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1 Introduction.

The main objective of this paper is to discuss a convexity theorem for a
certain class of Riemannian manifolds, so-called isoparametric submanifolds,
and how this relates to other convexity theorems.
In the introduction we will present the convexity theorems. In Section 2 we
will describe the geometry of isoparametric submanifolds and in Section 3 we
will relate this to the geometries of the other convexity theorems. Finally in
Section 4 we will give the proof of the convexity theorem for isoparametric
submanifolds.

We first state a convexity theorem by Kostant ([K], 1973) for symmetric
spaces, and then show how this relates to the convexity theorem for a Hamil-
tonian torus action (Atiyah [A] and Guillemin-Sternberg [GS], 1982) on one
side and to a convexity theorem for isoparametric submanifolds (Terng, [T1],
1986) on the other.

Theorem 1 (Kostant)[T1 p.487] Let G/K be a symmetric space, G =
K+P the Cartan decomposition of the the Lie algebra, T a maximal abelian
subspace of P, W the associated Weyl group of G/K acting of T , and
u : P → T the orthogonal projection. Let M be an orbit of the isotropy
representation of G/K through z ∈ P. Then u(M) = cvx(W ·z) , the convex
hull of W · z .
Remark: the isotropy representation of G/K is the action of K on T[K](G/K)
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induced by the action of G on G/K given by (g, hK) → ghK.

Now let G be a compact connected Lie group with a biinvariant met-
ric, σ an involution of G, and K the fixedpoint set of σ. Then G/K is a
symmetric space with the following metric: the derivative at the identity
of π : G → G/K identifies K⊥ and T[K]G/K. The restriction of Ad to K
acts on K⊥, and is equivalent to the isotropy representation. Since this is an
orthogonal representation of K on T[K]G/K, we can extend the inner prod-
uct on T[K]G/K to a Riemannian metric on G/K, which makes G/K into a
symmetric space.
G×G is also a connected compact Lie group with a biinvariant metric, and
choosing the involution σ on G × G to be σ(g1, g2) = (g2, g1) we see that
(G×G)/∆G is a symmetric space, and it is canonically diffeomorphic to G.
The isotropy representation of ∆G on (G×G)/∆G is just Ad : G× G → G,
which we can identify with the coadjoint action of G on G∗ (by identifying G
and G∗).
So, if T is a maximal torus of G and M is a coadjoint orbit of G, Kostant’s
theorem tells us that the image of the orthogonal projection of M on T ∗ is
convex [T2 p.9].
Coadjoint orbits, endowed with the Kostant-Kirillov two form, are symplectic
manifolds. For any ξ ∈ G the height function x 7→ 〈x, ξ〉 on M is Hamilto-
nian for the vectorfield ξM , and the moment map for the T -action on M is
the orthogonal projection of M on T ∗, so - as seen above - it has a convex
polyhedron as image [T2 p.10].
The situation of coadjoint orbits of compact Lie groups is generalized by the
following theorem:

Theorem 2 (Atiyah and Guillemin-Sternberg)[T1 p.487] Let N be a com-
pact connected symplectic manifold with a symplectic action of a torus T , and
let J : N → T ∗ be the moment map. Then J(N) is a convex polyhedron.

Kostant’s theorem has been generalized in other directions too. The prin-
cipal orbits of the isotropy representations of symmetric spaces are always
isoparametric submanifolds , i.e. submanifolds (in this case of Euclidean
space) with flat normal bundle and constant principal curvatures along par-
allel normal fields. (The non-principal orbits are not isoparametric in gen-
eral, see [PT] p.170 and 6.5.6.). If M is an isoparametric submanifold we
can canonically associate to M a Weyl group, acting on p + νpM for every
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p ∈ M .
The next theorem states that the Riemannian geometric condition of being
isoparametric is enough to ensure a convexity theorem. Not all isoparametric
submanifolds arise as orbits of isotropy representations of symmetric spaces.
There are infinitely many families of counterexamples in codimension 2, but
it is a theorem that all isoparametric submanifolds of codimension greater or
equal than 3 which are irreducible (i.e. can not be written as a product of
two nontrivial isoparametric submanifolds) are principal orbits of such rep-
resentations [O]. So this theorem gives a stronger statement than Kostant’s
theorem [T1 p.488].

Theorem 3 (Terng)[PT p.167] Let M be a full, compact, isoparamet-
ric submanifold of Rn+k and p ∈ M . The Weyl group W of M acts on
νp := p + νpM . Let P be the orthogonal projection of Rn+k onto νp and u its
restriction to M . Then u(M) = cxv(W · p), the convex hull of W · p.
Remark: an isoparametric submanifold of Rn+k is full if it is not contained
in any affine hyperplane, and if it is compact it is necessarily contained in
some (n + k − 1)-sphere of Rn+k , so one can assume that it is contained in
some sphere centered at the origin [PT 6.3.11].

2 The geometry of isoparametric submani-

folds.

The purpose of this section is to define isoparametric submanifolds and
present some of their geometric properties, expecially those that will be
needed in the proof of theorem 3.

Definition [T1 p.488] A submanifold M of Rn+k is called isoparametric
if
1) the normal bundle of M is flat
2) the principal curvatures along parallel normal fields are constant.

From property 1) it follows that for the normal curvature tensor we have
R⊥ = 0, so by the Ricci equation any two shape operators at any point
x commute. Since the shape operators at x are symmetric and they com-
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mute, they are simultaneusly diagonalizable, and we obtain a decomposition
TxM =

⊕
{Ei(x)|i ∈ I} (where I is some finite index set) into maximal com-

mon eigenspaces of the shape operators at x. The shape operator Av at x
depends linearly on v ∈ νxM , so for each Ei(x) there is a vector ni(x) ∈ νxM
such that Av|Ei(x) = 〈ni(x), v〉IdEi(x). Property 2) implies that we have a
decomposition TM =

⊕
{Ei|i ∈ I} into smooth subbundles of TM , and

that the ni’s (which are called curvature normals) are parallel.

Now, for every i ∈ I, we define the focal hyperplanes
li(x) = {x + v|v ∈ νxM, 〈v, ni(x)〉 = 1}. Reflections about any focal hyper-
plane permute the other focal hyperplanes, so the the reflections generate
a finite group acting on νx := x + νxM . The focal hyperplanes meet in
exactly one point [PT 5.3.7], and the closure of a connected component of
νx\∪{li(x)} is called Weyl chamber. Since the curvature normals are parallel,
the focal hyperplanes at different points are obtained from one another by
parallel translation, and we obtain a well-defined group acting on νx for every
x ∈ M , called the Weyl group associated to M [T1 p.489, PT p.113 and 119].

Now we state some properties of isoparametric submanifolds that we will
need in the proof of Theorem 3. We assume that M is an n-dimensional full
isoparametric submanifold of Rn+k .

Fact 1 [T1 p.490] Let v be a parallel normal field on M such that
y = p + v(p) lies in an i-face σ of a Weyl chamber of νp. Then Mv :=
{q+v(q)|q ∈ M} is a submanifold of Rn+k , the natural map πv : M → Mv is
a submersion, and {Mv|p+ v(p) ∈ ∆p} is a singular foliation of Rn+k , where
∆p is the Weyl chamber of νp containing p.
If y is W-regular, i.e. if y does not lie on any focal hyperplane of νp, then πv

is a diffeomorphism and Mv is isoparametric. In general we have:
i) If w is another parallel normal field such that z = p + w(p) ∈ σ, then
π−1

v (y) = π−1
w (z), which we will denote by Sp,σ.

ii) Sp,σ is a full isoparametric submanifold of codimension k− i in a suitable
subspace V (p, σ) of Rn+k . Furthermore p+ ν̃pSp,σ ⊂ νp, where ν̃pSp,σ denotes
the normal space of Sp,σ in V (p, σ) at p.
iii) Sp,σ is connected [Z, lemma 1.4]
iv) If σ ⊂ γ are two faces in νp then Sp,γ ⊂Sp,σ .

Fact 2 [T1 p.490] Let a ∈ Rn+k be nonzero, f : M → R the height
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function given by f(x) = 〈a, x〉, and C(f) the set of critical points of f .
Then
i) x ∈ C(f) ⇔ a ∈ νx

ii) f has a unique local maximum (minimum) value.
Furthermore, f has a maximum at x ⇔ a ∈ ∆x,
and if a ∈ σ ⊂ ∆x then f−1(f(x)) = Sx,σ. [PT 8.6.5, 8.3.6 and remarks on
p. 167]
iii) if a ∈ νx is W-regular, then C(f) = W · x
iv) if a ∈ σ ⊂ νx is W-singular, then

C(f) = ∪y∈W ·x{Sy,γ| ∩ {li(x)|γ ⊂ li(x)} = ∩{li(x)|σ ⊂ li(x)}}.

3 Momentum maps and isoparametric sub-

manifolds.

Now we will try to determine similarities between the geometric situations
of theorems 2 and 3. We will use the same notation as in the statements of
the theorems in the introduction.
The basic idea for the proof of Theorem 3 goes back to the proof of Theorem
2 by Atiyah and Guillemin-Sternberg, despite the fact that there is no torus
acting on the isoparametric submanifold M .

We first consider the case of a coadjoint orbit G·x of a compact connected
Lie group G with a maximal torus T . As seen in Section 1, the moment map
of the T -action is the orthogonal projection on T ∗, and G · x meets T ∗

orthogonally. Indeed, if G · x is a principal orbit (hence an isoparametric
submanifold of G∗) then νx := x + νx(G · x) is just T ∗ [T1 p.499]. So the
components of the moment map are the height functions 〈·, a〉 : G · x → R,
where a ∈ νx is nonzero. We will see that, in the general settings of Theorems
2 and 3, the components J(·)v (where v ∈ T ) of the moment map J - which
are Hamiltonian functions for the torus action - have geometric properties
similar to the components of the orthogonal projection u.
If G/K is a symmetric space, K · x a principal orbit of the isotropy rep-
resentation and T the maximal abelian subalgebra of P through x, then -
generalizing the above remark for coadjoint orbits - T =x + νx(G · x) [T1
p.490]. This suggests that, while looking for a convexity theorem for isopara-
metric submanifolds, one should consider the orthogonal projection on the
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normal space to some point of the manifold.

Now we will consider the maxima, the fibers and the critical points of the
functions J(·)v and〈·, a〉. (In the following we will assume that v ∈ T and
a ∈ νp are both nonzero).
Each function J(·)v has a unique local maximum [GS Theorem 5]. The same
holds for the funcion 〈·, a〉 by Fact 2ii), and this fact is used in Step v) of the
proof of Theorem 3.

The fibers of J(·)v are always connected (or empty) [A, p.5]. Similarly,
the fiber of 〈·, a〉 over x is connected if we make the assumption that the
function 〈·, a〉 has a maximum at x (Fact 2ii) and Fact 1iii)).

The set of critical points of the moment map J (resp. of the orthogonal
projection u) is the union of the set of critical points of its components J(·)v
(resp of 〈·, a〉). The critical point set C(J(·)v) of J(·)v consists of the fixed
points of the closure S of exp(Rv) ⊂ T , as one can compute directly from
the definition of moment map. Each component of C(J(·)v) is a symplectic
manifold and it is preserved by the torus action, as can be shown using the
fact that any two points of a torus orbit have the same stabilizer. The torus
action on a component of C(J(·)v) is not effective, since S ⊂ T acts trivially,
so there is an induced action by a quotient torus of dimension less than the
one of T . By induction over the codimension of S in T one can prove that the
image of C(J(·)v) under the moment map J is a union of convex polyhedra
[GS Theorem 3.8].
The critical points of 〈·, a〉 are a union of the connected manifolds Sy,σ (where
y ∈ W · p and σ is a face of νp, see Fact 2iv) and Fact 1iii)). Since a is
nonzero, each Sy,σ is an isoparametric submanifold of codimension less than
k = codim(M) by Fact 1ii). Applying induction on the codimension, Step
i) in the proof of theorem 3 shows that u(Sy,σ) is also a union of convex
polyhedra.
As we pointed out in this section, if M is a principal orbit of a coadjoint
action of a compact Lie group G with maximal torus T , the dimension of T
is the codimension of the full isoparametric submanifold M .
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4 The proof of Theorem 3.

In this section we prove a lemma and give the proof of Theorem 3 as in [T1
p.490]. We assume the notation of theorem 3.

Lemma Let C(u) be the set of critical points of u; then

C(u) = ∪q∈W ·p{Sq,σ|σ is a 1-face of some Weyl chamber of νp}.

Proof We may assume that νp =Rk . Let t1, · · · , tk be the standard basis
for Rk , so that u has components ui(x) = 〈ti, x〉. Then
x ∈ M is a critical point of u ⇔
There is a nonzero vector a ∈Rk such that a1du1(x) + · · ·+ akduk(x) = 0 ⇔
x is a critical point of some height function 〈·, a〉 where a ∈Rk is nonzero.
The last equivalence uses Fact 2i).
Let a ∈ νp be nonzero and σ the face in νp containing a. The critical points
of 〈a, ·〉 are ∪y∈W ·x{Sy,γ| ∩ {li(x)|γ ⊂ li(x)} = ∩{li(x)|σ ⊂ li(x)}} by Fact
2iv), so C(u) is contained in

∪q∈W ·p{Sq,σ|σ is an i-face of νp, i > 0} = ∪q∈W ·p{Sq,σ|σ is a 1-face of νp}.

For the inclusion we used that the only 0-face is {0}, and for the equality we
used Fact 1iv).
Conversely, if y ∈ ∪q∈W ·p{Sq,σ|σ is a 1-face of νp} then by Fact 2iv) y is a
critical point for 〈·, a〉 where a is some vector in σ, so y ∈ C(u).

Proof of theorem 3
We proceed by induction over the codimension k of M .
In the case k = 1 M must be r · Sn for some positive r, so u(M) is the line
segment from p to −p. For the outward pointing normal unit vector ξ we
have Aξ(p) = −1

r
IdTpM (where A denotes the shape operator), so the only

curvature normal is ξ(p)
r

, so the only focal hyperplane is p− rξ(p) = {0}, so
W · p = {p,−p}.

Now we assume that the theorem holds for codimensions less than k. Let
D denote cvx(W · p) and C be the set of critical points of u. We divide the
proof in five steps.
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i) u(C) is a finite union of (k − 1)-polyhedra and ∂D⊂ u(C) ⊂ D. Since
u(C) is compact, it follows that D \ u(C) is open in νp.
For any 1-face σ of νp and q ∈ W · p, Sq,σ is an isoparametric submanifold of
codimension k − 1 by Fact 1ii), so by induction hypothesis and by Fact 1ii)
u(Sq,σ ) is a k−1-polyhedron in νp. The first assertion above follows because
the lemma tells us that

u(C) = ∪q∈W ·p{u(Sq,σ)|σ is a 1-face of some Weyl chamber of νp}.

To show that ∂D⊂ u(C), because of the lemma it is enough to show that

∂D ⊂ ∪q∈W ·p{u(Sq,σ)|σ is a 1-face of the Weyl chamber containing q}.

∂D is a union of k − 1-polyhedra. Let µ be one of them and a an outward
pointing vector in νp normal to µ. Then 〈a, ·〉 has an absolute maximum ex-
actly on u−1(µ), which according to Fact 2ii) is Sp,γ where γ is the smallest
face of the Weyl chamber of p containing a. Now the assertion follows from
Fact 1iv).

ii) ∂(u(M)) ⊂ u(C).
Let x ∈ ∂(u(M)) ⊂ u(M), x /∈ u(C). Then x = u(q) for some regular point
q ∈ M of u. So, since u is a submersion at q, x = u(q) lies in the interior of
M , a contradiction.

iii) u(M) ⊂ D.
By i) u(C) ⊂ D, and by ii) ∂(u(M)) ⊂ u(C), so ∂(u(M)) ⊂ D, and the
assertion follows because u(M) is compact and D convex.

iv) Let O be a connected component of D \ u(C). Then O ⊂ u(M) or
O ∩ u(M) = ∅.
D \ u(C) is open in νp by i), so O is open, so O ⊂ u(M) ⇔O ⊂ u(M)◦ and
O ∩ u(M) = ∅ ⇔O ∩ u(M)◦ = ∅ (here u(M)◦ denotes the open hull of u(M)
in νp). Suppose that both statements above are not true. Then O∩u(M)◦ is
a nonempty proper subset of O. Since O \ u(M)◦ is nonempty, there is a se-
quence (yn) in O∩u(M)◦ converging to a point y ∈ O\u(M)◦, and y ∈ u(M)
because u(M) is compact. But y /∈ u(C) because otherwise y ∈ O∩u(C) = ∅,
and by ii) ∂u(M) ⊂ u(C), so we have y ∈ (u(M) \ ∂u(M)) = u(M)◦, a con-
tradiction.
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v) D \ u(C) ⊂ u(M).
Suppose not. Then by iv) for a connected component O of D \u(C) we have
O∩ u(M) = ∅. By i) the boundary of O is a union of (k− 1)-polyhedra. Let
µ be one of these and t the outward pointing unit vector normal to µ. The
function 〈t, ·〉 on M has a local minimum on µ becuase t is outward pointing
and O is open. By Fact 2ii) it has a global minimum there, say c. So u(M) is
contained in {y ∈ νp|〈y, t〉 ≥ c}, and since ∂D ⊂ u(M) by i) the same holds
for ∂D and therefore for D. Since t is outward pointing there is a face of
O ⊂ D contained in {y ∈ νp|〈y, t〉 ≤ c} , so M ⊂ {y ∈ νp|〈y, t〉 = c}, which
is contradition to the fact that M is full in Rn+k .

Final remarks We notice that, in the setting of Theorem 2, the fibers
of the moment map J are connected [A]. This is not true in general for the
orthogonal projection u : M → νp of an isoparametric submanifold M , an
easy example being S1 ⊂ R2.
Given a Hamiltonian action of a compact Lie group on a symplectic mani-
fold, one can apply symplectic reduction to obtain new interesting symplectic
manifolds. This is an important tool in symplectic geometry. There does not
seem to be a way to apply a similar construction to an isoparametric sub-
manifold M , since - even though the projection u : M → νp plays the role of
the moment map - there is no Lie group acting on M in general.
Given the setting of Theorem 2 and v ∈ T , knowing J(·)v one can recon-
struct the (symplectic) action of {exp(tv)|t ∈ R} ⊂ T on N by integrating
the vectorfield vN given by vN(p) = d

dt
|t=0((exp(tv) · p). In the setting of

Theorem 3, in the attempt to construct some kind of action on M , one could
try to consider the flow of the Riemannian gradient of the height function
〈·, a〉 (where a ∈ νp), but - beside not giving a generalisation of the case of
coadjoint orbits - this flow does not usually preserve the Riemannian struc-
ture of M , as can be seen considering M = S2.
In conclusion, the analogy between isoparametric submanifolds and symplec-
tic manifolds seems to be mostly limited to the convexity theorem.
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