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1 Introduction

A symmetric space is a Riemannian manifold that is “symmetric” about each
of its points: for each p ∈ M there is an isometry σp of M such that (σp)∗ = −I
on TpM . Symmetric spaces and their local versions were studied and classified
by E.Cartan in the 1920’s. In 1980 D.Ferus [F2] introduced the concept of
symmetric submanifolds of Euclidean space: A submanifold M of Rn is a
symmetric submanifold if and only if it is preserved by reflections at each of
its normal spaces. Ferus then went on to classify all symmetric submanifolds
of Rn. Ferus’ notion can be generalized to define a symmetric submanifold of
any ambient Riemannian manifold . Backes and Reckziegel [BR] established a
criterion that identifies symmetric submanifolds of the “standard” spaces Rn,
Sn, Hn of constant curvature.

In this survey article, we shall be concerned with symmetric submanifolds of
an ambient manifold which is itself a symmetric space . We’ll first outline the
basic classification of symmetric spaces and then proceed to describe the work of
Ferus, Backes, Reckziegel, Naitoh and others on finding symmetric submanifolds
in specific ambient symmetric spaces .

2 Symmetric Spaces: Basic Classification

We briefly review facts about symmetric spaces, referring to Helgason [H] and
Jöst [J] for details.

A locally symmetric space is a Riemannian manifold in which the geodesic
symmetry at each point is an isometry in a normal neighborhood of the point.
Symmetric spaces are locally symmetric too; the geodesic symmetries in this
case are global isometries.
We now have [H]

Theorem 2.1 (E.Cartan) Let M be a Riemannian manifold. Then M is locally
symmetric ⇔ ∇R = 0, where R is the curvature tensor of M , and ∇ is the
connection induced on 4-tensors on M by the Levi-Civita connection of M .
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Theorem 2.2 A complete, locally symmetric, simply connected Riemannian
manifold is a symmetric space .

Examples: En (Euclidean space), Sn (the sphere) and Hn (hyperbolic space)
are all symmetric spaces . [J]

One can obtain all information about a Riemannian symmetric space from
its group of isometries. If M is a symmetric space and G its group of isometries,
then G acts transitively on M . Fix p ∈ M and let H be the isotropy subgroup
at p. G has a Lie group structure and H is a closed Lie subgroup of G. The
Lie algebra g of G is just the space of Killing vector fields on M . The Lie
algebra h of H is a subalgebra of g and has a natural complementary subspace
p such that g = h ⊕ p, [h, h] ⊂ h, [h, p] ⊂ p and [p, p] ⊂ p. It turns out that
the characterization of symmetric spaces is the same as characterization of such
triples (g, h, p).

Definition 2.3 Let M be a symmetric space and g = h⊕ p as above. Then:
M is of Euclidean Type if [p, p] = 0
M is of Compact Type if g is a semisimple Lie algebra and M is of nonnegative
curvature
M is of Noncompact Type if g is a semisimple Lie algebra and M is of non-
positive curvature

Theorem 2.4 [H] Let M be a simply connected symmetric space . Then

M ' M0 ×M+ ×M−

where M0, M+, M− are symmetric spaces of Euclidean, compact and noncom-
pact types respectively.

Definition 2.5 The rank of a symmetric space M is the dimension of the
largest abelian subalgebra of p.[Notation as above]

3 Symmetric Submanifolds

Definition 3.1 Let M be a Riemannian manifold and S ⊂ M a regular(=“embedded”)
submanifold . S is called a symmetric submanifold of M iff ∀p ∈ S, ∃ an isom-
etry tp of M satisfying the following:

1. tp(p) = p, tp(S) = S

2. (tp)∗(ξ) = ξ ∀ξ ∈ (TpS)⊥ ⊂ TpM

3. (tp)∗(X) = −X ∀X ∈ (TpS)

Remarks 3.2 Setting σp : S → S equal to tp|S , we get (σp)∗ = −I on TpS.
Hence S is a Riemannian symmetric space in its own right. The tp’s serve as
“extrinsic” symmetries of S in M . One could very easily extend this notion to
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define “symmetric immersions” of S into M . In another direction, by demanding
that all conditions hold locally, we can get a notion of a locally symmetric
submanifold of M . We refer to Naitoh [N] for the relevant definitions.

Example 3.3 Sn is a symmetric submanifold of Rn+1 ∀n ≥ 1.

Ferus [F2] completely classified the locally symmetric submanifolds of En.
To carry this out he proved an analogue of Theorem 2.1.

Theorem 3.4 Let S ⊂ En be a regular submanifold and l : TS × TS → (TS)⊥

be its second fundamental form. S is a symmetric submanifold of En ⇒ ∇l = 0.

The parallelism of l (∇l = 0) means that

DX(l(Y, Z)) = l(∇XY, Z) + l(Y,∇XZ)

for all vector fields X, Y , Z on S. Here ∇ denotes the Levi Civita connection
on S, and D is the connection induced on the normal bundle of S by the Levi
Civita connection of En.

Example 3.5 A class of submanifolds of En with parallel second fundamental
form : Let G be a connected semisimple Lie group with finite center and Lie
algebra g. Let η ∈ g be such that adη is semisimple and (adη)3 = (adη). Choose
a Cartan Decomposition (see [H]) g = h⊕ p with η ∈ p. Let H be the maximal
compact subgroup of G generated by exp(h) and let H0 = {h ∈ H|Ad h(η) = η}.
Then f : M = H/H0 → p sending [h] → Ad h(η) is an embedding of M into the
Euclidean space p . Here we choose the metric on p to be the restriction of the
Killing form of g.

It turns out [F1] that f(M) has parallel second fundamental form in p. In
a later work [F2], Ferus shows that f(M) is also a symmetric submanifold of p.
Such an M is called a Symmetric R-space.
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We infact have :

Theorem 3.6 (Ferus) The symmetric R-spaces are essentially all the subman-
ifolds of En with parallel second fundamental form . [cf [F2], Theorem 2 for a
precise statement]

Theorem 3.6, the observations preceding it, and Theorem 3.4 now combine
to tell us that the symmetric R-spaces are all the symmetric submanifolds of
Euclidean space.

Symmetric R-spaces include all Riemannian symmetric spaces of compact
type except for some exceptional cases. Notice that our earlier example of
S = S1, M = R2 corresponds to the choices G = SL2R ,H = SO2R
h = Span

([
0 1
−1 0

])
⊂ sl2R, p = Span

{[
1 0
0 −1

]
, [ 0 1

1 0 ]
}

and η =
[

1/2 0
0 −1/2

]
.

Theorem 3.6 and the above remarks now imply:
S is a symmetric submanifold ⇔ ∇l = 0, where l is the second fundamental
form of S.
Strübing gave a direct proof of this fact, even when the ambient manifold En

was replaced by Sn or Hn. We state this as :

Theorem 3.7 (Ferus, Strübing) Let S ⊂ M be a connected, complete, regular
submanifold where M = En, Sn or Hn. Then the following are equivalent:

1. S is a symmetric submanifold of M

2. S has parallel second fundamental form

Finding symmetric submanifolds of the standard spaces En, Sn, Hn of con-
stant curvature is thus reduced to finding complete submanifolds with ∇l = 0.
(Observe that a symmetric submanifold , being an (intrinsic) Riemannian sym-
metric space , is complete )

4 Symmetric Submanifolds of Spaces of Con-
stant Curvature

Let Nn
κ denote the standard n-dimensional space of constant curvature κ. So

Nn
0 = Rn, Nn

κ>0 = Sn(κ) and Nn
κ<0 = Hn(κ). The first reduction of the problem

of finding symmetric submanifolds of Nn
κ is from the following theorem, which

together with Theorem 3.7 says that symmetric submanifolds are determined
by their “initial data”.

Theorem 4.1 (Reckziegel [R]) Let S and T be connected, complete, regular
submanifolds of a Riemannian manifold M , with parallel second fundamental
forms . Further let p ∈ S ∩ T and suppose TpS = TpT and lS = lT on TpS
(= TpT ), where lS and lT are the second fundamental forms of S and T taking
values in T (S)⊥ and T (T )⊥ repectively. Then S = T .
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For a fixed p ∈ Nn
κ , finding symmetric submanifolds S of Nn

κ containing p
is now reduced to the characterization of pairs (E, l) of a subspace E ⊂ TpN

n
κ

and a bilinear map E×E
l−→ E⊥ that can occur as “initial data” of symmetric

submanifolds .
The characterization turns out to be a neat algebraic condition. To this end,

we define :

Definition 4.2 Let E be a subspace of a Euclidean vector space V ,
l : E × E → E⊥ (in V ), a symmetric bilinear map and let κ ∈ R be arbitrary.
The Triple System L associated to (E, l) is the bilinear map : L = S + R :
E × E → End(E) where the symmetric and skew-symmetric parts of L are
given by :

< S(x, y)v, w >= κ < x, y >< v,w > + < l(x, y), l(v, w) >

and

R(x, y)z = S(y, z)x− S(x, z)y
i.e

< R(x, y)z, w > = κ(< x,w >< y, v > − < x, v >< y, w >)
+ (< l(x,w), l(y, v) > − < l(x, v), l(y, w) >)

One easily checks that S = S∗ and R = −R∗ wrt < ., . > and that S(x, y) =
S(y, x), R(x, y) = −R(y, x).

Consequently:

L(x, y)∗ = S(x, y)−R(x, y) = L(y, x) (1)

Another easy computation gives

L(x, y)z = L(z, y)x ∀x, y, z ∈ E (2)

Definition 4.3 Let E be a Euclidean vector space. A bilinear map L : E×E →
End(E) is called a Euclidean Jordan Triple system (EJTS) on E iff the
formulas (1), (2) and (3) below hold :

[L(x, y), L(v, w)] = L(L(x, y)v, w)− L(v, L(y, x)w) (3)

Our story of finding symmetric submanifolds is completed by the follow-
ing theorem, which states that the triple system associated to the initial data
(E, l) = (TpS, lp) of a symmetric submanifold S of Nn

κ containing p is an EJTS.

Theorem 4.4 (Backes and Reckziegel [BR]) Let p ∈ Nn
κ , E ⊂ TpN

n
κ be a

subspace and l : E × E → E⊥ a symmetric bilinear map. Then the following
are equivalent :

1. There is a symmetric submanifold S of Nn
κ such that p ∈ S, TpS = E and

l = the second fundamental form of S at p
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2. The triple system L associated to (E, l) [Definition 4.2] is a EJTS. Further
the S in (1) is unique

Since the triple system L of Definition 4.2 always satisfies the relations (1)
and (2), the real constraint imposed by the fact that S is a symmetric subman-
ifold is the formula (3) for the commutator. Consequently (3) is the algebraic
condition that characterizes initial data (E, l) of symmetric submanifolds of Nn

κ .

5 Other ambient symmetric spaces

The key to our earlier results was Theorem 3.7 [Symmetric submanifold ⇔
∇l = 0]. Naitoh [N] investigated symmetric submanifolds of compact simply
connected symmetric spaces and proved a generalization of Theorem 3.7.

Theorem 5.1 (Naitoh) Let S ⊂ M be a connected, complete, regular submani-
fold of a simply connected Riemannian symmetric space M . Then the following
are equivalent:

1. S is a symmetric submanifold of M

2. S has parallel second fundamental form and the normal spaces (TpS)⊥ are
curvature invariant ∀p ∈ S

Curvature Invariance of a subspace V ⊂ TpM means that R(V, V )V ⊂ V ,
where R is the curvature tensor of M .

For M = En, Sn or Hn, given any regular submanifold (=embedded subman-
ifold ) S ⊂ M , it turns out that its normal spaces are automatically curvature
invariant. So, Theorem 5.1 indeed generalizes Theorem 3.7.

Theorem 5.1 allows us to look only for S ⊂ M with parallel second funda-
mental form and curvature invariant normal spaces. When M is also compact,
Naitoh reduces the classification of such S’s to that of certain algebraic objects
associated with a Lie group acting on M [N]. For other isolated results when
the ambient spaces are certain rank 1 symmetric spaces , we refer to the list of
papers cited by Naitoh in [N].
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