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1 Introduction

Optimal control theory, recognized initially as an engineering problem, reveals a distinct relationship
to differential geometry and mechanics [1, 2, 3]. Calculus of variations and Maximum Principle
are the fundamental tools in solving the optimal control problems. There is a natural connection
between mechanics and optimal control through the Maximum Principle, which yields from optimal
control a Hamiltonian system. The solutions of optimal control problems rely on the integration of
the Hamiltonian differential equations [4]. In this report, Poisson reduction of the optimal controls
for left invariant control systems are investigated [5, 6]. This report closely follows the guideline
of [5].

2 Background

In this section, brief description of the definitions and notations are given. Readers can find all the

details in [7, 8, 9].



2.1 Left invariant vector fields

Definition 1 (Lie Group) A Lie group G is a differentiable manifold which is also endowed with
a group structure such that the map G x G — G defined by (g,h) — gh™' is C*°.

Definition 2 (Lie Algebra) A Lie algebra gover R is a real vector space g together with a bilinear
operator [,]: g X g — g such that for all x, y, z € g,

[z,y] = —[y, 7], (anti-commutativity)

[z, 9], 2] + [[v, 2], 2] + [[2, 2], 9] = 0. (Jacobi identity)

Let G be a finite dimensional Lie group with identity e, and let X, be a tangent vector to G
at e. We may construct a vector field defined on all of GG in the following way. For g € GG, define
left translation by g to be a map Ly : G — G such that Ly(h) = gh, where h € G. Since G is a
Lie group, Ly is a diffeomorphism of G for each g. Taking the differential of L, at e results in a
map TeLg : TeG — T,G such that Xy = T, Lg(X,). The vector field formed by assigning X, € T,G
for each g € G is called a left invariant vector field. It is easy to verify that all the left invariant
vector fields of G form an algebra under Lie bracket operation on vector fields. We call it the Lie
algebra of the Lie group G and denote it as g. It is actually a subalgebra of the Lie algebra of all the
smooth vector fields on G. A left invariant control system is defined by letting X, be a (controlled)
curve in g. The system described in this report has a state which can be represented as an element

g € G. The differential equation which describes the time evolution of g can be written as:
g= TeLgXe(u) (1)

where each control u(-) determines a curve X¢(u(-)) C g. Here we limit ourselves to vector valued

control functions u(-), and
m
Xe(u) = Xo+ Y uiX;, (2)
i=1

where u; are controls and the X; span an (m+ 1)-dimensional subalgebra of g, m+1 < n = dim(g).

2.2 Poisson Manifolds

Definition 3 A Poisson bracket ( or a Poisson structure) on a manifold P is a bilinear operation

{, } on C*®(P) such that



(a) (C*®(P),{, }) is a Lie algebra; and
(b) {,} is a derivation in each factor, that is,
{FG,H} ={F,H}G+ F{G,H}

for all F, G, and H € C*(P).

A Poisson manifold is denoted by (P, {, }) or simply by P if there is no danger of confusion.

Remark 1 Any symplectic manifold (P,2) is a Poisson manifold. The Poisson bracket of two

functions F,G € C*°(P) is defined by the symplectic form as
{F,G}(2) = Q(2)(Xr(2), Xa(2)),

where Xp is the Hamiltonian vector field on P satisfying ix,Q = dF.

Remark 2 If g is a Lie algebra, then its dual g* is a Poisson manifold with Poisson structures

(FG)am == (. 50 50| ) )

for p € g* and F, G € C*(g*). The functional derivative of F at p in (3) is the unique element
0F/éu of g defined by

given by

DF(p)-6p = <5/L, i—i> : (4)

where (,) denotes the pairing between g* and g. Following [10, 11], this bracket on g* is called the

Lie-Poisson bracket.
Proposition 1 The map H — Xpg is a Lie algebra antihomomorphism, i.e.,
[(Xu, Xk] = —X{n K} (5)

Proposition 2 Let H € C*®°(P) and ¢; be the flow of Xg. Then

(a) %(F ody) ={F,H}o ¢, ={F od¢,,H}, or for short F = {F,H}.
(b) H o ¢y = H (conservation of energy ).
A function C' € C*(P) is called a Casimir function if {C,F} = 0 for all F € C*(P), that is,

C is constant along the flow of all Hamiltonian vector fields or, equivalently, X¢ = 0, that is, C

generates trivial dynamics.



2.3 Quotients of Poisson manifolds

Definition 4 Let P be a manifold and let G be a Lie group. A (left) action of a Lie group G on
P is a smooth mapping ® : G x P — P such that:

(a) ®(e,z) =x for all x € P; and

(b) ®(g,®(h,x)) = ®(gh,x) for all g, h € G and x € P.

For every g € G let ®,: P — P be given by x — ®(g,z). An action is said to be:

1. free if it has no fixed points, that is, ®4(z) = = implies g = e or, equivalently, if for each

x € P, g ®y(x) is one-to-one.

2. proper if the mapping ® : G x P — P x P, defined by &(g,z) = (z,®(g, z)), is proper.

If @ is an action of G on P and x € P, the orbit of x is defined by
Orb(z) = {®4(z)|g € G} C P. (6)

An action of ® of G on a manifold P defines an equivalence relation on P by the relation of
belonging to the same orbit; explicitly, for z, y € P, we write x ~ y if there exists a g € G such
that g -2 = y, that is if y € Orb(z). We let P/G be the set of these equivalence classes, that is,
the set of orbits, also called the orbit space. Let 7 : P — P/G : z — Orb(x), and give P/G the
quotient topology by defining U C M/G to be open if and only if 7~!(U) is open in P.

Proposition 3 (Proposition 4.2.23, [12]) If ® : G x P — P is a proper and free action, then

P/G is a smooth manifold and 7 : P — P/G is a smooth submersion.

Now we are ready to give the simplest version of a general construction of Poisson manifolds based

on symmetry. This construction represents the first steps in a general procedure called reduction.

Suppose that G is a Lie group that acts on a Poisson manifold and that each map ®,: P — P
is a Poisson map. Let us also suppose that the action is free and proper, so that the quotient space

P/@G is a smooth manifold and the projection 7 : P — P/G is a submersion.



Proposition 4 (Theorem 10.7.1, [9]) Under these hypotheses, there is a unique Poisson struc-

ture on P/G such that w is a Poisson map.

The unique Poisson structure {, } p/c on the quotient manifold P/@ is induced from the one on P

satisfying

{f,k}p/(;ow:{fow,kow}, (7)

where f, k: P/G — R.

Now G-invariant dynamics on P induces dynamics on P/G. To see this, let H : P — R be a

G-invariant Hamiltonian function on P, i.e.,
H(®,(x) = H(z), VgeG. ®)

It defines a corresponding function h on P/G such that for any equivalence class [¢] € P/G,
h([z]) = H(z), that is, hom = H. Since 7 is a Poisson map, it transforms the Hamiltonian vector

field Xz on P to Xj, on P/G; that is, Tmo Xy = Xp o, and

Xnf ={f,h}pic; V[ eCT(P/G). (9)

It follows that the Hamiltonian vector field X}, leaves invariant the symplectic leaves of P/G.
Thus any Casimir function on P/G is an integral of motion for X;. The integral curves of Xy

project under 7 to integral curves of Xj,.

A key example of the Poisson reduction is when P = T*G and G acts on itself by left translations.

Then P/G = g* and the reduced Poisson bracket is none other than the Lie-Poisson bracket.

3 Maximum principle

For control systems, optimal control problems have been typically cast in a different setting from
the classical variational problems. The basic difference lies in the way in which the trajectories
are formulated; in the optimal control setting the trajectories are parametrized by the controlled
vector field, while in the traditional variational setting trajectories are simply constrained. The

other basic difference is that the necessary conditions for extremals in the optimal control setting



are typically expressed using a Hamiltonian formulation using the Pontryagin maximum principle,
rather than the Lagrangian settings. Readers can find the detail of the topic in various classic

optimal control books, e.g., [13, 4].

The following problem and discussion are taken from [5] directly. Consider an optimal control
problem of the form
T
min/ L(u)dt (10)
u() Jo
subject to the condition that u(-) steers (1)-(2) from go at ¢ = 0 to g1 at t = T. Clearly, the

Lagrangian L is G-invariant.

To state the necessary conditions dictated by the Pontryagin Maximum Principle, we introduce

a parametrized Hamiltonian function on T*G
H(g,p,u) = —poL(u) + (p, TeLgXc(u)), (11)

where pg > 0 and p € T*G. We denote by ¢t — u*(t) a curve which satisfies the following relationship
along a trajectory t — (g(t),p(t)) in T*G:

H*((9(t),p(t)) = H(g(t),p(t),u"(t)) = rggfﬂ(g(t),p(t),U(t)))- (12)
The Hamiltonian function H* defines a Hamiltonian vector field Xpg- on T*G, with respect to
the canonical symplectic structure on 7*G. The Pontryagin Maximum Principle gives necessary
conditions for extremals as follows: an extremal trajectory ¢ +— g¢(t) of problem (10) is the projection
onto G of a trajectory of the flow of the vector field X g+, which satisfies the boundary condition
g(0) = go and ¢(T") = g1, and for which ¢t — (p(t),po) is not identically zero on [0,7"]. The extremal
is called normal when py # 0 (in which case we set pg = 1). When py = 0 we call the extremal
abnormal, corresponding to the case where the extremal is determined by constraints alone. The
abnormal case occurs often but are ruled out under suitable hypotheses. We are concerned solely

with normal extremals in this report.

Since there is no constraint on u;, optimal controls for (10) subject to (1) and (2) satisfy

OH OL 0
5w - Ou + 8—m<p’ TeLgXe(u)) =0, (13)




foralli=1, ..., m. From (2),

(p, TeLgXe(“)) = (paTeLg(XO + Z u; X))

i 1
= (TeLyp, Xo + Z uiX. (14)
i=1
= (/J‘:XO) +u; Z(/"‘:X’L)a
i=1
where = TeLyp € g*. From (13) and (14)
oL
- X;) =0. 15
e+ (1, X) (15)
forall ¢ =1, ..., m. Observe that, from (13) and (14) the Hamiltonian H* is G-invariant. More

explicitly, suppose L(u) = 3 31", A\;u?, the constants A; > 0. Then the optimal u; are given by

7X'

and the Hamiltonian on T*@G is
1 m
=1

Clearly the Hamiltonian H* is G-invariant. The Hamiltonian vector field X g+ on T*G correspond-
ing to the Hamiltonian H* can be reduced to a Hamiltonian vector field X on g*. The latter is
Hamiltonian in a non-canonical (Lie-Poisson) sense. Thus questions about explicit solvability of

X+ are turned into corresponding questions about Xj,.

4 Lie-Poisson reduction

The detail of the discussion in this section can be found in [9].

A function Fp, : T*G — R is called left invariant if, for all g € G,
FpoT*L, = Fy, (18)

where T* L, denotes the cotangent lift of Ly, so T*L, is the pointwise adjoint of T'L,. Given
F:g* = Rand a4 € T*G, set

Frlag) = F(Tg Ly - ag) (19)



which is the left invariant extension of F' from g* to T*G. One similarly defines the right invariant

extension by

Fr(ayg) = F(T;Ry - ag). (20)
The main content of the Lie-Poisson reduction theorem is the pair of formulae

{F,H}_ ={FL,H.}|g" (21)
and

{F,H}, = {Fg,Hr}|g", (22)

where {, } 1 is the Lie-Poisson bracket on g* and {, } is the canonical bracket on T*G. For simplicity,

we will only discuss the left invariant case hereafter.

Theorem 1 (Lie-Poisson reduction theorem) Identifying the set of functions on g* with the

set of left invariant functions on T*G endows g* with Poisson structures give by

(F, H}a(p) = + <u, B > . (23)

The space g* with this Poisson structure is denoted g* .

Another version of Lie-Poisson reduction theorem is as the following.

Theorem 2 (Lie-Poisson reduction of dynamics) Let G be a Lie group and H : T*G — R.

Assume H is left invariant. Then the function H~ := H|g* on g* satisfies
H(ag) = H (May)) forall o4€T,G, (24)

where X : T*G — g% is given by A ay) = T*Ly - ay. The flow Fy of H on T*G and the flow F” of
H~ on g* are related by

A(Fr(g)) = Fy” (May))- (25)

In other words, a left invariant Hamiltonian on T*G induces Lie-Poisson dynamics on g*. The
result is a direct consequence of the Lie-Poisson reduction theorem and the fact that a Poisson map

relates Hamiltonian systems and their integral curves to Hamiltonian systems.



Let {X1,...,X,} be a basis for the Lie algebra g, {X!,..., X"} be the corresponding dual basis
for g*, thus (X;, X7) = ;5. The structure constants cé ¢, are defined by

[X,, Xp] = Z C4 X4 (26)

where a, brun from 1 ton. Any p € g* can be expressed as p = > ;| i X ¢ and the (&) Lie-Poisson

{F,G}e(n) ==+ <“’ [fs_l; fﬁ_ﬂ >

brackets become

:i<ZMZXZ7[ Xb:z 8’(14; >
(27)
oF 0G
= MZXZ
(S Sy S i)
oF 0G
-+ o
agi:l ’ dau 3M

Theorem 3 Let G be a Lie group and let H : T*G — R be a left invariant Hamiltonian. Let
h:g* — R be the restriction of H to T;G. For a curve p(t) € T;(t)G, let u(t) = (T7 Lg(y)) - p(t) =
A(p(t)) be the induced curve in g*. Assuming that g(t) satisfies the differential equation

§= Teng—Z, (28)
where p = p(0), the following are equivalent:
(a) p(t) is an integral curve of Xp; i.e., Hamilton’s equations on T*G hold;
(b) for any F € C®(T*G), F = {F,H}, where {,} is the canonical bracket on T*G;
(¢) for any f € C*(g*), we have
f={sn-, (29)
where {, }_ is the minus Lie-Poisson bracket;
(d) p(t) satisfies the Lie-Poisson equations
(jl_'LtL = adgp /5,1t (30)
where adg : g — g is defined by aden = [€, 7] and adg is its dual, i.e.,
fri = {pi, h}— = Z bﬂd (31)

b,d=1



By the Proposition 1, it is immediate that h is constant along trajectories of (31). Additionally,
the Casimir functions on g* are also constant along trajectories of (31). For g = SO(3) the Lie
algebra of skew symmetric matrices, any Casimir function is of the form ®(u?+ 3+ p3). In general,

there may not be any nontrivial (non-constant) Casimir functions.

Returning to the optimal control problem of this paper, since the Hamiltonian H in (17) is

already expressed as function on g*, we note that the reduced Hamiltonian is
1o~ (1, Xi)?
h = {(p, X = . 32
Yo + 5300 (32
We have in effect shown the following reduction of the Maximum Principle.

Theorem 4 Consider the optimal control problem of the form

T
min/ L(u)dt (33)
u() Jo
subject to
m
§="TeLg(Xo+ > _uiX;), (34)
i=1

9(0) = go and g(T) = g1. Then every regular extremal is given by

- a 35
Us A > ( )
where u is an integral curve of the vector field Xy on g* corresponding to the Hamiltonian
1 (o, Xi)
h={p,X = —— 36
o)+ 535 (39

and the Poisson bracket {,}_ on g* is given by (3). In coordinates on g* the integral curves satisfy

the ordinary differential equations (31).

5 Example

The following example and solution are taken from [5] directly. We apply the reduction procedure
to the steering of a unicycle as shown in Figure 1. If u; denotes the steering velocity and us the

driving velocity, the functional form of the state equations for this system is
T = COS P Uy
¥ =sinoug (37)
¢ =u

10



Figure 1: Steerable unicycle. The unicycle has two independent inputs: the steering input controls
the angle of the wheel, ¢; the driving input controls the velocity of the cart in the direction of the

wheel. The configuration of the cart is its Cartesian location and the wheel angle.

Set
cos¢p —sing x
g= |sing cosd vyl (38)
0 0 1

thus g € SE(2), the rigid motion group of the plane. Then the unicycle equation takes the form
0 —up wu
g=9- | 0 0]- (39)
0 0 O
This is a left invariant system in SE(2). Further, the Lie algebra of SE(2) is se(2), which is defined
by

se(2) =4 € = B T rw=00ecR3Y, (40)
[0 0
We have that se(2) is spanned by {X1, Xs, X3}, where
0 -1 0 0 0 1 000
Xi=11 0 0|, Xo2=1|0 0 0|, Xz=1[0 0 1. (41)
0 0 0 0 0 0 000

Since [X1, X3] = X3, [X1, X3] = —X>, and [X», X3] = 0, the structure constants are
C112 =0, C%2 =0, C%2 =1
0113 =0, 033 = —1, C%?, = 0; (42)
Cy3=0, C3 =0, C3=0.

11



Now consider the optimal control problem
1
min / =~ (u} +u3) dt (43)
u() Jo 2
subject to the boundary conditions. The cost function aims for minimizing the control energy. By
the Theorem 3, regular extremals are given by integral curves of a reduced Hamiltonian h on se(2)*.
The Hamiltonian is in fact, in the coordinates corresponding to the dual basis {X*, X2, X3}, given

by

(, X1)” | (X2 pd + 44

= 44
h 2 + 2 2 (44)
The Poisson bracket of two functions ¢ and ¢ can be calculated through (27):
3
9¢ ¢
{9, 0}-(n) = - Z C(czlb,ud——
ab,d=1 Otta Ity (45)
= Vo' T(1)Ve,
where
3
[C()la = — Y Coytta- (46)
d=1
Therefore, we have
0 —pz pe
Pp)=1]p 0 0. (47)
— 2 0 0
From (31), the reduced Hamilton’s equations are
1 = —paps
P2 = paji3 (48)
B3 = —p1fer.

The Casimir functions are of the form ® = ®(u3 + p32), (equivalently V& is in the kernel of T'(y).
The level sets of Casimir functions (i.e., symplectic leaves in g* are cylinders {p : p3 + u3 = c}.
Integral curves of (48) are intersections of level sets of h, also cylinders {u : pu? + u3 = 2h}, with

the symplectic leaves. Note that equation (48) can be solved by
jiz = —(2h + ¢) g + 2413 (49)

This is the equation of an harmonic oscillator with quartic potential term. The general solution to

(49) is given by
wa(t) = BSn(A(t — to), k), (50)

12



where Sn(u, k) is Jacobi’s elliptic sine function, A2 < 2h + ¢ < 2)2, tg is arbitrary, k? = % -1,

B% = 2h + ¢ — A2. Then py and pg are determined from py = /2h — p3 and pug = \/c — p3. The

optimal controls are given by u; = u1 and ug = ps.

We show that the Lie-Poisson reduction simplifies the derivation of the optimal control to left

invariant control systems. This simplification allows us to efficiently compute the control inputs.

6

Conclusion

We have worked out explicitly the Poisson reduction of certain G-invariant optimal control problems

on Lie groups. The approach presented here yields an algorithm for constructing regular extremals.
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