
COMPLETE MANIFOLDS OF
NONNEGATIVE CURVATURE

Marco Zambon

1. Introduction

The purpose of this survey is to give an overview of the results which char-
acterize Riemannian manifolds with nonnegative or positive sectional, Ricci
and scalar curvature, putting an emphasis on the differences between these
increasingly strong conditions on curvature. All manifolds considered here
are assumed to be complete.
First we consider how nonnegative curvature is different from positive cur-
vature, then we consider how the conditions Scal ≥ 0, Ric ≥ 0 and K ≥ 0
differ from one another. The main part of the survey consists in presenting
the most important results concerning manifolds with K ≥ 0, Ric ≥ 0 and
Scal ≥ 0, in particular the topological restrictions that nonnegative curvature
implies. We will roughly follow the outline of [G], a survey-article written by
Gromoll in 1991, adding several results, in particular some of those developed
after 1991.

The distinction between nonnegative and positive curvature ([G], p.338).
In the case of sectional curvature the difference is very subtle. The question,
whether S2×S2 (which carries a natural metric with K ≥ 0) admits a metric
with K > 0 is still open (Hopf conjecture). The question is an easier one
when we consider complete noncompact manifolds (for if the manifold admits
K > 0 then it must be diffeomorphic to Rn by the Soul Theorem, see Section
4), but determining the difference in general between the classes K ≥ 0 and
K > 0 seems to be an extremely hard problem.
We know more in the cases of Ricci and scalar curvatures. In these cases the
difference between positive and nonnegative (although existent) is not too
severe. Indeed, Aubin proved that if a manifold has a metric with Ric ≥ 0
(Scal ≥ 0) and in a point p ∈ M Ric > 0 (Scal > 0), then the metric can be
deformed to a metric with Ric > 0 (Scal > 0) everywhere.

The extent to which the conditions K ≥ 0, Ric ≥ 0 and Scal ≥ 0 are
restrictions of each other ([G], p.339).
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It is very difficult to give a general answer to this problem, but there are
examples available that provide partial answers. There exist examples of
simply connected manifolds of dimension at least 4 which allow Ric > 0 but
not K ≥ 0, such as connected sums of copies of Sl × Sk with k, l ≥ 2 (met-
rics with Ric > 0 can be constructed explicitly, and K ≥ 0 is ruled out by
estimates of the Betti numbers).
There are also examples of manifolds M with Scal > 0 which don’t admit
Ric ≥ 0 if π1(M) is nontrivial, but no examples have been found for simply
connected M . This is explained by the fact that the main obstruction to
Ric ≥ 0, which is not an obstruction to Scal > 0, is the fundamental group
of M .

The classes K ≥ 0, Ric ≥ 0 and Scal ≥ 0 ([G], p.338 and 348).
The class K ≥ 0 is very rigid, in the sense that there are tight topological
restrictions. Rigidity is even a stronger restriction in the class K > 0; this
explains the scarcity of examples of manifolds with K > 0 (for n odd and
bigger than 24, Sn is still the only simply connected example known! ([G],
p.348)). The methods of the proofs are mainly metric ones (for example
Toponogov’s Theorem).
In the class Ric ≥ 0 there are various results concerning the topology of the
manifold, but at the same time the topological restrictions are not very tight,
so that the amount of examples available is quite large.
The condition Scal ≥ 0, on the other hand, doesn’t seem to give any general
conclusion about the topology or geometry of the manifold.

2. The class Scal ≥ 0

As mentioned above, the condition Scal ≥ 0 doesn’t have strong implica-
tions, and it has weaker implications for noncompact spaces than for compact
ones. We recall (see Section 1) that, if M admits a metric with Scal ≥ 0 and
Scal(p) > 0 at some p ∈ M , then M admits a metric with Scal > 0.
It has been shown that, if M is compact and admits Scal > 0, then any
product with a compact manifold also does. Furthermore, given a compact
manifold M with Scal > 0, any somewhere positive function on M can be
realized as the scalar curvature of a metric conformal to the original one ([G],
p.340). It has been also shown that if Mn

1 and Mn
2 are simply connected with

Scal > 0 and n ≥ 3, then their connected sum also admits Scal > 0 ([G],
p.341).
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The main obstruction to Scal > 0 for a complete manifold M is given by
the fundamental group, and it has been investigated mainly using Spin struc-
tures. The concept of enlargeability was introduced to measure how “large”
the fundamental group of a manifold is with respect to the manifold. A com-
pact, orientable manifold Mn is called an ε−1-hypersurface if there exists a
map f of positive degree from Mn onto Sn such that d(f(p), f(q)) ≤ ε·d(p, q)
for all p, q ∈ M ([GL], p.210). A manifold Mn is called enlargeable if for all
ε > 0 there exists a finite covering which is an ε−1-hypersurface. Enlarge-
ability is a homotopy invariant.
It is a theorem that, if a complete manifold M has a covering space which is an
enlargable Spin-manifold, then M can not carry any metric with Scal > 0
([G], p.342). So most manifolds with “large” fundamental group (among
them all compact manifold with K ≤ 0) don’t admit Scal > 0. For example
the torus T n does not admit Scal > 0 if n ≤ 7, but apparently if n > 7 ([G],
p.342), and any compact 3-manifold with Scal > 0 must be a connected sum
of copies of S1 × S2 and manifolds with finite fundamental group.

3. The class Ric ≥ 0

Quite a lot is known about manifolds with nonnegative or positive Ricci
curvature. Manifolds with constant Ricci curvature are called Einstein man-
ifolds, and not very much is known about which obstructions there are for a
manifold with Ric ≥ 0 to be Einstein.
A known fact is Schur’s theorem: if n ≥ 3 and the Ricci curvature is constant
at every point of M , then M is Einstein ([J], p.132).

Now we will review some classical results for Ric ≥ 0. Myers’ theorem
says that, if Mn is a complete manifold with Ric ≥ (n − 1)C > 0, then
diam(M) ≤ π√

C
and the fundamental group of M is finite. If Mn is compact

with Ric ≥ 0, the fundamental group has polynomial growth of order less
or equal than n, and b1(M) ≤ n. If Mn is complete with Ric > 0, then
b1(M) ≤ n − 3, and if Mn is complete with Ric ≥ 0, any finitely generated
subgroup of π1(M) has polynomial growth of order less or equal than n ([G],
p.351).
So the Ricci curvature sets restrictions on the fundamental group of Mn, but
on the other hand it has been proven that, for any n ≥ 4, there are compact
manifolds Mn with Ric > 0 and arbitrary large homology, as well as com-
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plete manifolds with Ric > 0 and infinite topological type ([G], p.349; see
later in this section for the definition of finite topological type).

An important structural result is the Splitting Theorem ([CG], p.432),
which says that if M is complete with Ric ≥ 0, then M is isometric to
M̃ ×Rk where Rk has its standard metric and M̃ contains no lines (lines are
geodesics defined for all real numbers, each segment of which is minimal).
Furthermore such an M has at most two ends, and if it has two ends it is
isometric to M ′ × R where M ′ is compact.
We also have the following result ([CG], p.439): if M is compact with Ric ≥ 0,
the universal cover of M is isometric to some M0×Rk where M0 is a compact
simply connected manifold and Rk has its usual metric.
No aspect of the Soul Theorem (see Section 4), which is one of the main struc-
tural results for K ≥ 0, seems to generalize to the case Ric ≥ 0. Still, the
Soul Theorem insipired a result in low dimensions: a noncompact 3-manifold
with Ric > 0 must be diffeomorphic to Rn ([G], p.352). A similar result was
proven recently by Mei and Xu (see [MX]) for noncompact manifolds Mn

(n ≥ 3) with Ric ≥ 0. Suppose that expp is a diffeomorphism for some point
p (which is then called a pole), and let k(s) be the maximum of the sectional
curvature at points of distance s from the considered pole. If s2k(s) < 1

4
and

lims→∞ s2k(s) = 0, then Mn is isometric to Rn with the usual metric.

Now we will investigate the implications of Ric ≥ 0 on the metric of the
manifold. The condition Ric ≥ 0 gives upper bounds for the volumes of
metric balls about some p ∈ M by a theorem of Bishop: if Ric ≥ 0, a ball
Br(p) has less or equal volume than Bn

r , the ball of corresponding radius in

flat Rn, and the ratio V ol(Br(p))
V ol(Bn

r )
is non-increasing ([SH], p.393). This fact can

be generalized in the case K ≥ 0 (see Section 4).
We present two recent results related to volume-growth. M is said to have
large volume growth if αM = limr→∞

V ol(Br(p))
V ol(Bn

r )
> 0. This definition is in-

dipendent of the choice of p ∈ M . It was shown by Perelman that there
exists a constant ε(n), depending only on n, such that every manifold Mn

with Ric ≥ 0 and αM > 1− ε(n) is contractible ([SH], p.393).
A noncompact manifold is said to have finite topological type if there exists
a compact subset N of M such that ∂N is a topological manifold and M \N
is homeomorphic to ∂N × [0,∞). The homology of manifolds of finite topo-
logical type is finitely generated. Shen proved that, if M satisfies Ric ≥ 0 ,
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K is bounded away from −∞, αM > 0 and V ol(Br(p))
V ol(Bn

r )
− αM = o( 1

rn−1 ), then

M has finite topological type ([SH], p.394).
If p, q ∈ M and we define the excess function w.r.t. p and q by
Ep,q(x) = d(x, p) + d(x, q)− d(p, q) ≥ 0, then the condition Ric ≥ 0 gives an
upper bound for Ep,q(x) ([G], p.351). This statement is much weaker than
Toponogov’s Theorem, which holds for K ≥ 0 (see Section 4).
To close this section we mention Cheng’s Sphere Theorem: if Ric ≥ n − 1
and diam(M) = π, then Mn is isometric to Sn ([G], p.352). We recall that,
because of Myers’ theorem, the condition Ric ≥ n−1 implies diam(M) ≤ π.

4. The class K ≥ 0

Spaces of constant curvature have been well understood and classified: if
Mn has constant curvature K, then its universal cover is isometric to the
standard sphere with radius 1√

K
if K > 0, to flat Rn if K = 0, or to the

hyperbolic space of curvature K if K < 0 (see [T]). For n ≥ 3 we have again
Schur’s Theorem: if M is complete and K is constant at every point, then
M has constant curvature ([J], p.132).

Of course, all results which hold for Ric ≥ 0 also apply to the case K ≥ 0,
and some of them can be improved or completed in the case K ≥ 0.
Let Mn be compact with K > 0. Synge’s Theorem states that, if n is even,
then π1(M) is trivial if M is orientable and Z2 if M is not orientable. Fur-
thermore, if n is odd, then M is orientable ([G], p.344).
Two theorems were given by Gromov for compact manifolds Mn with K ≥ 0.
Firstly ([M], p.21), π1(M) is generated by N ≤

√
2nπ2n−2 elements (but this

seems to be a very rough estimate). Secondly ([M], p.33), the sum of the
Betti numbers of Mn w.r.t any field is bounded above by an integer C(n)
which depends only on the dimension n of M . Again, this estimate seems to
be extremely rough, since for all known examples of compact manifolds Mn

with K ≥ 0 the sum of the Betti numbers is less or equal than 2n (equality
is achieved by the torus T n).

Now we state Toponogov’s Theorem for the case K ≥ 0 (to state To-
ponogov’s theorem it’s enough to assume K ≥ C for some real C; see [M],
p.21). Let Mn be a complete manifold with K ≥ 0, and consider a geodesic
triangle with distinct vertices q, p1, p2 and edges c, c1, c2 such that each ci

goes from q to pi and is a minimal geodesic. We denote the angles at pi by
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αi ∈ [0, π]. If L(c) ≤ L(c1) + L(c2), there exists a triangle q̃, p̃1, p̃2 in flat R2

with L(c) = L(c̃), L(ci) = L(c̃i), such that the corresponding angles α̃i satisfy
α̃i ≤ αi. This theorem is one of the main methods of proof in the case K ≥ 0.

The Soul Theorem, due to Cheeger and Gromoll ([M], p.39 and [CG],
p.422) is an important structural result, because it essentially reduces the
study of manifolds with K ≥ 0 to the compact case. It is a stronger state-
ment than the fact that every complete noncompact manifold with K ≥ 0
is homeomorphic to the interior of a compact manifold with boundary, and
hence has finitely generated homology ([M], p.33).
The Soul Theorem states the following: if M is a complete noncompact
manifold with K ≥ 0, there exists a compact totally convex, totally geodesic
submanifold S of M such that M is diffeomorphic to the normal bundle νS
of S. A submanifold N of M is said to be totally convex if any geodesic
segment connecting two points in N has its image in N . A submanifold S as
above is called a soul and is not uniquely determined, but any two souls are
isometric.
In the case K > 0, S is a point, so M is diffeomorphic to Rn (and every
nonconstant geodesic γ(t) goes to infinity as t →∞ ([GM], p. 86)).
If codim(S) = 1, then exp|νS is an isometry between νS (with its standard
metric) and M . In general, we have the following results.
In [GU] it was shown that, given a fixed soul S, the metric on M can be
deformed to a metric with respect to which K ≥ 0, S is still a soul, and a
diffeomorphism between νS and M is given by exp|νS. The proof makes use
of a map sh : M → S, which sends a point x ∈ M to its closest point on S,
and which turns out to be a C1 Riemannian submersion ([TA], p.3036).
In general, M is not even locally isometric to a product S × Rk (but it is
isometric to a product M̃ × Rk, where M̃ contains no lines and Rk has its
standard metric, cfr. the Splitting Theorem). In [MA], p. 263 it was shown
that, if a soul S of M has trivial normal holonomy, then M is isometric to
the product S × Rk, where Rk has nonnegative sectional curvature.

Now we turn our attention to the so-called Sphere Theorems, which are
good examples of how manifolds with K ≥ 0 tend to be rigid. The most clas-
sical ([M], p.29) is due to Rauch, Berger and Klingenberg, and says that if
Mn is simply connected, complete with 4 ≥ K > 1, then M is homeomorphic
to Sn. This result is sharp; Berger proved that, if we replace the curvature
bounds with 4 ≥ K ≥ 1, then M is homeomorphic to Sn or isometric to
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complex, quaternional or octavian projective spaces (see [T]).
A later version by Grove and Shiohama ([M], p.29) states that if Mn is com-
plete with K ≥ 1 and diam(M) > π

2
, M is again homeomorphic to Sn.

The last theorem represented a novelty for two reasons. Firstly, it showed
that upper bounds for positive curvature don’t affect strongly the topology
of manifolds, since they can be replaced by a lower bound of the diameter.
Secondly, the proof made use of a new concept of critical point of the distance
function, which is defined even where the distance function is not differen-
tiable.
We note that under the assumption of the Grove-Shiohama theorem, we nec-
essarily have diam(M) ≤ π, and if diam(M) = π then M is isometric to Sn

by the Cheng’s diameter theorem (see Section 3).
We also remark that, if we replace the condition on the curvature in the
classical sphere theorem with 1.31 ≥ K > 1, then Mn is diffeomorphic to Sn

([G], p.345).

Positive curvature in a manifold M also has an effect on the injectivity
radius i(M), hence also on the diameter: if M is complete, orientable and
even dimensional with K ≥ C > 0 (these are also the hypotheses of Synge’s
theorem), then i(M) ≥ π√

C
. Furthermore, if M is complete, simply connected

and C ≥ K > C
4

> 0 (these are the hypothesis of the sphere theorem), then
again i(M) ≥ π√

C
(see [T]).

Finally, we consider again the volume of balls. Let N be a compact to-
tally geodesic submanifold of M , let Br(N) denote the ball of radius r about
N , and let ωk be the volume of the k-dimensional unit ball in Rk, where k =
codim(N). Then the function V ol(Br(N))

ωkrk is nonincreasing. From this follows

that the volume growth of M , V G(M) = inf{x ∈ R : limr→∞
V ol(Br(p))

rx = 0}
(which is independent of p ∈ M) is smaller or equal than the codimension of
any compact totally geodesic submanifold of M ([TA], p.3035).

5. Final remarks

In this paper we tried to point out the main features of manifolds of
positive sectional, Ricci and scalar curvature, and we were able to achieve
partial results in the classification of such manifolds according to topological
features. The Splitting Theorem in the case Ric ≥ 0 and the Soul Theorem
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in the case K ≥ 0 are the main results in this sense.
But, as already mentioned, a complete classification seems hopeless, and the
fact that the Hopf conjecture (“is there any metric with K ≥ 0 on the 2-
Torus?”) doesn’t yet have an answer confirms this tendency.
If the problem concerning manifolds of non-negative curvature is hard, at
leastthe one concerning manifolds with non-positive curvature seems to be
simplier: for example it has been proved that any differentiable manifold of
dimension 3 or greater admits complete metrics of negative Ricci curvature,
so negative Ricci curvature doesn’t imply any restriction on the topology of
the manifold ([J], p.206).
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