M ; Γ) does not depend on the choice of U.

A group homomorphism Γ→ Γ′ induces a homomorphism

Ȟk
U(M ; Γ)→ Ȟk

U(M ; Γ′)

in the obvious way. Of particular interest in these notes is the subgroup Z~ = 2π~ Z of R.

D Principal T~ bundles

In this appendix, we record some standard facts about principal bundles over paracompact
manifolds, referring to [17] for more details. Throughout this section, denote by Z~ the group
2π~ · Z and set T~ = R/Zh.

A principal T~ bundle over a manifold P is a locally trivial T~ bundle Q
π→ P together

with a nonsingular, fiber-preserving action T~ ×Q→ Q. Two principal T~ bundles Q
π→ P

and Q′ π′→ P are said to be isomorphic if there exists a smooth map f : Q → Q′ which is
equivariant with respect to the T~ actions, i.e. f(a · p) = a · f(p) for all a ∈ T~ and p ∈ Q,
and satisfies π = π′ ◦ f .

Local triviality of a T~ fiber bundle Q
π→ P implies that for any good cover U of P ,

there exist homeomorphisms hj : Uj × T~ → π−1(Uj) such that hj(x, t+ s) = s · hj(x, t) and
π(hj(x, t)) = x for all (x, t) ∈ Uj × T~ and s ∈ T~. These maps give rise to the transition
functions gjk : Ujk → T~ of Q, defined by the requirement that

hj(x, t) = hk(x, t+ gjk(x))

for all x ∈ Ujk. This equation implies that for each x ∈ Uijk,

hi(x, t) = hi(x, t+ gij(x) + gjk(x) + gki(x)),
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and so the transition functions satisfy the cocycle condition gij + gjk + gki = 0 (mod Z~). If
g̃jk : Ujk → R is any lift of gjk, then the numbers

cijk = g̃ij + g̃jk + g̃ki

are therefore elements of Z~ which define a Čech cocycle [cijk]. The corresponding class
[Q] ∈ Ȟ2(P ; Z~) is known as the Chern class of Q. The fundamental theorem describing
this space is the following (see [17, Cor.2.1.4] for a proof).

Theorem D.1 Two principal T~ bundles over P are isomorphic if and only if their Chern
classes are equal. Moreover, the assignment Q 7→ [Q] induces a bijective map from the space
of isomorphism classes of principal T~ bundles over P to Ȟ2(P ; Z~).

Corresponding to the abelian group structure on Ȟ2(P ; Z~) are the following operations on
principal T~ bundles. If Q → P is a principal T~ bundle having transition functions {gjk}
with respect to some good cover of P , then the inverse of Q is defined as the principal
T~ bundle −Q over P obtained from the transition functions {−gjk}. Similarly, if Q,Q′

are principal T~ bundles over P with transition functions {gjk} and {g′jk} respectively, then
the product of Q and Q′ is defined as the principal T~ bundle Q ×P Q′ over P having
transition functions {gjk + g′jk}. From the definitions above, it follows easily that the Chern
classes of inverses and products of principal T~ bundles are given by [−Q] = −[Q] and
[Q×P Q′] = [Q] + [Q′]. On the level of the bundles themselves, we can describe the product
Q×P Q′ as the quotient of the usual fiber-product Q×P Q′ (which in this case is a T~×T~-
bundle over the base), modulo the anti-diagonal action of T~, i.e. t · (p, p′) = (t · p,−t · p′).

T~ bundles with connection

The infinitesimal generator of the T~ action on a principal bundle Q is a vector field X on
Q defined by the equation

X(p) =
d

dt

∣∣∣∣
t=0

t · p.

A connection on Q is a T~-invariant 1-form ϕ on Q such that ϕ(X) = 1. In terms of a
good cover U of P , the form ϕ satisfies h∗jϕ = dσ + π∗ϕj, where dσ denotes the usual form
on T~ and the ϕj are 1-forms on the Uj satisfying

ϕj − ϕk = dg̃jk,

where g̃jk are again R-valued lifts of the transition functions of Q. The curvature of the
connection ϕ is the unique closed 2-form ω on P such that

dϕ = π∗ω.

From the compatibility condition for the ϕj, it follows that the Chern class of Q is the Čech
representative of the deRham cohomology class [ω].

Theorem D.2 A closed 2-form ω on a manifold P is the curvature form of a connection
on a principal T~ bundle Q over P if and only if 〈ω, a〉 ∈ Z~ for any a ∈ H2(P ; Z).
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Proof. Most published proofs of this result (e.g. [37]) use Čech cohomology and the deRham
isomorphism. We prefer to give the following direct proof by P.Iglesias; see [33] for further
details. Let A(P, p0) denote the space of smooth paths γ : [0, 1]→ P such that γ(0) = p0, and
let e : A(P, p0)→ P be the endpoint map e(γ) = γ(1). Since the interval [0, 1] is contractible,
there exists a natural contraction of A(P, p0) onto the constant map [0, 1]→ p0. If Yt is the
vector field which generates this contraction, we define the 1-form Kω on A(P, p0) by

Kω =

∫ 1

0

(Yt e∗ω) dt.

Then dσ +Kω is a connection form on the product A(P, p0)× T~ having curvature e∗ω.
To complete the proof, we will define the T~ bundle (Q,ϕ) over P with curvature ω as an

appropriate quotient of A(P, p0)×T~. For this purpose, we call two elements γ, γ′ ∈ A(P, p0)
homologous if their difference is the boundary of a singular 2-chain σ in P . The quotient
of A(P, p0) by this equivalence relation is the covering space P̂ of P corresponding to the
commutator subgroup of π1(P ), and thus, H1(P̂ ,Z~) = 0. An equivalence relation on the
product A(P, p0) × T~ is then defined by the condition that (γ, t) ∼ (γ′, t′) if γ, γ′ are
homologous and

t− t′ =
∫
σ

ω,

where ∂σ = γ − γ′. The quotient of A(P, p0)× T~ by this equivalence relation is a principal
T~ bundle Q̂ over P̂ with connection ϕ̂ having curvature π∗ω, where π : P̂ → P is the natural
projection.

If H1(P ; Z~) = 0, then P̂ = P , and the proof is complete. Otherwise, let s be any map
from H1(P ; Z~) into the space of loops based at p0 which assigns a representative to each
homology class. A T~-valued group cocycle on H1(P ; Z~) is then defined by

φ(h, h′) =

∫
σ

ω,

where ∂σ = s(h + h′)− (s(h) + s(h′)) . Since this cocycle is symmetric, it defines a central
extension Γ of H1(P ; Z~) which acts naturally on Q̂ by

(h, τ)[γ, z] = [s(h) · γ, z + τ ].

Since T~ is divisible, the extension Γ is isomorphic to the product T~ ×H1(P ; Z~), and any
choice of isomorphism defines an action of H1(P ; Z~) on Q̂ which preserves the connection
ϕ̂. The quotient of Q̂ is the desired principal T~ bundle Q over P .

2

A connection ϕ on a principal T~ bundle Q
π→ P induces a connection on the inverse −Q

of Q whose local representatives are of the form dσ − ϕj, where ϕ is locally represented by
dσ+ϕj. Similarly, connections ϕ and ϕ′ on the T~ bundles Q,Q′ over P induce a connection
ϕ+ ϕ′ on the product Q×P Q′ defined locally by dσ + ϕj + ϕ′j.
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Two principal T~ bundles with connection (Q,ϕ), (Q′, ϕ′) over P are said to be isomorphic
provided that there exists an isomorphism f : Q → Q′ of the underlying principal bundles
which satisfies f ∗ϕ′ = ϕ. A check of the definition shows that (Q,ϕ), (Q′, ϕ′) are isomorphic
if and only if (Q ×P −Q′, ϕ − ϕ′) is isomorphic to the trivial bundle (P × T~, dS). Since
curvature is obviously invariant under isomorphisms of principal T~ bundles with connection,
the classification of such bundles reduces to the classification of flat connections on trivial
T~ bundles over P .

A connection ϕ on a principal T~ bundle Q
π→ P is said to be flat if dϕ = 0. In this

case, the local representatives h∗jϕ = dσ + ϕj have the property that ϕj = ds̃j for functions
s̃j : Uj → R. Denoting by sj the composition of s̃j with the projection R → T~, we find
that the functions sjk = sj − sk define transition functions for a trivial T~ principal bundle
over P . On the other hand, the compatibility condition for the ϕj implies that sjk − gjk is
constant for each j, k, and so there exists an isomorphism f : Q → P × T~. It is easy to
check that if ϕ0 is the trivial connection on P × T~, then

ϕ− f ∗ϕ0 = π∗β

for some closed 1-form β on P . The cohomology class [β] induced by this form in Ȟ1(P ; T~)
is called the holonomy of the (flat) connection ϕ.

Theorem D.3 Two flat connections ϕ,ϕ′ on the trivial principal T~ bundle Q = P×T~ over
P are isomorphic if and only if they have equal holonomy. Moreover, the map (Q,ϕ) 7→ [βϕ]
induces a bijection from the space of isomorphism classes of flat connections on the trivial
T~ bundle with Ȟ1(P ; T~).

A section s of a principal T~ bundle Q over P with connection ϕ is called parallel provided
that s∗ϕ = 0. The map sQ : Q→ Q associated to a parallel section defines an isomorphism
of (Q,ϕ) with the trivial T~ bundle equipped with the trivial connection ϕ = dσ. Thus, we
have:

Corollary D.4 A principal T~ bundle Q over P with a flat connection admits a parallel
section if and only if (Q,ϕ) has zero holonomy.

2

Associated line bundles

A representation ρ : T~ → U(1) enables us to associate to any principal T~ bundle Q→ P a
complex line bundle E → P defined explicitly as the quotient of Q× C by the T~ action

t · (p, z) = (t · p, ρ−1(t)z).

The space of functions g : Q→ C satisfying the condition

g(t · p) = ρ−1(t)g(p)
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is identified with the space of sections of E by the assignment g 7→ sG, where the section
sg : P → E is defined by the requirement that

sg(x) = [(p, g(p))],

for any element p of π−1(x).
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114.

[58] Unterberger, A., Quantification et analyse pseudo-différentielle, Ann. Sci. Éc. Norm.
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