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Abstract: The aim of this survey is to present current results on contact geometry

of 3-manifolds. We are particularly interested in the interaction of contact geometry

with foliation theory. Care has being taken to make this survey accessible to as wide

an audience as possible. We hope that, after reading this article, the reader will be able

to refer to current research.

At first glance, contact geometry and foliation theory belong to entirely dif-
ferent worlds. Given a manifold Mn and a (n-1)-distribution ξ on it, we would
like this distribution to be integrable in order to obtain a foliation. In contact
geometry the opposite is true, we want ξ to be nowhere integrable. Confoliations
are the middle ground of these two situations; we allow a bit of foliation and
a bit of contact geometry. This seems to be the worst case scenario: we would
not be able to use the techniques of foliation theory nor of contact geometry.
Quite the opposite happens, however. The interactions of these two theories is
a fertile ground where nice results of foliation theory (Reeb Stability theorem)
can be extended to confoliations and where a duality of tight contact structures
and taut foliations is present. Our first step will be to make the above notions
precise.

1 Foliation Theory

The idea of foliation theory is to break down a manifold M into immersed
submanifolds that fit together nicely; i.e. locally they look like a piled ream of
paper. It is hoped to get new insights about the manifold by looking at such
assembled subpieces.

Figure 1: A Foliated Torus
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Definition: A foliation F of dimension d (or codimension n) on a smooth mani-
fold Md+n is an maximal atlas compatible with the differential structure of M
such that the change of coordinates map from a chart (U, φ) to (V, ψ) is given
by a formula of the form

φ · ψ−1(x, y) = (f(x, y), g(y)) x ∈ Rd, y ∈ Rn

where by a compatible atlas one means that F ⊂ A if A is the differential
structure of M

1.1 Examples

(a) Given a nowhere vanishing vector field X on a compact manifold M , its
integral curves produce a foliation of the manifold

(b) More generally, by a k-dimensional distribution ξ on a manifold M , we
mean a function ξ : M → TM that assigns to each point p ∈M a k-dimensional
subspace of TpM such that for each p ∈M ∃ a neighborhood U of p and k vector
fields X1, ..., Xk that span ξp.

We say that two vector fields X and Y are sections of ξ if ∀p ∈ M,Xp

and Yp ∈ ξp. A theorem of Frobenius states that a k-distribution ξ produces a
k-dimensional foliation F if and only if for any two sections X and Y of ξ, [X,Y ]
is also a section of ξ

(c) Another important example for us is the Reeb foliation of the solid torus.
We will provide only a sketch of this foliation (Refer to [CN], [CC]):

Figure 2: Start with a foliation of a unbounded strip as above. Rotate to get a foliation of the
solid cylinder. Identify the bottom and the top.

A Reeb Component of a codimension one foliated 3-manifold is an embedded
solid torus foliated in the above manner. This concept plays a essential role on
the theory that follows.
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1.2 Important Notions in Foliation Theory

Definition: A Leaf L of a foliation F is an equivalence class of points of the
manifold M where two points p and q are considered equivalent if there are
finite many charts of F , say (U1, φ1), ..., (Un, φn), and points p = p1, ..., pn = q
where pi ∈ Ui for i = 1, ...n such that pi and pi−1 belong to φi(Rd×ri) for some
ri ∈ Rn.1

Example: The circles of Figure 1 above are the leaves of the foliation of the
torus. The twisted hyperboloids of the Reeb foliation (Figure 2) are leaves of
this foliation. The boundary torus is another leaf of the Reeb foliation.

Definition: A foliation F of codimension one on a closed manifold is called
taut if one can embed into it a transverse circle that intersects each leaf.

Theorem (Goodman [GO]): A codimension one foliation F of a closed 3-manifold
is taut if and only if it does not have a Reeb Component.

Definition: Note that if we have a d-foliation F of a (n + d)-manifold M then,
by considering the tangent spaces to each leaf, we get a d-distribution on M .
A transversely orientable foliation is a foliation such that its d-distribution is
transversely orientable.2

Theorem (Reeb Stability Theorem): Suppose that F is a transversely ori-
ented codimension one foliation of a compact connected manifold M . If F has a
compact leaf L with finite fundamental group then all leaves are diffeomorphic
to L. Furthermore, there is a submersion f : M → S1 such that the leaves of F
are the level sets f−1(θ). (refer to [CN] page 72)

The theorem bellow is a weak version of the one found in [ET] page 49. We
state it here to remark that the same result holds for tight contact structures.
Other properties that hold for both structures are discussed on Section 3. The
equivalent form for tight structures is discussed in the next section

Theorem (Thurston): Let F be a taut foliation on an oriented 3-manifold M(we
may view F as a distribution that generates the foliation). Let N be a closed
embedded orientable 2-surface N ⊂M then:

For N 6= S2, |e(F )[N ]| ≤ −χ(N)
For N = S2, e(F )[N ] = 0

Where χ(N) denotes the Euler characteristic of N and e(F )[N ] the value of the Euler

class e(F ) ∈ H2(M) evaluated on N .

1The leaves are immersed (sometimes embedded) submanifolds. [CN]
2Recall that a distribution ξ is called transversely orientable if there exists a distribution

η complementary to ξ which is orientable
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2 Contact Geometry

Contact geometry is essentially the opposite of foliation theory. It is con-
cerned with (n − 1)-distributions on n-manifolds (“hyperplane distributions”)
that fail to be integrable even locally.

In contrast with 1-distributions, where the theorem of existence of solutions
of differential equations asserts that locally one can always integrate a vector
field X, there exists 2-distributions that fail to be locally integrable as is shown
in the next example.

Example ([A], [ET], [S1], [S2]): Consider the vector fields

Xp =
∂

∂x

∣∣∣
p
− b

∂

∂z

∣∣∣
p

and Yp =
∂

∂y

∣∣∣
p

p = (a, b, c) p ∈ R3

They generate the following plane distribution:

We claim that this distribution cannot be integrated at any point. Just
notice the behavior a surface S tangent to ξ would have along the y-axis and
how fast it has to rotate on the xz-plane as we move along the y-axis. For
example, suppose 0 ∈ S. The reader should convince herself that in this case S
intersects the x-axis in a line segment. Let k be any point of S on the x-axis
besides 0. As in the drawing bellow, notice that we could travel along the y-axis
direction to the left of 0 and k through a straight line on S ∩ xy-plane. This
contradicts the fact that the plane distribution starts twisting as we move. The
reader is strongly encourage to work through the details of this argument.

Refer to [ET] for a light geometric study of such distributions and to [S2]
for a generalization of this example to a family of badly behaved plane distri-
butions. One can also refer to [E2] for the definition of two plane distributions
on R2 that are locally equivalent (in a sense made precise on the next section)
but for which there is no diffeomorphism f : R3 → R3 that sends one plane
distribution to another.
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2.1 An Algebraic Definition of Contact Structures

As in much of differential geometry, we will translate the geometrical notion of

contact geometry in algebraic terms using the cotangent bundle of the manifold. This

will also make our ideas more precise.

A tangent hyperplane Hp ⊂ TpM of a manifold M can also be defined by
specifying an element αp ∈ T ∗pM for which ker αp = Hp. For C∞ distributions
we can find for all p ∈ M a neighborhood U of p and a 1-form α on U so that
for any q ∈ U ker αq = Hq. Such an α is clearly not unique. It is easy to see
that a local 1-form may not be extended to the entire manifold.

On what follows, for simplicity of exposition more then for mathematical
necessity we will assume that given a hyperplane distribution ξ of M we can
always find a 1-form α of M such that ξp = ker αp ∀p ∈M . We will call such
1-form a defining 1-form of ξ

Suppose that ξ is a hyperplane distribution of M with defining 1-form α. If
for every two sections X and Y of ξ, [X,Y ] is also a section of ξ then by Frobe-
nius theorem ξ is integrable. In terms of the 1-form α we have

0 = α(X) = α(Y ) = α([X,Y ])

in view of the identity

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ])

ξ is integrable if and only if dα(X,Y ) ≡ 0 for all sections X and Y of ξ

As stated above this is the opposite of what we would like to have for a contact
structure. Hence we impose that dα be nondegenerate (symplectic) on ξ (i.e.
∀Xp ∈ ξp ∃Yp ∈ ξp such that dαp(Xp, Yp) 6= 0)

Definition: Given a hyperplane distribution ξ of M , (M, ξ) is a contact manifold
if there exists a defining 1-form α such that dα|ξp is non-degenerate for all p ∈M .
Such a 1-form is called a contact form.
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Theorem (Darboux’s Local Form of Contact Structures): All contact manifolds
of the same dimension are locally diffeomorphic. Namely, given two contact
manifolds (M, ξ) and (N, η) and points x ∈M and y ∈ N there exist neighbor-
hoods U of x, V of y and a diffeomorphism f : U → V that sends ξ|U to η|V .

Hence, to understand the local behavior of contact structures in 3-manifolds,
is enough to understand the contact structure of the previously discussed exam-
ple.

It is easy to see that if α∧dα 6= 0 then ξ is not integrable (just use the definition
of wedge product, argue by contradiction). Later we will need a stronger result:

Theorem [MS pg 105]: Let (M2n+1, ξ) be a hyperplane distribution with defin-
ing 1-form α. Then dα is nondegenerate if and only if α ∧ (dα)n 6= 0

Notice that for 3-manifolds the above equation becomes α∧ dα 6= 0. This will be
essential for the algebraic formulation of confoliations on 3-manifolds.

2.2 Tight and Overtwisted Contact Structures

The first step to understand contact 3-manifolds is Martinet’s theorem:

Theorem: Every 3-manifold admits a contact structure.

After this, contact 3-manifolds are classified as either overtwisted or tight for a
more detailed analysis. Overtwisted manifolds are fairly well understood, but
there are still many open questions about tight structures.

Definition: A 3-dimensional contact manifold (M, ξ) is called overtwisted if we
can embed a disk D (an overtwisted disk) in it in such a way that its interior is
transversal to ξ everywhere except at one point and its boundary is tangent to
ξ. If (M, ξ) is not overtwisted then it is called tight.

The standard picture for such an embedded disk on an overtwisted manifold
is the following:

Figure 3: The curves represent the foliation obtained by intersecting the 2-distribution with
the overtwisted disk. The dot represents the point where the disk fails to be transversal to
the distribution.
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2.2.2 Overtwisted Manifolds

There is a stronger form of Martinet’s theorem due to Bennequim that
states that every contact manifold can be deformed to an overtwisted struc-
ture ([B],[G]). Overtwisted contact structures have been completely classified
on 1989 by Eliashberg. We follow below his arguments of [E2].

Definition: Fix a point p and an embedded disk p ∈ D on a oriented con-
nected 3-manifold. Let Distr(M) be the space of all 2-distributions on M fixed
at point p provided with the C∞ topology. Let Cont(M) be the subspace of
Distr(M) consisting of contact structures of M and let Contot(M) be the sub-
space of Cont(M) consisting of overtwisted structures which have the disk D as
an overtwisted disk.

Theorem (Gray [Gr]): If M is a compact manifold then any two contact struc-
tures belonging to the same component of Cont(M) are isotopic

Theorem [E2]: The inclusion map of Contot(M) on Distr(M) is a homotopy
equivalence. In particular, two overtwisted structures on a closed manifold M
are isotopic if they are homotopic as plane distributions.

2.2.3 Tight Manifolds

Much of the current research on tight manifolds is concerned with the ex-
istence and construction of tight structures on a given manifold. The first
3-manifold that does not admit a tight contact structure was discovered in 2001

Theorem [EH]: The connected sum of the Poincaré homology sphere P with
−P does not admit a tight contact structure.

The classification of tight structures is known for some manifolds such as the
Lens Spaces ([H], [G]), S3, R3, RP 3, and S2 × S1 ([E3]) and 2-torus bundles
over S1 ([H], [G]).

The following theorem of Eliashberg [E2] extends Thruston’s theorem from
taut foliation to tight contact manifolds.

Theorem (Eliashberg): Let ξ be a tight contact structure on an oriented 3-
manifold M . Let N be a closed embedded orientable 2-surface N ⊂M then:

For N 6= S2, |e(ξ)[N ]| ≤ −χ(N)
For N = S2, e(ξ)[N ] = 0

Where χ(N) denotes the Euler characteristic of N and e(ξ)[N ] the value of the Euler

class e(ξ) ∈ H2(M) evaluated on N .
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3 Confoliations

Recalling section 2.1, a 2-distribution ξ of a 3-manifold is a contact struc-
ture if its defining 1-form α is such that α ∧ dα 6= 0, and it is a foliation when
α ∧ dα = 0.

Notice that a contact manifold is orientable since the sign of α ∧ dα is inde-
pendent of choice of α.

Definition: A positive confoliation of an oriented 3-manifoldM is a 2-distribution
ξ with a defining 1-form α such that α ∧ dα ≥ 0. Negative confoliations are
defined in the obvious way.

Example: The distribution ξ generated by X = ∂
∂x − y ∂

∂z and Y = ∂
∂y , as

considered on Section 2 above, has defining 1-form α = y dx+ dz (just take the
“cross product” ofXp with Yp). One easily calculates that α∧dα = −dx∧dy∧dz
and hence this is a negative confoliation.

Example: For a confoliation that is not a contact structure nor a foliation,
consider the “smooth step” function s : R → [0, 1], i.e. a C∞ function that is
zero on b ≤ 0, one for b ≥ 1 and strictly increasing between zero and one. Let
S(a, b, c) = s(b) and define a 1-form α by αp = bS(p) dxp + dzp for p = (a, b, c).
Then α ∧ dα = −(b∂S

∂y + S) dx ∧ dy ∧ dz, a negative confoliation.

This confoliation is a foliation with horizontal leaves on the region {(a, b, c) :
b < 0} and the contact structure on the previous example on the region {(a, b, c) :
b > 0}. One would say that this confoliation is a lamination on the set
{(a, b, c) : b ≤ 0}; a lamination is roughly speaking a foliation on a closed
subset of a manifold. In general the set {p : (α ∧ dα)|p = 0} is not laminated
by our confoliation since it may have empty interior. Hence, a confoliation is
not necessarily a way to break a 3-manifold into a lamination and a contact
structure.

As stated on the introduction, we can extend Reeb stability theorem to confo-
liations

Theorem (Reeb Stability Theorem for Confoliations): Suppose that a confo-
liation ξ on a closed oriented manifold M has an integral embedded 2-sphere S.
Then ξ is a foliation and (M, ξ) is diffeomorphic to S2 × S1 where the leaves
are the S2 × x0 slices. Reference [ET]

An essential ingredient to prove the Reeb Stability Theorem is the holonomy.
The holonomy also plays a role on the geometrical interpretation of confolia-
tions. To learn more about the holonomy refer to [CC] or [CN]. To learn how
the holonomy is used on confoliations refer to [ET].
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3.1 Relations between Taut and Tight Structures

First we will discuss a method employed for the creation of large quanti-
ties of taut foliations and tight contact structures.

Definition: Let (M, ξ) be a positive confoliation such that ∂W = M for some
compact symplectic manifold (W,ω). We call (W,ω) a symplectic filling of
(M, ξ) if M is oriented as the boundary of the canonically oriented symplectic
manifold (W,ω) and (ω|M )|ξ does not vanish. (We say that M is semi-fillable
if it just one of the connected components of ∂W )

Theorem; IF (M, ξ) is a integrable 2-distribution with a symplectic filling then
the foliation generated by ξ is taut. The converse is partially true. A taut man-
ifold is semi-fillable (it is not known if we could replace semi-fillable by fillable
in this case). Refer to [ET]

Theorem: If (M, ξ) is a contact manifold with a symplectic filling then (M, ξ)
is a tight contact manifold.

Until recently it was not known if the converse of this theorem would hold.
In 2002 [EH] proved:
Theorem: There are tight manifolds that are not symplectically fillable.

The relation between Taut and Tight structures is even stronger. Refer to
[HKM]

Theorem: If a 3-manifold carries a taut foliation, then it also supports a
tight contact structure

Theorem: If M is a 3-manifold with boundary then the converse of the above
theorem also holds. (the statement is not true in general, S3 supports a tight
contact structure but has no taut foliation)

These theorems together with the inequality involving the Euler characteris-
tic provide strong evidence that notions from taut foliations and tight structures
may be extended to confoliations. However, at this point even the definition of
tight/contact confoliation is an open problem. The reader is referred to [ET]
for a discussion of this matter together with more properties shared by tight
structures and taut foliations.
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ried geometry conference, Vol. 1 (Schnepfenried, 1982), 87–161, Astérisque,
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Boston, Inc., Boston, MA, 1985

[E1] Eliashberg, Y.: Symplectic topology in the nineties. Symplectic geom-
etry. Differential Geom. Appl. 9 (1998), no. 1-2, 59–88.

[E2] Eliashberg, Y.: Classification of overtwisted contact structures on 3-
manifolds. Invent. Math. 98 (1989), no. 3, 623–637.

[E3] Eliashberg, Y.: Contact 3-manifolds twenty years since J. Martinet’s
work. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165–192.

[EH1] Etnyre, J.; Honda, K.: Tight contact structures with no symplectic
fillings.Invent. Math. 148 (2002), no. 3, 609–626.

[EH2] Etnyre, J.; Honda, K.: On the nonexistence of tight contact struc-
tures. Ann. of Math. (2) 153 (2001), no. 3, 749–766.

[ET] Eliashberg, Y.; Thurston, W.: Confoliations. University Lecture Series,
13. American Mathematical Society, Providence, RI, 1998

[Ga] Gabai, D.: 3 lectures on foliations and laminations on 3-manifolds.
Laminations and foliations in dynamics, geometry and topology (Stony Brook,
NY, 1998), 87–109, Contemp. Math., 269, Amer. Math. Soc., Providence, RI,
2001.

[Gr] Gray, J.: Some global properties of contact structures. Ann. Math. 69
421-450 (1959)

[G] Giroux, E.: Structures de contact en dimension trois et bifurcations des
feuilletages de surfaces. Invent. Math. 141 (2000), no. 3, 615–689.

10



[GO] Goodman, S.: Closed leaves in foliations of codimension one. Com-
ment. Math. Helv. 50 (1975), no. 3, 383–388.

[Gv] Gromov, M.: Stable mappings of foliations into manifolds. Izv. Acad.
Naur SSSR. Ser. mat. 33, 1206 - 1209 (1969)

[H] Honda, K.: On the classification of tight contact structures. II. J. Dif-
ferential Geom. 55 (2000), no. 1, 83–143
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