QUIVER VARIETIES FROM A SYMPLECTIC VIEWPOINT

JOEL KAMNITZER

1. INTRODUCTION

We examine an interesting class of symplectic manifolds called quiver
varieties which were recently introduced by Nakajima [6]. These manifolds
are produced from directed graphs, which we call quivers. There are a
number of reason for the introduction of quiver varieties. They provide an
interesting class of spaces which includes many previously studied symplectic
manifolds. Also, they have connections with the study of moduli spaces
of vector bundles over projective varieties. Finally, there is an interesting
construction by Nakajima of representations of Kac-Moody Lie algebras and
certain quantum affine algebras using the homology of these quiver varieties
(see [7]).

Like many spaces arising naturally in representation theory, quiver vari-
eties can be studied using symplectic geometry or algebraic geometry. In
this paper, we focus on the symplectic geometry approach. We give a def-
inition of two flavours of quiver varieties using symplectic reduction. We
present polygon spaces and partial flag manifolds as particular examples of
these two flavours.

2. QUIVER VARIETIES

Definition 1. Let I' = (I, F') be an oriented graph, where I = {1,...,n} is
the set of vertices and F/ C I x I is the set of edges. If I' has no loop edges,
then we call I' a quiver.

A representation of a quiver I' is a choice of finite dimensional complex
vector space V; for each vertex ¢ € I and a linear map B;; : V; = V; for each
edge (¢,7) € E. For example:
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In some sense, this generalizes the notion of a representation of a group.
Recall that a representation of a group G is a choice of a vector space V
along with a linear map p(g) for each element of ¢ € GG, such that multi-
plication in the group corresponds to composition of the linear maps. So a
representation of (G is equivalent to a functor from the one object category
G, where the morphisms are group elements and composition of morphisms
is multiplication of group elements, to the category Vec of finite dimensional
complex vector spaces.

From our quiver I' we can freely generate a category Qr where the set of
objects is I and Hom(¢, 5) is the set of paths in I' from i to j. A represen-
tation of I' as defined above then corresponds to a functor from Qr to Vec.
Such a functor is made by assigning to some path the composition of the
linear maps assigned to the edges of the path.

For a finite group (G, the set of all representations of G up to isomorphism
naturally has the discrete topology of a lattice generated by the irreducible
representations. (This is because we have a correspondence between repre-
sentations and their characters and the characters form a discrete subgroup
of the inner product space of class functions). For quivers, the space of
representations of a quiver up to isomorphism is an interesting space which
we call a quiver variety.

Definition 2. Two representations ((Vi)ier, (Br)rer), (Wi)ier, (Ch)rer) of
I' are said to be isomorphic if there exist isomorphisms U; : V; — W; for
each i € I such that C;;U; = U;B;; for all (4,7) € E.

Note that given two different collections (Vi,...,V,), (Wi,..., W,), arep-
resentation of I' on (Vi,...,V,,) can be isomorphic to some representation
of I'on (Wy,...,W,) only if the dimensions of V; and W; agree for all 7. So
we may as well fix dimensions and then choose fixed vector spaces of those
dimensions.

Let v = (v1,...,v,) € N*. Let V = (V4,...,V,) be a collection of
complex Hermitian vector spaces with dim V; = v;.

Let Hom(V) = @y; j)ep Hom(Vi, Vj).

Let U(V) =U(Vq) X --- x U(V,,).

Define an action of U(V) on Hom(V') by:

(91,2 9n) - (Bij)ij = (9:Bijg; i

Note that Hom(V') is exactly the set of all representations of I' on (V)
and that two representations are isomorphic if and only if they are in the
same orbit under the action of GL(V'). Hence the set of isomorphism classes
of representations of I' of dimension v is in bijection with the GL(V') or-
bits on Hom(V'). This suggests we should consider the quotient space
Hom(V)/GL(V). However, in general this will be unsatisfactory as this
quotient will not possess as much geometrical structure as our original space.

Perhaps the most natural step at this point is to take the Geometric
Invariant Theory quotient of Hom (V') by GL(V) (see [5] for this approach).
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However by the Kirwan-Ness theorem we obtain a diffeomorphic space if we
instead proceed to define a symplectic structure and then form a symplectic
quotient by U(V) (see [7]). We will choose the symplectic approach here.

Since V;,V; are Hermitian vector spaces, Hom(V;,V;) has a Hermitian
form given by (A, B) = tr(AB*) where B* : V; — V; is the Hermitian adjoint
of B. Hence Hom(V;,V;) has a natural symplectic vector space structure
given by w(A, B) = 2Im(tr(AB~)). So Hom(V)) = ; jjep Hom(V;, V;) is a
symplectic vector space.

We wish to show that the action of U(V) on Hom(V) is Hamiltonian
and we wish to find its momentum map. This task is made simple by the
following lemmas:

Lemma 1. Let V,W be complex Hermitian vector spaces. Then the action
of U(V) on Hom(V, W) is Hamiltonian with momentum map:

u(B) = —B*B

where we have identified u(V)* with Hermitian operators on V wvia the trace
form.
The action of U(W) on Hom(V, W) is also Hamiltonian with momentum
map:
u(B) = BB*
Moreover the two actions commute.

The proof of this result is a straightforward computation using the def-
inition of a momentum map and our definition of the symplectic form on
Hom(V, W).

Lemma 2. Let M be a symplectic manifold. Suppose that we have Hamil-
tonian G, H actions on M with momentum maps 1, pig respectively. Sup-
pose also that the actions of G and H commute and that py is invariant
under the action of H and po is invariant under the action of G.

Then G x H acts on M with momentum map pu(p) = (u1(p), pa(p)) €
g dbh* = Lie(G x H)*.

Lemma 3. Let My, My be symplectic manifolds. Suppose that we have
Hamiltonian G actions on each of My, My with corresponding momentum
maps fi1, jha.

Then the diagonal action of G on My X My is Hamiltonian with momentum
map p(p1, p2) = p1(p1) + pa(p2)-

These lemmas follow easily from the definition and basic properties of
momentum maps.

Using these lemmas we can see that the U(V') action on Hom(V') is made
from Hamiltonian U(V;) actions on each Hom(V;, ;) as described in Lemma
1 (this action will be trivial if i # j and 7 # k). Then we use the third lemma
to produce for each 7 a Hamiltonian U(V;) action on Hom(V') and then use
the second lemma to get a Hamiltonian U(V) action on Hom(V').

Tracking what happens to the momentum map during this process shows
that the overall momentum map is given by:
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Note that the normal subgroup {(¢1,...,¢1) : t € U(1)} C U(V) acts triv-
ially on Hom (V') so we get an action of the quotient group G = U(V)/U(1)
on Hom(V'). Note the quotient map U(V) — G induces an inclusion of g*
into u(V)* as the subspace annihilating (1,...,1) € u(V).

Since our momentum map lands in this subspace, we have a Hamiltonian
G action on Hom (V) with the same momentum map.

Given (A1,...,A,) € R” with Ay +---+ A, = 0 we may perform reduction
at A = (A\1,...,A,1) € g* (as this is invariant under the coadjoint action).

Definition 3. The quiver variety for I' with dimensions v at level X is:

() = Hom(V)/ G = ™! (3)/G

We now consider the dimension of R)(v). Note that when we perform
symplectic reduction at a coadjoint invariant momentum level we decrease
the dimension of our space by twice the dimension of the group acting. In
our case, we see that, over R, dim Hom(V;, V;) = 2v;v; and dim U(V;) = v?.
Hence:

dim Ry (v) =2 Z viv; — 2 Zv?—l):—(v,C’v)—Q

(i,4)€E

where C'is the generalized Cartan matrix for I' defined by C; = 2 and —Cj;
equals the number of edges joining ¢ and j in the underlying graph of I’
(where we ignore orientation). It is known from theory of root systems that
the underlying graph is a simply-laced Dynkin diagram iff (v,Cv) > 0 for
all (v1,...,v,) # 0 and that the underlying graph for I' is an simply-laced
affine Dynkin diagram iff (v, C'v) > 0 for all choices (v1,...,v,). This is the
first suggestion that there is a relationship between quiver varieties and Lie
algebras. For now, just note that we should start with a graph that is not
a Dynkin diagram if we are to get anything interesting.

2.1. Polygon Spaces. Consider the graph:
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We choose dimensions v; = 1 for 1 < ¢ < m and v,,41 = 2. Hence

Hom(V)= P Hom(C,C? = (C*)"

i=1,....,m

We have U(V) = T™ x U(2) and hence G = T™ x U(2)/U(1) = T™ x
SO(3). By our prescription above, the momentum map is the function from
(C*)™ to R™ & u(2) given by:

(v1,e oy Um) — (|v1|27 e, |vm|2,v1v1k R I

We reduce at the point A = (Aq1,..., A, 0) with Ay + -+ A,y = 0,
applying the reduction in stages starting with the T™ action.

The T™ on (C%)™ is just a product of copies of the standard U(1) action
on C? so reducing at the level (A,...,\,,) gives us a product of spheres:
Sgl X - X Sfm of radii Ay, ..., Ap.

Now we must consider a SO(3) action on this product of spheres. It can
be shown that this is the standard diagonal action of SO(3) and that the
momentum map Sil X e X ng — R? is given by regarding each S, inside
R? = 50(3) and then summing the points.

If we think of an element of Sfl XX ng as a polygonal path in R?, then
the momentum map takes the endpoint of the path. So our momentum map
condition forces the path to retun to the origin. Hence the quiver variety
Rx(1,...,1,2) is simply the space of all polygons in R? of side lengths
Al,y..., Ay, up to rotation.

Hausmann and Knutson [1] have studied the topology and geometry of
polygon spaces. Knutson [2] has also studied more general star-shaped
quiver varieties where the single outlying vertices above are replaced by
strings of vertices all of which have dimension 1. He relates these quiver
varieties to partial flag manifolds and the combinatorics of honeycombs.

3. FRAMED QUIVER VARIETIES

We now introduce a modification of our notion of quiver variety.
Let v= (v1,...,v,) and w = (w1, ..., w,) be elements of N".
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Let V.= (Vq,...,V,,),W = (Wy,...,W,) be two collections of complex
Hermitian vector spaces with dim V; = v; and dim W; = w;. One thinks of
V; as the vector space assigned to vertex ¢ and W, and as a vector space
shadowing V; .

Let:

Hom(V, W)= €5 Hom(V;,V;) & ) Hom(V;, W,
(i)eE i€l

So we have assigned maps to each arrow in the quiver as well as a map

from each V; to its shadow vector space.

B
Vi—=V;

e
Wi Ws
The reason for introducing these shadow vector spaces originated in the work

of Kronheimer and Nakajima [3] on the the moduli space of vector bundles
over certain spaces. We will not pursue this connection any farther.

Let U(V) =U(Vy) x --- x U(V,,) as before.
Define an action of U(V) on Hom(V, W) by:
(91,--+90) - ((Big)ijs (Di)k) = ((9;Bijgi ig» (Drgi )

As above, the U(V) action is Hamiltonian and its momentum map can
be built using the lemmas above. We find:

1((Bij)ijs (Di)k < Z BJIB Z BiiBi; — DDy,

(1,4)EE
Z BBl — > BT*”»BM—D;D,L)
(in)eE (ni)eE

As long as w # 0 the U(V) action is effective and so there is no need
to quotient by an S'. Hence given (Ay,...,\,) we can take the symplectic
reduction at A = (A11,...,A,1) € u(V)*

Definition 4. We define the framed quiver variety for I' with dimensions
v, w at level A to be:

(v, w) = Hom(V, W)/ U(V)

As before, we may calculate dim R (v, w). We find:
dim Ry (v, w) = dim Hom(V, W) — 2dim(U(V))

=2 Z vzv]—i—QszwZ—QZv -1)

(i.J)EE
= 2(v, w) — (v,Cv)
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Note that we have a Hamiltonian U(W) = U(W;) x ---x U(W,,) action on
Hom(V,W) commuting with the U(V') action by the lemmas above. Hence
R (v, w) carries a residual Hamiltonian U(W) action.

3.1. Partial Flag Manifolds. We now examine a framed quiver variety
which we can identify as a UW coadjoint orbit. The presentation of this
example from the symplectic point of view is original. For this example from
the algebraic viewpoint see Nakajima [5] and Mirkovic and Vybornov [4] for
more general work on A, quiver varieties.

Consider the A, quiver, that is a quiver whose underlying graph is the
A, Dynkin diagram and whose arrows all point in the same direction. We
consider the case where (v, w) satisfy v; < --- < v, < w, and w; = 0 for
t < n.

As there is only one W; with positive dimension we will write W for W,,,
k = for w, = dim W,, D for D, : V,, = W,,, and B; for B; ;11 : V; = Viq1.
Also for convenience let vy = 0. Then an element of Hom(V, W) looks like:

B B> By
Vl V2 e Vn

|»
w

We wish to identify Ry (v, w) with the partial flag manifold in W of type
(v1,...v,) which is defined as:

Fofrw, W)={(A1 CAyC...CA, CW):dimA; =v;}
={(U,...,U,): U1 & ... U, =W is an orthogonal

decomposition and dim U; = v; — v;—y for i < n}

More specifically we have the following result:

Theorem 1. Assume that A\, ..., A, are linearly independent over Q. Then:
¥ Ry(v,w) = u(W)*
[By,...,Bn, D] — DD"

is a U(W)-equivariant symplectomorphism of Ry (v, w) with the U(W) coad-
joint orbit O,,, where:

v={(\, = Ay + £ X)F L AP By
(W).

When we regard u(W)* as Hermitian operators on W, then coadjoint
U(W) orbits are parametrized by multisets v = {v¥" ... v¥™»} The O,
coadjoint orbit is the set of Hermitian operators having distinct eigenvalues
Viy...,V, which occur with multiplicities my,...,m,. The coadjoint orbit
0, is diffeomorphic to a partial flag manifold via the map taking a Hermitian

matrix to its eigenspaces (which is neccesarily an orthogonal decomposition
of W). Note that the type of the resulting flag manifold is determined by

In particular it is diffeomorphic to F,,

yeenyUn
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the multiplicities. So the last statement of the theorem follows from the
main statement.

To illustrate the methods, we give a complete proof starting with a couple
of lemmas in linear algebra:

Lemma 4. Let V,W be Hermitian vector spaces and let V =U, & ... d U,
be an orthogonal decomposition.

Suppose that B : V. — W is a linear map such that if v € U; and v' € U;
then:

(Bv,Bv'Y =0 ifi#j

(Bv, Bv'Y = vi{v,v') ifi=j
with v; # 0 for all 1. B
_ Then we have the following orthogonal decomposition: W = Uy & ... &
U, ® Z where U; = BU; and Z = (BU)*.

With respect to this decomposition BB* : W — W is given by:
BB* (4 4+ Uy +2) = vty + -+ Vplly

Proof. We have that B is injective on each U; and hence injective. For each

17 let w; be such that Bu, = ;.
Let z € V. Then:

(B*(ay + -+ 4y + 2),z) = (Buy + - - - + Buy, Bz)
Hence B*(@ +- - -+ @y +2) = vyuy +- - -+ vpu, and the result follows. O

Lemma 5. Let VW be Hermitian vector spaces and let V =U, & ... ® U,
be an orthogonal decomposition.

Let H:V — V be a linear map such that H|y, = v;1.

Let C:V — W be a linear map such that C*C' — H = 1.

Then if v € U; and v’ € U; then:

(Co,Cvy =0 ifi#j
(Cvo,Cv"y = (y+vi){v,v") ifi=j
Proof. Let v € U;,v" € U;. Then:
(C*Cv, vy — (Ho,v') = (yv,v")
= (Cv,Cv") = y(v,v) + v;{v,v)
as so the result follows. O
Armed with these lemmas we proceed to the proof of our theorem:

Proof. The first step is to show that DD* has the advertised eigenvalues
and multiplicities.
Note that the momentum map condition g = (Aq, ..., A,) becomes:

BIBlel]_, B;Bi—Bi_lB;’k_l =X1 forl <1< my,
D*D = By 1 Bi_, = M1
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We proceed through the quiver. Note that the B; satisfies the conditions
of Lemma 5 with H = 0. Hence we deduce that B; satisfies the conditions
of Lemma 4 with p = 1 and vy = A;. Hence BB has eigenvalues Ay, 0
occuring with multiplicities vy, v9 — vy.

Now apply Lemma 5 to C' = By, H = B; BY. This shows that B; statisfies
the conditions of the Lemma 4 with p = 2, dim Uy = vy, dim Uy = vy — vy and
Vi = Ag— A1, v = Ag. Hence by Lemma 4 By B has eigenvalues Ag — A, Ag, 0
with multiplicities vy, vy — vy, v3 — vg.

Hence, it follows inductively that DD* has eigenvalues A\, — A\,_1 +--- %
A, A0 — A1+ oo Ag, ..., AL, 0 and that they occur with multiplicities
V1,02 —V1y...,W — Up.

So we see that 9 does indeed land in the desired coadjoint orbit. Note
that the action of U(V) on Hom(V, W) does not affect DD*, so 1 is well
defined.

Also, 9 is a U(W)-equivariant map since the action of U(W) on Hom(V, W)
conjugates DD*.

To show that the map is 1-1, suppose that we have (By,..., B,, D) and
(B},...,Bl,D") € p=Y(\) with DD* = D'D'*.

We need to show that these two elements are related by the action of
U(V). But note that the orthogonal decomposition of W is fixed by the
eigenspace decomposition of DD* = D'D"™. So to turn D’ into D, we need
only to adjust the orthogonal decomposition of V,, and then precompose by a
unitary map on each U;. This can be accomplished by an element of U(V},).
Now the relation between B, and B! is the same as it was for D and D’
so we can similarly transform on into the other using U(V,,_;). Proceeding,
we see that (By,...,B,, D) and (B],..., B.,D') are in fact related by an
element of U(V).

Hence % is 1-1.

Now, since 9 is U(W) equivariant it must map onto a union of U(W)
orbits. Hence the map is onto.

A calculation involving the symplectic form (which we omit) completes
the proof. O
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