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The theory of Gromov-Witten invariants has its origins in Gromov’s pioneer-
ing work. Encouraged by conjectures coming from physicists, it took a while
until a rigorous mathematical foundation was laid. The aim of this short survey
is to present some of the results of the last decade concerning this field.
Gromov-Witten invariants count holomorphic maps satisfying certain require-
ments from Riemann surfaces into symplectic manifolds M . Usually one wants
the domain to have a given form and the image to pass through fixed homology
cycles on M . When the appropriate number of constraints is imposed there
are only finitely many maps satisfying them. This count is the corresponding
GW invariant. To define these invariants one introduces an almost complex
structure J on M compatible with the symplectic form. Then one can form the
moduli spaces of J-holomorphic (or, more generally (J, ν)-holomorphic) stable
maps from curves into M . The construction of a nice compactification and the
topology of these spaces are presented in Section 1.
In Section 2 we define GW invariants (also called correspondences by B. Siebert)
as homology classes of the moduli spaces of stable curves. A comprehensive de-
scription of the recursive relations satisfied by the invariants is far beyond the
aim of this survey, but we however talk about the gluing equation, whose main
idea is fairly easy to grasp intuitively: a map with reducible domain can be re-
garded as 2 separate maps with different domains, whose points corresponding
to the node have the same image in M .
In the last 2 sections we quote more recent results on the theory of relative
Gromov-Witten invariants: they count maps which in addition to our usual re-
quirements intersect a given codimension 2 submanifold V ⊂M with prescribed
multiplicities. To construct a “nice” moduli space parametrizing these types of
maps we restrict to some pairs (J, ν) compatible with V in a sense to be made
precise. After defining the connected sum of 2 given n-dimensional manifolds,
in our last theorem we write the invariants of their connected sum in terms of
the relative GW invariants of the initial manifolds.

1 Stable holomorphic curves

Let (M,ω) be a symplectic manifold with an almost complex structure J tamed
by ω, that is ω(v, Jv) > 0 for any tangent vector v. Let Σ be a closed Riemann
surface with complex structure j. A map φ : Σ →M is called J holomorphic if
it satisfies the homogeneous equation:

1

2
(dφ+ J ◦ dφ ◦ j) = 0.

In general the space of J- holomorphic maps Σ → M fails to be compact.
For example in the case Σ = CP1 there is a non-compact group (namely
Aut(CP1) = PGL(2)) which acts on these spaces by reparametrization. More
important, these spaces are not compact because of the appearance of ”bubbles”
as limits of maps. The classical example of bubbling off in algebraic geometry is
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the degeneration of the family of (complex) plane quadrics xy = ε into a pair of
lines as ε = 0. The problem of finding an appropriate compactification of these
spaces was solved by Gromov in [1]. Essentially we allow singular Riemann
surfaces which we call “bubble domains”. It is also convenient to introduce
marked points on the domain in order to obtain a finite automorphism group
of the map.

Definition 1.1. (C, x1, x2 . . . xn, φ) is called a stable J-holomorhpic curve with
n marked points if the following conditions hold:

• C is a reduced connected complete algebraic curve with at most ordinary
double points as singularities;

• xi is a regular point of C for every i;

• φ : C →M and for every irreducible component of C the restriction of φ
to that component is J-holomorphic;

• Aut(C, x1 . . . xn, φ) := {σ : C → C biregular/σ(xi) = xi and φ ◦ σ = φ} is
finite.

The condition on the finiteness of the automorphism group is called the sta-
bility condition. In down-to-earth terms it says that every rational component
contracted by φ (i.e. the restriction of φ to that component is constant) con-
tains at least 3 marked points. If we take M = {pt} we get the spaces of stable
algebraic curves Mg,n introduced by Mumford. The universal curve over this
space is Mg,n+1 with the morphism given by forgetting the last marked point.
We define the genus of (C, x1 . . . xn, φ) to be the arithmetic genus h1(C,OC) of
C.
One can think think of bubble domains as obtained by pinching a set of non-
intersecting embedded circles in a smooth 2 manifold. The following definition
formalizes this idea:

Definition 1.2. A resolution of a (g, n) bubble domain B with d nodes is a
smooth oriented genus g manifold together with d disjoint circles γl and n
marked points disjoint from γl and a resolution map:

r : Σ → B

that respects orientation and marked points, takes each γl to a node of B and
restricts to a diffeomorphism on Σ − ∪γl.

Gromov also endowed these spaces with a topology (called Gromov topol-
ogy). Roughly, a sequence of Ji-holomorphic maps (Σ, φi) converges to a stable
J-holomorphic map (B, φ) with bubble domain B and resolution r : Σ → B if
the area of the sequence is bounded, Ji → J , and there are diffeomorphisms ψi of
Σ preserving orientation and marked points such that the modified subsequence
(Σ, φi ◦ ψi) converges to a limit

Σ → B →M.

This convergence is everywhere C0 and C∞ on compact sets disjoint from
the collapsing circles γl of the resolution. The “symplectic area” (integral over
the image of ω) of the image is preserved in the limit.

2



We are now able to state the compactness theorem. For this, let A ∈ H2(M ; Z)
and define Chol

g,n(M,A) to be the space of J-holomorphic curves of genus g with
n marked points such that φ∗[C] = A.

Theorem 1.3. If J is tamed by some symplectic form ω, the space Chol
g,n(M,A)

with the Gromov topology is compact and Hausdorff.

Of course we want to give Chol
g,n(M,A) the structure of a manifold. This is not

possible because there are maps (C, x, φ) with non-trivial automorphism group.
However we can locally give it the structure of an oriented orbifold. Specifying
charts around a generic point (C, x, φ) ∈ Chol

g,n(M,A) is quite technically involved.
The main idea is that we can split the deformation of a map (C, x, φ) into the
deformation of the (possibly not stable) underlying curve (C, x) (to a “less
singular” one (C ′, x)) and the deformation of a map from C ′ to M . Hence the
space of stable maps is locally modeled by the product of Mg,n and the set of
J holomorphic maps from the fibers of the universal curve which was proved in
[6] to be a manifold. Moreover, one can prove that the strata Sk consisting of
maps whose domains have k double points are suborbifolds of real codimension
2k.
It is often convenient to look at the solutions of the perturbed equation

∂Jφ =
1

2
(dφ+ J ◦ dφ ◦ j) = ν

We call the maps satisfying the above equation (J, ν)-holomorphic and the cor-
responding moduli space Cν

g,n(M,A).

2 Absolute Gromov-Witten invariants

To be able to define Gromov-Witten invariants we need to make sense of a
fundamental class [Chol

g,n(M,A)]. To get enumerative results one should know
the dimension of these spaces.

Theorem 2.1. If g = 0 then the (real) dimension is:

dim(Chol
0,n(M,A)) = 2c1(TM) · A+ (1 − g)(dim(M) − 6) + 2n

where the right hand side is called the Riemann-Roch dimension.

The Riemann Roch dimension is what we expect to get just by a naive com-
puation. However in general the spaces Chol

g,n(M,A) can be very singular and
have different dimension that the expected one. It turns out that there is al-
ways a well defined virtual fundamental class that lives in the corect dimension.
Its rigorous construction was done by several authors ( e.g. Siebert in [7]) using
different approaches (and slightly different assumptions on M).

Notice that these spaces come with natural morphisms :

Chol
g,n(M,A)

p

��

ev
// Mn

Mg,n

3



where ev((C, x1 . . . , xn, φ)) = (φ(x1), . . . , φ(xn)) is the evaluation at the n
marked points and p is the morphism which sends a point (C, x1 . . . , xn, φ)
to its underlying curve (eventually stabilizing).

Definition 2.2. The maps

H∗(M)⊗n → H∗(Mg,n)

(α1 ⊗ . . .⊗ αn) 7−→ p∗([C
hol
g,n(M,A)]virt ∩ ev∗(α1 × . . .× αn))

are called Gromov-Witten correspondences (or Gromov-Witten invariants) of
(M, J).

Remarc 2.3. The symplectic approach given above to the Gromov-Witten
invariants is more involved than the algebraic one, in which one works with al-
gebraic varieties, stacks and does intersection theory in the Chow ring. However
one expects that for complex projective manifoldsM (to which both approaches
apply) the algebraic and symplectic virtual fundamental class agree. This far
from obvious fact was proved by B. Siebert in [8].

Alternatively one can define equivalent objects using Poincare duality. For
example they can be seen as a homomorphism:

GWg,n,A,M : H∗(M)⊗n ⊗H∗(Mg,n; Q) → Q

given by:

GWg,n,A,M

(
α1, . . . , αn; β

)
:=

∫

[Chol
g,n(M,A)]virt

ev∗1(α1) ⌣ . . . ⌣ ev∗n(αn) ⌣ p∗PD(β)

where PD(β) denotes the Poincare dual of β. The geometric interpretation is as
follows: for cycles β ⊂ Mg,n and A1, . . . , An ⊂ M Poincare dual to α1, . . . , αn

it counts (with signs) the “expected” number of J holomorphic maps (C, x, φ)
of genus g with (C, x) ∈ K and φ(xi) ∈ Ai. “Expected” means that this agrees
with the actual number in nice conditions, for example when Chol

g,n(M,A) has
the expected dimension (e.g. when g = 0) and is transversal to K ×A1 . . .×An

under p × ev. Usually these numbers are called Gromov-Witten invariants.
Unfortunately the constraints imposed on the maps fail to be transversal at
points corresponding to multiple covered maps or at constant maps (sometimes
called ghosts). Ruan and Tian proved that, for generic ν , the cut down moduli
space obtained by imposing the above constraints on Cν

g,n(M,A) is a manifold,
consisting of finitely many points that, counted with signs, give an invariant
independent of ν .

Example 2.4. The easiest case is g = 0 and A = 0 (i.e constant maps).
Since every stable constant map must have at least 3 marked points M0,n = ∅
for n < 3 hence the corresponding invariants are 0. For n > 3 the dimension
formula from theorem 2.1 says that the cycles Ai Poincare dual to αi have the
sum of their codimensions bigger than dim M , hence they do not intersect when
in general position. The only non-zero invariant are for n = 3 and they count
triple intersections of Poincare duals:

GW0,3,0,M(α1, α2, α3) =

∫

M

α1 ⌣ α2 ⌣ α3.
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The GW invariants depend on J . However it turns out their nature is sym-
plectic. Recall that (M,ω) and (M ′, ω′) are symplectic deformation equivalent
if there is a diffeomorphism ρ : M → M ′ and a one-parameter family of sym-
plectic forms ωt on Msuch that ω0 = ω and ω1 = ρ∗ω′. Siebert showed in
[7] that the GW invariants are independent of changes J inside the symplectic
deformations class:

Theorem 2.5. The GW-correspondences are invariants of the symplectic de-
formation type of (M,ω).

The GW invariants satisfy some recursion relations which allow us to reduce
their computation to some easier cases. We will not elaborate on the whole set
of axioms, but just sketch the ideas lying behind the so-called gluing equation,
which counts contributions coming from maps with reducible domains in the
genus 0 case. Given 2 curves C1 ∈ M0,n1+1 and C2 ∈M0,n2+1 with n1 +n2 = n
we construct a new curve in the boundary stratum of M0,n by identifying the
last marked points. So for every partition I = I1 ∪ I2 of the n marked points
with |Ii| ≥ 2 we get a well defined map:

ξI : M0,n1+1 ×M0,n2+1 →M0,n.

To be able to glue 2 points in the corresponding product of the moduli spaces of
maps we need to require that the last marked points in C1 and C2 to be sent to
the same point in M . This can be rephrased by saying that evn1+1 × evn2+1 ∈
∆ ⊂ M ×M , where ∆ is the diagonal in M ×M . The cohomology class of ∆
can be expressed as follows: fix a basis e0, . . .eK of H∗(M), let

gµσ :=

∫

M

eµ ⌣ eσ

and denote by gµσ the inverse matrix ; then we have:

[∆] =
∑

gµσeµ ⊗ eσ .

If we fix 2 homology classes βi ∈ H∗(M0,ni+1) the above considerations yield
the formula:

GW0,n,A,M

(
α1, . . . , αn; ξI∗(β1 ⊗ β2

)
= ε(I, α)

∑

A1+A2=A

∑

eµ,eσ

GW0,n1+1,A1,M

(
{αi}i∈I1

; β1

)
gµσGW0,n2+1,A2,M

(
{αi}i∈I2

; β2

)

where we define:

ε(I, α) = (−1)♯{j<i|i∈I1,j∈I2,deg(αi)deg(αj)∈2Z+1}

and we throw it in to fix the sign coming from permuting odd degree cycles in
the integrals. Moreover let’s consider the morphism π : M0,n → M0,4

∼= CP1

that forgets all but the first 4 marked points and define β := PD(π∗PD([pt]).
M0,4 contains 3 points corresponding to curves with 2 reducible components:
they are distinguished by the pairs of marked points on each component i.e.
one of them has the pair {1, 2} lying on one component and {3, 4} on the other
component etc. Since any 2 points are equivalent in the homology of CP

1 we

5



can deduce that the corresponding cycles β1 , β2, β3 obtained by pull-back with
π are equivalent. Fortunately the homology of M0,n is well understood; for
example β1 consists of cycles whose points are curves with (at least) 2 irreducible
components, such that the pairs {1, 2} and {3, 4} lie on separate components
and the other marked points are distributed anyway on the coponents etc. One
can write:

β1 =
∑

1,2∈I1

3,4∈I2

ξI∗([M0,n1+1 ]⊗ [M0,n2+1])

where I is a partition of the marked points. Carrying the equivalence β1 = β2

to the definition of GW invariants and combining it with the splitting formula
stated above we get the gluing formula:

GW0,n,A,M

(
α1, . . . , αn; β1

)
= GW0,n,A,M

(
α1, . . . , αn; β2

)

or if we unravel it:

∑

1,2∈I1

3,4∈I2

ε(I, α)
∑

A1+A2=A

∑

µ,σ

GW0,n1+1,A1,M

(
{αi}i∈I1

, eµ; [M0,I1+1]
)
·

·gµσGW0,n2+1,A2,M

(
{αi}i∈I2

, eσ; [M0,I2+1]
)

=
∑

1,3∈I1

2,4∈I2

ε(I, α)
∑

A1+A2=A

∑

µ,σ

GW0,n1+1,A1,M

(
{αi}i∈I1

, eµ; [M0,I1+1]
)
·

·gµσGW0,n2+1,A2,M

(
{αi}i∈I2

, eσ; [M0,I2+1]
)

where we’ve denoted by M0,I1+1 the moduli space of curves containing the ob-
vious marked points. Although these formulas look ugly, most of the summands
vanish for dimensional reasons. They were used to prove Kontsevich’s nice re-
cursive formula for the number Nd of degree d (complex) curves in CP2 through
3d− 1 points in general position:

Nd =
∑

d1+d2=d

[( 3d− 1

3d1 − 1

)
d2
1d

2
2 −

(
3d− 1

3d1 − 2

)
d3
1d2

]
Nd1

Nd2

Ruan and Tian managed in [6] to extend the formulas for the numbers Nd in
an arbitrary dimensional projective space PN .
It is often convenient to encode all the invariants in a generating series; for this
let NH2(M) denote the Novikov ring of M ; the elements of NH2(M) are linear
combinations

∑
cAtA over A ∈ H2(M,Z) where cA ∈ Q, tA are formal variables

satisfying tAtB = tA+B and cA = 0 if ω(A) < 0. Dualizing in the definition 2.2
and summing after all A we get maps:

GWg,n : H∗(Mg,n) ⊗H∗(Mn) → NH2(M)

We can also set M := ∪g,nMg,n and let T(M) denote the total tensor algebra
T(H∗(M)). Now introduce a new variable λ to get a map:

GWM : H∗(M) ⊗ T(M) → NH2(M)[λ]
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defined by the series:

GWM =
∑

A,g,n

1

n!
GWg,n,A,MtAλ

2g−2.

This turns out to be extremely useful when counting maps with disconnected
domains. Such maps occur for example in [9]. To extend GW invariants to this

more general case, define M̃χ,n to be the space of all compact Riemann surfaces
of Euler characteristic χ with finitely many unordered components and with a
total of n ordered marked points. For each surface, after fixing an ordering of
its components the location of the marked points defines an ordered partition
π = (π1, . . . , πl) of n. Hence

M̃χ,n =
⊔

π

⊔

gi

(Mg1,π1
× . . .×Mgl ,πl

)/Sl

where the sums are taken over all partitions of n, respectively over all gi such
that

∑
(2−2gi) = χ. The symmetric group acts by permuting the components.

Then one can define the “Gromov-Taubes” invariant

GTM : H∗(M̃) ⊗T(M) → NH2(M)[λ]

by setting:
GTM := eGWM .

3 Relative Gromov-Witten invariants

Ionel and Parker managed to extend the above definitions to invariants of (M,ω)
relative to a codimension 2 submanifold V ([2]). Curves in general position will
intersect V in a finite collection of points. The relative invariants still count
(J, ν)-holomorphic curves but also keep track of how those curves intersect V .
The construction can not be done for generic (J, ν) but rather for some special
pairs “compatible” with V in the sense of the definition 3.1. Let I be the set
of such (J, ν). The universal moduli space of stable maps UCg,n(M) → I is the
set of all stable (g, n) maps who are (J, ν)-holomorphic for some (J, ν) ∈ I.
Denote the orthogonal projection onto the normal bundle NV by ξ 7→ ξN . Also
let ∇ be the pull-back connection on φ∗TM and define ∇J = ∇ + 1

2 (∇J)J .

Definition 3.1. Let IV be the submanifold of I of pairs (J, ν) satisfying the
following conditions:

• J preserves TV and νN |V = 0 ;

• for all ξ ∈ NV , v ∈ TV and w ∈ TC:

[(∇ξJ + J∇JξJ)(v)]N = [(∇vJ)ξ + J(∇JvJ)ξ]N

[∇ξν + J∇Jξν)(w)]N = [(J∇ν(w)J)ξ]N
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The last 2 conditions are required for technical reasons related to the varia-
tion of these maps. The first condition means that V is a J-holomorphic sub-
manifold and that (J, ν)-holomorphic curves in V are also (J, ν)-holomorphic
curves in M . In particular with this definition any (J, ν)-holomorphic map into
V is holomorphic as a map into M . The first question to ask is whether there
exist such “good pairs” (J, ν). The answer is given in the following

Proposition 3.2. The space IV is non-empty and path-connected.

We need to exclude from the definition of our invariant maps which have
components mapping entirely to V :

Definition 3.3. A stable (J, ν)-holomorphic map is called V regular if no com-
ponent of its domain is mapped entirely into V and if none of its special points
(i.e. marked or singular) is mapped into V .

The V -regular maps of class A ∈ H2(M,Z) form an open subset of the space
of stable maps. We denote it by CV (M,A). For each V -regular map φ the
inverse image φ−1(V ) consists of l distinct isolated points pi. Denote by si their
multimplicity, i.e. their order of contact of the image of φ with V at pi. We
consider s = (si)i=1,l and define the degree, length and order of s by:

deg(s) =
∑

si l(s) = l |s| = s1s2 . . . sl.

These vectors s label the components of CV (M,A). Associated to each s
such that deg s = A · V is the space

CV
g,n,s(M,A) ⊂ Cg+l(s)(M,A)

of all V - regular maps such that φ−1(V ) consists of exactly the points pi, each
with multiplicity si. Forgetting these last s points defines a projection

CV
g,n,s(M,A) → CV

g,n(M,A)

onto one component of CV
g,n(M,A), who is a disjoint union of such components.

Notice that the images C1 and C2 of 2 regular maps can be distinguished by
their intersection points with V , their homology class A and moreover by the
class [C1♯(−C2)] ∈ H2(M\V ). The next construction is meant to give a space
which keeps track of all this data.

Construction 3.4. Recall that the domain of a map has n + l(s) marked
points, the last l(s) of which are mapped into V .

• Let iv be the intersection map

iv : CV
g,n,s(M) → Vs

(C, x1 . . . xn, p1 . . . pn, φ) 7→ ((φ(p1), s1), . . . , (φ(pl), sl))

Here Vs is the space of all pairs ((v1, s1) . . . (vl, sl)) such that vi ∈ V .
Obviously Vs is diffeomorphic with V l(s). If we take the union over all
sequences s we get a map

iv : CV
g,n(M,A) → SV

where

CV
g,n(M,A) =

∐

A

∐

s

CV
g,n,s(M,A) and SV =

∐

s

Vs
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• Choose D(ε) the ε disk bundle in the normal bundle of V regarded as a
tubular neighbourhood. Then choose a diffeomorphism of M\D(ε) with
M\V . Set:

S := ∂D(ε) and M̂ := [M\D(ε)] ∪ S

Then M̂ is compact with ∂M̂ = S.

• The appropriate homology theory (which is built, roughly speaking from
chains which intersect V at finitely many points) gives us a map

ρ : H2(M̂, S∗) → D

where D is the space of divisors on V (i.e. finite collections of points,
counted with signs and multiplicities) and S∗ is S with the disjoint union
topology of its fiber circles.

We are now able to define HV
M := H2(M̂, S∗) ×D SV where SV → D is the

obvious map.

The space HV
M comes with a well-defined map

h : CV
g,n(M) → HV

M

which lifts the intersection map iv.
Of course HV

M has components labeled by A and s corresponding to the restric-
tion of the maps:

h : CV
g,n,s(M,A) → HV

M,A,s.

We want to compacitfy the space CV
g,n,s(M,A). One way to do this is to take

its closure C
V

g,n,s(M,A) ⊂ CV
g,n+l(s)(M,A) in the space of stable maps. Basically

there are 3 types of maps that can occur in the boundary stratum:

• stable maps with no components or special points in V ;

• stable maps with smooth domain which is mapped entirely into V ;

• maps with some components on V and with some components off V .

By analyzing each type of map, Ionel and Parker managed to show that the

irreducible parts of the frontier C
V

g,n,s(M,A)\CV
g,n,s(M,A) have codimension at

least 2. This proves that the compactification space carries a well-defined virtual

fundamental class. They call C
V

g,n,s(M,A) the space of V -stable maps. Their
main result is the following:

Theorem 3.5. For a generic (J, ν) ∈ IV the image of C
V

g,n,s(M,A) under the
map

p× ev × h : M
V

g,n,s(M,A) →Mg,n+l(s) ×Mn ×HV
M,A,s

defines an element

GWV
M,A,g,n,s ∈ H∗(Mg,n+l(s) ×Mn ×HV

M ; Q)

of real dimension

2c1(TM) · A + (dimM − 6)(1 − g) + 2(n+ l(s) − degs).

This homology class is independent of generic (J, ν) ∈ IV . For each closed
symplectic manifold (M,ω) with a codimension 2 submanifold V , and for each
g, n we call the above homology class the relative invariant of (M,V, ω).
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Again, as it happens for the absolute case, the relative invariants are un-
changed under symplectic isotopies. Generaly we say that (M,V, ω) is deforma-
tion equivalent with (M ′, V ′, ω′) if there is a diffeomorphism ϕ : M ′ →M such
that ((M ′, V ′, ω′) is isotopic to (M ′, ϕ−1(V ), ϕ∗ω).

Proposition 3.6. The relative invariants depend only on the symplectic defor-
mation class of (M,V, ω).

One can encode all the relative invariants in a series; the total relative in-
variant is a map:

GWV
M : H∗(M) ⊗ T∗(M) → H∗(H

V
M ; Q[λ]);

if we think of GWV
M,A,g,n,s ∈ H∗(HV

M,A,s) then the we have the expansion:

GWV
M =

∑

n,g

1

n!

∑

A,s
degs=A·V

1

l(s)!
GWV

M,A,g,n,stAλ
2g−2.

The corresponding Gromov-Taubes invariant is again defined by the exponential

GTV
M := eGWV

M .

Example 3.7. The Hurwitz numbers are examples of GW invariants of CP1

relative to several points in CP1.

The classical Hurwitz number Ng,d counts the number of smooth genus g
curves with a fixed ramification divisor in general position. More generally, if
α is an unordered partition of d then one can use relative GW invariants tech-
niques to compute the number of smooth degree d maps from a genus g curve to
CP1 with the ramification above a fixed point P0 ∈ CP1 as specified by the par-
tition α and simple branching at other d+l(α)+2g−2 points in general position.

4 The connected sum formula

Ionel and Parker continue their remarkable work in [3]. They deduce a formula
for the GW invariants of the symplectic sum of 2 manifoldsM1 and M2 in terms
of the relative GW invariants of M1 and M2. Let’s first define the symplectic
sum of 2 manifolds:

Construction 4.1. Assume that M1 ad M2 are 2n-dimensional symplectic
manifolds each containing symplectomorphic copies of a (2n − 2)-dimensioanl
submanifold (V, ωV ). assume there exists a symplectic bundle isomorphism
ψ : (NM1

V )∗ → NM2
V .

Then, given the above data, there exists a symplectic manifold Z of dimension
2n+ 2 and a fibration λ : Z → D over a disk D ⊂ C such that for all λ 6= 0 the
fibers Zλ are smooth compact symplectic submanifolds- the symplectic connect
sums and the central fiber Z0 is the singular symplectic manifold M1 ∪V M2.

Now, one can study limits of sequences of (J, ν)-holomorphic maps into Zλ as
λ→ 0. Since the limit map needn’t be connected, we expect to deduce a formula
involving the Gromov-taubes invariants GTMi

rather than the GW invariants.
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To write down the explicit formula we need to construct more objects.
Notice that given bubble domains C1 and C2, not necessarily connected or
stable, with Euler characteristic χi and ni + l marked points we can construct
a new curve by identifying the last l marked points and then forgetting their
marking and considering them nodes. We get this way a map:

ξl : M̃χ1,n1+l × M̃χ2,n2+l → M̃χ1+χ2,n1+n2
.

Taking the union for each χi, ni we get an attaching map ξl : M̃×M̃ → M̃ for
each l.
One can glue maps φ1 into M1 and φ2 into M2 provided that the images meet V
at the same points with the same multiplicity. The domains glue according to
the attaching map ξ defined above, while the images determine elements of the
intersection homology spaces HV

M1,A,s and HV
M2,A,s. The following map records

the effects of this gluing on the homology level:

Definition 4.2. The convolution operator

∗ : H∗(M̃ ×HV
M1

; Q[λ])⊗H∗(M̃ ×HV
M2

; Q[λ]) → H∗(M̃;NH2(Z)[λ]

is given by

(k ⊗ h) ∗ (k′ ⊗ h′) =
∑

s

|s|

l(s)!
λ2l(s)(ξl(s))∗(k ⊗ k′)〈h, h′〉s.

The last ingredient needed in the formula is the count of the contribution
coming from maps having components who lie entirely in V as λ → 0. These
maps are not counted in the relative invariants of M1 or of M2. The analysis of
this difficulty shows that the contribution is related to a certain GT invariant
of the projective bundle PV := P(NXV ⊕ C), which we will denote SV . For
details we refer the reader to [3], definition 11.3. Before stating the main result
we need to make sense of a definition:

Definition 4.3. A constraint α ∈ T∗(Z) is said to separate as (αM1
, αM2

) if
there exists α0 ∈ T∗(Z0) such that π∗α0 = α and π∗

0(α0) = (αM1
, αM2

) ∈
T(H∗(M1) ⊕H∗(M2)), where π and π0 are the projections Z → Z0 and M1 ⊕
M2 → Z0.

Theorem 4.4. Let Z be the symplectic sum of (M1, V ) and (M2, V ) and suppose
α ∈ T∗(Z) separates as (αM1

, αM2
). Then the GT invariant of Z is given in

terms of relative invariants of M1 and M2 by:

GTZ(α) = GT(M1)
V (αM1

) ∗ SV ∗GTV
M2

(αM2
)

where * is the operator from definiton 4.2.
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