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Abstract. We study a class of two-player, random-turn games in which a valued resource must
be allocated over the lifetime of the game so that a favourable outcome is likely secured without
wasteful expense. The Trail of Lost Pennies is the game played on Z. It is specified by a parameter
x ∈ (0,∞). A counter begins at 0 ∈ Z and lies at some integer at the start of any given N-indexed
turn. At this turn, Maxine and Mina offer non-negative real-valued stakes. If Maxine stakes a and
Mina b, the counter moves one unit to the right with probability a

a+b
; otherwise, it moves to the

left by one unit. If the counter location tends to minus infinity over the course of the game, Mina
receives a terminal payment of one, and Maxine zero; if the counter tends to plus infinity, then
these respective receipts are zero and x. Thus the net receipt to a given player is −A + B, where
A is the sum of the stakes she offers during the game, and B is her terminal receipt. The game
was inspired by random-turn tug-of-war analysed in the mathematical treatment [49] from 2009
but in fact closely resembles the original version of tug-of-war, introduced [26] in the economics
literature in 1987. We show that the game has surprising features. For the class of strategies that
satisfy a natural time-invariance, Nash equilibria exist precisely when x lies in the interval [λ, λ−1],
for a certain λ ∈ (0, 1). We indicate that the value of λ is remarkably close to one, proving that
λ ≤ 0.999904 and presenting clear numerical evidence that λ ≥ 1− 10−4. For each x ∈ [λ, λ−1], we
exhibit countably many Nash equilibria for the game, showing that each is roughly characterized
by an integral battlefield index: when the counter is around this value, both players stake intensely,
with rapid but asymmetric decay in stakes as the counter moves away from the value. Our results
validate and quantify hypotheses, for strategic resource management and the effect of discouragement
in determining the relation between incentive and outcome, which are similar to premises advanced
in economics [26, 37], and which plausibly hold more generally among player-funded stake-governed
random-turn games. Alongside a companion treatment [24] of games with allocated budgets, we
thus offer a detailed mathematical treatment of an illustrative class of tug-of-war games governed
by limited resources. We also review the separate developments of tug-of-war in economics and
mathematics in the hope that mathematicians may direct further attention to tug-of-war games, in
their original resource-allocation guise.
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CHAPTER 1

Introduction

In tug-of-war random-turn games governed by stakes, two players must each decide how to allocate
a precious resource over the lifetime of the game in order to gain often enough temporary control
of the movement of a counter, and how to move the counter when their resource expenditure and
good fortune permit them to do so. These games have been studied by economists for forty years
and by mathematicians for twenty. The former study games that emphasise the aspect of resource
allocation in player decisions; the latter, those where these decisions concern strategic movement.
The two research strands have been vigorous but remarkably disjoint. The principal aim of this
monograph is to present a detailed inquiry into the Trail of Lost Pennies, an infinite-turn stake-
governed tug-of-war game, in whose infinite set of Nash equilibria we will find delicate and surprising
features. We further aim to direct mathematicians’ attention to stake-governed tug-of-war games
and to advocate these games as objects for further inquiry.

The first part of the introduction offers a rough conceptual overview of the motivations and form
of the player-funded tug-of-war game that we study and of our main results; and we compare these
conclusions to those for a class of allocated-budget tug-of-war games that have been treated in the
companion article [24]. In the second part, we trace the course of the two long, unwoven strands of
tug-of-war research, in economics and mathematics.

1.1. Rough guide: motivations, model, results

The first of four subsections presents three broad premises for how resources may be allocated
strategically in a random multi-turn game. The second conceptually presents tug-of-war games,
first in the simpler setting of constant bias, and then with bias governed by stakes drawn from
budgets. These budgets may be allocated by the bank or funded by the players themselves. Our
principal game of study, the Trail of Lost Pennies, is of the latter type. In the third subsection, we
explain several of our main conclusions about this game, finding it to exemplify two of the three
broad premises. The remaining premise is instead illustrated by a class of allocated-budget games
analysed in [24], as the fourth subsection explains.

1.1.1. Allocating resources strategically in a multi-turn game. When political oppo-
nents buy advertising before an election or rival firms rent stalls in a market place, they allocate
precious resources in an effort to win a favourable outcome, if need be at the expense of the oppo-
nent. Such competition may be modelled by multi-turn two-player games at each of whose turns
each player allocates a resource that she values in an effort to improve her strategic position and
raise the chance of a favourable outcome when the game ends. In seeking to play such a game
effectively, a player must address the basic question: how much of the resource should I allocate
for play at the impending turn? To find the answer, the player is led to evaluate the strategic
importance of the next turn relative to such a measure for the accumulation of all subsequent turns
during the likely lifetime of the game. So broadly specified, this question may elicit a wide range of
conceptual responses. We distinguish three:
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1.1. ROUGH GUIDE: MOTIVATIONS, MODEL, RESULTS 6

(1) Compromise between the short and long terms. In facing a choice of level of resource
allocation for the upcoming turn, a player is tempted to offer a large amount, in the hope
of securing an improved position at the turn. However, such expenditure depletes the
resource, making it more difficult to stake competitively later in the game. In this view,
there is a tension between the short and the long term, with the two time-scales offering
upward and downward pressure on resource allocation at a given turn. Presumably then
under optimal play the present level of expenditure will maximize a unimodal function.

(2) An inch in incentive may be a mile for outcome. Suppose that the two players
will receive different rewards for winning the game. The player with the greater incentive
may be led to commit greater resources at any given stage of the game. If the difference
in incentive is small, then the resulting increase in stage-win probability for the more
committed player may be only slight. But if there are many stages in the game, then these
advantages will accumulate to become pronounced, just as a random walk with a slight
bias to the right will proceed linearly in that direction in the long term. Moreover, the
thus disadvantaged player, in becoming aware of her poor prospects, will be discouraged
from committing resources, leading her to stake very little, leaving the other player, even
if only slightly incentivised, able to win the game without any real opposition.

(3) The battlefield. Cut your losses/Foot on gas. In competing for dominance in
some form—say, over a network or geographical space— in a game taking many turns,
both players may begin to recognise as gameplay advances that one has secured a certain
advantage. Perhaps one player has won a key battle over a significant part of space, or is
simply blessed with a favourable terrain. In such a circumstance, the player in the seemingly
weaker position may hesitate to commit much of the valued resource at an upcoming turn.
If he makes big stakes consistently, and performs better at several forthcoming turns, he
may for example become able to refight a lost battle, but he knows that his determined
opponent may well commit again to win that battle; so his route to victory will likely
entail high expenses in the resource, and he may prefer to cut his losses, accepting a bad
terminal game result but consoled by minimal resource loss in the later game. To the
opposing player we might send a different message, namely don’t take your foot off the gas:
if the weakly positioned player will stake very little, his opponent hardly needs to stake
intensely, but she should make sure to outspend her opponent significantly, because she
wishes to convert a promising position into a terminal victory without setbacks.

The three premises will be called the Present-Future Compromise; “Incentive Inch, Outcome Mile”;
and the Battlefield Cyl Fog.

The topic of strategic importance of positions in multi-turn games is of course natural and im-
portant: [32, 11, 30] have explored such themes in the framework of iterative network-bargaining
problems. To interpret and investigate the broad and perhaps vague premises that we have just
outlined, a suitable class of games is clearly needed. Such a class is offered by stake-governed tug-of-
war games, in which players win the right to move (a counter along the edges of a graph) according
to the flip of a coin with a bias determined by their commitment of resources at the turn.

1.1.2. Tug-of-war, constant-bias and stake-governed. We present tug-of-war first in the
simple case of constant bias; and then versions governed by stakes from budgets that are either
allocated or funded by players. The Trail Of Lost Pennies, a player-funded game on the integers, is
then introduced.
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1.1.2.1. Constant-bias tug-of-war. LetG = (V,E) be a finite graph equipped with a set B ⊂ V of
boundary vertices on which a function f : B → R is defined. Further suppose given a bias parameter
λ ∈ (0,∞). The initial counter location X0 of λ-biased tug-of-war is taken to be a given v ∈ V . At
the ith turn (where i ≥ 0), a coin with head’s probability λ

1+λ is flipped. If it lands heads, Maxine
moves the counter to a neighbour of its present location of her choosing, specifying Xi+1 ∈ V with
Xi+1 ∼ Xi. If it lands tails, then Mina does so. The game ends at time τ = min{i ∈ N : Xi ∈ B},
when the counter first reaches the boundary, with a payment of f(Xτ ) made from Mina to Maxine.
The unbiased case λ = 1 is considered in [49], and the biased λ ∈ (0,∞) \ {1} in [47]; either way,
the value of tug-of-war—in essence, the mean terminal payment under optimal play—exists and
equals h(λ, v), where h(λ, ·) : V → R is the λ-biased infinity harmonic extension of the boundary
data f : B → R; namely, the unique function satisfying the system of equations

h(λ, v) =
λ

1 + λ
max
u∼v

h(λ, u) +
1

1 + λ
min
u∼v

h(λ, u) (1)

for v ∈ V \B and h(λ, ·)
∣∣
B

= f .

1.1.2.2. Allocated-budget stake-governed tug-of-war. Let the dataG = (V,E), B ⊂ V , f : B → R
and λ ∈ (0,∞) again be given. The two players are now allocated a budget at the outset of the
game: λ for Maxine; and one for Mina. Take X0 = v ∈ V as above. At the outset of each turn of
the new game, each player retains some part of her initial budget. Each stakes some part of her
remaining budget, as she sees fit. These staked funds are withdrawn from the players, so that the
new budget of a player, for use at the next turn, is given by subtracting her stake from the budget’s
present value. If Maxine stakes a and Mina b, a biased coin is then flipped, whose probability of
landing heads equals a

a+b . The turn victor moves the counter according to the rules of constant-
bias tug-of-war, and the game ends just as it did originally, with a terminal payment from Mina to
Maxine equal to the evaluation of the function f at the terminal counter location in the boundary B.
Any remaining budget held by the players is taken from them.

1.1.2.3. Player-funded stake-governed tug-of-war. In the allocated-budget stake game, the ini-
tially awarded budgets are an irredeemable resource whose sole role is to afford capacity to the
respective players to win moves throughout the lifetime of the game. Maxine and Mina’s initial
budgets are given finite quantities whose values are part of the game design. The finiteness of these
values is what makes the resource precious. In the variant we now specify, a different means is used
to ensure that the players value this resource: each player can spend without constraint, but she
must spend her own money. Mina and Maxine are supposed to be wealthy, so each may stake as
freely as she sees fit, but the sequence of stakes made by a player constitutes a running cost that
must be offset against the potential benefit that higher expenditure will bring the counter to a more
favourable terminal location in the boundary set.

The game data now takes the form G = (V,E), B ⊂ V and f, g : B → R. Thus a second boundary
function g : B → R is introduced (and the parameter λ is absent, reflecting the players’ wealth). At
the start of the ith turn, Maxine stakes ai ∈ [0,∞) and Mina bi ∈ [0,∞). A coin is flipped whose
head’s probability is ai

ai+bi
. As above, heads means Maxine wins the right to move the counter to

an adjacent vertex; tails, and Mina does. The game ends, as above, when the counter reaches B at
time τ . The terminal payments are f(Xτ ) to Maxine, and g(Xτ ) to Mina. Thus the net receipt in
the game equals

f(Xτ )−
τ−1∑
i=0

aXi for Maxine, and g(Xτ )−
τ−1∑
i=0

bXi for Mina . (2)
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In the special case that g equals −f , the terminal payments coincide with those in the games already
discussed. Unlike these games, the player-funded stake game is not zero-sum, even when g = −f ;
since zero-sum tools will not be used to analyse the game, it is natural to generalize it with separate
terminal payment functions f and g.

1.1.2.4. The Trail of Lost Pennies. The constant-bias, and allocated-budget stake-governed,
tug-of-war games make little sense on certain infinite graphs. Consider constant-bias tug-of-war on
the integers Z with nearest-neighbour edges, and a payment of one unit from Mina to Maxine if the
counter tends to ∞, and of minus one unit if instead it tends to −∞. The players have no choices
for strategy and the counter evolves as simple random walk, so no terminal payment is made (or
perhaps a default rule stipulates the payment). And likewise the game on Z makes no real sense
for the allocated-budget stake game: roughly put, since the game will require infinitely many turns,
any positive expenditure of the globally finite budget of a given player is unjustified at any given
turn; but if both players consistently stake nothing, then (at least if a symmetric rule is adopted
for this circumstance) the counter will again evolve as simple random walk.

It may seem that the self-funded stake game would be equally trivial when played on Z. Since this
gameboard is an infinite transitive graph, there seems to be nothing to distinguish one move from
any other in the infinite game, and this seems to make any positive stake by either player at any turn
unjustified. This consideration in fact permits one in essence to disprove the uniqueness of a Nash
equilibrium in the game, but it is quite false insofar as it suggests that the game is trivial. Indeed,
self-funded stake-governed tug-of-war has an intricate theory on Z. In this article, we investigate
the new game when the underlying graph is either Z or a finite interval therein. We call the game
on these graphs the Trail of Lost Pennies—either on Z, or on a given finite integer interval.

The attentive reader will have noticed imprecisions in our specification of stake games. What
happens if both players stake nothing at a given turn? Or if the counter fails to reach the boundary in
a suitable sense? We defer resolving these points from the present conceptual overview to Chapter 2,
where the Trail of Lost Pennies will be precisely specified.

1.1.3. An informal summary of the main conclusions. Our principal focus will be on
the Trail of Lost Pennies on Z, a game that is necessarily of infinite duration. Our main theorems
show that this simple game has a remarkably rich and surprising structure of Nash equilibria, which
witnesses two of the broad premises, “Incentive Inch, Outcome Mile” and the Battlefield Cyl Fog.

In Chapter 2, we will carefully state our principal conclusions about the game. In summary now of
the game rules and our results about it, we may say that our game data is Z with nearest-neighbour
edges; two boundary points, at −∞ and ∞; and a parameter x ∈ (0,∞). If the counter tends to
−∞ over the course of the game, then a terminal payment of one is made to Mina, and of zero
to Maxine. If the counter tends to ∞, Maxine will receive x, and Mina zero. We will prove that
Nash equilibria exist in the game precisely when x ∈ [λ, λ−1] for a certain value λ ∈ (0, 1). The
quantity λ is canonically associated to Z via a simple enough game, making its sheer closeness to the
value one remarkable: we will prove that λ ≤ 0.999904 and present clear numerical evidence that
λ ≥ 1− 10−4. (On long finite interval intervals, the rise of x roughly from λ to λ−1 is a transition
from a phase of Mina’s dominance to one of Maxine’s via a brief phase with many equilibria. An
incentive gain of 10−4 leads to a unit-order gain in outcome: the order of magnitude of the ratio
of mile to inch is respected.) When x ∈ [λ, λ−1] is given, we will exhibit countably many Nash
equilibria in the game. Each of these equilibria will be computed explicitly and will be found to
witness the Battlefield Cyl Fog: each has an integral battlefield index around which both players
stake at unit order; as the counter moves to the right from this battlefield, Mina cuts her losses and
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stakes minutely, while Maxine also rapidly reduces spending but at a much slower rate (so that her
foot is, in a relative sense, on the gas); the roles are reversed to the left of the battlefield. Note
that the countably many Nash equilibria break the translation symmetry of Z: the consideration
mooted above, that this symmetry would render the game trivial, is thus invalidated, because it
is the collection of equilibria that is translation invariant, even as each equilibrium is a non-trivial
object, centred on an integral battlefield, and lacking translation invariance.

By finding the two premises to be exemplified, our study offers a detailed answer to a question
concerning the strategic importance of positions and the optimal allocation of valued resources in
multi-turn games. (The question is of course very general, and many answers have been offered.
As we will review later in the introduction, economists’ investigations of tug-of-war have often
addressed the premise of a site of intense competition with rapid and asymmetric decay of effort
rates away from the site.) The essence of the answer we offer may well be valid more generally:
as we will discuss further in Section 7.3, player-funded stake-governed games may on many graphs
have a space of multiple Nash equilibria that exist only in a narrow range of values of the relative
terminal reward and whose elements are roughly characterized by a small ‘battlefield’ zone that
roughly divides the gameboard into two regions in which the subsequent victory of one or other
player is close to assured.

1.1.4. Overview: allocated-budget stake games and the Present-Future Compro-
mise. The guiding principle governing allocated-budget stake games stands in contrast to those of
the player-funded games that are the focus of this article. The difference is stark: a staccato burst
of stakes that punctuates near peace in player-funded games; a much smoother flow of expendi-
ture when fixed budgets are allocated. In order to put the contrast into relief, we here give a brief
overview of the sense in which [24] shows that the allocated-budget games verify the Present-Future
Compromise. Suppose that, in such a game, Maxine adopts a strategy that involves placing deter-
ministic stakes, and that Mina learns this strategy. She may mimic Maxine’s strategy, by staking
the same proportion of her remaining budget at any given turn as Maxine does of hers. The relative
fortune of the players is thus maintained at its initial value, and this permits Mina in effect to reduce
the game to the λ-biased tug-of-war. And Maxine can do likewise if the roles are reversed. Under
the premise that players stake deterministic amounts, we find that, under optimal play, the two
players stake at any given turn the same proportion of their remaining budget. Call this proportion
the ‘stake function’ S(λ, v) when the counter is at v ∈ V , Mina’s budget is one, and Maxine’s is
λ. We may seek to determine the value of S = S(λ, v) by a perturbative argument: under optimal
play, Mina will stake S and Maxine λS at the upcoming turn. If Maxine slightly increases her stake,
she will gain from an increased probability of winning the next turn, with a resulting improvement
in position; and she will lose, because she will have a smaller budget from the start of the next
turn. These gain and loss terms cancel to first order under infinitesimal perturbation, since λS is
Maxine’s optimal stake. The formula that results is

S(λ, v) =
maxu∼v h(λ, u)−minu∼v h(λ, u)

(λ+ 1)2 ∂
∂λh(λ, v)

, (3)

where h(λ, v) is the λ-biased infinity harmonic function in (1). This formula witnesses the Present-
Future Compromise, with the right-hand numerator representing the short-term demand to stake
big and win the next turn, and the denominator reflecting the long-term via the need to retain
budget for later turns. But the just sketched derivation is non-rigorous. Two notable problems are
that the proposed formula depends on the differentiability in λ of h(λ, v); and that the perturbative
argument identifies merely a local saddle point, where a global one is needed. Both of these problems
are real. The function h(λ, v) does fail to be differentiable at certain values of λ for some simple
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graphs. And the local saddle point often fails to be global, essentially because, when the counter
is at one step from the boundary B, one or other player may be tempted to go for broke, staking
all of her budget in an effort to close out the game at the present turn. In [24], these problems
are respectively addressed by restricting the class of game data and by modifying the game rules.
The class of root-reward trees, in which G = (V,E) is a tree with B its set of leaves, and f = 1r
for a distinguished leaf r, is considered, because λ → h(λ, v) is then differentiable for each v ∈ V .
And the game is modified to a leisurely version, in which, after stakes are offered at any given
turn, it is decided that a move will take place only with a small positive probability. The leisurely
game disables the efficacy of the go-for-broke deviation and renders the local saddle point global.
The principal result of [24] operates under these assumptions and proves in essence that the stake
function indeed takes the form (3). It is in this sense that [24] shows that a class of allocated-budget
stake-governed tug-of-war games satisfies the Present-Future Compromise.

1.2. The two strands of tug-of-war

In 1987, Harris and Vickers [26] proposed a model of two firms that compete to secure a patent.
They called their model tug-of-war, and the notion and this name appear to have been introduced
by them. The model is quite close to player-funded stake-governed tug-of-war played on a finite
integer interval, and will explain it shortly. The model was intended to describe how firms may
compete over time when the effect of a technological advantage is significant but uncertain, and
when the firms’ decisions are influenced by their relative progress. Their work has inspired a wealth
of research, mainly in economics but also among computer scientists, on tug-of-war and related
bidding games: [26] has a total of almost six hundred citations as of early 2023 according to google
scholar.

In 2009, Peres, Schramm, Sheffield and Wilson’s [49] considered constant-bias tug-of-war with a
fair coin. The relation they found between this game in a Euclidean setting and infinity harmonic
functions sparked a wave of attention among analysts and probabilists, with almost five hundred
works citing this article.

These two contributions study variants of the same basic concept—the two sets of authors even
appear to have arrived independently at the name ‘tug of war’—and each has influenced many re-
searchers, but they seem to have done so with a remarkable disjointness: none of the 1100 references
that cite one or other article cites both. The author of this monograph was until recently quite
unaware of the origin and development of tug-of-war in economics. Mathematicians may benefit
from learning of this literature, and there is surely value in communication between the concerned
communities of researchers. Next then we review developments for tug-of-war. First economics,
and then mathematics.

1.2.1. Tug-of-war in economics. We begin by reviewing [26], whose treatment is accompa-
nied by the proof-supplying mimeograph [25] and Vickers’ 1985 DPhil thesis [58].

1.2.1.1. Harris and Vickers’ ‘Racing with uncertainty’. In 1980, Lee and Wilde [41] proposed
a single-stage model for the relationship between research effort and outcome. Mina and Maxine
(as we call them) select respective effort rates x, y ∈ (0,∞). Maxine’s discovery time is M+, an
exponentially distributed random variable of mean x−1; Mina’s is M−, an independent exponential
of mean y−1. The player with the lower discovery time M = min{M−,M+} wins the race, and
receives a reward. Maxine and Mina have respective cost functions c−(x) and c+(y), and the
payments they make are Mc−(x) and Mc+(y). In other words, c− and c+ describe the rate of
payment incurred by the given player as a function of her effort rate, so the payments reflect that
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the efforts are sustained for time M . Since M has mean (x+ y)−1, Maxine and Mina’s mean costs

with joint effort rates (x, y) are c−(x)
x+y and c+(y)

x+y .

Lee and Wilde’s model is a single-turn player-funded tug-of-war. It fits in the framework of Subsec-
tion 1.1.2.3 if we take G equal to {−1, 0.1} with the adjacency relation, B = {−1, 1}, and provided

that in the player payments (2) we replace aX0 by c−(a0)
a0+b0

and bX0 by c+(b0)
a0+b0

, (where note that X0 = 1

and τ = 1).

The original tug-of-war model of Harris and Vickers has gameboard1 J0, N + 1K and boundary set
B = {0, N + 1}. It is the player-funded tug-of-war whose single-step rule is Lee and Wilde’s: the
players offer effort rates at each turn, and the above rule decides the outcome according to given
turn-independent cost functions c− and c+. Formally then we may specify the model by taking G

to be an integer interval and replacing aXi →
c−(aXi )

a0+bXi
and bX0 →

c+(bXi )

aXi+bXi
in (2).

Also formally, player-funded stake-governed tug-of-war is the special case of Harris and Vickers’
model if we take c−(x) = x(x + y) and c+(y) = x(x + y), though the dependence of these cost
functions on the opponent’s strategy make them inadmissible for this framework.

Harris and Vickers use a fixed point theorem prove that, for a fairly general class of cost functions
c− and c+, there exists a Nash equilibrium that is stationary in the sense that players’ effort rates
are determined merely by present counter location. If Maxine and Mina’s effort rates are labelled xi
and yi when the counter is at i ∈ J1, NK, then the equilibrium may be called symmetric if xi = yN−i.
And the game itself is called symmetric if c− = c+ and the terminal payments to the two players
are equal after interchange of endpoints. Harris and Vickers prove that the symmetric game has a
symmetric equilibrium, and that there is only one symmetric equilibrium when c−(z) = c+(z) = zη

for some η > 1 or when the gameboard is short and under weaker hypotheses on the cost functions.
The symmetric equilibrium is computed explicitly in the example where N is even and η = 2.
The gameboard has a central edge [N/2, N/2 + 1]. It is found that Maxine’s effort xi peaks at

xi = N/2 + 1, the right end of this edge; that the ratio xn/xn−1 equals 21/2+(N/2+1)−n; and that
yn/yn−1 = 2−1xn/xn−1. Thus Maxine’s effort drops sharply to the right of N/2 + 1, with a ratio
of efforts at consecutive vertices having exponential decay in the distance to N/2; Mina’s effort
drops even more rapidly, with the ratio of her effort to Mina’s decaying exponentially in the same
sense. This computation illustrates the main message of Harris and Vickers: as they write in the
abstract, ‘in our principal model, which is of a one-dimensional race, it is shown that the leader in
the race makes greater efforts than the follower, and efforts increase as the gap between competitors
decreases’. In summary, we may say that tug-of-war was first introduced principally to illustrate this
effect. In the language of Section 1.1.1, the Battlefield Cyl Fog is exemplified, with the battlefield
at the vertices N/2 and N/2 + 1.

Harris and Vickers briefly comment on the possible existence of asymmetric equilbria, mentioning
that, for certain cost functions, computer simulations appear to indicate a total of 2N−1 equilibria:
one symmetric, and remaining asymmetric in N pairs.

1.2.1.2. Further treatments of player-funded tug-of-war in economics. In 1980, Tullock [57] con-
sidered two-player single-stage contests. Player A stakes x ∈ [0,∞) and player B, y ∈ [0,∞), and
the contest is won by A with probability xγ

xγ+yγ , where γ ∈ (0,∞) is now known as the Tullock ex-

ponent. The case γ = 1 is called a lottery; this is the contest used in each step of the stake-governed
tug-of-war games specified in Section 1.1.2. Taking γ = 0 yields constant-bias tug-of-war with a fair

1For i, j ∈ Z, i ≤ j, we write Ji, jK =
{
k ∈ Z : i ≤ k ≤ j

}
.



1.2. THE TWO STRANDS OF TUG-OF-WAR 12

coin. And the limit γ →∞ leads to all-pay auctions, in which the higher staking player wins (with
a tie-break rule needed for equal stakes), and both stakes are forfeit.

Konrad and Kovenock [36], Agastya and McAfee [1] and Konrad [37], considered player-funded tug-
of-war on finite integer intervals with the all-pay auction rule used to decide turn victor. Konrad
and Kovenock found the battlefield effect to be manifest in a strong form with this rule: players
offer stakes in essence at just two vertices. Agastya and McAfee reach rather different conclusions,
because of use of a different tie-break rule and of discounting of terminal payments. There are
some equillibria where no stakes are ever placed. In others, a battlefield exists, with momentum
for the stronger player away from this location. But, contrary to the Battlefield Cyl Fog, stakes
rise near the boundary: discounting future payments makes the imminence of victory or defeat
significant. Konrad [37] presents a discussion involving player-funded games with Tullock lottery
contests, emphasising the discouraging effect of early losses on a player. (Here, we may compare how
the premise “Incentive Inch, Outcome Mile” evokes discouragement that effects the less motivated
player.)

Häfner [22] considered a ‘tug-of-war team contest’: player-funded tug-of-war on an integer interval
with all-pay auction rules at each turn, but in which each player is in fact a team of countably
many people, with each individual on a team responsible only for the payment at some given turn
(but receiving nonetheless the full terminal terminal payment for his team). It is shown that efforts
diminish as the stronger team approaches victory: this conclusion, shared by Harris and Vickers (and
by the Battlefield Cyl Fog), arises in this case in view of free-rider and effort-discouragement effects
for team players staking when victory or defeat is close to assured. In [23], Häfner and Konrad
consider a modified setup in which, for each team, a member is assigned to each site in open play,
and is responsible for all stake payments made for play at that site. It is found that members
of the leading team outspend their opponents (as in the Battlefield Cyl Fog) when there is little
discounting of the terminal payment, and that the reverse holds when there is much discounting.

1.2.1.3. The player-funded game with the majoritarian objective. In tug-of-war on an integer
interval gameboard symmetric about the origin, one player wins when she secures a number of turn
victories that exceeds her opponent’s by a certain value. Harris and Vickers further considered the
game where the game winner is the first to secure a certain number of victories. This majoritarian
objective model fits in the framework of Subsection 1.1.2.3 if we consider what may be called directed
rectangle graphs: that is, if we take G = (V,E) to be a directed graph with V = J0,mK×J0, nK, and E
the set of north and east pointing nearest-neighbour edges; f(x, y) = λ1y=m and g(x, y) = 1x=n;
and initially X0 = (0, 0). (Harris and Vickers’ stake-rules entail further changes as described
in Subsection 1.2.1.1.) In this model, backward induction readily shows the equilibrium is unique
under reasonable hypotheses on the Harris-Vickers cost functions c− and c+. Numerical work in [26]
with zη-cost functions indicate some expected effects, such as the rapidly emerging dominance of the
stronger player (the presence then of a battlefield); but also of surprises, such as stark oscillations
in effort rates in the case m = n as a function of n ∈ J1, 10K.

The Democratic and Republican primary contests to determine the party’s nominee in a U.S. presi-
dential election are run on a calendar of several months. In the ‘New Hampshire’ effect, candidates
typically spend a significant fraction of their resources in the earliest contests. Klumpp and Pol-
born [35] considered as a model of this phenomenon majoritarian objective tug-of-war with a Tullock
contest rule for deciding turns. The early burst of campaign expenditure and momentum effects dis-
cussed are similar to the Battlefield Cyl Fog, and contrast with a more uniform resource allocation
in simultaneous contests, so that a sequential rather than simultaneous primary season is typically
cheaper for the winning candidate.
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Kovenock and Konrad [38] considered the majoritarian objective game with all-pay auction rules at
the turn, with the introduction of intermediate prizes, or payoffs to players at non-terminal times.
Gelder [21] shows that discounting dissipates the accrual of momentum to the stronger player in
the majoritarian game with all-pay auction rules. Best-of-three contests have been examined by
Malueg and Yates [45], and by Sela [55]. Fu, Lu and Pan [20] considered a team contest version of
the majoritarian game.

Ewerhart and Teichgräber [19] introduce a player-funded tug-of-war framework that is more general
than integer interval or first-to-N contests. Operating under assumptions including that gameplay
before termination has a certain exchangeability of move order, they show that gameplay takes place
in an initial phase, in which no state may be revisited, followed by a later tug-of-war phase. They
consider symmetric equilibria, showing that there exists a unique such that is Markov perfect (or
stationary, in the above usage), for a broad range of contest rules; and they discuss the problem of
designing contests that are optimal for the tournament organizer by maximizing combined player
expenditure. Existence and uniqueness of the symmetric stationary equilibrium in player-funded
tug-of-war with a Tullock contest of exponent one-half at each turn were proved and this equilibrium
analysed in [31].

1.2.1.4. The allocated-budget games. In 1921, Emile Borel considered a game [15] that pits a
protagonist now commonly called Colonel Blotto against an opponent. Borel gives an example:
players A and B each choose an ordered triple of non-negative reals that sum to one. Player A wins
the game if at least two of his values exceed the counterparts for B. In general, the colonel and his
opponent each allocate a given resource across a fixed number of battlegrounds, with a given battle
won by the better committed player, and the battle-total determining the winner of the war. The
label ‘Blotto’ is sometimes attached to games where players have fixed resources, whether they be
committed simultaneously as in Borel’s game, or for example sequentially, as in budget-allocated
tug-of-war from Subsection 1.1.2.2.

In Section 1.1.4, we advanced a premise for how to play the Blotto game with the lottery contest
function x

x+y : stake a proportion (3) of your remaining fortune, whether you be Mina or Maxine.

But we also indicated that even tug-of-war on J0, 3K is a counterexample to this premise. Rather
than altering the game (as [24] did), we may ask whether a class of graphs can be found for which the
premise is correct. The majoritarian objective games—tug-of-war on directed rectangle graphs—are
a good starting point. In this game on J0, 1K× J0, nK, there are n contests, with one player needing
to win every one, and the other requiring only one victory. A symmetry consideration points to a
stake proportion of 1/n being optimal when X0 = (0, 0). This choice in fact validates (3), as [24,
Section 2.6] explains. Klumpp, Konrad and Solomon [34] generalise this example to show that
the game on any directed rectangle graph, and for a broad range of turn contest functions, has an
equilibrium with an even split of resources across turns.

Allocated-budget tug-of-war on a finite integer interval has been examined by Klumpp [33]. In
note 1 on page 27, he notes an example, similarly as does [24], in which a formula equivalent to (3)
is invalidated when the weaker player is one step from winning. Where [24] turned to a leisurely
version of the game to regularise this example, Klumpp considers lowering the Tullock exponent
from the lottery value γ = 1. He surmises from a numerical investigation that the formula in
question is likely to offer an equilibrium precisely when γ at most one-half.

1.2.1.5. An experimental study. In 2002, Zizzo [60] reported outcomes of a study of human
players in a majoritarian objective, first-to-10 game. The experimental setting was designed to
replicate as closely as possible the Harris-Vickers first-to-10 game with cost functions c−(x) =
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c+(x) = x2. Leaders clearly outspent their opponents only when a significant gap had opened,
and the Harris-Vickers predictions appeared not to be well supported by the tests. Two differences
between theory and setup should be noted, however.

First, although players retained unspent budgets and thus in effect lost spent monies as in a player-
funded game, they also operated under a budget constraint, which equalled one-half of the terminal
payment to the victor. Zizzo acknowledges this difference and writes “to minimize the possibility of
distortions that might occur ... as a result of a binding budget constraint ... instructions stressed
the need for subjects to retain enough money to fund the later rounds of the competition in an
unconstrained way.” Such an admonition was likely intended to prevent player bankruptcy, the
most blatant manifestation of budget constraint. But it also illustrates the role of the future in
the Present-Future Compromise seen in allocated-budget games. The setup was a hybrid of player-
funded and allocated-budget rules, and it is conceivable that the outcomes felt the effects of both
regimes.

Second, recall that Harris and Vickers’ cost functions c−(z) and c+(z) are rates of charge to players
as a function of their effort rates z. Zizzo’s implementation sets costs equal to z2 but treats them
simply as the payments made by players at the turn. When Mina and Maxine stake x and y at

a given turn, their mean payments at the turn are x2

x+y and y2

x+y for quadratic Harris-Vickers; for

Zizzo, the payments are deterministic quantities, x2 and y2. Zizzo’s framework at a given turn is
readily seen to be equivalent to a Tullock contest from Subsection 1.2.1.2, with exponent γ equal
to one-half. The player-funded majoritarian objective game with this framework may well have
qualitatively similar theoretical features to those that Harris and Vickers identified and predicted,
but this premise deserves scrutiny in interpreting Zizzo’s work as an experimental test of Harris and
Vickers’ theory.

1.2.2. Tug-of-war in mathematics. Peres, Schramm, Sheffield and Wilson [49] considered
constant-bias tug-of-war with a fair coin. Under optimal play, Maxine moves to an h-maximizing
neighbour of the counter’s present location, and Mina to an h-minimizing one, where h is the
discrete infinity harmonic extension of boundary data f : B → R; namely, h(·) equals h(λ, ·)
from (1) with λ = 1. In this way, h is shown to be the game’s value. This is perhaps the simplest
connection between discrete infinity harmonic functions and tug-of-war games, but it was not the
first. Richman games were introduced in [40] and further studied in [39]. A first-price Richman
game is an allocated-budget tug-of-war game with an auction to determine the turn victor (so
that the higher staking player wins), and with the turn victor paying the opponent his stake, the
opponent making no payment at the turn. The threshold ratio is a value t such that, if the initial
relative ratio of Maxine’s budget and the total budget for the two players exceeds t, then Maxine
will almost surely win the game if she plays correctly, while Mina will win in this sense if this ratio
is less than t. In [40], it is proved that the threshold ratio exists as a function of initial counter
location and equals the discrete infinity harmonic extension of f : B → R. Several variants of these
games—with all-pay rules, or infinite duration, or in the poormen variant, where the turn victor
pays the bank, not the opponent—have been studied [5, 7, 8, 9] by theoretical computer scientists,
who also address approximate algorithms and computation complexity: see [6] for a survey that
treats these directions.

We have recalled constant-bias tug-of-war in the discrete context of given graphs in part because
the framework of our results is discrete, but the principal aim of [49] was to relate tug-of-war in a
low mesh limit to infinity harmonic functions mapping domains in Rd to R, these being continuum
counterparts to (1). In ‘ε tug-of-war’ for given ε > 0, the gameboard is a domain D in Rd, with
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boundary data f : B → R, B = ∂D. Mina and Maxine (as we name them) move a counter—a point
in D—a distance at most ε at each turn, according to the outcome of a fair coin flip. Mina pays
Maxine the evaluation of f at the counter location when the game ends as the counter reaches B.
In [49], the value of ε tug-of-war is shown in a low-ε limit to converge to the infinity harmonic
function that extends f to D. This is the viscosity solution h : D → R of the infinity Laplace
equation

∑
i,j ∂xi∂xixj∂xjh = 0 subject to h

∣∣
B

= f . The infinity Laplace operator is a degenerate

second-order differential operator that was introduced and studied by Aronsson [3, 4] in 1967 and
that has a subtle uniqueness [29] and regularity [54, 18] theory. Its viscosity solutions [16] are
absolutely minimizing Lipschitz functions extending the given boundary data [29].

As [46] surveys, the game theory connection identified in [49] sparked much attention from the
PDE community. In [2], boundary rules in ε tug-of-war were altered from [49] to obtain more
regular game value functions. In [13], random move sizes with a heavy tail (judged on scale ε) were
introduced, thus connecting to the infinity fractional Laplacian. Suppose that ε tug-of-war is played
with a random displacement of magnitude cε of the counter at the end of each move. For p ∈ (2,∞),
the p-Laplacian [44] is an interpolation of the usual Laplacian operator (for p = 2) and the infinity
version. In [50], it is shown that the value of this game converges to a p-harmonic function for p
suitably chosen as a function of c: see [42] for a survey centred around this perspective. A variant
of this game has been used to study p-Laplacian obstacle problems in [43]. The book [14] reviews
the abundant connections between tug-of-war and PDE.

It is the fair case λ = 1 of constant-bias tug-of-war that [49] considers. The biased case λ ∈ (0,∞)
was addressed in [47]: ε tug-of-war was modified so that a suitable drift is maintained in the
low-ε limit, and a continuum biased infinity harmonic function is then obtained as limiting game
value. In [51], a rapid algorithm for computing biased discrete infinity harmonic functions (1) was
found in terms of a path decomposition of the graph (V,E). As the bias parameter λ varies, this
decomposition changes at certain values. It is these changes that cause the lack of differentiability
in (0,∞)→ R : λ→ h(λ, v) to which we alluded in Subsection 1.1.4.

Tug-of-war played on directed graphs has also garnered attention among mathematicians. Many
combinatorial games, such as Go and Hex, are zero-sum two-player games in which players alternate
in make directed moves by placing counters that cannot be moved later. In [48], random-turn
versions of these ‘selection games’ were considered. Hex is a game discovered by Piet Hein in 1942
in which two players alternately place red or blue hexagons on a hexagonal grid, each seeking to
forge a connection between a pair of diagonally opposed boundary segments in his own colour. It
is a complex game [27] which has no explicit solution on 11 by 11 boards on which it is played
competitively. In [48], the solution to random-turn Hex (among other selection games) was found
explicitly in terms of the maximum pivotal probability for critical percolation in the unplayed region.
This work offers a perspective on the strategic importance of positions in multi-turn games.

To conclude, we first mention two broad antecedents to stake-governed random-turn games. Rufus
Isaacs’ differential games [28], include examples where a pursuer seeks to capture an evader in
Euclidean space, and each instantaneously selects certain control variables such as velocity, anal-
ogously to Mina and Maxine’s ongoing selection of stakes. In Shapley’s stochastic games [56],
transition probabilities governed step-by-step by decisions of two players encompass the stake game
framework in a broad sense.2 These are fairly loose connections, however. Regarding tug-of-war
itself, we have seen how mathematicians have tended to focus on constant-bias models. They have

2Both differential and stochastic games have attracted ongoing attention. Several chapters of a recent handbook [12]
treat dynamic game theory, and [53] collects articles about stochastic games.
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explored a much wider geometric setting than the finite integer intervals and (what we have called)
the directed rectangle graphs that are common elements in the economics literature, exploring these
games’ implications in probability and PDE. Economists originated tug-of-war, considering from the
outset bidding rules beyond the trivial constant-bias, and have sustained attention on these games
for almost four decades, putting the theme of resource allocation at the heart of their investigations
throughout. This article and [24] offer detailed mathematical treatments of resource-allocation
tug-of-war games: with allocated budgets in [24], and with player funding in the present article.
Raising the prospect of uncovering further beautiful mathematical structure, and informing theoret-
ical analysis of economic behaviour, tug-of-war in its original resource-allocation guise would surely
repay the further attention of mathematicians.

1.2.3. Acknowledgments. The author thanks Gábor Pete for many discussions about stake-
governed games. He thanks Judit Zádor for help with Mathematica and in preparing the article’s
figures. He is supported by the National Science Foundation under DMS grants 1855550 and 2153359
and by the Simons Foundation as a 2021 Simons Fellow.



CHAPTER 2

Main results

In this chapter, we specify precisely the Trail of Lost Pennies and state our main conclusions. The
structure of the remainder of the article is explained at the end of the chapter.

2.1. Game setup, strategies and Nash equilibria

The Trail of Lost Pennies on Z will be denoted by Trail(m−∞,m∞, n−∞, n∞). The data that
specifies the game takes the form of

a quadruple
(
m−∞,m∞, n−∞, n∞

)
∈ R4 that satisfies m−∞ < m∞ and n∞ < n−∞ . (4)

For any given k ∈ Z, we will specify the gameplay of Trail(m−∞,m∞, n−∞, n∞) where the initial
location of the counter is equal to k. The counter’s location X will evolve from its initial location
X0 = k in discrete time-steps, the result being a stochastic process X : N → Z whose law is
determined by k (we take N to include zero). This random process is specified by the pair of
strategies adopted by Mina (who plays to the left) and Maxine (who plays to the right).

For either player, a strategy is a map S : Z × N+ → [0,∞). A player who follows the strategy S
stakes S(Xi−1, i) at the turn with index i ≥ 1. Let S denote the set of strategies. An element of
S2 is called a strategy pair. A generic element of S2 will be written (S−, S+), where the respective
components are the strategies of Mina and Maxine.

We wish then to specify the gameplay process X : N→ Z as a function of a given element (S−, S+) ∈
S2 and the initial location X0 = k ∈ Z. We will write PkS−,S+

for a probability measure that specifies

this gameplay process and accompanying aspects of the game; the associated expectation operator
will be written EkS−,S+

[·]. At the turn with index i ∈ N+, Mina stakes S−(Xi−1, i) and Maxine stakes

S+(Xi−1, i). By sampling of independent randomness, the turn victor is declared to be Maxine with

probability S+(Xi−1,i)
S−(Xi−1,i)+S+(Xi−1,i)

; in the other event, it is declared to be Mina. Maxine will elect to

move the counter one place to the right if she is the turn victor; Mina, one place to the left. (It is
intuitive given the rules of the game that we are specifying that the two players will always elect
to move the counter in the said directions, and we will not furnish the straightforward details to
the effect that permitting other options changes nothing essential about the game.) Should neither
player make a stake at the given turn—that is, if S−(Xi−1, i) = S+(Xi−1, i) = 0—then a further
rule is needed to permit play to continue. We will declare that, in this event, each player wins the
right to move with equal probability (with Maxine moving right, and Mina left, as usual).

Formally, then, our counter evolution satisfies the condition that, for (k, i, `) ∈ Z× N+ × Z,

PkS−,S+

(
Xi −Xi−1 = `

∣∣∣Xj , j ∈ J0, i− 1K
)

= S−(Xi−1,i)
S−(Xi−1,i)+S+(Xi−1,i)

1`=−1 + S+(Xi−1,i)
S−(Xi−1,i)+S+(Xi−1,i)

1`=1 ,

where recall that we use the integer-interval notation Ji, jK =
{
` ∈ Z : i ≤ ` ≤ j

}
, i, j ∈ Z. Note

that, in reading the ratios on the right-hand side in the display, we adopt the convention that
0/0 = 1/2.
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We further wish to specify the other pertinent features of the game when the strategy pair (S−, S+)
is played. These features are the resulting payoffs to Mina and Maxine. Mina’s payoff P− is the
sum of a negative term given by the total costs incurred to Mina during gameplay, and a further
term that is the terminal payment that is made to her. Indeed, we may write

P− = −
∞∑
t=1

C−(t) + T− , (5)

where C−(t) denotes the cost incurred to Mina at the turn with index t ∈ N+, and T− equals the
terminal payment to Mina. We have then that the cost C−(t) is equal to Mina’s stake S−(Xt−1, t).

The terminal payment T− is in essence given by n−∞ if Mina wins the game by eventually bringing
the counter infinitely far to the left; and to n∞ in the opposing event. However, a precise formulation
is needed to make sense of this. We define the escape event E according to

E =
{

lim
n
|Xn| =∞

}
. (6)

The left and right escape events are given by

E− =
{

lim sup
n

Xn = −∞
}

and E+ =
{

lim inf
n

Xn =∞
}
. (7)

Note that E− and E+ are disjoint events whose union equals E. We regard them as victory events
for Mina and Maxine, and accordingly set the terminal payment to Mina as follows:

T− =


n−∞ when E− occurs ,

n∞ when E+ occurs ,

n∗ when Ec occurs .

(8)

Here n∗ is a given real value that is at most n∞. By assigning this terminal payment to Mina in the
event of non-escape, we ensure that this payment no more generous than that made in the event E+

of her defeat.

We may specify Maxine’s payoff

P+ = −
∞∑
t=1

C+(t) + T+ (9)

with counterpart interpretations for the right-hand terms: the cost C+(t) incurred to Maxine at the
turn with index t ∈ N+ equals Maxine’s stake S+(Xt−1, t), while the terminal payment T+ that she
receives is given by

T+ =


m−∞ when E− occurs ,

m∞ when E+ occurs ,

m∗ when Ec occurs ,

(10)

where m∗ is a given real value1 that is at most m−∞.

The quantities labelled P , C and T for Mina and Maxine are determined by the gameplayX : N→ Z.
The gameplay and these other random variables are thus coupled together under the law PkS−,S+

. Of

course, starting location X0 = k and strategy pair (S−, S+) are fundamental for determining game

1Note that (m∗, n∗) ∈ R2 and (m−∞,m∞, n−∞, n∞) ∈ R4 are the parameters that specify the Trail of Lost Pennies
on Z. We thus speak imprecisely when we refer to the latter quadruple as the game’s data. Given the upper bounds
that we impose on them, the values of m∗ and n∗ will be immaterial for our analysis.



2.2. TIME-INVARIANT NASH EQUILIBRIA AND THE ABMN EQUATIONS 19

outcome including the above described quantities. In our notation, this dependence is communicated
by the labels of the law PkS−,S+

, rather than in the annotations P−, T−, and so on.

A strategy is time-invariant2 if S(i, j) is independent of j ∈ N+ for every i ∈ Z. The set of
time-invariant strategies will be denoted by S0. A time-invariant strategy pair (S−, S+) ∈ S2 may
be identified with a pair of sequences

{
ai : i ∈ Z

}
and

{
bi : i ∈ Z

}
, where ai = S+(i, j) and

bi = S−(i, j) for (i, j) ∈ Z× N+.

A strategy pair (S−, S+) ∈ S2 is a Nash equilibrium if

EkS−,S+
[P+] ≥ EkS−,S [P+] and EkS−,S+

[P−] ≥ EkS,S+
[P−]

for all S ∈ S and k ∈ Z. Note that this condition takes a strong form3, in that it stipulates the
displayed bound for any initial condition X0 = k ∈ Z for the counter location.

Let N (m−∞,m∞, n−∞, n∞) ⊂ S2 denote the set of Nash equilibria. Consider a time-invariant
Nash equilibrium, namely an element (S−, S+) of S20 that satisfies the above condition: when
such a strategy pair is played, neither player would gain by altering strategy, even if the proposed
alternative strategy is not time-invariant.

In an abuse of notation, generic elements of S0, for respective use by Maxine and Mina, will be
called

(
ai : i ∈ Z) and

(
bi : i ∈ Z

)
. In a further abuse, the accompanying element of S20 will be

denoted4
{

(bi, ai) : i ∈ Z
}

.

2.2. Time-invariant Nash equilibria and the ABMN equations

We now begin to present our main results. We first introduce the ABMN equations, which will be
fundamental to this study. Theorems 2.3 and 2.4 present basic properties of the equations’ solution
set, and Theorem 2.6 is the result that bridges between the equations and the trail game (as we will
sometimes informally call the Trail of Lost Pennies). In Theorem 2.8, these theorems are leveraged
to characterize when the trail game has time-invariant Nash equilibria in terms a condition on
boundary data involving an important basic quantity, the Mina margin, which is introduced here.
The section ends with Theorem 2.14, which offers precise asymptotic decay estimates for Nash
equilibria as the index varies away from the battlefield index, at which the players are most likely
to decide the ultimate outcome of a given game; and with its consequence Theorem 2.15, which
describes gameplay at any Nash equilibrium.

Definition 2.1. Let
{

(bi, ai) : i ∈ Z
}

denote a time-invariant strategy pair: namely,{
(bi, ai) : i ∈ Z

}
∈ S20 .

Let S−, S+ ∈ S be strategies such that S−(i, j) = bi and S+(i, j) = ai whenever (i, j) ∈ Z× N+.

Set mi = EiS−,S+
[P+] and ni = EiS−,S+

[P−] for i ∈ Z. By this means, we have associated to any

element
{

(bi, ai) : i ∈ Z
}
∈ S20 a Z-indexed quadruple

{
(ai, bi,mi, ni) : i ∈ Z

}
of elements taking

values in [0,∞)2 ×
(
R ∪ {−∞}

)2
.

2This property of strategies corresponds to that called stationary by Harris and Vickers: see Subsection 1.2.1.1. And
it is sometimes called Markov, since decisions depend on history only through the present state of play.
3The strengthened form is closely related to the notions of subgame perfect, and Markov perfect, equilibrium.
4In the strategy-pair notation (S−, S+) ∈ S2, governed by − < +, Mina precedes Maxine. Thus the notation (b, a)
for strategy pairs will be standard. We will shortly introduce an (a, b,m, n)-quadruple notation for stakes and mean
payoffs, in which Maxine precedes Mina (in the sense of ‘a before b’ and ‘m before n’). As a result, usages of the form
‘(a, b,m, n) is the quadruple associated to the Nash equilibrium (b, a)’ will be made.
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Definition 2.2. The ABMN system on Z is the set of equations in the four real variables ai, bi,
mi and ni, indexed by i ∈ Z,

(ai + bi)(mi + ai) = aimi+1 + bimi−1 ABMN(1)

(ai + bi)(ni + bi) = aini+1 + bini−1 ABMN(2)

(ai + bi)
2 = bi

(
mi+1 −mi−1

)
ABMN(3)

(ai + bi)
2 = ai

(
ni−1 − ni+1

)
ABMN(4) ,

where i ranges over Z. We will refer to the above equations throughout in the form ABMN(i), for
i ∈ {1, 2, 3, 4}, rather than by a conventional numerical labelling. It is always supposed that ai
and bi are non-negative for i ∈ Z. A solution is said to have boundary data (m−∞,m∞, n−∞, n∞)
when

lim
k→∞

m−k = m−∞ , lim
k→∞

mk = m∞ , lim
k→∞

n−k = n−∞ and lim
k→∞

nk = n∞ . (11)

For such a solution, the Mina margin is set equal to n−∞−n∞
m∞−m−∞ . A solution is called positive if ai > 0

and bi > 0 for all i ∈ Z. It is called strict if mi+1 > mi and ni > ni+1 for such i.

Theorem 2.3. Let
{

(ai, bi,mi, ni) ∈ (0,∞)2 × R2 : i ∈ Z
}

be a positive ABMN solution.

(1) The solution is strict.

(2) The solution has boundary conditions (m−∞,m∞, n−∞, n∞) that satisfy m∞ > m−∞ and
n−∞ > n∞.

(3) The values m−∞, m∞, n−∞ and n∞ are real numbers. As such, the Mina margin n−∞−n∞
m∞−m−∞

exists and is a positive and finite real number.

The Mina margin has a fundamental role to play in determining whether the ABMN system can be
solved, as we now see.

Theorem 2.4. Invoking Theorem 2.3(3), we may set I ⊂ (0,∞) equal to the set of values of the

Mina margin n−∞−n∞
m∞−m−∞ , where

{
(ai, bi,mi, ni) ∈ (0,∞)2×R2 : i ∈ Z

}
ranges over the set of positive

ABMN solutions.

(1) There exists a value λ ∈ (0, 1] such that the set I is equal to the interval [λ, λ−1].

(2) Moreover, a positive ABMN solution exists with boundary data (m−∞,m∞, n−∞, n∞) ∈ R4

if and only if m−∞ < m∞, n∞ < n−∞ and n−∞−n∞
m∞−m−∞ ∈ [λ, λ−1].

(3) The value of λ is at most 0.999904.

Conjecture 2.5. The value of λ is at least 0.999902.

Evidence for this conjecture will be presented in Section 6.3. It is perhaps surprising that a value so
close to one may emerge from the ABMN system. The next result makes it all the more remarkable.

Theorem 2.6. Let (m−∞,m∞, n−∞, n∞) ∈ R4 satisfy m−∞ < m∞ and n∞ < n−∞.

(1) Suppose that an element
{

(bi, ai) : i ∈ Z
}

of S20 lies in N (m−∞,m∞, n−∞, n∞). Then

the quadruple
{

(ai, bi,mi, ni) : i ∈ Z
}

associated to the element by Definition 2.1

is a positive ABMN solution with boundary data (m−∞,m∞, n−∞, n∞).
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(2) Conversely, suppose that
{

(ai, bi,mi, ni) ∈ (0,∞)2 × R2 : i ∈ Z
}

is a positive ABMN

solution with boundary data (m−∞,m∞, n−∞, n∞). Then
{

(bi, ai) : i ∈ Z
}
∈ S20 lies in

N (m−∞,m∞, n−∞, n∞).

In view of this result, Theorem 2.4(3) eliminates the possibility that λ = 1, that Nash equilibria
exist only when the players have symmetric roles. Conjecture 2.5 implies that the bound on λ
proved in Theorem 2.4(3) is close to sharp: this quantity, which is canonically associated to the
Trail of Lost Pennies on Z—a natural and simple enough game—would then be remarkably close
to one, differing from it by less than 10−4.

Definition 2.7. In its standard form, the trail game has boundary data that satisfies m−∞ = 0,
n∞ = 0 and m∞ = 1. For a game in this form, the game’s data is thus specified by one parameter,
n−∞ ∈ (0,∞). This parameter equals the Mina margin n−∞−n∞

m∞−m−∞ .

Let x ∈ (0,∞). By Standard(x), we denote the Trail of Lost Pennies on Z in its standard form,
with the Mina margin equal to x. That is, Standard(x) equals Trail(0, 1, x, 0), as this game has
been specified in Section 2.1.

We briefly recapitulate in the present case the rough argument that motivated the premise “Incentive
Inch, Outcome Mile” in Subsection 1.1.1. Suppose that x exceeds one. In playing Standard(x),
Maxine has more to play for than does Mina. Maxine may be tempted to outstake Mina, perhaps
staking a certain constant multiple f(x) > 1 of the stake that Mina offers at any given turn. The
resulting gameplay is a walk with a constant bias to the right, making Mina’s defeat inevitable—
she may as well (or better) have staked nothing. If instead it is x−1 that exceeds one, then it is
of course Mina who may be tempted by such an approach. Perhaps an argument can be fashioned
along these lines to the effect that the game is competitive precisely when x lies in an interval of the
form [µ, µ−1] for some µ ∈ (0, 1]. This heuristic hardly lacks shortcomings, and it is quite unclear
what the value of µ should be. However, the next result, which anyway follows from Theorems 2.4
and 2.6, validates its conclusion in a certain sense, with the value of µ equal to λ.

Theorem 2.8. Recall the quantity λ ∈ (0, 1), which is specified and described by Theorem 2.4. For
x ∈ (0,∞), the game Standard(x) has a time-invariant Nash equilibrium precisely when x lies in
[λ, λ−1].

Admitting Conjecture 2.5, it is tempting to claim that this theorem validates the premise “Incentive
Inch, Outcome Mile” in a precise and quantitative way. In fact, we can surmise that the premise
holds for long finite intervals more clearly than we can for Z, as we will discuss further in Section 7.4.

The shift operator on Z has a basic role to play as we analyse the Trail of Lost Pennies on this set.

Definition 2.9. Consider two time-invariant strategy pairs
{

(bi, ai) : i ∈ Z
}

and
{

(b′i, a
′
i) : i ∈ Z

}
.

These pairs are called shift equivalent if there exists k ∈ Z for which (bi, ai) = (b′i+k, a
′
i+k) for all i ∈

Z. It is straightforward to see that an element
{

(bi, ai) : i ∈ Z
}

of S20 lies in N (m−∞,m∞, n−∞, n∞)
if and only if every shift equivalent element does so.

Let Q : (0,∞) → N be such that Q(x) is the maximum cardinality of a set of mutually shift
inequivalent time-invariant Nash equilibria for the game Standard(x) for x ∈ (0,∞). The preceding
result implies that the set of x ∈ (0,∞) for which Q(x) > 0 is equal to the interval [λ, λ−1]—which
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interval is non-degenerate in view of Theorem 2.4(3). In the next result, we assert that a pair of
shift inequivalent solutions exist when the Mina margin lies in the interval’s interior.

Theorem 2.10. For x ∈ (λ, λ−1), Q(x) ≥ 2.

We conjecture that no further time-invariant Nash equilibria exist.

Conjecture 2.11. We have that Q(x) = 2 when x ∈ (λ, λ−1) and Q(x) = 1 when x ∈ {λ, λ−1
}

.

This conjecture will be discussed in Section 7.1.

The next result describes precise asymptotic estimates on four sequences associated to any positive
ABMN solution. In light of Theorem 2.6, it also describes decay rates for the pair of sequences
given by any time-invariant Nash equilibrium.

Definition 2.12. Let (a, b,m, n) be an ABMN solution. For i ∈ Z, set φi = ni−1−ni
mi−mi−1

.

Definition 2.13. For an ABMN solution (a, b,m, n), the battlefield index is the unique value k ∈ Z
such that φk ∈ (1/3, 3].

In Lemma 5.10, we will prove the existence and uniqueness claims implicit in the last definition,
thus showing that the battlefield index is well-defined.

Theorem 2.14. Let
{

(ai, bi,mi, ni) : i ∈ Z
}

be a positive ABMN solution, and let k ∈ Z denote its
battlefield index.

(1) There exist positive constants A and F such that, for j ≥ k,

aj = (mk −mk−1) · 2F · 22(j−k) exp
{
− 2 · 2j−kA

}(
1 + e−O(1)2j−k

)
;

bj = (mk −mk−1) · 4F · 22(j−k) exp
{
− 3 · 2j−kA

}(
1 + e−O(1)2j−k

)
;

mj −mj−1 = (mk −mk−1) · F · 22(j−k) exp
{
− 2j−kA

}(
1 + e−O(1)2j−k

)
; and

nj−1 − nj = (mk −mk−1) · 2F · 22(j−k) exp
{
− 2j−k+1A

}(
1 + e−O(1)2j−k

)
.

The constants A and F may be chosen to lie in a compact interval of (0,∞) that does not
depend on the choice of the solution

{
(ai, bi,mi, ni) : i ∈ Z

}
. The positive constant that is

implicit in the O-notation in the four displayed expressions may be chosen independently
of this solution.

(2) There exist positive constants B and G such that, for j ≤ k − 1,

aj = (nk−1 − nk) · 4G · 22(k−j) exp
{
− 3 · 2k−jB

}(
1 + e−O(1)2k−j

)
;

bj = (nk−1 − nk) · 2G · 22(k−j) exp
{
− 2 · 2k−jB

}(
1 + e−O(1)2k−j

)
;

mj −mj−1 = (nk−1 − nk) · 2G · 22(j−k) exp
{
− 2k−j+1B

}(
1 + e−O(1)2k−j

)
; and

nj−1 − nj = (nk−1 − nk) ·G · 22(j−k) exp
{
− 2k−jB

}(
1 + e−O(1)2k−j

)
.

The conditions on B and G satisfy those set out for A and F in the preceding part; the
constant implicit in the O-notation satisfies the condition recorded in this part.
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When X = k—when the counter is at the battlefield index—both players spend big to try to
win the next move. For example, when m∞ − m−∞ = n−∞ − n∞ = 1, so that the difference in
terminal receipt between victory and defeat is one unit for each player, then values of Maxine’s
stake ak lie on the interval [0.12, 0.20] and values of Mina’s stake bk lie in [0.025, 0.18]. (We will
shortly present explicit solutions to the ABMN equations, which validate this assertion: we may
use Theorem 2.31(1), for example. Maxine’s expense interval is displaced to the right from Mina’s,
but the situation is reversed if the counter reaches k − 1, one place to the left.) These are big
expenditures in a single turn of a game with infinitely many. The expenditures drop rapidly as
the counter moves away from the battlefield, however. Indeed, if we write gi � hi to denote that
gi ≤ exp

{
− eci

}
hi for i ∈ N+ (where c is some given positive constant), then Theorem 2.14 implies

that,
for i ∈ N+ , 0 < bk+i � ak+i � 1 and 0 < ak−i � bk−i � 1 :

to the right of the battlefield, both expenditures drop suddenly; but Maxine, eyeing victory, keeps
her foot on the gas, making sure to vastly outspend the loss-cutting Mina; while to the left of the
battlefield, the roles are reversed. The Battlefield Cyl Fog of Section 1.1.1 is thus exemplified. We
also have that 0 < nk+i−nk+i+1 � mk+i+1−mk+i � 1 and 0 < mk−i−mk−i−1 � nk−i−1−nk−i � 1;
and, by extension,

0 < nk+i − n∞ � m∞ −mk+i � 1 and 0 < mk−i −m−∞ � n−∞ − nk−i � 1 .

Indeed, in the left part of the last display, which is to the right of the battlefield, Mina has essentially
(but not absolutely!) thrown in the towel, and her expected payoff nk+i is minutely above her defeat
terminal receipt of n∞. Maxine’s average payoffmk+i is just slightly below her victory receipt ofm∞,
but her need to keep moving the counter rightwards provides some lower bound on the difference.
In the right part of the display, roles are naturally reversed.

The players may dread the return of the counter to the battlefield index because this is an expensive
occasion for both of them. The next result, a consequence of Theorem 2.14, shows that they are
typically saved from witnessing this event repeatedly when a Nash equilibrium is played.

Let (S−, S+) ∈ S2 and i ∈ Z. Under PiS−,S+
, the unanimity event U occurs when all but finitely

many of the differences Xj+1 −Xj ∈ {−1, 1}, j ∈ N, of the gameplay process X : N → Z, X0 = i,
adopt a given value. Writing U− and U+ for the respective events specified when the given value
is −1 and 1, the occurrence of these events correspond to victories for Mina and Maxine, and U is
the disjoint union of U− and U+.

Theorem 2.15. Let (a, b,m, n) denote a positive ABMN solution on Z with given boundary data of
the form (4). Suppose that the solution has battlefield index k ∈ Z, and let i ∈ Z. Let (S−, S+) ∈ S20 .
be given by (b, a), with the usual abuse of notation.

(1) We have that PiS−,S+
(U) = 1.

There exist positive constants C and c that may be chosen independently of the element (S−, S+)
and the index i ∈ Z for which the following hold.

(2) If i ≥ k then PiS−,S+
(U−) ≤ C exp

{
− c2k−i

}
.

(3) If i ≤ k − 1 then PiS−,S+
(U+) ≤ C exp

{
− c2i−k

}
.

Consider the Trail of Lost Pennies on Z with given boundary data (4). Redefine (S−, S+) to be an
element of S20 ∩ N (m−∞,m∞, n−∞, n∞). Writing (b, a) for (S−, S+), the data (a, b,m, n) specified
by Definition 2.1 determines the battlefield index. Suppose that this index is k ∈ Z, and let i ∈ Z.
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(4) The preceding three parts remain valid in this framework.

We see then that the player who wins a local victory at (or around) the battlefield index typically
comes to entirely dominate the later moves of the game. By playing at a time-invariant Nash equi-
librium, players thereby forge an implicit consensus to avoid the mutually destructive circumstance
of many returns to the battlefield.

We recapitulated the conclusions of [24] regarding Nash equilibria in allocated-budget stake-governed
games in Section 1.1.4. The formula (3) indicates that, for suitable graphs and at Nash equilibrium,
each budget must be spent via staking in a more-or-less regular flow, so that the concerned player is
competitive throughout the lifetime of the game. Game behaviour under the Battlefield Cyl Fog is
very different from under the Present-Future Compromise. The empirical stake process of a player
at any Nash equilibrium is punctuated by a few brief intense periods as the counter passes through
the battlefield. In the large, the only concern for outcome is the answer to the question: on which
side of the battlefield does the counter lie?

2.3. Explicit ABMN solutions

Here we present an explicit form for all positive ABMN solutions. It is useful to begin by classifying
the solutions into classes, where members of a given class differ in simple ways. If one or other player
receives, or must pay, some given amount before a game begins, play will be unaffected—or at least
the Nash equilibria will not be. If the unit currency is revalued before play, the outcome will be a
mere scaling of all quantities. We identify ABMN solutions that differ according to translations χx,0
or χ0,y or dilations τu (where x, y ∈ R and u ∈ (0,∞)) that correspond to such operations. If we can
describe one element in each equivalence class, we will be able to describe all solutions. Equivalence
classes are naturally parametrized by the positive real quantity φ0 = n−1−n0

m0−m−1
, which we call the

central ratio, specified by Definition 2.12. So there is a one-parameter family of essentially different
positive ABMN solutions. In each equivalence class, we will distinguish two special solutions—the
default solution, which has a simpler explicit formula; and the standard solution, which corresponds
to a convenient choice of boundary data for the trail game. We will set up this structure and then
state the explicit form of the default solution in each equivalence class.

We consider Z-indexed sequences g = {gi : i ∈ Z}. A sequence is monotone if it is non-decreasing
or non-increasing. A bounded monotone sequence g has left and right limits

g−∞ = lim
k→∞

g−k and g∞ = lim
k→∞

gk

that are elements of R. We will specify certain bounded monotone sequences g by giving one of the
limiting values, g−∞ or g∞, alongside the difference sequence

{
gi+1 − gi : i ∈ Z

}
.

Let u ∈ (0,∞) and v ∈ R. For any sequence g : Z → R, we write u · g : Z → R for the sequence
given by (u · g)i = u · gi.

Let Θ denote the space of quadruples of sequences; thus, when (a, b,m, n) ∈ Θ, each component
∗ ∈ {a, b,m, n} has the form ∗ : Z→ R. For u ∈ (0,∞) and v1, v2 ∈ R, define τu, χv1,v2 : Θ→ Θ so
that τu(a, b,m, n) =

(
u · a, u · b, u ·m,u · n

)
and χv1,v2(a, b,m, n) = (a, b,m+ v1, n+ v2).

Two solutions of the ABMN equations on Z are called equivalent if one is the image of the other
under a composition of the form τu ◦χv1,v2 for such u, v1 and v2 as above. The relation of two such
solutions will be denoted by ∼; Proposition 2.17 asserts that ∼ is indeed an equivalence relation.
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Let (a, b,m, n) be an ABMN solution on Z. Recall from Definition 2.2 that the solution’s Mina

margin is defined to be n−∞−n∞
m∞−m−∞ . The solution’s central ratio CenRatio is set equal to n−1−n0

m0−m−1
.

The solution is called standard if m−∞ = 0, n∞ = 0 and m∞ = 1. It is called default if m−∞ = 0,
n∞ = 0 and m0 − m−1 = 1. Compatibly with the usage of Definition 2.7, the Mina margin of
a standard solution equals n−∞; note further that the central ratio of a default solution equals
n−1 − n0.

Proposition 2.16. For any default ABMN solution, the value of the central ratio CenRatio lies in
(0,∞). For any x ∈ (0,∞), there is exactly one default solution for which CenRatio equals x.

Proposition 2.17.

(1) The space of ABMN solutions is partitioned into equivalence classes by the relation ∼.

(2) Each equivalence class contains a unique standard solution and a unique default solution.

Propositions 2.16 and 2.17 provide a natural labelling of ABMN solution equivalence classes: any
given class is labelled by the value of the central ratio of the unique default solution in the class.
The labelling parametrizes the equivalence classes by a copy of (0,∞).

According to the latter assertion of Proposition 2.16, there is a unique default solution to the ABMN
equations whose central ratio equals a given value x ∈ (0,∞). The next definitions will enable us
to record the form of this solution in Theorem 2.21.

Definition 2.18. Set ω : (0,∞)→ (1,∞), ω(x) =
√

8x+ 1. Writing ω = ω(x), we further set

c(x) =
(ω + 3)2

16
, d(x) =

(ω + 3)2

8(ω + 1)
and s(x) =

(ω − 1)2

4(ω + 7)
for x ∈ (0,∞) .

Definition 2.19. Let s−1 : (0,∞) → (0,∞) be given by s−1(x) = 1/s(1/x). We now define a
collection of functions si : (0,∞) → (0,∞) indexed by i ∈ Z. We begin by setting s0(x) = x for
x ∈ (0,∞). We then iteratively specify that si(x) = s

(
si−1(x)

)
and s−i(x) = s−1

(
s−(i−1)(x)

)
for

i ∈ N+ and x ∈ (0,∞). Note that s1 equals s and that the two specifications of s−1 coincide.

Set cj , dj : (0,∞)→ (0,∞), j ∈ Z, by means of cj(x) = c(sj(x)) and dj(x) = d(sj(x)).

To get a sense of the maps si, i ∈ Z, a few points are worth noting. First, as we will see in
Proposition 3.4, s−1 is the inverse of s. Second, as Lemma 5.3(5) attests, s(x) < x for x ∈ (0,∞);
the orbit si(x) thus decreases or increases from x as i grows to the right or the left. And third, note
that s(3) = 1/3. In view of the second point, we see that (0,∞) = ∪k∈Z sk[1/3, 3) is a partition
whose interval elements are arranged in decreasing order in the index k.

Definition 2.20. For a sequence h, we may naturally write
∏k
i=0 hi = h0 · · ·hk for k ∈ N. A

convenient device extends this notation to cases where k ∈ Z is negative: we set

k∏
i=0

hi =

{
1 for k = −1

h−1k+1 · · ·h
−1
−1 for k ≤ −2 .

Let x ∈ (0,∞). This parameter will index four real-valued sequences

adef(x), bdef(x),mdef(x), ndef(x) : Z→ (0,∞)
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which we denote in the form
{
∗defi (x) : i ∈ Z

}
for ∗ ∈ {a, b,m, n}.

We begin by specifying mdef(x) : Z→ R. This is the increasing sequence such that

mdef
−∞(x) = 0 , and mdef

k+1(x)−mdef
k (x) =

k∏
i=0

(
ci(x)− 1

)
for k ∈ Z .

Note that mdef
0 (x)−mdef

−1 (x) = 1 in view of the notation for products.

Next we set ndef(x) : Z→ R. This is the decreasing sequence with

ndef∞ (x) = 0 , and ndefk (x)− ndefk+1(x) = x
k∏
i=0

(
di(x)− 1

)
for k ∈ Z .

Note that n−1(x)− n0(x) = x.

To specify adef(x), bdef(x) : Z→ (0,∞), we set

Mi(x) = mdef
i+1(x)−mdef

i−1(x) and Ni(x) = ndefi−1(x)− ndefi+1(x)

for i ∈ Z. For such i, we take

adefi (x) =
Mi(x)2Ni(x)(
Mi(x) +Ni(x)

)2 and bdefi (x) =
Mi(x)Ni(x)2(
Mi(x) +Ni(x)

)2 .
Theorem 2.21. Let x ∈ (0,∞). The unique default ABMN solution with CenRatio = x is the
quadruple

(
adefi (x), bdefi (x),mdef

i (x), ndefi (x) : i ∈ Z
)

specified in Definition 2.20.

For x ∈ (0,∞), we write C(x) for the equivalence class of ABMN solutions that contains the
element

(
adefi (x), bdefi (x),mdef

i (x), ndefi (x) : i ∈ Z
)
. Let

(
asti (x), bsti (x),mst

i (x), nsti (x) : i ∈ Z
)

denote
the unique standard solution in C(x).

Remark. Let x ∈ (0,∞). Set Z(x) = mdef
∞ (x); which is to say, Z(x) =

∑
k∈Z

∏k
i=0

(
ci(x)− 1

)
. It is

straightforward that(
asti (x), bsti (x),mst

i (x), nsti (x) : i ∈ Z
)

equals Z(x)−1 ·
(
adefi (x), bdefi (x),mdef

i (x), ndefi (x) : i ∈ Z
)
.

(12)

2.4. The Mina margin map

According to Theorem 2.21, the central ratio φ0 is a convenient parameter for indexing ABMN
solution equivalence classes. And Theorem 2.8 tells us that the Mina margin is a fundamental
parameter for locating Nash equilibria in the trail game. The map (0,∞)→ (0,∞) from equivalence
class index to the Mina margin of any member solution is a natural object that we will use to organize
and prove results. We call this function the Mina margin map. Here, we define it, and state basic
properties in Theorem 2.23. Theorem 2.24 shows how to solve the trail game with given boundary
data by finding time-invariant Nash equilibria indexed by the map’s level sets. Theorem 2.28 states
that a reparametrization of the Mina margin map’s domain leads to a periodic form for the map
that commutes with the shift operator on Z.

Definition 2.22. Let the Mina margin mapM : (0,∞)→ (0,∞) be given byM(x) = nst−∞(x) for

x ∈ (0,∞). Namely, M(x) is the Mina margin of
(
asti (x), bsti (x),mst

i (x), nsti (x) : i ∈ Z
)
.
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Theorem 2.23.

(1) The function M : (0,∞)→ (0,∞) satisfies M(s(x)) =M(x) for x ∈ (0,∞).

(2) The function M is continuous on (0,∞) and satisfies

M(x) =

(∑
k∈Z

k∏
i=0

(
ci(x)− 1

))−1
· x
∑
k∈Z

k∏
i=0

(
di(x)− 1

)
.

(3) The range M(0,∞) takes the form [λ, λ−1], where λ ∈ (0, 0.999904] is specified in Theo-
rem 2.4.

Theorem 2.24. Let x ∈ [λ, λ−1]. Set X =
{
z ∈ (0,∞) :M(z) = x

}
, and let Y = X ∩ (1/3, 3], so

that, as noted after Definition 2.19, X = ∪k∈Zsk(Y ).

(1) The collection of time-invariant Nash equilibria in the game Standard(x) is given by the
set of maps

Z→ (0,∞)2 : i→
(
bsti (z), asti (z)

)
indexed by z in X.

(2) Alternatively, this collection is the set of maps

Z→ (0,∞)2 : i→
(
bsti+j(x), asti+j(x)

)
,

where now the index (x, j) ranges over Y × Z.

We now develop the notation for the symbolic shift map that was mooted in Definition 2.9.

Definition 2.25. We let S1 denote the left shift by one place: this is the map that sends the space
of quadruples (R4)Z to itself by the action

S1
{

(ai, bi,mi, ni) : i ∈ Z
}

=
{

(ai+1, bi+1,mi+1, ni+1) : i ∈ Z
}
.

By iterating this map, we specify the left shift Sk by k places, for k ≥ 2; and by specifying S−1 = S−11
and iterating, we specify the right shift S−k by k places, for k ≥ 1.

What is the effect of applying the shift Sk to a standard solution? It takes the form of a replacement
x→ sk(x) in the CenRatio-variable, as we will see in the short proof of the next result.

Proposition 2.26. For x ∈ (0,∞) and k ∈ Z,

Sk
(
ast(x), bst(x),mst(x), nst(x)

)
=
(
ast
(
sk(x)

)
, bst
(
sk(x)

)
,mst

(
sk(x)

)
, nst

(
sk(x)

))
.

Proof. The symbolic shift map leaves invariant the boundary quadruple of any ABMN solution.
Thus, the displayed left-hand quadruple is a standard solution of the ABMN system. To identify it
as the right-hand quadruple, it is thus enough to show that its CenRatio-value equals sk(x). But

this amounts to
nk−1−nk
mk−mk−1

= sk(x), because x = n−1−n0

m0−m−1
. �

Theorem 2.23(1) leads directly to M(sk(x)) =M(x) for x ∈ (0,∞) and k ∈ Z. To understand the
map M, we see then that the asymptotics in highly positive and negative k of the orbits sk(x) are

important. As we will see in Lemma 5.3(2,3), s(x) ∼ x2/2 for 0 < x� 1 and s(x) ∼ 2−1/2x1/2 for



2.4. THE MINA MARGIN MAP 28

x� 1. Thus the forward orbit sk(x), k →∞, converges rapidly to zero, while the backward orbit,
k → −∞, grows quickly towards infinity.

We now undertake a change of coordinates of the Mina margin map M : (0,∞) → (0,∞). The
domain (0,∞) will be identified with R by an increasing bijection θ−1. The goal of the coordinate
change is to ensure that the original action (0,∞) → (0,∞) : x → s1(x) becomes the map R →
R : x → x − 1. The action of the symbolic sequence shift S1 on the x-variable, as stated in
Proposition 2.26, comes to correspond to a left shift by a unit in the new real variable. This leads
to an attractive representation of the Mina margin map in the guise R→ (0,∞) : x→M

(
θ−1(x)

)
.

Definition 2.27. Let q : [1/3, 3)→ [0, 1) be an increasing surjection; for definiteness, we may take
q(x) = 3(x − 1/3)/8. We specify θ : (0,∞) → R so that, for x ∈ (0,∞), θ(x) = k + q

(
sk(x)

)
,

where k ∈ Z is the unique integer such that sk(x) ∈ [1/3, 3). Since θ : (0,∞) → R is an increasing
surjection, the inverse θ−1 : R → (0,∞) is well defined. We may thus represent the Mina margin
map after domain coordinate change by the function ψ, where

ψ : R→ (0,∞) , ψ(x) =M
(
θ−1(x)

)
.

We define the standard solution map StSol : R→ (R4)Z,

StSol(x) =
(
ast
(
θ−1(x)

)
, bst
(
θ−1(x)

)
,mst

(
θ−1(x)

)
, nst

(
θ−1(x)

))
for x ∈ R .

For u ∈ (0,∞) and j ∈ Z, θ
(
s−j(u)

)
− θ(u) = j. For z = Θ(1), the value of θ−1(z + k) thus tracks

that of s−k(z) as k rises, either by growing to infinity (if k is positive); or by decaying to zero (if k
is negative). To understand the transformation θ−1, it is thus useful to introduce a simple explicit
function Θ : R→ (0,∞) which is designed so that s−k(z) grows or decays roughly as does Θ(k) for
|k| large; here z ∈ [1/3, 3), say.

Let Sign : R→ {−1, 1} equal Sign(x) = 1x≥0 − 1x<0. Then set

Θ : R→ (0,∞) , Θ(x) = 2Sign(x)(2
|x|−1) .

We now present our result concerning the Mina margin map after domain coordinate change. The
transformed function ψ is periodic, of unit period; symbolic shift by one place corresponds to unit
translation of the domain; and coordinate change asymptotics are, crudely at least, described by Θ.

Theorem 2.28.

(1) For x ∈ R, ψ(x+ 1) = ψ(x).

(2) For x ∈ (0,∞) and k ∈ Z,

StSol(x+ k) = S−k ◦ StSol(x) .

(3) There exists a positive constant C such that, for z ≥ 0,

22
z−C ≤ θ−1(z) ≤ 22

z+C
;

and, for z < 0,

2−2
|z|+C ≤ θ−1(z) ≤ 2−2

|z|−C
.
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The map Θ is a simple and explicit surrogate for θ−1, and the transformed Mina margin map
R → (0,∞) : x → M

(
Θ(x)

)
shares the periodicity property of ψ in Theorem 2.28(1) up to a

domain perturbation that decays rapidly away from zero. And this surrogate has a more practical
version, in which the Mina margin map M is replaced by a counterpart for a trail that is a finite
interval, rather than all of Z. These counterpart Mina margin maps Mj+1,k+1 will be presented
in the next section. Plots of several of these maps, indexed by different finite trails, appear in
Figure 2.3.

2.5. The Trail of Lost Pennies on a finite interval

Even if much of our focus lies with the trail game in the infinite setting, with gameboard Z, it is
instructive to introduce and discuss the game whose trail is a finite interval. This is the setting
used in economists’ treatments of tug-of-war that we surveyed in Section 1.2.1. And it is a more
practical setting if two people are to play the game, taking decisions turn-by-turn because, at least
for short intervals, the game will end (by the token reaching one end of the interval or the other)
in a limited number of moves. The theoretical aspects of the game—time-invariant Nash equilibria;
ABMN solutions and their standard solutions; the Mina margin map—share many basic aspects
between the infinite and finite settings. The finite setting permits important objects, such as the
Mina margin map, to be plotted in Mathematica, and such investigation has informed several of
our main results (in the infinite setting). Our goal then in this section is to communicate the
principal aspects of the finite setting so that the reader can interpret pertinent Mathematica plots
and understand how these suggest some of our principal results and conjectures. We will also present
a conjecture concerning the number of time-invariant Nash equilibria in a symmetric version of the
finite game; we will seek to explain why we believe it during the section. The section contains one
result, Proposition 2.29, which we will use and whose proof appears in Section 3.1. Our basic aim
is heuristic, however, and at times our presentation will be informal.

2.5.1. Gameplay, strategies and Nash equilibria for the finite trail. Let j, k ∈ N. The
Trail of Lost Pennies with trail (or gameboard) J−j − 1, k + 1K is specified by(

m−j−1,mk+1, n−j−1, nk+1

)
∈ R4 ,

boundary data on which the conditions m−j−1 < mk+1 and nk+1 < m−j−1 are imposed. Begun
from `, an element in the field of open play J−j, kK, gameplay is a stochastic process X : J0,KK→
J−j − 1, k + 1K, X0 = `, where

K = inf
{
i ∈ N+ : Xi ∈ {−j − 1, k + 1}

}
.

Indeed, with Mina and Maxine playing to the left and right, the game will end with victory to these
respective players when the counter arrives at −j − 1 or at k + 1.

The gameplay is specified by a strategy pair, where a strategy is a map S : J−j, kK× N+ → [0,∞).
The construction of X from a given location X0 = ` ∈ J−j, kK coincides with that explained in
Section 2.1, where instances of the trail Z are replaced by J−j, kK, it being understood that the
construction stops when X arrives in {−j − 1, k + 1}.

A strategy S for which S(`, i) is independent of i ∈ N+ for all ` ∈ J−j, kK is said to be time-
invariant. Let S[j, k] denote the space of strategies. For a strategy pair (S−, S+) ∈ S[j, k], we may
reuse notation from the Z-indexed trail game, and speak of the law PiS−,S+

of gameplay X : N →
J−j − 1, k + 1K, X0 = i, governed by the pair (S−, S+), and stopped on arrival in {−j − 1, k + 1}.
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Counterpart to (5) and (9) are the PiS−,S+
-almost sure payoff identities

P j,k− = −
∞∑
i=1

Cj,k− (i) + T j,k− and P j,k+ = −
∞∑
i=1

Cj,k+ (i) + T j,k+ , (13)

where the cost Cj,k± (i) incurred to each player at the ith turn, i ∈ N+, equals S±(Xi−1, i), as in the

original case. To specify the terminal payments T j,k± , we permit E− to denote the event that X
arrives at the vertex −j − 1 at some positive time, and E+ to denote the event that this process

instead reaches k + 1 at some such time. We then adopt (8) and (10) for T j,k± , where m∗ and n∗
denote given real values that satisfy m∗ ≤ m−j−1 and n∗ ≤ nk+1.

Definitions concerning Nash equilibria continue to be specified as they are at the end of Section 2.1.
A collection of quadruples

{
(ai, bi,mi, ni) : i ∈ J−j, kK

}
is associated to any element

{
(bi, ai) : i ∈

J−j, kK
}

by Definition 2.1 after evident changes in notation have been made.

2.5.2. The ABMN equations. Recall Definition 2.2. Let j, k ∈ N.

The ABMN system on J−j, kK is the set of equations ABMN(1, 2, 3, 4) in the real variables ai, bi,
mi and ni, where the index i varies over J−j, kK. These equations refer to the components of the
quadruple

(
m−j−1,mk+1, n−j−1, nk+1

)
∈ R4 which acts as boundary data and for which we suppose

a fixed value that satisfies m−j−1 < mk+1 and n−j−1 > nk+1. Similarly to Definition 2.2, a solution
is positive if ai and bi exceed zero for i ∈ J−j, kK.

2.5.3. A result and a conjecture for the finite trail. The basic relation between time-
invariant Nash equilibria

{
(bi, ai) : i ∈ J−j, kK

}
and positive ABMN solutions

{
(ai, bi,mi, ni) : i ∈

J−j, kK
}

embodied in Theorem 2.6 is maintained.

The trail game on J−j − 1, k+ 1K is in its standard form when its boundary data satisfies m−j−1 =
nk+1 = 0 and mk+1 = 1. This class of games is thus parametrized by the Mina margin n−j−1 ∈
(0,∞). If further n−j−1 = 1, then we speak of the symmetric standard game. Likewise a solution
of the ABMN equations on J−j, kK is standard when m−j−1 = nk+1 = 0 and mk+1 = 1. The space

of standard solutions may be parametrized by the central ratio CenRatio = n−1−n0

m0−m−1
∈ (0,∞). The

Mina margin map Mj+1,k+1 : (0,∞)→ (∞) associates to x ∈ (0,∞) the value of the Mina margin
n−j−1 of the unique standard ABMN solution on J−j, kK for which CenRatio = x.

Standard solutions may be computed explicitly, similarly as was (12) in the infinite setting. To
obtain the standard solution on J−j, kK with CenRatio = x ∈ (0,∞), we start with the restriction
of the default solution from Theorem 2.21 to J−j− 1, k+ 1K. By adding a suitable constant to each
m-term, and another such to each n-term, and then multiplying the result by a suitable scaling
factor, we obtain a standard solution whose CenRatio remains equal to x because the additions and
the scaling leave this value unchanged. We thus see that, for x ∈ (0,∞),

Mj+1,k+1(x) =
n−j−1 − nk+1

mk+1 −m−j−1
, (14)

where
{

(ai, bi,mi, ni) : i ∈ J−j, kK
}

is any ABMN solution on J−j, kK such that n−1−n0

m0−m−1
= x.

The trail game on trails J−k, kK of even length differs from that on trails J−k− 1, kK of odd length,
because the trails in the two classes are reflection symmetric about different objects (the vertex 0
or the edge J−1, 0K). The next result records outcomes of these symmetries for the finite trail Mina
margin map.



2.5. THE TRAIL OF LOST PENNIES ON A FINITE INTERVAL 31

-2 -1 0 1 2
0.00

0.05

0.10

0.15

0.20

a

b

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

m

n

-2 -1 0 1 2
0.00

0.05

0.10

0.15

a

b

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

m

n

-2 -1 0 1 2
0.00

0.05

0.10

0.15

0.20

a

b

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

m

n

Figure 2.1. The shortest trail with non-unique Nash equilibria for at least some
boundary conditions has length six, with five sites in open play. The values x1 = 1.63,
x2 = 3 and x3 = 5.64 approximate the three solutions of M3,3(x) = 1. (There is
no error for x2.) The (a, b) and (m,n) data on J−2, 2K for the standard solution
on J−3, 3K corresponding to x1 appears in the top row; to x2 in the middle; and
to x3 in the lower row. The left column thus depicts the three Nash equilibria in
standard symmetric game on the shortest trail for which this game may be expected
to have several equilibria. Note that the x3-solution is formed from the x1-solution
by role-reversal: that is, by interchanging the roles of a and b, and of m and n, and
by reflecting in the origin.

Proposition 2.29. Let k ∈ N+ and x ∈ (0,∞).

(1) We have that Mk,k(x) · Mk,k

(
1/s(x)

)
= 1.

(2) And that Mk+1,k(x) · Mk+1,k(x
−1) = 1.

Here is our conjecture concerning the symmetric form of the finite trail game.

Conjecture 2.30. Consider the Trail of Lost Pennies on J−j− 1, k+ 1K in its symmetric standard
form. The number of time-invariant Nash equilibria equals max

{
2(j + k)− 5, 1

}
.
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Roughly similar is Harris and Vickers’ numerically based claim (recalled in Subsection 1.2.1.1) of
order 2n equilibria in their game. We mention also that the number of Nash equilibria is odd in
almost all finite games [59].

We offer an explanation of why we believe Conjecture 2.30. By a counterpart to Theorem 2.6 (which
we have roughly indicated), any time-invariant Nash equilibrium of the symmetric trail game on
J−j − 1, k + 1K corresponds to a positive ABMN solution on J−j, kK. This solution must have
m−j−1 = nk+1 = 0 and mk+1 = 1, as well as n−j−1 = 1. That is, the solution must be standard,
and it must satisfy M−j−1,k+1(x) = 1, where x ∈ (0,∞) is the solution’s value of CenRatio. We
may thus obtain the set of time-invariant Nash equilibria by recording, for each solution x ∈ (0,∞)
of the equationM−j−1,k+1(x) = 1, the reverse-ordered (a, b)-component pair of the unique standard
ABMN solution on J−j, kK whose CenRatio-value equals x. The case for Conjecture 2.30 thus rests
on advancing an argument for the equality

#
{
x ∈ (0,∞) :Mj+1,k+1(x) = 1

}
= max

{
2(j + k)− 5, 1

}
. (15)

Plots of several finite-trail Mina margin maps (0,∞) → (0,∞) : x → Mj+1,k+1(x) led to the
conjecture. The pattern begins to emerge in the four plots displayed in Figure 2.2, for which
j + k ∈ J2, 5K. To see the pattern continue, we need higher values of j + k. For these, a suitable
device is the finite-trail Θ-transformed Mina margin map (0,∞)→ (0,∞) : x→ (Mj+1,k+1 ◦Θ)(x)
mentioned at the end of Section 2.4: see Figure 2.3 for four depictions, where j + k ∈ J6, 10K.

2.6. Some further formulas

In this article, we study a new game, presenting conjectures as well as results. We have derived
some formulas of which we do not make use, and we choose to present them as our final results
in the introduction because they appear interesting and could be of value in further study of the
Trail of Lost Pennies. First we state Theorem 2.31, an alternative explicit form for standard ABMN
solutions. Then we present the A system, which is a closed Z-indexed set of equations that we find
in Theorem 2.32 to describe the a- (or b-)variables in any time-invariant Nash equilibrium in the
special case of the game with a symmetric form of boundary data.

2.6.1. Alternative formulas for standard solutions and their Mina margins. Recall

the function Z : (0,∞) → (0,∞), Z(x) = mdef
∞ (x) =

∑
k∈Z

∏k
i=0

(
ci(x) − 1

)
, from the remark that

concludes Section 2.3.

Theorem 2.31. Let f , g and h mapping (0,∞) to itself be specified by

f(x) =
xc(x)d(x)(

c(x) + xd(x)
)2 ; g(x) = Z(x)−1c(x)f(x) ; and h(x) = Z(x)−1xd(x)f(x) .

Let x ∈ (0,∞).

(1) For k ∈ Z, astk (x) = g
(
sk(x)

)
and bstk (x) = h

(
sk(x)

)
.

(2) For j, k ∈ Z such that j < k,

mst
k (x)−mst

j (x) =

k∑
i=j+1

1

Z
(
si(x)

) and nstj (x)− nstk (x) =

k∑
i=j+1

si(x)

Z
(
si(x)

) .
In particular, mst

k (x)−mst
k−1(x) = Z

(
sk(x)

)−1
and nstk−1(x)− nstk (x) = sk(x)Z

(
sk(x)

)−1
.
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Figure 2.2. Four finite-trail Mina margin maps Mj+1,k+1 ◦ Θ : R → (0,∞) are
depicted, for values of j+k in J2, 5K. Top left. The four functions are plotted together.
Top right. This is a ‘Tube Map’ of the left-hand graph (a distorted but practical
depiction), in which the green curve has been artificially displaced to separate it, so
that the viewer may watch the different lines as they run.
The green and red curves seem to suggest that the curves converge to the constant
function one as j + k rises, but this impression is false. Indeed, the middle and
lower graphs plot the four functions in turn, each on a scale that shows the finer
journey of the map as it rises through height one. The maps lose injectivity in the
(j + 1, k + 1)-index change (3, 2)→ (3, 3).

(3) For j, k ∈ N, the finite trail Mina margin map Mj+1,k+1 : (0,∞) → (0,∞) satisfies the
equation

Mj+1,k+1(x) =

(
k+1∑
i=−j

1

Z
(
si(x)

) )−1 · k+1∑
i=−j

si(x)

Z
(
si(x)

) .
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Figure 2.3. Left: Five Θ-transformed finite-trail Mina margin mapsMj+1,k+1 ◦Θ :
R→ (0,∞) are depicted, for increasing values of j+k in J6, 10K. The graphs join and
leave a shared highway, which is (up to visually negligible discrepancies) the graph of
the limiting transformed mapM◦Θ : R→ (0,∞). Right: As in Figure 2.2(top,right),
curves have been artificially displaced so that their routes can be clearly seen.

(4) The Mina margin map M : (0,∞)→ (0,∞) satisfies

M(x) =
∑
i∈Z

si(x)

Z
(
si(x)

) .
2.6.2. The game with symmetric boundary data. As Section 1.2.1 reviewed, economists

have often considered player-funded tug-of-war games in a symmetric form (with players receiving
equal terminal rewards), finding and analysing symmetric equilibria (in which the stake of the leading
player is determined by the position of the counter relative to the gameboard midpoint rather than
by the identity of the player). In our case, these symmetries significantly simple analysis, while
leading to equilibria that exemplify generic features. Here we present our conclusions about them.
The A system on Z is the set of equations5 in the real variables Ai, i ∈ Z:

A−i−1(2Ai +A−i) = A2
i+1 , (16)

where the index ranges over Z. We will also speak of the A system on Z + 1/2. In this case, the
real variables Ai are indexed by i in the one-half-offset lattice Z+ 1/2; the set of equations is given
by (16) with the index ranging over Z + 1/2.

By the Trail of Lost Pennies on Z in its symmetric form is meant the game Trail(m−∞,m∞, n−∞, n∞),
where the boundary parameters are supposed to satisfy m−∞ = n∞ = 0 and m∞ = n−∞. There is
thus a one-parameter family of such games, indexed by m∞ ∈ (0,∞).

Theorem 2.32.

(1) For λ ∈ (0,∞), there is a unique solution
{
ai(λ) : i ∈ Z

}
of the A system on Z such that

a0(λ) = λ. The solutions satisfy ai(λ) = λai(1) for λ ∈ (0,∞) and i ∈ Z.

5In Section III.3 of Vickers’ thesis [58], symmetric equilibria are found in the Harris-Vickers tug-of-war game reviewed
in Subsection 1.2.1.1, with cost functions c−(x) = c+(x) = x2/2. Effort rates xn satisfy x−nxn−1 = x2

n/2 for positive

and negative n. This cousin of the A-system is solved xn = x02−n(n−1)/2. As Subsection 1.2.1.1 reviewed, the elements

of the Battlefield Cyl Fog are found, but decay rates are e−Θ(1)n2

, rather than doubly exponential in n.
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(2) For λ ∈ (0,∞), there is a unique solution
{
Ai(λ) : i ∈ Z + 1/2

}
of the A system on

Z + 1/2 such that A1/2(λ) = λ. The solutions satisfy Ai(λ) = λAi(1) for λ ∈ (0,∞) and
i ∈ Z + 1/2.

(3) In the notation of the first part, let S1 denote the set of strategy pairs
(
a−i+k(λ), ai+k(λ) :

i ∈ Z
)

indexed by k ∈ Z and λ ∈ (0,∞). In the notation of the second part, let S2 denote

the set of the strategy pairs
(
A−i−1/2+k(λ), Ai+1/2+k(λ) : i ∈ Z

)
with the same index set.

The elements of S1 ∪ S2 are pairwise distinct time-invariant Nash equilibria for the Trail
of Lost Pennies on Z in its symmetric form.

(4) Admit Conjecture 2.11 in the special case that x = 1: namely, suppose that Q(1) = 2.
Then there are no other time-invariant Nash equilibria for the Trail of Lost Pennies on Z
in its symmetric form than those identified in the preceding part.

2.7. The article’s structure

There are five further chapters and an appendix. Two basic aspects of later use are treated in
Chapter 3: a role-reversal symmetry satisfied by the ABMN system; and the solution of the simplest
of the finite trail games, with just one site in open play. The fundamental relationship Theorem 2.6
between Nash equilibria and the ABMN equations is proved in Chapter 4. In Chapter 5, the explicit
solution Theorem 2.21 and asymptotic decay estimates Theorem 2.14 are derived, along with the
eventual gameplay unanimity Theorem 2.15. The Mina margin mapM is addressed in Chapter 6: its
approximation by finite-trail counterparts, Theorem 2.23 and several consequences among our main
results; the map’s Θ-transformed version, and Theorem 2.28; and an explicitly recorded computation
thatM evaluated at 0.58 is bounded away from one above, and thus Theorem 2.4(3). In Chapter 7,
we discuss several aspects of our results and proofs and some prospects for further study. The
appendix contains the proofs of the further formulas from Section 2.6.



CHAPTER 3

Some basic tools

Role-reversal symmetry is treated in Section 3.1 and the trail game on J−1, 1K in Section 3.2. Later
sections introduce some further basic notation and properties.

3.1. Role-reversal symmetry

Definition 3.1. The role-reversal mapR sends the space of quadruples Z→ R4 to itself by mapping{
(ai, bi,mi, ni) : i ∈ Z

}
to
{

(b−i, a−i, n−i,m−i) : i ∈ Z
}

.

Proposition 3.2. Suppose that (a, b,m, n) =
{

(ai, bi,mi, ni) : i ∈ Z
}

is an ABMN solution. Then
so is R(a, b,m, n).

Proof. The result may be verified by inspecting the ABMN equations. We instead indicate in rough
terms a more conceptual, game-theoretic, argument which is available for positive ABMN solutions
if we admit their connection to the trail game via Theorem 2.6. Suppose that a time-invariant
Nash equilibrium (b, a) : Z→ (0,∞) is played in the first instance. If Mina and Maxine swap roles,
so that the strategy pair (a, b) is played, each acts in diametric opposition to her interests. But
if the gameboard is then reflected through the origin, these interests are reversed, and each plays
optimally once more. It is the strategy pair Z→ (0,∞)2 : i→ (a−i, b−i) that is now being played.
This pair is a Nash equilibrium (for the game whose boundary data in R4 is specified by this pair),
and the associated quadruple is an ABMN solution. This quadruple is R(a, b,m, n). �

We will obtain Proposition 2.29 by using the role-reversal map R on quadruples whose index set
is finite; to do so, we extend our notation to handle this circumstance. Let j, k ∈ N+ and let{

(ai, bi,mi, ni) ∈ R4 : i ∈ J−j, kK
}

. We set R(a, b,m, n) equal to
{

(b−i, a−i, n−i,m−i) ∈ R4 : i ∈
J−k, jK

}
. Proposition 3.2 has a counterpart in the finite case which asserts that

(a, b,m, n) : J−j, kK→ R4 is an ABMN solution (17)

=⇒ R(a, b,m, n) : J−k, jK→ R4 is an ABMN solution .

The ABMN equations can again be inspected to verify this statement.

We will further consider the left shift S1, which sends any quadruple (a, b,m, n) : J−j, kK → R4 to
the quadruple J−j − 1, k − 1K→ R4 : i→ (ai+1, bi+1,mi+1, ni+1).

Proof of Proposition 2.29(1). For x ∈ (0,∞), let
{

(ai, bi,mi, ni) : i ∈ J−k, kK
}

be an ABMN

solution on J−k, kK such that n−1−n0

m0−m−1
equals x; that such a solution may be found has been explained

in Subsection 2.5.3. We claim that

Mk,k

(
m1−m0
n0−n1

)
=Mk,k

( n−1−n0

m0−m−1

)−1
. (18)

Admitting this claim, we see that s(x) = n0−n1
m1−m0

by (17); thus, 1/s(x) = m1−m0
n0−n1

. Using the claim,

we confirm Proposition 2.29(1).

36
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To confirm (18), we let φ̂i denote the φi-value of R̂(a, b,m, n). The claim follows from

Mk,k

(
m1−m0
n0−n1

)
= Mk,k(φ̂0) =

n̂−k − n̂k
m̂k − m̂−k

=
mk −m−k
n−k − nk

= Mk,k

( n−1−n0

m0−m−1

)−1
,

where the second and fourth equalities are due to (14).

(2). We now let
{

(ai, bi,mi, ni) : i ∈ J−k − 1, kK
}

be an ABMN solution on J−k − 1, kK such that
n−1−n0

m0−m−1
= x. We consider the operator A = S1 ◦ R; note that, directly from (17), A(a, b,m, n) is

an ABMN solution, also on the index set J−k − 1, kK. We denote A(a, b,m, n) =
{

(ãi, b̃i, m̃i, ñi) :

i ∈ J−k − 1, kK
}

; and we let φ̃i denote the φi-value of A(a, b,m, n) for i ∈ J−k, k − 1K.

By (14),

Mk+1,k(φ̃0) =
ñ−k−1 − ñk
m̃k − m̃−k−1

=
mk −m−k−1
n−k−1 − nk

.

And again by (14), Mk+1,k

( n−1−n0

m0−m−1

)
=

n−k−1−nk
mk−m−k−1

. Hence, we obtain

Mk+1,k(φ̃0) =Mk+1,k

( n−1−n0

m0−m−1

)−1
. (19)

Note further that

φ̃0 =
ñ−1 − ñ0
m̃0 − m̃−1

=
m0 −m−1
n−1 − n0

.

Since x = n−1−n0

m0−m−1
, we have that φ̃0 = 1/x. From (19), we thus obtain Proposition 2.29(2). �

Corollary 3.3. For k ∈ N+, Mk,k(3) =Mk+1,k(1) = 1.

Proof. By Proposition 2.29(1) and s(3) = 1/3, we have that Mk,k(3)2 = 1. Since Mk,k > 0, we
obtain Mk,k(3) = 1. By Proposition 2.29(2), Mk+1,k(1)2 = 1. Since Mk+1,k > 0, we confirm that
Mk+1,k(1) = 1. �

The form of the inverse of the map s may be obtained by use of role-reversal symmetry.

Proposition 3.4. The function s : (0,∞) → (0,∞) from Definition 2.18 is invertible, and its
inverse is given by

s−1(x) =
1

s(1/x)
, for x ∈ (0,∞) .

Proof. It is enough to show that h : (0,∞)→ (0,∞) given by h(x) = 1/s(1/x) satisfies

(s ◦ h)(x) = (h ◦ s)(x) = x . (20)

Set
(ai, bi,mi, ni) =

(
asti (x), bsti (x),mst

i (x), nsti (x)
)
, for i ∈ Z .

We have that φ0 = n−1−n0

m0−m−1
= x. First note that, by Proposition 2.26, s(φ−1) = φ0; or, in other

words,

s

(
n−2 − n−1
m−1 −m−2

)
=

n−1 − n0
m0 −m−1

= x . (21)

Let φ̂ : Z → (0,∞) be such that, for i ∈ Z, φ̂i is the value of φi for the quadruple R(a, b,m, n).
Note then that

φ̂1 =
n̂0 − n̂1
m̂1 − m̂0

=
m0 −m−1
n−1 − n0

= 1/x . (22)
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Thus, note that

s(1/x) = s(φ̂1) = φ̂2 =
n̂1 − n̂2
m̂2 − m̂1

=
m−1 −m−2
n−2 − n−1

,

where the second equality is justified by Propositions 3.2 and 2.26. Applying s, we find from (21)
that s

(
1/s(1/x)

)
= x. We have confirmed that s

(
h(x)

)
= x for x ∈ (0,∞).

Next we note that s(x) = φ1 = n0−n1
m1−m0

, so that 1/s(x) = m1−m0
n0−n1

= φ̂0. But s(φ̂0) = φ̂1 = 1/x, by

Propositions 2.26 and 3.2, and (22). Which is to say, 1/s(1/s(x)) = x, or h
(
s(x)

)
= x for x ∈ (0,∞).

This completes the derivation of (20) and thus the proof of Proposition 3.4. �

3.2. Penny Forfeit

The simplest case of the finite trail game from Section 2.5 has j = k = 0, when the first move is the
last. The straightforward solution of this case is already instructive, and we provide it now, calling
this game Penny Forfeit.

Here is an explicit description of this one-turn game. Maxine and Mina are asked to stake non-
negative quantities a and b. After these stakes have been submitted, the game victor is declared:
this will be Maxine, with probability a

a+b ; otherwise, it will be Mina. If Maxine wins, she receives
m1, and Mina n1; if Mina wins, Maxine receives m−1 and Mina n−1. These four values act as
boundary data. They are supposed to be real values that satisfy m−1 < m1 and n1 < n−1. Maxine
and Mina’s mean winnings in the game are

a
a+bm1 + b

a+bm−1 − a and b
a+bn−1 + a

a+bn1 − b , (23)

where in each expression the respective terms are mean terminal receipt in the event of turn victory;
such receipt in the event of turn defeat; and the negative contribution from the forfeited stake. The
pair (b, a) is a Nash equilibrium—a notion that is specified by suitably adapting the definition in
Section 2.1—when these last two expressions are both global maxima as the variables a and b are
respectively varied over [0,∞).

Lemma 3.5. There is a unique solution in (a, b) ∈ [0,∞)2 in which the pair of expressions in (23)
are both global maxima as the variables a and b are respectively varied over [0,∞). It is given by

(a, b) =

(
M2N

(M +N)2
,

MN2

(M +N)2

)
, with M = m1 −m−1 and N = n−1 − n1 , (24)

Note that a and b are strictly positive.

Proof. A critical point (a, b) is given by setting the respective partial derivatives in a and b of the
two expressions equal to zero: the conditions are

b
(a+b)2

(m1 −m−1)− 1 = a
(a+b)2

(n−1 − n1)− 1 = 0 .

At least one component in the desired pair (a, b) must be non-zero. Indeed, if for example a equals

zero, then an infinitesimal increase of b from zero will increase Mina’s expected payoff from n−1+n1

2
to n−1. Restricting then, as we may, to solutions with at least one positive component, we see
that there exists a unique solution in (a, b) ∈ [0,∞)2 of the last displayed equations, and that this
solution is given by (24). This is indeed a global maximum for the pair of expressions in (23) under
respective variation of a and b in [0,∞). �
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Remark. We see then that Penny Forfeit has a unique Nash equilibrium (b, a), with (a, b) as just
specified. It is straightforward to see that this Nash equilibrium is unique even if we permit the
players to offer random stakes.

3.3. The game with a delayed start

We will wish to consider the finite and infinite trail games begun at a turn whose index ` ∈ N+

is general. For (i, `) ∈ Z × N+ and (S−, S+) ∈ S we will write Pi,`S−,S+
and Ei,`S−,S+

[·] for the law

and expectation operator of gameplay X : J`,∞) = Z ∩ [`,∞) → Z, X` = i, in the Trail of Lost
Pennies on Z, begun at the (`+ 1)st turn at `. Payoffs, costs and terminal receipts P±, C±(u) (for
u ∈ J`,∞)) and T± remain as specified by Section 2.1. Mina and Maxine’s payoff identities (5)

and (9) now take the Pi,`S−,S+
-almost sure form

P± = −
∞∑

j=`+1

C±(j) + T± . (25)

Note that PiS−,S+
equals Pi,0S−,S+

.

3.4. Lack of escape entails infinite costs

Lemma 3.6. Let (S1, S2) ∈ S × S0 be a strategy pair whose second component is time-invariant.
Writing ai = S2(i, j) for (i, j) ∈ Z × N+, suppose that ai > 0 for i ∈ Z. For (i, `) ∈ Z × N+,

Pi,`S1,S2
(Ec) > 0 implies that Ei,`S1,S2

[P−] = −∞.

Proof. For j ∈ Z, let W−(j) denote the event that Mina wins infinitely many turns at which the

counter is at j. We claim that, up to a Pi,`S1,S2
-null set,

Ec ⊆
⋃
j∈Z

W−(j) . (26)

To see this, set Vj denote the event that the counter visits j ∈ Z infinitely often. The occurrence
of Ec entails that of ∪j∈ZVj . If Vj occurs and Mina wins infinitely many of the turns at which X
visits j, then W−(j) occurs. If Vj occurs but Mina does not thus succeed, there are infinitely many
occasions on which X leaves j to the right, only to return to j at some later time. Consider the
set of turns that occur just before each of these returns. At each, X is at j + 1 and Mina wins the
turn, so that X passes to j. Thus, W−(j + 1) occurs. We have derived (26).

For j ∈ Z, let TotalCost−(j) =
∑∞

t=` 1Xt=jC−(t + 1) denote Mina’s running cost expended at j

under Pi,`S1,S2
. Let N−(j, j − 1) =

∑∞
t=` 1Xt=j,Xt+1=j−1 denote the number of turns with index at

least `+ 1 that are won by Mina and at whose start X visits j. Since C−(t+ 1) = S1(Xt, t+ 1), we
have that

Ei,`S1,S2

[
N−(j, j − 1)

]
=

∞∑
t=`

Pi,`S1,S2
(Xt = j) · S1(j,t+1)

S1(j,t+1)+aj
≤ a−1j

∞∑
t=`

Pi,`S1,S2
(Xt = j)S1(j, t+ 1)

= a−1j Ei,`S1,S2

[
TotalCost−(j)

]
≤ a−1j Ei,`S1,S2

∞∑
t=`

C−(t) .

By (26) and aj > 0 for j ∈ Z, we see then that, if Pi,`S1,S2
(Ec) > 0, then Ei,`S1,S2

[N−(j, j−1)] is infinite

for some j ∈ Z, and thus so is Mina’s mean total running cost Ei,`S1,S2

∑∞
t=`C−(t). Applying Ei,`S1,S2
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to (25) with ± = −1 and noting that terminal receipts T− are almost surely bounded, we find that

Mina’s mean payoff Ei,`S1,S2
[P−] equals minus infinity. This completes the proof of Lemma 3.6. �

3.5. Relating the finite and infinite trail games

Let (m−∞,m∞, n−∞, n∞) ∈ R4 satisfy m−∞ < m∞ and n∞ < n−∞. It is useful to specify a
coupling of the Trail of Lost Pennies Trail(m−∞,m∞, n−∞, n∞) and its finite trail counterparts.

Definition 3.7. Let i ∈ Z and (S−, S+) ∈ S2. Recall that the gameplay X : N→ Z, X0 = i, of the
infinite trail game governed by (S−, S+) is specified under the law PiS−,S+

. For j, k ∈ N+, strategy

pairs in S[j, k]2 for the game with trail J−j − 1, k + 1K result by restricting the domain of S− and

S+ to J−j, kK. Copies of the gameplay Xj,k : N→ J−j − 1, k + 1K, Xj,k
0 = i, that result from use of

these restricted pairs may be coupled under PiS−,S+
whenever j, k ∈ N+ are such that i ∈ J−j, kK.

To specify these copies, set

τ j,k = inf
{
i ∈ N+ : Xi ∈ {−j − 1, k + 1}

}
. (27)

Writing ∧ for minimum, we then take Xj,k(u) = X(u ∧ τ j,k) for u ∈ N.

The finite and infinite trail payoffs, costs and terminal receipts ∗j,k± and ∗±, ∗ ∈ {P,C, T}, are

coupled under PiS−,S+
by this definition. We note some basic relationships that result.

Lemma 3.8. Let (S−, S+) ∈ S2. Suppose that i ∈ Z and j, k ∈ N+ satisfy i ∈ J−j, kK.

(1) We have that P− − P j,k− = T− − T j,k− −
∑∞

t=τ j,k C−(t).

(2) And that P− − P j,k− ≤ T− − T
j,k
− .

(3) For ` ∈ N, it is Pi,`S−,S+
-almost certain that P− − P j,k− ≤ n−∞ − n∞.

Proof: (1). This follows from (5), (13) and Cj,k− (t) = C−(t) for u ∈ J0, τ j,k − 1K.
(2). Due to the preceding part and the non-negativity of costs C−(t).

(3). The receipt T j,k− is a weighted average of n−j−1 and nk+1. Since
{
ni : i ∈ Z

}
is decreasing (this

due to Theorem 2.3(1), because this sequence is the n-component of a positive ABMN solution),

we find that T j,k− ≥ n∞. Also note that P− ≤ n−∞. The preceding part of the lemma thus implies
the stated result. �

Lemma 3.9. Let (S−, S+) ∈ S2, k ∈ Z and ` ∈ N. Let Q ∈ N∪ {∞} be a stopping time with respect

to gameplay X : N→ Z under the law Pk,`S−,S+
specified in Section 3.3. Then

Ek,`S−,S+
[P−] = −Ek,`S−,S+

Q−1∑
t=`+1

C−(t) + Ek,`S−,S+

[
EX(Q)
S−,S+

[P−]
]
. (28)

In reading this display in the event that Q = ∞, we adopt the conventions that E∞,`S−,S+
[P−] = n∞

and E−∞,`S−,S+
[P−] = n−∞, as well as Q− 1 =∞. We also have the counterpart identity for Maxine,

given by P− → P+ and C− → C+.
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Proof. The right-hand side of (25) with ± = −1 may be written A1 +A2, where A1 is the sum of
costs C−(t) with `+ 1 ≤ t < Q; and A2 is the sum of the higher indexed costs (in the case that Q is
finite) and the terminal receipt T−. Since T− equals n−∞ or n∞ when the events E− or E+ occur,

we find that, when the mean Ek,`S−,S+
of (25) thus represented is taken, the two right-hand terms in

the lemma result. �

We have used Theorem 2.3(1), and we will use it again in a moment. We now give the simple proofs
of Theorem 2.3(1,2).

Proof of Theorem 2.3(1). Since ai + bi > 0, ABMN(3) implies that mi+1 > mi−1. We may

rearrange ABMN(1) in the form mi = ai
ai+bi

mi+1 + bi
ai+bi

mi−1 − ai. Using mi−1 < mi+1 and bi > 0,
we find that mi < mi+1 − ai. Since ai > 0, mi < mi+1. That ni+1 < ni follows similarly. We have
shown that the ABMN solution (a, b,m, n) is strict.

(2). The sequences
{
mi : i ∈ Z

}
and

{
ni : i ∈ Z

}
are increasing and decreasing, by the preceding

part. Thus, the limiting values (11) exist, at least as elements of R ∪ {∞} ∪ {−∞}; they satisfy
m∞ > m−∞ and n−∞ > n∞. �

Note that Theorem 2.3(1,2) do not exclude the possibilities that m∞ or n−∞ equals ∞ or that n∞
or m−∞ equals −∞. We will deduce this when we prove Theorem 2.3(3). This result will be derived
in Section 5.3 as a consequence of the asymptotic decay estimate Theorem 2.14.

The next result interprets the m- and n-components of a ABMN solution as mean payoffs. It is
couched in the notation of delayed-start games from Section 3.3.

Lemma 3.10. Let
{

(ai, bi,mi, ni) : i ∈ Z
}

denote a positive solution of the ABMN equations with

boundary data (m−∞,m∞, n−∞, n∞) ∈ R4. Let S−, S+ ∈ S satisfy S−(i, j) = bi and S+(i, j) = ai
for (i, j) ∈ Z× N+.

(1) Let i ∈ Z and ` ∈ N. Then Pi,`S−,S+
(E) = 1.

(2) For i ∈ Z and ` ∈ N,

mi = Ei,`(S−,S+)[P+] and ni = Ei,`(S−,S+)[P−] .

(3) Let j, k ∈ N and ` ∈ N. For i ∈ J−j, kK,

mi = Ei,`(S−,S+)[P
j,k
+ ] and ni = Ei,`(S−,S+)[P

j,k
− ] .

Proof: (1). By Theorem 2.3(1), ni > n∞. But n∞ > −∞ by assumption. Thus Lemma 3.6
implies the sought statement.
(2). Since ai + bi > 0, ABMN(1) may be written in the form mi = ai

ai+bi
mi+1 + bi

ai+bi
mi−1 − ai or

equivalently mi = EiS−,S+
[m(X1)] − ai. Iterating, we find that

mi = Ei,`S−,S+
[m(Xu+1)] − Ei,`S−,S+

u∑
i=`

bX(i) (29)

for any u ∈ N, u ≥ `. The value of limu→∞m(Xu) exists on the event E, equalling m∞ or m−∞
according to whether E+ or E− occurs. By Lemma 3.10(1), we see that limu→∞ Ei,`S−,S+

[m(Xu+1)]

equals m∞ · Pi,`S−,S+
(E+) + m−∞ · PiS−,S+

(E−). In the notation of Lemma 3.9, we find by taking

the high-u limit of the preceding display that mi equals the right-hand side of (28) with k = i
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and Q identically equal to infinity. Thus, Lemma 3.9 implies that mi = Ei,`(S−,S+)[P+]. That

ni = Ei,`(S−,S+)[P−] is similarly proved.

(3). We may obtain (29) with X replaced by its stopped version Xj,k. By taking the high-u limit,
we find that mi equals the right-hand side of (28) with k = i and Q = τ j,k. From Lemma 3.9 we

thus find that mi = Ei,`(S−,S+)[P
j,k
+ ]. That ni = Ei,`(S−,S+)[P

j,k
− ] follows similarly. This completes the

proof of Lemma 3.10(3). �

Some simple relationships between escape in the finite and infinite trail games are now recorded.
We define the events E−[−j, k] =

{
X(τ j,k) = −j − 1

}
and E+[j, k] =

{
X(τ j,k) = k + 1

}
.

Lemma 3.11. We have that

E− =

∞⋃
k=1

∞⋂
j=1

E−[j, k] and E+ =

∞⋃
j=1

∞⋂
k=1

E+[j, k] .

Proof. These follow from the definitions of the events E− and E+. �

Lemma 3.12. We have that

lim
k→∞

PiS−,S+

(
E− \

{
lim
j→∞

m
(
Xτ j,k

)
= m−∞

})
= 0 . (30)

and

lim
j→∞

PiS−,S+

(
E+ \

{
lim
k→∞

m
(
Xτ j,k

)
= m∞

})
= 0 .

These statements are also valid if we replace all instances of m by n.

Proof. By Lemma 3.11 for E−, we see that, on this event, there exists a random value K ∈ N+

such that, for all j ∈ N+, X(τ j,K) = −j − 1. Since m−i → m−∞ as i → ∞, we see that, on E−,
limjm

(
X(τ j,K)

)
= m−∞. Thus, we obtain (30). The other three assertions made by the lemma

have the same proof up to evident notational changes. �



CHAPTER 4

The structure of time-invariant Nash equilibria

The aim of this chapter is to prove Theorem 2.6, our result that relates time-invariant Nash equilibria
and positive ABMN solutions. On the way to this result, we will establish some basic properties of
time-invariant Nash equilibria. In the first section, we prove Theorem 2.6(1) alongside some simple
properties of strategy pairs. The second proves Theorem 2.6(2).

4.1. Time-invariant Nash equilibria result in positive ABMN solutions

Here, we prove Theorem 2.6(1). Our style of argument is hands on: we build up inferences on the
behaviour of a time-invariant Nash equilibrium step-by-step. With one exception: to close out the
proof, we will invoke the unanimity Theorem 2.15(2,3), which is argued independently by explicit
solution of the ABMN system in Chapter 5.

Recall the mean payoff notation (5) and (9). A strategy pair (S−, S+) ∈ S2 has finite mean costs if
neither EkS−,S+

[P−] nor EkS−,S+
[P+] equals minus infinity, for any k ∈ Z.

Let (S−, S+) ∈ S20 . We adopt our standard convention of writing bi = S−(i, j) and ai = S+(i, j) for
(i, j) ∈ Z× N+. The idle zone I ⊂ Z is given by I =

{
j ∈ Z : aj = bj = 0

}
.

Lemma 4.1. Let (S−, S+) ∈ S20 be such that I 6= ∅. For k ∈ Z, consider the gameplay X : N → Z
under PkS−,S+

. For i ∈ N given, condition on the event that Xi is a given element of I. (If i = 0,

suppose that k ∈ I.) Let j ≥ i, j = inf
{
m ∈ N : Xm 6∈ I

}
. Then the conditional law of

X : Ji, jK : N→ Z is equal to simple random walk given the value Xi stopped on leaving I.

Proof. At each turn with index in Ji, j − 1K, neither Mina nor Maxine offers a positive stake,
since the b and a values vanish in the idle zone. The gameplay increments X(h + 1) − X(h) for
h ∈ Ji, j − 1K are thus unbiased ±1 steps as determined by the 0/0 = 1/2 rule that was specified in
Section 2.1. �

Recall the escape event E from (6). An element of S20 is non-zero when at least one of its components
is not identically zero.

Proposition 4.2. Let (S−, S+) ∈ S20 be non-zero, with finite mean costs. Then escape occurs almost
surely: PkS−,S+

(E) = 1 for k ∈ Z.

Proof. Let k ∈ Z and suppose that PkS−,S+
(Ec) > 0. We may find ` ∈ Z such that it is with positive

probability that the process X, under the law PkS−,S+
, visits ` infinitely often. Since (S−, S+) is

time-invariant, the strong Markov property implies that

PkS−,S+

(
X visits ` infinitely often

∣∣∣X visits ` at least once
)

= 1 . (31)

43
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Let i ∈ Z ∪ {−∞}, j ∈ Z ∪ {∞}, i ≤ j, be such that at least one of i and j is finite; ` ∈ Ji, jK;
am = bm = 0 for m ∈ Z∩ (i, j); and at least one of am and bm is positive for any endpoint m ∈ {i, j}
that is finite. (It may be that i = j = `; in this case, some of these conditions are vacuous. In the
other event, i < ` < j.)

Suppose that i < ` < j. Note that Ji + 1, j − 1K ⊂ I. We now consider the conditional law of X
under PkS−,S+

given that X visits ` infinitely often. We invoke (31) to note that the conditioning

disappears at the first visit of X to `. Lemma 4.1 thus implies that, on each occasion that X visits `,
X pursues a simple random walk until it reaches i or j. Suppose, without loss of generality, that
the index i is finite, and that ai > 0. It is with probability at least 2−(`−i) that X proceeds from a
visit to ` by means of a string of leftward steps to reach i. Later, the conditioned walk X inevitably
returns to `, and a further opportunity to reach i directly ensues. Thus, X will infinitely often
visit i, a location to which a assigns positive value. (Note that this conclusion also holds trivially in
the opposing case, where i = j = `.) The cost

∑
t≥1C+(t) incurred by Maxine (which is specified

in Section 2.1) is thus seen to be almost surely infinite on the PkS−,S+
-positive probability event

that X visits ` infinitely often. (Were bi instead supposed positive, then it would be Mina’s cost∑
t≥1C−(t) that is found to be infinite.) This is contrary to our assumption that (S−, S+) has finite

mean costs. We conclude, as desired, that PkS−,S+
(E) = 1. �

For S ∈ S0, let Left(S) ∈ Z ∪ {−∞} ∪ {∞} denote inf{i ∈ Z : S(i, 1) > 0}; and let Right(S) ∈
Z ∪ {−∞} ∪ {∞} denote sup{i ∈ Z : S(i, 1) > 0}. We say that S is wide if Left(S) = −∞ and
Right(S) =∞; if S is not wide, it is narrow.

The right rocket η · Rocketi→ at i ∈ Z of strength η ∈ (0,∞) is the element of S0 given

η · Rocketi→j = η · 2−(j−i)−11j≥i , j ∈ Z .

The counterpart left rocket η · Rocket←i ∈ S0 is

η · Rocket←ij = η · 2−(i−j)−11j≤i , j ∈ Z .

The right boost at i ∈ Z of strength η is the map Boosti→η : S0 → S0 that sends q = (qi : i ∈ Z) ∈ S0
to q + η · Rocketi→. The corresponding left boost Boosti←η : S0 → S0 sends q to q + η · Rocketi←.

The right drag at i ∈ Z is the map Dragi→ : S0 → S0 that sends q ∈ S0 to the map

Z→ (0,∞) : j →

{
qj/2 if j ≥ i
qj if j < i .

The counterpart left drag Dragi← : S0 → S0 sends q ∈ S0 to

Z→ (0,∞) : j →

{
qj/2 if j ≤ i
qj if j > i .

Lemma 4.3. Let (S−, S+) ∈ S20 .

(1) Suppose that the quantities Right(S−) and Right(S+) are finite. Let i ∈ Z exceed their
maximum. There Ei

S−,Boosti→η (S+)
[P+] > EiS−,S+

[P+] for η ∈ (0,m∞ −m−∞).

(2) Suppose that Right(S+) = ∞ and Right(S−) < ∞. Let i ∈ Z, i > Right(S−), satisfy
S+(i, 1) > 0. Then Ei

S−,Dragi→(S+)
[P+] > EiS−,S+

[P+].
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(3) If Left(S−) and Left(S+) exceed −∞ and i ∈ Z is less than their minimum, then, provided
that η ∈ (0, n−∞ − n∞), we have that Ei

Boost←iη (S−),S+
[P−] > EiS−,S+

[P−].

(4) If Left(S−) = −∞ and Left(S+) > −∞ and i ∈ Z, i < Left(S+), satisfies S−(i, 1) > 0,
then Ei

Drag←i(S−),S+
[P−] > EiS−,S+

[P−].

Proof: (1). The idle zone I determined by (S−, S+) includes Ji,∞). By Lemma 4.1, X under
PiS−,S+

thus behaves as a simple random walk when it visits Ji,∞). Right escape E+ is thus

impossible, so Maxine’s mean terminal payoff EiS−,S+
[T+] is at most m−∞ because it is a weighted

average of m∗ and m−∞. Since P+ ≤ T+ in view of running costs C+ in (9) being non-negative,
we find that EiS−,S+

[P+] ≤ m−∞. Now consider Pi
S−,Boosti→η (S+)

. Under this law, X proceeds

non-randomly by rightward steps, so that E+ occurs almost surely. Since E+ occurs, we have
T+ = m∞ almost surely. By the non-random rightward movement, we further have that

∑∞
t=1C+(t)

equals
∑∞

t=1 η · 2−t = η. By (9), we see then that Ei
S−,Boosti→η (S+)

[P+] = m∞ − η. This confirms

Lemma 4.3(1).

(2). Under gameplay governed by the law PiS−,S+
, Maxine offers a positive stake at i, and at

infinitely many locations to its right, while Mina offers no stake at or to the right of i. Thus
X : N→ Z, X0 = i, remains always to the right of X, and tends to infinity. If Maxine switches from
S+ to Dragi→(S+), the law of gameplay X is unaffected, because the original and altered gameplays
may be coupled so that Maxine’s altered stake process is one-half of her original one, while Mina’s
remains identically zero—with the result that Maxine wins exactly the same turns in the altered
gameplay as she did in the original one. The value of T+ is thus almost surely equal to m∞ under
Pi
S−,Dragi→(S+)

as well under PiS−,S+
. But Ei

S−,Dragi→(S+)

∑∞
t=1C+(t) = 1

2E
i
S−,S+

∑∞
t=1C+(t) and

EiS−,S+

∑∞
t=1C+(t) ≥ EiS−,S+

[C+(1)] > 0, so that Ei
S−,Dragi→(S+)

∑∞
t=1C+(t) < EiS−,S+

∑∞
t=1C+(t).

In summary, the switch to the altered strategy has maintained Maxine’s terminal receipt but has
reduced her running costs, so that Lemma 4.3(2) holds by (9).

(3,4). The preceding proofs may be readily adapted to prove these statements. �

Lemma 4.4.

(1) Any element of N has finite mean costs.1

(2) If (S−, S+) ∈ S20 is an element of N then S− and S+ are wide.

In the ensuing proof and later, we denote the identically zero strategy by 0.

Proof of Lemma 4.4(1). Let (S−, S+) ∈ N , and let i ∈ Z. Note that EiS−,S+
[P+] ≥ EiS−,0[P+].

In evaluating the latter term, note that no running costs to Maxine have been incurred, so that
the quantity is an average of terminal receipts m∞, m−∞ and m∗ to Maxine in the events E+,
E− and Ec. We see that EiS−,0[P+] ≥ min{m−∞,m∞,m∗} = m∗ > −∞, the latter inequality by

assumption. Likewise, EiS−,S+
[P−] > −∞.

1When the value of (m−∞,m∞, n−∞, n∞) is clear—and it is usually a generic quadruple satisfying (4)—we will often
omit to record this notation when we denote N . This includes the present case, where such a generic value is specified
by the result, Theorem 2.6(1), that we are seeking to prove.
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(2). We argue by contradiction and suppose, without loss of generality—for the other case is
similar—that S− is narrow. (Lemma 4.3(4) is not used in the ensuing proof. It is needed for the
case whose proof we omit). Either Left(S−) > −∞ or Right(S−) <∞.

Suppose that Right(S−) < ∞. If Right(S+) < ∞, then Lemma 4.3(1) provides a strategy Ŝ+ to
Maxine along with a value of i ∈ Z such that Ei

S−,Ŝ+
[P+] > EiS−,S+

[P+]. But this is contrary to

(S−, S+) ∈ N . If Right(S+) = ∞, then it is Lemma 4.3(2) that provides such Ŝ+ ∈ S0 and i ∈ Z.
A contradiction has thus been found in the case that Right(S−) <∞.

Suppose now that Left(S−) > −∞. If Left(S+) > −∞, then Lemma 4.3(3) furnishes a strategy Ŝ−
for Mina and an index i ∈ Z for which Ei

Ŝ−,S+
[P−] > EiS−,S+

[P−] holds, contrary to (S−, S+) ∈ N .

The case that Left(S−) > −∞ and Left(S+) = −∞ remains. The pair (S−, S+) ∈ S20∩N is non-zero,
because S+ is; it has finite mean costs by Lemma 4.4(1). Thus PiS−,S+

(Ec) = 0 by Proposition 4.2.

Select i ∈ Z for which S+(i, 1) > 0 and S−(j, 1) = 0 for j ∈ (−∞, iK. Note that PiS−,S+
(Ec−) = 0

because gameplay X is at least i almost surely. Thus, PiS−,S+
(E+) = 1, so that T+ = m∞ almost

surely. If Maxine drags down her strategy S+ by replacing the stake she offers at i to be one-half

of its value, the resulting strategy Ŝ+ is such that gameplay X : N → Z is equal under the laws
PiS−,S+

and Pi
S−,Ŝ+

; T+ = m∞ almost surely under each of them; but
∑∞

t=1C+(t) is almost surely

less under Pi
S−,Ŝ+

than it is under PiS−,S+
, because the value of C+(1) is lower. Thus (9) shows that

Ei
Ŝ−,S+

[P+] > EiS−,S+
[P+]. Again, we have a contradiction to (S−, S+) ∈ N . This completes the

proof of Lemma 4.4(2). �

Corollary 4.5. For (S−, S+) ∈ N ∩ S20 and i ∈ Z, PiS−,S+
(E) = 1.

Proof. Due to Proposition 4.2 and Lemma 4.4(1,2). �

Recall that an element (S−, S+) ∈ S20 may be identified as a sequence
{

(bi, ai) : i ∈ Z
}

to which

Definition 2.1 associates a quadruple
{

(ai, bi,mi, ni) : i ∈ Z
}

.

Lemma 4.6. Suppose that (S−, S+) ∈ N ∩ S20 . Then mi ≤ mi+1 and ni+1 ≤ ni for i ∈ Z.

Proof. Recall that PiS−,S+
denotes the law of gameplay when X0 = i. Let σi+1 ∈ N+ ∪{∞} denote

the stopping time inf
{
` ∈ N+ : X` = i + 1

}
. Noting the non-negativity of running costs C−(t) in

Lemma 3.9 with k = i and Q = σi+1, we find that

EiS−,S+
[P−] ≤ EiS−,S+

[
EX(σi+1)
S−,S+

[P−]
]
,

whose left-hand side equals mi by definition and whose right-hand side takes the form

mi+1PiS−,S+

(
σi+1 <∞

)
+m−∞PiS−,S+

(
σi+1 =∞, E

)
+m∗PiS−,S+

(
σi+1 =∞, Ec

)
.

However, the third term vanishes in view of Corollary 4.5. Thus, mi is seen to be a weighted average
of m−∞ and mi+1. To conclude, as we seek to do, that mi ≤ mi+1, it is thus enough to argue that
m−∞ ≤ mi+1. To obtain this bound, we first claim that Ei+1

S−,0
[P+] = m−∞. To check this, we

invoke Lemma 4.4(2) to say that S− is wide. Thus, E−, and T− = m−∞, are PiS−,0-almost certain.

The absence of running costs for Maxine means that P+ = T+ under Pi+1
S−,0

. This yields the claim.

Using it, and (S−, S+) ∈ N , we find that

mi+1 = Ei+1
S−,S+

[P+] ≥ Ei+1
S−,0

[P+] = m−∞ .
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We have confirmed that mi ≤ mi+1. We omit the similar proof that ni+1 ≤ ni. This completes the
proof of Lemma 4.6. �

Lemma 4.7. Let
{

(bi, ai) : i ∈ Z
}
∈ N ∩ S20 . Recall from Definition 2.1 that mi equals Maxine’s

mean receipt when the counter starts at i ∈ Z. Suppose that ai + bi > 0. Then

mi = ai
ai+bi

mi+1 + bi
ai+bi

mi−1 − ai . (32)

Proof. Maxine will spend ai at the first turn; she will win the turn with probability ai
ai+bi

; if she
does so, the counter will reach i+ 1, and her resulting conditional mean receipt will be mi+1; if she
does not, this receipt will instead be mi−1. Note that the two ratios on the right-hand side of (32)
are well defined, because ai + bi > 0. �

Lemma 4.8. Let (S−, S+) ∈ N ∩ S20 , and let i ∈ Z. Then ai > 0 implies that mi+1 > mi. And
bi > 0 implies that ni−1 > ni.

Proof. Lemma 4.7 and ai > 0 imply that mi < max{mi−1,mi+1}. But the maximum is attained
by mi+2 in view of Lemma 4.6. The second assertion in the lemma is similarly obtained. �

Proposition 4.9. Let (S−, S+) ∈ N ∩ S20 . Then ai > 0, bi > 0, mi+1 > mi and ni > ni+1 for
all i ∈ Z.

Proof. By Lemma 4.4(2), S− is wide. To show that every a-coefficient is positive, it is thus enough
to argue that ai > 0 implies ai+1 > 0 for i ∈ Z, because every index i ∈ Z has a positive a-coefficient
indexed somewhere to its left. Suppose to the contrary that ai > 0 but ai+1 = 0. Applying (32) at
index i + 1, we see that bi+1 > 0 implies that mi+1 = mi. But Lemma 4.8 and ai > 0 imply that
mi+1 > mi. Thus, bi+1 = 0. In view of ai+1 = 0, we see from (32) at index i + 1 (with use of the

0/0 = 1/2 rule) that mi+1 = mi+mi+2

2 . However: given that bi+1 = 0, the same equation shows that
a sufficiently small positive choice of ai+1 would yield a value for mi+1 which is arbitrarily close to

mi+2, a quantity that exceeds mi+mi+2

2 because (in view of Lemma 4.8, ai > 0 and ai+1 > 0) we
have the bound mi+2 > mi. Thus, (S−, S+) 6∈ N , contrary to assumption. We have confirmed that
ai+1 > 0, and thus that every a-coefficient is positive. The argument that bi > 0 for i ∈ Z is no
different. Lemma 4.8 then shows that each difference mi+1 − mi and ni − ni+1 is positive. This
completes the proof of Proposition 4.9. �

We may now prove the first part of Theorem 2.6.

Proof of Theorem 2.6(1). Suppose that (S−, S+) ∈ S20 is a time-invariant Nash equilibrium for
Trail(m−∞,m∞, n−∞, n∞). We abusively identify (S−, S+) with the sequence

{
(bi, ai) : i ∈ Z

}
∈ S20

as usual (and, by doing so, we conform notation with the theorem’s statement). We note at the
outset that, in view of Proposition 4.9, each ai and bi, and each difference mi+1−mi and ni−ni+1,
is positive.

Equation ABMN(1) results from rearranging the formula in Lemma 4.7. Equation ABMN(2) is
similarly derived.

Next we derive ABMN(3, 4). Recall S−(i, j) = bi and S+(i, j) = ai for each (i, j) ∈ Z × N+. For

given i ∈ Z, we will consider a perturbed strategy Ŝ+ ∈ S for Maxine in which only her first-turn

stake is altered, and only then if the counter is at i. In this way, Ŝ+(j, k) = aj for j ∈ Z and
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k ≥ 2; and also for k = 1 and j ∈ Z, j 6= i. We let η > −ai be small in absolute value, and set
Ŝ+(1, i) = ai + η.

The original scenario refers to the law PiS−,S+
, which records counter evolution X : N→ Z given the

initial condition X0 = i under the strategy pair (S−, S+). The altered scenario refers to the same

law, instead governed by the pair (S−, Ŝ+). Let O+ and A+ denote the mean payoff to Maxine in
the original and altered scenarios: that is, O+ = EiS−,S+

[P+] and A+ = Ei
S−,Ŝ+

[P+]. Then

O+ = ai
ai+bi

mi+1 + bi
ai+bi

mi−1 − ai and A+ = ai+η
ai+η+bi

mi+1 + bi
ai+η+bi

mi−1 − ai − η ,

so that

A+ −O+ =
(

bi
(ai+bi)2

(mi+1 −mi−1)− 1
)
· η ·

(
1 + o(1)

)
, (33)

where the o(1) term is small in the sense of |η| → 0. Since (S−, S+) ∈ N , A+ is at most O+,
whatever the value of η > −ai. The derivative in η of A+ − O+ thus vanishes at zero, so that

bi
(ai+bi)2

(mi+1 −mi−1)− 1 = 0 or equivalently

bi(mi+1 −mi−1) = (ai + bi)
2 . (34)

We now consider the same original scenario alongside a new altered scenario in which it is Mina
who adopts a perturbed strategy Ŝ− (as a function of a given choice of i ∈ Z). Analogously to what

we have done, we choose η > −bi, and set Ŝ−(j, k) = bj for j ∈ Z and k ≥ 2 or when k = 1 and

j ∈ Z, j 6= i; and then we set Ŝ−(1, i) = bi + η. We denote by O− and A− Mina’s mean payoff in
the original and in the newly altered scenarios; to wit, O− = EiS−,S+

[P−] and A− = Ei
Ŝ−,S+

[P−]. We

find then that

O− = bi
ai+bi

ni+1 + ai
bi+ai

ni−1 − bi and A− = bi+η
bi+η+ai

ni+1 + bi
ai+η+bi

ni−1 − bi − η ;

and, analogously to (33),

A− −O− =
(

ai
(ai+bi)2

(ni−1 − ni+1)− 1
)
· η ·

(
1 + o(1)

)
.

The condition that (S−, S+) ∈ N ensures that O− ≥ A−, whatever the value of η > −bi. Thus,

ai(ni−1 − ni+1) = (ai + bi)
2 . (35)

The derived equations (34) and (35) are ABMN(3, 4) with index i.

We have established that
{

(ai, bi,mi, ni) : i ∈ Z
}

solves the ABMN equations. To complete the
proof of Theorem 2.6(1), it remains to confirm that the boundary values (11) are achieved. We
will argue that limi→∞m−i = m−∞; the three other limits are similarly shown. The sequence{
m−i : i ∈ N

}
decreases by Proposition 4.9 to a limiting value that we call m−∞. Since mi =

PiS−,S+
[P+] ≥ PiS−,0[P+] = m−∞, we have that m−∞ ≥ m−∞; we wish to obtain the opposite

inequality. By removing non-negative running costs from the right-side of the expression for mi

in Lemma 3.10(2), we see that mi ≤ PiS−,S+
(E−) · m−∞ + PiS−,S+

(E+) · m∞ where we invoked

Corollary 4.5. Thus m−∞ ≤ m−∞ provided that we argue that limi→−∞ PiS−,S+
(E+) = 0: far to

the left is the domain of Mina’s likely victory. It would be of interest to argue directly; and to do
so would be more in keeping with the style of this section. It is quicker however to simply invoke
the eventual gameplay unanimity Theorem 2.15(3), which will be proved by independent arguments
when we find an explicit solution of the ABMN system in Chapter 5. (Theorem 2.15(2) is invoked
in the corresponding place in two of the three omitted limit derivations.) We have thus obtained
Theorem 2.6(1). �
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4.2. The reverse implication

Here we prove Theorem 2.6(2). It is here that the infinite-turn nature of the game has to be tamed
by comparison with finite-trail counterparts.

We begin by developing definitions and results that will lead to the proof of the desired result at
the end of the section. As such, we now enforce the notation in the hypothesis of Theorem 2.6(2),
so that, from now on,{

(ai, bi,mi, ni) : i ∈ Z
}

denotes a positive solution of the ABMN equations

with boundary data (m−∞,m∞, n−∞, n∞) that satisfies (4). Let S−, S+ ∈ S satisfy

S−(i, j) = bi and S+(i, j) = ai for (i, j) ∈ Z× N+ . (36)

Recall that S+ = a with the usual notational abuse.

Definition 4.10. Let i ∈ Z. The forward play-cone Fi of i is given by

Fi =
{

(k, `) ∈ Z× N+ : |k − i| ≤ ` , |k − i|+ ` ∈ 2N
}
.

This is the set of space-time sites that are in principle accessible for gameplay X : N → Z under
PiS1,S2

for some strategy pair (S1, S2) ∈ S2.

Let S ∈ S. An element (q, `) ∈ Fi such that S(q, ` + 1) 6= bq is called a Mina deviation point.
The Mina deviation set D−(S, i) ⊆ Fi is the collection of Mina deviation points. The strategy S
is called deviating for Mina if D−(S, i) is non-empty. A Maxine deviation point (q, `) ∈ Fi satisfies
S(q, `+ 1) 6= aq. The set D+(S, i) of such points is the Maxine deviation set; if D+(S, i) 6= ∅, then
S is deviating for Maxine.

When gameplay under PiS,S+
runs through a Mina deviation point—when X` = q for (q, `) ∈

D−(S, i)—her stake according to strategy S—namely, S(q, ` + 1)—may be viewed as a mistake
when her opponent plays her element S+ of the putative Nash equilibrium (S−, S+). The next
result, which is fundamental to proving Theorem 2.6(2), validates this notion. It measures the
magnitude of the mistakes that result from a player’s deviation in the sense of decrease in mean
payoff in finite trail games. It finds the mistakes to be uniformly costly as the finite trails vary.

Proposition 4.11. Let i ∈ Z be given.

(1) Let Sdev
− ∈ S be deviating for Mina. Suppose that Pi

Sdev
− ,S+

(E) = 1. Then

sup Ei
Sdev
− ,S+

[P j,k− ] < EiS−,S+
[P−] ,

where the supremum is taken over j, k ∈ N+ such that i ∈ J−j, kK and for which there exists
an element (u, `) of D−(Sdev

− , i) with u ∈ J−j, kK.

(2) Now suppose that Sdev
+ ∈ S is deviating for Maxine, and Pi

S−,Sdev
+

(E) = 1. Then

sup Ei
S−,Sdev

+
[P j,k+ ] < EiS−,S+

[P+] ,

where now the supremum is taken over j, k ∈ N+ with i ∈ J−j, kK and for which there exists
(u, `) ∈ D+(Sdev

+ , i) such that u ∈ J−j, kK.
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It is a short step from the just stated result to the next conclusion, which asserts that a player’s
deviation will cost her in the infinite trail game. This is in essence what it means for (S−, S+)
to be a Nash equilibrium. Indeed, we next close out the proof of Theorem 2.6 by first deriving
Proposition 4.12 from Proposition 4.11; and second showing how the latter result leads to the
desired conclusion. These tasks done, we will turn to the remaining and more substantial one: to
prove Proposition 4.11.

Proposition 4.12. Let i ∈ Z.

(1) Let Sdev
− ∈ S be deviating for Mina. Then

Ei
Sdev
− ,S+

[P−] < EiS−,S+
[P−] .

(2) Now let Sdev
+ ∈ S be deviating for Maxine. Then

Ei
S−,Sdev

+
[P+] < EiS−,S+

[P+] .

Proof: (1). Suppose first that Pi
Sdev
− ,S+

(Ec) > 0. Lemma 3.6 implies that Ei
(Sdev
− ,S+)

[P−] = −∞.

But EiS−,S+
[P−] = mi by Lemma 3.10(1). We have that mi ≥ m−∞ since the sequence

{
mi : i ∈ Z

}
increases for any positive ABMN solution by Theorem 2.3(1). And we know that m−∞ > −∞ by
hypothesis. Thus we see that EiS−,S+

[P−] > −∞, so that Proposition 4.12(1) has been established

in this case.

Now we suppose instead that Pi
Sdev
− ,S+

(E) = 1. Let η > 0 be arbitrary. Note that T j,k− = n
(
X(τ j,k)

)
for j, k ∈ N+; and that T− equals n−∞ on E−, and n∞ on E+. By Lemma 3.12 and Pi

Sdev
− ,S+

(E) = 1,

we may thus find j0, k0 ∈ N+ such that, when j ≥ j0 and k ≥ k0,

Pi
Sdev
− ,S+

(∣∣T− − T j,k− ∣∣ ≥ η) ≤ η .
By Lemma 3.8(2), we see that

Pi
Sdev
− ,S+

(
P− ≤ P j,k− + η

)
≥ 1− η .

By Lemma 3.8(3),

Ei
Sdev
− ,S+

[P−] ≤ Ei
Sdev
− ,S+

[P j,k− ] + (1 + n−∞ − n∞)η .

By taking η > 0 to be one-half of the difference of the two sides in the conclusion of Proposi-
tion 4.11(1), the latter result is seen to imply Proposition 4.12(1).

(2). We omit this similar argument. �

Proof of Theorem 2.6(2). Recall that
{

(ai, bi,mi, ni) : i ∈ Z
}

is a positive ABMN solution with

boundary data (m−∞,m∞, n−∞, n∞) ∈ R4. Further recall that (S−, S+) = (b, a), with the usual
notational abuse. Let S ∈ S. If S is not deviating for Mina, then EiS,S+

[P−] = EiS−,S+
[P−] since

the laws PiS,S+
and PiS−,S+

are equal. Otherwise, EiS,S+
[P−] < EiS−,S+

[P−] by Proposition 4.12(1).

(We recall that implicit in the notation PiS1,S2
and EiS1,S2

[·] are the values (m−∞,m∞, n−∞, n∞),

because these values appear as terminal receipts.)

By Proposition 4.12(2), it follows similarly that EiS−,S [P+] < EiS−,S+
[P+] if S is deviating for Maxine.

Further, EiS−,S [P+] = EiS−,S+
[P+] if Maxine’s S is not deviating. We have confirmed that (S−, S+) ∈

N (m−∞,m∞, n−∞, n∞) and thus obtain Theorem 2.6(2). �
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We now prepare to prove Proposition 4.11(1). (The proof of Proposition 4.11(2) is essentially the
same.) Henceforth, Proposition 4.11(1)’s hypotheses are understood to be in force: S− and S+ are
the non-deviating strategies given by (36); i ∈ Z is given; and Sdev

− ∈ S is deviating for Mina, with

Pi
Sdev
− ,S+

(E) = 1.

Let j, k ∈ N satisfy i ∈ J−j, kK. Developing Definition 4.10, we set

Dj,k− (S, i) =
{

(q, `) ∈ D−(S, i) : q ∈ J−j, kK
}

for S ∈ S. It may be that Dj,k− (Sdev
− , i) is infinite. It serves our purpose to approximate Sdev

−
by strategies for which the counterpart set is finite. We now specify these strategies. Enumerate

Dj,k− (Sdev
− , i) in increasing order of the vertical component, using an arbitrary rule to break the ties

that arise when elements share the same height. For v ∈ N+, let Dj,k−,v(S
dev
− , i) denote the set whose

elements are the first v members of Dj,k− (Sdev
− , i). Let Sdev

− [v] denote the strategy that equals Sdev
−

on Dj,k−,v(S
dev
− , i) and S− otherwise; note that Dj,k− (Sdev

− [v], i) equals Dj,k−,v(S
dev
− , i). We make another

basic comparison in terms of the next definition.

Definition 4.13. For S ∈ S, let groundj,k(S, i) ∈ N denote the minimum vertical coordinate

assumed by an element of Dj,k− (S, i).

Note then that groundj,k(Sdev
− [v], i) is independent of v ∈ N+.

We wish to argue that Mina’s deviant play under the strategies Sdev
− [v], v ∈ N+, and Sdev

− , is suitably
penalized in the trail game on J−j − 1, k + 1K. In the notation of the next definition, Lemma 4.15
establishes such a conclusion for the finitely deviating strategies Sdev

− [v]: there is a penalty incurred
by use of these strategies; and, in a suitable sense, the penalty is uniform among them, and is
governed by the limiting strategy Sdev

− . After we prove Lemma 4.15, it will remain to address the

penalty suffered by using Sdev
− itself. Definition 4.14 speaks of a ‘strong’ penalty as a contrast with

a modified definition that will be used to treat the perhaps infinitely deviating Sdev
− , this appearing

after the proof of Lemma 4.15.

Definition 4.14. Let S1, S2 ∈ S. Consider the following conditions:

(1) We have that Eu,`S1,S+

[
P j,k−

]
≤ nu for all ` ∈ N+ and u ∈ J−j, kK.

(2) Writing g = groundj,k(S1, i), consider any u ∈ J−j, kK for which (u, g) ∈ Dj,k− (S1, i). Then

the value nu−Eu,gS1,S+

[
P j,k−

]
is positive, and indeed is bounded below by a positive quantity

that is determined solely by S2(u, g + 1).

If these conditions are met, we say that S1 receives the strong (i, j, k)-penalty merited by S2. Let
S ∈ S. If S receives the strong (i, j, k)-penalty merited by S, we say that S justly receives a strong
(i, j, k)-penalty.

(Although it is omitted from the notation of the strong (i, j, k)-penalty, it is the strategy S+ = a
that Mina is facing when she plays S1 or S2. The above definition and the next result are intended
to capture the sense of Mina’s mistake when she declines to stake at the b-level dictated by S−
against Maxine’s a-stake offered by S+.)
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Lemma 4.15. Let j, k ∈ N satisfy i ∈ J−j, kK. Let v be at least the number of elements of Dj,k− (Sdev
− , i)

of minimum height. Then Sdev
− [v] receives the strong (i, j, k)-penalty merited by Sdev

− .

(The value of g implicit in Lemma 4.15 does not depend on the value of v ∈ N+ used in Sdev
− [v],

because groundj,k(Sdev
− [v], i) is independent of v ∈ N+.)

The finite-error strategies Sdev
− [v] have been introduced because they may be analysed using the

fundamental game-theoretic technique of backwards induction. When Mina uses Sdev
− [v] for any

given v ∈ N+, she never deviates at late enough time. Lemma 3.10(2) then serves to show that
she incurs no penalty by doing so. As turn index retreats in backwards induction, Mina will make
deviating moves. At the heart of the analysis of the inductive step is the consideration of one turn
when Mina deviates. What is being played here is a game of Penny Forfeit, treated in Section 3.2.
The next result gathers what we need to know about one step in the game.

Lemma 4.16.

(1) Let j, k ∈ Z satisfy i ∈ J−j, kK. For ` ∈ N+, let S1, S2 ∈ S be such that, if (u, h) ∈ Z× N+

satisfies S1(u, h) 6= S2(u, h), then h ≤ `. Then Eu,hS1,S+

[
P j,k−

]
= Eu,hS2,S+

[
P j,k−

]
for any

(u, h) ∈ J−j, kK× J`,∞).

Let S ∈ S and (u, `) ∈ J−j, kK× N. Suppose that Ev,`+1
S,S+

[
P j,k−

]
≤ nj for v ∈ {u− 1, u+ 1}.

(2) We have that Eu,`S,S+

[
P j,k−

]
≤ nu.

(3) Suppose further that (u, `) ∈ Dj,k− (S, i). Then nu−Eu,`S,S+

[
P j,k−

]
is bounded below by a positive

quantity that is determined solely by the value of S(u, `+ 1) 6= bu.

Proof: (1). The laws Pu,hS1,S+
and Pu,hS2,S+

are identical because S1 and S2 coincide at any point

(u, `) with ` ≥ h+ 1.
(2). Note that

Eu,`S,S+

[
P j,k−

]
= S(u,`)

ai+S(u,`)
Eu−1,`+1
S,S+

[
P j,k−

]
+ ai

ai+S(u,`)
Eu+1,`+1
S,S+

[
P j,k−

]
− S(u, `) .

Since Eu−1,`+1
S,S+

[
P j,k−

]
≤ nu−1 and Eu+1,`+1

S,S+

[
P j,k−

]
≤ nu+1, we see that

Eu,`S,S+

[
P j,k−

]
≤ S(u,`)

au+S(u,`)
nu−1 + au

au+S(u,`)
nu+1 − S(u, `) .

By Lemma 3.5, this right-hand side has a unique maximum in b at b = bu, when it assumes the
value nu.
(3). Since S(u, `+1) is not equal to bu, we see that the above right-hand side, and thus Eu,`S,S+

[
P j,k−

]
,

is less than nu. The difference nu − Eu,`S,S+
[P j,k− ] is determined solely by S(u, `+ 1). �

The next result leads quickly to Lemma 4.15. Indeed, its proof (in a perhaps slightly disguised
form) is the backwards inductive argument that underlies Lemma 4.15.

Lemma 4.17. Suppose that S ∈ S is such that Dj,k− (S, i) is finite. Then S justly receives a strong
(i, j, k)-penalty.

Proof. We will induct on the cardinality of Dj,k− (S, i).
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Let S ∈ S. Set g = groundj,k(S, i). For ` ∈ N, ` 6= g, let IH(S, `) denote the assertion that

Eu,`S,S+

[
P j,k−

]
≤ nu for u ∈ J−j, kK . (37)

For ` = g, let IH(S, `) denote the assertion that the preceding display holds and so does the following.

Consider any u ∈ J−j, kK for which (u, g) ∈ Dj,k− (S, i).

Then the value nu − Eu,gS,S+

[
P j,k−

]
is positive,

and indeed is bounded below by a positive quantity that is determined solely by S(u, g + 1).

We take the inductive hypothesis indexed by q ∈ N+ to be the assertion that the statements IH(S, `),

` ∈ N, are true for each S ∈ S such that #Dj,k− (S, i) ≤ q. The base case will be q = 0. This is the

assertion that (37) holds for ` ∈ N+, when S ∈ S is such that Dj,k− (S, i) is empty.

The base case holds by Lemma 3.10(3).

Let q ∈ N and assume the inductive hypothesis indexed by q. Let S ∈ S0 be such that #Dj,k− (i) =

q + 1. Again set g = groundj,k(S, i). Let Ŝ ∈ S0 be given by

Ŝ(i, `) =

{
S−(i, g + 1) = bi if ` = g + 1

S(i, `) if ` ∈ N+, ` 6= g + 1 .

for i ∈ Z. The set Dj,k− (Ŝ, i) is formed from Dj,k− (S, i) by the removal of the elements of minimum

height—which is height g. Hence, #Dj,k− (Ŝ, i) < #Dj,k− (S, i); the hypotheses IH(Ŝ, `), ` ∈ N+, are

thus available. By Lemma 4.16(1) with S1 = Ŝ, S2 = S and ` = g + 1, we find that IH(S, `) holds
for ` ≥ g + 1.

Now consider u ∈ J−j, kK such that (u, g) ∈ Dj,k− (S, i). Lemma 4.16(3) (and Lemma 4.16(2) for
other u ∈ J−j, kK) implies IH(S, g).

To complete the inductive step, it remains to verify IH(S, `) for ` ∈ J0, g − 1K. We do so iteratively
in decreasing `. It is Lemma 4.16(2) that demonstrates the generic step in this iteration. This
completes the proof of Lemma 4.17. �

Proof of Lemma 4.15. Apply Lemma 4.17 for S = Sdev
− [v] for v ∈ N+, We learn that Defini-

tion 4.14 holds with S1 = S2 = Sdev
− [v]. Thus, the positive quantity in Definition 4.14(2) is deter-

mined by Sdev
− [v](u, g+1). When v satisfies the bound in Lemma 4.15, we have that Sdev

− [v](u, g+1)

equals Sdev
− (u, g + 1). As a result, Definition 4.14 holds with S1 = Sdev

− [v] and S2 = Sdev
− . This is

what Lemma 4.15 asserts. �

Lemma 4.15 is a stepping stone to a counterpart that describes the penalty incurred by use of
the perhaps infinitely deviating strategy Sdev

− ∈ S. The counterpart, Lemma 4.19, depends on a
variation of Definition 4.14.

Definition 4.18. Let S ∈ S. An element (q, `) ∈ Fi is said to be (S, S+)-accessible from (i, 0) if
PiS,S+

(X` = q) > 0. Let A(S, i) denote the set of elements of Fi that are (S, S+)-accessible from

(i, 0).

Alter Definition 4.14 by taking S1 and S2 equal to S; the first part to include the condition that the
point (u, `) belongs to A(S, i); and the second to include the condition that (u, g) ∈ A(S, i). Thus,
no requirement is imposed by a given part when (u, `) or (u, g) is not (S, S+)-accessible from (i, 0).
When the altered set of conditions is satisfied, we say that S justly receives a weak (i, j, k)-penalty.
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Lemma 4.19. Let j, k ∈ N satisfy i ∈ J−j, kK. The strategy Sdev
− justly receives a weak (i, j, k)-

penalty.

To prove this result, we intend to make use of Proposition 4.11(1)’s hypothesis that Pi
Sdev
− ,S+

(E) = 1.

Since escape is certain under Pi
Sdev
− ,S+

, gameplay will exit J−j, kK in finite time, so that Mina’s choice

between S and S[v], for high v, will typically leave gameplay unaffected. Thus we aim to reduce
the proof of the new result to quoting Lemma 4.15. To do this, it is useful to state a consequence
of Pi

Sdev
− ,S+

(E) = 1.

Lemma 4.20. Let (u, `) ∈ A(Sdev
− , i). Then Pu,`

Sdev
− ,S+

(E) = 1.

Proof. We have that

1 = Pi
Sdev
− ,S+

(E) =
∑
u∈Z

Pi
Sdev
− ,S+

(X` = u) · Pu,`
Sdev
− ,S+

(E) .

Since Pi
Sdev
− ,S+

(X` = u) > 0 if and only if (u, `) ∈ A(Sdev
− , i), we see that Pu,`

Sdev
− ,S+

(E) equals one

when this condition is satisfied. �

Proof of Lemma 4.19. Let h(v) be the vertical coordinate of the vth element of Dj,k− (Sdev
− , i).

Let (u, `) ∈ J−j, kK × N. Under Pu,`
Sdev
− [v],S+

given τ j,k ≥ h(v), Mina does not deviate after time

τ j,k. By Lemma 3.10(2) and Theorem 2.3(1), the conditional mean of P j,k− under Pu,`
Sdev
− [v],S+

given

that τ j,k > h(v) is thus seen to be at least nk+1. Now consider (25) with ± = −1 and (P, S−) →
(P j,k, Sdev

− ); note that running costs here are non-negative, and that terminal receipt is at most

n−j−1 by Theorem 2.3(1). We see then that the conditional mean of P j,k− under Pu,`
Sdev
− ,S+

given that

τ j,k > h(v) is at most n−j−1.

We find then that

Eu,`
Sdev
− ,S+

[P j,k− ]− Eu,`
Sdev
− [v],S+

[P j,k− ] ≤ Pu,`
Sdev
− ,S+

(
τ j,k ≥ h(v)

)
· (n−j−1 − nk+1) . (38)

Lemma 4.19 will follow from Lemma 4.15 provided that we show that the right-hand side of this
display vanishes in high v whenever (u, `) ∈ A(Sdev

− , i). By Lemma 4.20, and the hypothesis of

Proposition 4.11(1), we know that Pu,`
Sdev
− ,S+

(E) = 1. Thus, τ j,k is finite, Pu,`
Sdev
− ,S+

-almost surely.

The right-hand side of (38) thus indeed tends to zero in the limit of high v. Lemma 4.15 implies
Lemma 4.19, as we sought to show. �

We are ready for the following proof.

Proof of Proposition 4.11(1). For j, k ∈ N+ such that i ∈ J−j, kK, let g denote the minimum

vertical coordinate among elements of Dj,k− (Sdev
− , i). Any element (u, g) ∈ Fi belongs to A(Sdev

− , i)

because, under (Sdev
− , S+), gameplay is governed before the gth turn by the positive-element pair

(S−, S+). Lemma 4.19 thus implies that, when (u, g) ∈ Fi,

Eu,g
Sdev
− ,S+

[
P j,k−

]
≤ nu (39)

and
Eu,g
Sdev
− ,S+

[
P j,k−

]
< nu if (u, g) ∈ Dj,k− (Sdev

− , i) . (40)
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Now note that

Ei
Sdev
− ,S+

[P j,k− ] = −Ei
Sdev
− ,S+

g−1∑
t=1

C−(t)1t<τ j,k +
∑

u∈J−j,kK:
(u,g)∈Fi

Pi
Sdev
− ,S+

(Xj,k
g = u) · Eu,g

Sdev
− ,S+

[P j,k− ] .

The joint law of C−(t), t ∈ J1, g−1K, is equal under Pi
Sdev
− ,S+

and PiS−,S+
, because S and S− coincide

on Z × J1, g − 1K. The costs C−(t) are non-negative, and upper bounds on the conditional mean
payoffs in the preceding display are offered by (39) and (40).

By way of comparison,

EiS−,S+
[P j,k− ] = −EiS−,S+

g−1∑
t=1

C−(t)1t<τ j,k +
∑

u∈J−j,kK:
(u,g)∈Fi

PiS−,S+
(Xj,k

g = u) · Eu,gS−,S+
[P j,k− ] ,

with
Eu,gS−,S+

[P j,k− ] = nu for u ∈ J−j, kK
by Lemma 3.10(3). Consider a pair (j, k) over which the supremum in Proposition 4.11(1) is taken.

Since Dj,k− (Sdev
− , i) is non-empty, we may find q ∈ J−j, kK such that (q, g) ∈ Dj,k− (Sdev

− , i). Since

X : J0, gK→ Z coincides under PiS−,S+
and Pi

Sdev
− ,S+

, we see that

EiS−,S+
[P j,k− ]− Ei

Sdev
− ,S+

[P j,k− ] =
∑

u∈J−j,kK:
(u,g)∈Fi

PiS−,S+
(Xj,k

g = u) ·
(
nu − Eu,g

Sdev
− ,S+

[P j,k− ]
)
,

where the term in parentheses on the right-hand side is strictly positive if u = q (by (40)), and is
non-negative if u ∈ J−j, kK, u 6= q (by (39)). This implies that

EiS−,S+
[P j,k− ]− Ei

Sdev
− ,S+

[P j,k− ] ≥ PiS−,S+
(Xj,k

g = q) ·
(
nq − Eq,g

Sdev
− ,S+

[
P j,k−

] )
.

We claim that PiS−,S+
(Xj,k

g = q) > 0. Indeed, it is enough to find any access route for X from (i, 0)

to (q, g) that never leaves J−j, kK× J0, gK, because the strategies in the pair (S−, S+) = (b, a) have
positive coefficients; that such a route exists is due to (q, g) ∈ Fi, i, q ∈ J−j, kK and k > −j. For

example, PiS−,S+
(Xj,k

g = q) is at least ηg, where η = min
{
ai ∧ bi : i ∈ J−j, kK

}
. That is,

EiS−,S+
[P j,k− ]− Ei

Sdev
− ,S+

[P j,k− ] ≥ ηg ·
(
nq − Eq,g

Sdev
− ,S+

[
P j,k−

] )
.

Since the positive right-hand side is independent of the choice of the pair j, k ∈ N+ over which the
supremum is taken in Proposition 4.11(1), we have obtained this result. �

Proof of Proposition 4.11(2). The essentially identical argument is omitted. �



CHAPTER 5

Explicit ABMN solutions and their consequences

Here we explicitly solve the ABMN system, proving Theorem 2.21, and its softer cousin Proposi-
tion 2.16. Then we analyse the asymptotic decay in high index values of ABMN solutions, proving
Theorem 2.14. Two consequences of this decay—finiteness of boundary data in Theorem 2.3(3),
and the almost sure eventual unanimity of gameplay in Theorem 2.15—are derived.

5.1. Explicit ABMN solutions

Fundamental to deriving Theorem 2.21 is an alternative representation of the ABMN system that
we offer first, in Proposition 5.1. The real-valued variables

{
mi, ni : i ∈ Z

}
satisfy the MN system

on Z if

(mi −mi−1)(mi+1 −mi−1 + ni−1 − ni+1)
2 = (mi+1 −mi−1)

3 MN(1)

(ni − ni+1)(mi+1 −mi−1 + ni−1 − ni+1)
2 = (ni−1 − ni+1)

3 MN(2) ,

for i ∈ Z. As for ABMN(1, 2, 3, 4) from Definition 2.2, we refer to the above equations as MN(1)
and MN(2) rather than by the usual convention of numbered equations.

Proposition 5.1. A positive solution of the ABMN system on Z solves the MN system on Z.

Proof. For i ∈ Z, set Mi = mi+1 −mi−1 and Ni = ni−1 − ni+1. We claim that

ai =
M2
i Ni

(Mi +Ni)2
, bi =

MiN
2
i

(Mi +Ni)2
and

ai
ai + bi

=
Mi

Mi +Ni
. (41)

These follow from ABMN(3, 4). Expressing ABMN(1) in the form (32), we find from (41) that

mi = mi−1 +
M2
i

(Mi +Ni)2
− M2

i Ni

(Mi +Ni)2
,

whence MN(1) holds. Equation MN(2) is obtained similarly, from ABMN(2). �

Recall c, d, s : (0,∞)→ (0,∞) from Definition 2.18.

Definition 5.2. Let γ, δ : (0,∞) → (0,∞) be given by γ(x) = c(x)−1 and δ(x) = d(x)−1. Set
β : (0,∞)→ (0,∞), β(x) = ω−1

4 , where recall that ω =
√

8x+ 1 for x ∈ (0,∞).

Lemma 5.3.

(1) The functions c, d, s : (0,∞)→ (0,∞) are increasing.1

(2) We have that s(x) = x2/2 +O(x3) as x↘ 0.

(3) For x ∈ (0,∞), s(x) = β(x)2

β(x)+2 .

1Let ∗ ∈ {c, d, s}. By ‘Lemma 5.3(1:∗)’ will be meant ‘∗ is increasing’.
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(4) For x ∈ (0,∞), β(x) ≤ x.

(5) For x ∈ (0,∞), s(x) < x.

Proof: (1). The expressions for c(x), d(x) and s(x) in Definition 2.18 are readily seen to be
increasing in the variable ω ∈ (1,∞); since ω =

√
8x+ 1, they are also increasing in x ∈ (0,∞).

(2). We have that ω =
√

8x+ 1 = 1 + 4x+O(x2), whence

s(x) = (ω−1)2
4(ω+7) = 16x2+O(x3)

4(8+O(x)) = x2/2 +O(x3) .

(3). This is due to s(x) = (ω−1)2
4(ω+7) and β(x) = (ω − 1)/4.

(4). Since ω(x) =
√

8x+ 1 ≤ 4x+ 1, β(x) ≤ x.
(5). Lemma 5.3(3), β > 0 and Lemma 5.3(4) imply that

s(x) = β(x)2

β(x)+2 < β(x) ≤ x

as desired. �

Recall Definition 2.12.

Proposition 5.4. For i ∈ Z, we have that2

γ(φi) =
mi −mi−1
mi+1 −mi−1

, δ(φi) =
ni−1 − ni
ni−1 − ni+1

and s(φi) = φi+1 .

Notation to be used only in the proof of this proposition3 makes the task to show that ∗(φi) equals
∗i for ∗ ∈ {γ, δ, s}.

Definition 5.5. For i ∈ Z, set γi = mi−mi−1

mi+1−mi−1
, δi = ni−1−ni

ni−1−ni+1
and si = φi+1. We also set

βi = ni−1−ni+1

mi+1−mi−1
, and write ωi = ω(φi) =

√
8φi + 1.

Lemma 5.6. We have that

(1 + βi)
2γi = 1 , 1− δi =

β2
i

(1+βi)2
, φi = δiβi/γi , φi+1 = βi(1−δi)

1−γi .

Proof. Equation MN(1) implies that (1 + βi)
2γi = 1. Equation MN(2) implies 1 − δi =

β2
i

(1+βi)2
.

That φi = δiβi/γi follows by the definitions of the concerned quantities. Noting that

1− δi = ni−ni+1

ni−1−ni+1
and 1− γi = mi+1−mi

mi+1−mi−1
,

we find from the definitions of βi and φi+1 that φi+1 = βi(1−δi)
1−γi holds. �

Lemma 5.7. For i ∈ Z,

γ−1i = 1
16(ωi + 3)2 , δ−1i =

(ωi + 3)2

8(ω + 1)
, si =

(ωi − 1)2

4(ωi + 7)
and βi = 1

4(ωi − 1) .

2Let ∗ ∈ {γ, δ, s}. By ‘Proposition 5.4(∗)’, we will mean the statement made concerning the labelled quantity.
3In particular, the temporary usage of si introduced in Definition 5.5 is an abuse, because the denoted quantity is not
the function si; nor is it the value si(x) for x = φ0. Indeed, si(x) equals φi, while si with the temporary usage equals
φi+1.
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Proof. Omitting i subscripts, consider the four equations stated in Lemma 5.6 when we take
φ ∈ (0,∞) given. The first and third equations imply that δβ(1 + β)2 = φ. Using the second
equation, we find that (2β + 1)β = φ; since β is positive, we confirm that β = (ω − 1)/4. From
the first equation, we then obtain γ = 16(ω + 3)−2. The third equation δ = φγ/β then yields

δ = 16φ
(ω+3)2

· 4
ω−1 which equals 8(ω+1)

(ω+3)2
in view of ω2− 1 = 8φ. Finally, s = φi+1 by definition, so that

the fourth equation implies that s = ω−1
4 ·

(ω+3)2−8ω−8
(ω+3)2−16 whose right-hand side is seen to equal (ω−1)2

4(ω+7)

after cancellation of ω − 1 > 0 from numerator and denominator. �

Lemma 5.8.

(1) We have that γ−1i − 1 = 2φi +O(φ2i ).

(2) And that βi = φi +O(φ2i ).

Proof: (1). From Lemma 5.7, note that γ−1i = 1
16(ωi + 3)2 =

(
1 + φi +O(φ2i )

)2
.

(2). By the same result, βi = 1
4(ωi − 1) = φi +O(φ2i ). �

Proof of Proposition 5.4. By Lemma 5.7 and Definitions 2.18, 5.2 and 5.5,

γi = 16(ωi + 3)−2 = c(φi)
−1 = γ(φi) ; δi = 8(ωi+1)

(ωi+3)2
= d(φi)

−1 = δ(φi) ;

and si = (ωi−1)2
4(ωi+7) = s(φi). �

Proofs of Proposition 2.16 and Theorem 2.21. For given x ∈ (0,∞), let (a, b,m, n) be an

ABMN solution with n−1−n0

m0−m−1
= x.

Since ci(x) = c(si(x)) = c(φi), Definition 5.2 and Proposition 5.4(γ) imply that

ci(x)− 1 =
1− γ(φi)

γ(φi)
=
mi+1 −mi

mi −mi−1
. (42)

Adopting the notation in Definition 2.20, we find that

mj+1 −mj

m0 −m−1
=

j∏
i=0

(
ci(x)− 1

)
(43)

for any j ∈ Z. Since a default solution has m0−m−1 = 1 by definition, we deduce that the formula
for mdef

k+1 −mdef
k in Definition 2.20 holds. Similarly to (42), we find via Proposition 5.4(δ) that

di(x)− 1 =
1− δ(φi)
δ(φi)

=
ni − ni+1

ni−1 − ni
,

whence

nj − nj+1

n−1 − n0
=

j∏
i=0

(
di(x)− 1

)
for j ∈ Z. Since n−1 − n0 = x(m0 −m−1) = x for any default solution, we find that the formula
for ndefk − ndefk+1 in Definition 2.20 is valid. Proposition 5.1 implies that the sought formulas for adefi

and bdefi for i ∈ Z hold. The exhibited solution exists and is unique. This completes the proof of
Theorem 2.21. The noted existence and uniqueness also prove Proposition 2.16. �
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5.2. Asymptotic decay of solutions

Here we prove Theorem 2.14.

Lemma 5.9.

(1) For φi ∈ (0, 1), we have that

φ2i /2−O(φ3i ) ≤ φi+1 ≤ φ2i /2 ,

where the positive constant implied by the O-notation is bounded above in terms of h ∈
(0, 1), where φi ∈ (0, 1− h).

(2) For any i ∈ Z, φi+1 < φi.

Proof: (1). From Proposition 5.4(s) and Lemma 5.3(3,4), we see that

φi+1 ≤ β(φi)
2/2 ≤ φ2i /2 .

By Proposition 5.4(s) and Lemma 5.3(2), φi+1 = s(φi) = φ2i /2 +O(φ3i ).

(2). By Lemma 5.3(5), and Proposition 5.4(s), φi+1 = s(φi) < φi. �

We are about to prove Theorem 2.14. Since this result uses the notion of the battlefield index
specified in Definition 2.13, we now offer a proof that this index is well-defined.

Lemma 5.10. Let
{

(ai, bi,mi, ni) : i ∈ Z
}

be a positive ABMN solution on Z. There is a unique
value of k ∈ Z for which φk ∈ (1/3, 3].

Proof. By Lemma 5.9(2), the sequence
{
φi : i ∈ Z

}
is decreasing. Taking s(0) = 0, the value

limi→∞ φi is a fixed point of s : [0,∞) → [0,∞) because s is continuous and s(φi) = φi+1 (the
latter by Proposition 5.4(s)). But s(x) < x for x > 0 by Lemma 5.3(5). Thus, φi ↘ 0 as
i→∞. The opposite limiting value limi→∞ φ−i would also be a fixed point for s : [0,∞)→ [0,∞)
were it to be finite; we see then that limi→∞ φ−i is infinite. We may thus set k ∈ Z so that
k = inf

{
i ∈ Z : φi ≤ 3

}
and be assured that k is well-defined. Now, φj > 3 for j ≤ k − 1, while

φk, being s(φk−1), exceeds s(3) = 1/3 by Lemma 5.3(1:s). On the other hand, if j ≥ k + 1, then
φj ≤ φk+1 = s(φk) ≤ s(3) = 1/3. Thus, k ∈ Z is the unique index whose φ-value exceeds one-third
and is at most three. �

Proof of Theorem 2.14(1). For i ∈ N, set εi = φk+i/2 and gi = − log εi. By s(3) = 1/3 and
Lemma 5.3(1:s), we have that s(x) ≤ 1/3 for x ∈ (0, 3]. Definition 2.13 and s(φi) = φi+1 (from
Proposition 5.4(s)) thus imply that φk+j ≤ 1/3 for j ≥ 1. We may then apply Lemma 5.9(1) to find
that ε2i

(
1−O(εi)

)
≤ εi+1 ≤ ε2i , where the positive constant implicit in the O-notation may be chosen

independently of the ABMN solution
{

(aj , bj ,mj , nj) : j ∈ Z
}

and the value of the index i ≥ 1.
(We say that a positive constant is universal, or is bounded universally, if it may be so chosen.) We
learn that

2gi ≤ gi+1 ≤ 2gi +O
(
e−gi

)
, (44)

where the implicit positive constant is again universal. Thus, gi > log 6 for i ≥ 1, and we may write
gi = 2`i for a real-valued sequence {`i : i ∈ N+} whose terms are bounded below by log log 6

log 2 > 0.

From (44), we find that

0 ≤ gi+1 − 2gi =
(
2`i+1−`i−1 − 1

)
2`i+1 = O

(
exp{−2`i}

)
;
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using `i > 0, we readily obtain

0 ≤ `i+1 − `i − 1 = O
(

exp{−2`i}
)
.

Since `1 > 0 and `i+1 ≥ `i + 1, we have that `i > i− 1 for i ≥ 1. Thus,

0 ≤ `i+1 − `i − 1 = O
(

exp{−2i−1}
)
.

We may find B ∈ R so that `i = B + i + O
(

exp{−2i−1}
)

for i ∈ N+. The universal form of O
and the fact that `1 is bounded (since ε1 ∈ (1/6, 3/2]) implies that B is bounded in a universal
sense. Set A = 2B (so that A is bounded away from zero and infinity in a universal sense), and
exponentiate with base two to obtain

gi = A · 2i+O
(
exp(−2i−1)

)
for i ≥ 1. Since φk+i = 2e−gi , we see then that, for i ≥ k + 1,

φi = 2 exp
{
−A · 2i−k+O

(
exp(−2i−k−1)

)}
. (45)

Similarly as we derived (43), we find that

mj −mj−1 = (mk −mk−1)

j−1∏
i=k

(
γ−1i − 1

)
for j ≥ k + 1. By Lemma 5.8(1),

mj −mj−1 = (mk −mk−1)

j−1∏
i=k

(
4 exp

{
−A · 2i−k+κi exp(−2

i−k−1)
)}

+O(1)e−A·2
i−k+1/2

)

= (mk −mk−1)4
j−kEk,j

j−1∏
i=k

exp
{
−A · 2i−k+κi exp(−2i−k−1)

}
,

where the values of κi are bounded above in absolute value (in a universal sense), and where

Ek,j =

j−1∏
i=k

(
1 +O(1) exp

{
−A2i−k

(
21/2 − 2κi exp{−2

i−k−1})})

=

j−1∏
i=k

(
1 + exp

{
−O(1)A · 2i−k

})
satisfies Ek,j = E

(
1 + e−O(1)A2j−k

)
with

E =

∞∏
i=k

(
1 + exp

{
−O(1)A · 2i−k

})
.

The quantity E is positive and bounded away from zero and infinity universally. Note that

j−1∑
i=k

2i−k+κi exp{−2
i−k−1} = 2j−k − 1 +

j−1∑
i=k

2i−k
(
2κi exp{−2

i−k−1} − 1
)

= 2j−k − 1 + ρ−
∞∑
i=j

2i−k
(
2κi exp{−2

i−k−1} − 1
)

= 2j−k − 1 + ρ+O(1)e−2
j−kO(1) ,
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where ρ =
∑∞

i=k 2i−k
(
2κi exp{−2

i−k−1} − 1
)
. Thus, mj −mj−1 equals

(mk −mk−1)4
j−k exp

{
− 2j−kA

}
E exp

{
A(1− ρ)

}(
1 + e−O(1)A2j−k

)
×
(

1 + e−O(1)A2j−k
)

exp
{
A ·O(1)e−2

j−kO(1)
}

= (mk −mk−1)4
j−k exp

{
− 2j−kA

}
E exp

{
A(1− ρ)

}(
1 + e−O(1)2j−k

)
,

where we used that A = Θ(1)—namely, A is bounded away from zero and infinity in a universal
sense—for the displayed equality. Set F equal to E exp

{
A(1 − ρ)

}
, and note that this positive

expression is bounded away from zero and infinity universally. We find that

mj −mj−1 = (mk −mk−1) · F · 22(j−k) exp
{
− 2j−kA

}(
1 + e−O(1)2j−k

)
, (46)

which is the inference that Theorem 2.14 makes for the sequence of m-differences. With M =

mj+1 −mj−1 and N = nj−1 − nj+1, we have that aj = M2N
(M+N)2

and bj = MN2

(M+N)2
from (41). Using

the definition of βj in the guise N = βjM , and Lemma 5.8(2) with i = j, we find that

aj = (mj+1 −mj−1)
βj

(1+βj)2
= (mj+1 −mj−1)

(
φj +O(φ2j )

)
and

bj = (mj+1 −mj−1)
β2
j

(1+βj)2
= (mj+1 −mj−1)

(
φ2j +O(φ3j )

)
.

We may use (46) to replace the quantity mj+1 − mj−1 in these expressions. The expressions in
terms of φi may be bounded by means of (45):

φj = 2 exp
{
−A · 2j−k

(
1 +O(exp{−2j−k−1})

)}
= 2 exp

{
−A · 2j−k

}
exp

{
O(e−2

j−kc)
}

= 2 exp
{
−A · 2j−k

}(
1 +O(e−2

j−kc)
)
.

Here, the value of c is positive (and universal) in the second line. We thus obtain the expressions
for aj and bj in Theorem 2.14(1). It remains to derive the asymptotic expression for the quantity
nj − nj−1. Here, we use nj−1 − nj = φj(mj −mj−1), (46) and the preceding display.

(2). According to Definition 2.13, the battlefield index k ∈ Z is the unique solution of φk ∈
(1/3, 3]. Consider the role-reversal transformation that replaces index i by 2k − i, and (a, b,m, n)
by (b, a, n,m). The resulting system is also a solution of the ABMN system by a minor variation of

Proposition 3.2. Write φ̂i for the value of φi in the transformed solution. Then φ̂i = 1/φ2k+1−i for

i ∈ Z. We see then that φ̂k+1 ∈ [1/3, 3) (so that k + 1 is the battlefield index of the transformed
system except when φk = 1/3). Theorem 2.14(2) thus reduces to Theorem 2.14(1), because the
proof of the latter operates as well as when φk = 1/3 as when φk ∈ (1/3, 3]. �

5.3. Consequences of asymptotic decay

We may now complete the proof of Theorem 2.3.

Proof of Theorem 2.3(3). By Theorem 2.3(2), we know that m∞, m−∞, n∞ and n−∞ exist as
elements of R∪ {∞}∪ {−∞}. Since we know that m0 and n0 belong to R, it is enough, in order to
exclude the possibility that one of the four quantities is infinite, to argue that limi→∞(mi−m0) <∞,
limi→∞(m−i−m0) > −∞, limi→∞(ni−n0) > −∞ and limi→∞(n−i−n0) <∞. These results follow
from the asymptotic expressions for mj −mj−1 and nj−1 − nj in Theorem 2.14(1,2).

The almost sure occurrence of the unanimity event U is a consequence of Theorem 2.14, and we
prove it now.

Proof of Theorem 2.15(4). By Theorem 2.6(1), this reduces to Theorem 2.15(1,2,3).
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(1,2,3). We abusively write (S−, S+) = (b, a) as usual. Theorem 2.6 and Theorem 2.14(1) imply

that, for i ≥ k, ai
ai+bi

= 1− 2 exp{−2i−kA}
(
1 + e−O(1)2i−k

)
. Thus, the PiS−,S+

-probability that every

move is won by Maxine equals

∞∏
j=i

aj
aj+bj

=
∞∏
j=i

(
1− 2 exp{−2j−kA}

(
1 + e−O(1)2j−k

))
= 1− 2 exp{−2i−kA}

(
1 + e−O(1)2i−k

)
.

This bound proves Theorem 2.15(2). The corresponding bound for i ≤ k − 1, and the proof of
Theorem 2.15(3), are similar. It remains then to derive Theorem 2.15(1). The displayed and
omitted bounds permit us to choose L ∈ N such that

if |i− k| > L, then PiS−,S+
(U) ≥ 1/2 . (47)

The status report Stat : N→ {I,O, F} is a random process defined under the law PiS−,S+
that we will

use to prove Theorem 2.15(1). This process takes values in a three-point set whose labels denote
‘inner’, ‘outer’ and ‘final’. To record the status report, we will iteratively specify an increasing
sequence

{
τi : i ∈ N

}
of times valued in N ∪ {∞}. We set τ0 = 0. We check whether |X0 − k| ≤ L,

where the value of L was specified in the preceding paragraph. If this condition is met then we set
Stat(0) = I. If the condition is not met, we set Stat(0) = O.

Let i ∈ N+. Suppose that an initial status report Stat(j) ∈ {I,O, F}, j ∈ J0, i−1K, and an increasing
sequence τj ∈ N ∪ {∞}, j ∈ J0, i− 1K, has been recorded.

If Stat(i− 1) = F , we set τi =∞ and Stat(i) = F .

If Stat(i− 1) = I, we set τi = τi−1 + L. We set

Stat(i) =

{
I if |Xτi − k| ≤ L
O in the other case .

If Stat(i−1) = O, we begin to view the process X run forward from time τi−1. We watch for the first
occasion F ≥ τi−1 + 2 at which the sequence of observed differences Xj+1 −Xj , F − 1 ≥ j ≥ τi−1,
has assumed both values −1 and 1. If this occasion never occurs, so that F =∞, we set Stat(i) = F
and τi =∞. If the occasion does occur, we set τi = F . The last display is used to set Stat(i). This
completes the description of the iterative scheme for the generic later step indexed by i ≥ 1.

The status report Stat : N → {I,O, F} is not a Markov process, but it has simple properties that
serve to prove that unanimity U is an almost sure event under PiS−,S+

for any i ∈ Z. Consider then

the process Stat under the just mentioned law. By construction, Stat arrives, and is absorbed, in F
precisely when the event U occurs. To prove Theorem 2.15(1), our task is thus to show that Stat
almost surely reaches F . Two properties suffice to show this.

Property I. Let j ∈ N+. Suppose given a status report history Stati, i ∈ J0, j − 1K, for which
Statj−1 = I. There exists a constant c > 0 that does not depend on this history such that the
conditional probability that Stat(j) = O is at least c.

Property O. Let j ∈ N+. Suppose given a history Stati, i ∈ J0, j − 1K, for which Statj−1 = O. The
conditional probability that Stat(j) = F is at least one-half.

Properties I and O show that, whatever the status report history up to a given moment, there is
probability at least c/2 that one of the next two entries in the report is F . Thus, it is inevitable
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that the report will eventually contain an entry in F . The proof of Theorem 2.15(1) has thus been
reduced to the task of deriving the two properties.

The proofs of Properties I and O depend on a claim. This states that all the information in any
report history Stati, i ∈ J0, j − 1K, in which F is not recorded, is contained in the gameplay history
Xi, i ∈ J0, τj−1K. The claim may be proved by induction on j. The specifications of τj above are
stopping times for the process X that are finite when τi ∈ {I,O}. This proves the claim.

We now prove Property I. The coefficients ai and bi are positive by Theorem 2.6; and they are
bounded by Theorem 2.14. Consider then the event that X makes L rightward jumps from time τj−1.
To find a lower bound on the conditional probability of this event given the circumstance of Prop-
erty I, note that the claim permits us to further condition onX until time τj−1. Since |Xτj−1−k| ≤ L,

a lower bound is offered by the minimum over ` ∈ Jk − L, k + LK of the product ΠL−1
i=0

a`+i
a`+i+b`+i

.

This minimum is positive because the positive and bounded quantities a and b that are involved
are finite in number.

And now we prove Property O. Again, by the claim, we may condition on X until time τj−1. Since
|Xτj−1 − k| > L, we may invoke (47) to show the sought property.

This completes the proof of Theorem 2.15(1). �



CHAPTER 6

The Mina margin map

Here we prove our results concerning the Mina margin map in three sections. Finite-trail coun-
terparts to the map are defined and estimated in Section 6.1, and Theorem 2.23 and several con-
sequences are derived. In Section 6.2, the θ−1- and Θ-transforms of the map are compared, and
Theorem 2.28 is proved. In Section 6.3, the λ ≤ 0.999904 bound Theorem 2.4(3) is derived by a
scheme of explicit approximation for a well-chosen value of a suitable finite-trail counterpart forM.

6.1. Approximating the Mina margin by its finite trail counterpart

Here we prove Theorem 2.23, the third part contingent on Theorem 2.4(3). At the end of the
section, we prove the consequent Theorems 2.4(1,2); 2.8; 2.10; and 2.24(1,2).

6.1.1. An explicit form for the finite-trail Mina margin map.

Lemma 6.1. Let x ∈ (0,∞). For k, ` ∈ Z ∪ {∞} ∪ {−∞}, k < `, the value of nk−n`
m`−mk ∈ (0,∞)

is a constant function of the element
{

(ai, bi,mi, ni) ∈ (0,∞)2 × R2 : i ∈ Z
}

in the equivalence
class C(x).

Remark. When we write expressions nk−n`
m`−mk in this section, we refer to the quantities nk−n`

m`−mk (x)

that the above lemma identifies; the value of x ∈ (0,∞) is often understood.

Proof of Lemma 6.1. That each expression nk−n`
m`−mk is a finite number follows from Theo-

rem 2.3(1,3). Each expression nk−n`
m`−mk is invariant under the translation χu,v, u, v ∈ R and dilation

τx, x ∈ R, maps that must be used to interpolate any two elements of C(x). �

Recall the functions sj , cj , dj : (0,∞)→ (0,∞), j ∈ Z, from Definition 2.19.

Set P0 = S0 = 1. For k ∈ N, we iteratively specify

Pk+1(x)− Pk(x) =
k∏
i=0

(
ci(x)− 1

)
, (48)

and

Sk+1(x)− Sk(x) =
k∏
i=0

(
di(x)− 1

)
. (49)

Set Q1 = T1 = 0. For k ∈ N+, we then set

Qk+1(x)−Qk(x) =

k∏
i=1

(
c−i(x)− 1

)−1
, (50)

64
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and

Tk+1(x)− Tk(x) =

k∏
i=1

(
d−i(x)− 1

)−1
. (51)

Lemma 6.2. Let x equal φ0 from Definition 2.12. For k ∈ N,

Pk(x) = mk−m−1

m0−m−1
and Sk(x) = n−1−nk

n−1−n0
.

For ` ∈ N+,

Q`(x) =
m−1−m−`
m0−m−1

and T`(x) =
n−`−n−1

n−1−n0
.

Proof. The claimed formula for Pk(x) is trivial when k = 0. To prove the general formula for Pk(x),

it suffices to argue that
∏k
i=0

(
ci(x) − 1

)
equals

mk+1−mk
m0−m−1

for k ∈ N, and we do this by induction

on k. The generic step in the induction is enabled by showing that ck(x)− 1 =
mk+1−mk
mk−mk−1

, which we

obtain as follows:

ck(x)− 1 = 1−γ(sk(x))
γ(sk(x))

= 1−γ(φk)
γ(φk)

=
mk+1−mk
mk−mk−1

,

the respective equalities by Definition 5.2; by iterating Proposition 5.4(s); and by Proposition 5.4(γ).

Likewise, the claimed formula for Q`(x) is trivial when ` = 1. Establishing the formula in the

general case is a matter of showing that
∏`
i=0

(
c−i(x) − 1

)−1
equals

m−`−m−`−1

m0−m−1
for ` ≥ 2. The

generic inductive step here amounts to showing that
(
c−`(x) − 1

)−1
=

m−`−m−`−1

m−`+1−m−` for such `, and

follows, similarly as above, from
(
c−`(x)− 1

)−1
=

γ(s−`(x))
1−γ(s−`(x)) .

The formulas for S and T follow when the changes

P → S, Q→ T , k → `, c→ d, γ → δ and mi → −n−i
are made. �

Recall from (14) that the finite-trail Mina margin map M`,k : (0,∞)→ (0,∞) satisfies M`,k(x) =
n−`−nk
mk−m−` for k ∈ N and ` ∈ N+, where x = φ0.

Lemma 6.3. We have that

M`,k(x) =
x(Sk + T`)

Pk +Q`
for k ∈ N and ` ∈ N+.

In reading the proof of this result, recall the notation explained in the remark that follows Lemma 6.1.

Proof of Lemma 6.3. By Lemma 6.2,

mk −m−` = (Pk +Q`)(m0 −m−1) and n−` − nk = (Sk + T`)(n−1 − n0) . (52)

But x = φ0, which is to say, x = n−1−n0

m0−m−1
. We find then that

M`,k(x) =
(Sk + T`)(n−1 − n0)

(Pk +Q`)(m0 −m−1)
=
x(Sk + T`)

Pk +Q`
,

as we sought to do. �
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6.1.2. Estimates for the finite trail Mina margin map. In this subsection, we derive the
following compact-uniform Cauchy sequence property of the finite-trail Mina margin maps.

Proposition 6.4. For k ≥ 0, ` ≥ 2 and 1/3 ≤ x ≤ 3,

sup
i≥k+1
j≥`+1

∣∣Mi,j(x)−M`,k(x)
∣∣ ≤ 3522k−261−2

k
+ 332`−26`−2

`−1
.

The next lemma assembles key elements for the proof of Proposition 6.4. We omit to denote the
argument ‘(x)’ of M·,·, P , Q, S and T as we derive this proposition.

Lemma 6.5. Let k ∈ N and x ∈ R.

(1) For k ≥ 0 and x ≤ 3, Pk+1 − Pk ≤ 22k61−2
k
.

(2) For k ≥ 1 and x ≥ 1/3, Qk+1 −Qk ≤ 22k61−2
k
.

(3) For k ≥ 0 and x ≤ 3, Sk+1 − Sk ≤ 22k+161−2
k+1

.

(4) For ` ≥ 2 and x ≥ 1/3, T`+1 − T` ≤ 3(12)`−161−2
`−1

.

Two simple lemmas gather estimates needed to prove Lemma 6.5.

Lemma 6.6.

(1) For x ∈ (0,∞), s(x) ≤ x2/2.

(2) For x ∈ (0,∞), c(x) ≤ 1 + 2x.

(3) For x ∈ (0,∞), c(x) ≥ 1 + x/2.

(4) For x ∈ (0, 3], d(x)− 1 ≤ 1/3.

(5) For x ∈ (0,∞), d(x) ≥ 2−3/2x1/2.

Proof: (1). Since ω ≥ 1, β(x) ≥ 0. Thus, Lemma 5.3(3) implies that s(x) ≤ β(x)2/2. So the
result reduces to Lemma 5.3(4).

(2). By Definition 2.18, c(x) = (ω+3)2

16 = 8x+10+6ω
16 ≤ 1 + 2x where the inequality is due to

ω =
√

1 + 8x ≤ 1 + 4x for x ≥ 0.
(3). We have that c(x) = 8x+10+6ω

16 ≥ 1 + x/2 from ω ≥ 1.
(4). By Lemma 5.3(1:d), d(x)− 1 ≤ d(3)− 1 = 1/3.

(5). Recall that d(x) = (ω+3)2

8(ω+1) where ω =
√

8x+ 1. Thus, d(x) ≥ (ω + 3)/8 ≥ 2−3/2x1/2. �

Lemma 6.7. Let j ∈ N+.

(1) For x ≤ 3, sj(x) ≤ 2 · 6−2j−1
.

(2) For x ≥ 1/3, s−j(x) ≥ 2−162
j−1

.

(3) For i ≥ 1 and x ≤ 3, ci(x) ≤ 1 + 226−2
i−1

.

(4) For i ∈ Z and x ∈ (0,∞), di(x)− 1 ≤ si(x)2.

(5) For i ≥ 2 and x ≥ 1/3, d−i(x)− 1 ≥ 2−162
i−2−1.
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Proof: (1). Note that s(3) = 1/3 since ω(3) = 5. We may thus use Lemma 6.6(1) to prove the
desired statement by induction.
(2). Due to the preceding and s−j(x) = 1/sj(1/x).
(3). By Lemma 5.3(1:c), Lemma 6.7(1) and Lemma 6.6(2),

ci(x) = c
(
si(x)

)
≤ c
(
2 · 6−2i−1) ≤ 1 + 226−2

i−1

for i ≥ 1 and x ≤ 3.
(4). It is enough to show that d(x) ≤ 1 + x2. To see this, note that d(x) − 1 = δ(x)−1 − 1. From

1 − δ(x) =
(
1 − 1

β(x)+1

)2
and Lemma 5.3(4), we find that δ(x) ≥ 1 − x2

(1+x)2
, so that d(x) − 1 ≤

x2

1+2x ≤ x
2.

(5). Note that d−i(x) = d
(
s−i(x)

)
≥ d

(
2−162

i−1) ≥ 2−262
i−2

, where the first inequality is due to
Lemma 5.3(1:d) and Lemma 6.7(2), and the second to Lemma 6.6(5). From this, the sought result
follows. �

Proof of Lemma 6.5: (1). Note that c(x) ≤ 4 for x ∈ (0, 3] by Lemma 5.3(1:c) and c(3) = 4.
Thus we bound the first term in the product in (48). Bounding the latter terms by Lemma 6.7(3),
we find that

Pk+1 − Pk =

k∏
i=0

(
ci(x)− 1

)
≤ 3

k∏
i=1

226−2
i−1

,

whence the sought result.

(2). Note that

c−i(x)− 1 = c
(
s−i(x)

)
− 1 ≥ c

(
2−162

i−1)− 1 ≥ 2−262
i−1

,

where the first inequality holds when x ≥ 1/3 in view of Lemma 5.3(1:c) and Lemma 6.7(2);

the second is due to Lemma 6.6(3). By (50), Qk+1 − Qk ≤
∏k
i=1 226−2

i−1
= 22k61−2

k
, whence

Lemma 6.5(2).

(3). Note that

Sk+1 − Sk ≤ 3−1
k∏
i=1

226−2
i

= 22k+161−2
k+1

,

where, in the first inequality, the first term in the product expression in (49) is bounded by use of

Lemma 6.6(4), and the later terms are taken care of by the bounds di(x) − 1 ≤ si(x)2 ≤ 226−2
i
,

which are valid for x ≤ 3 and i ≥ 1 in view of Lemma 6.7(1,4).

(4). Since s−1(1/3) = 3, Proposition 3.4 and Lemma 5.3(1:s) imply that s−1(x) ≥ 3 for x ≥ 1/3.

And since d(3) = 4/3, the same result implies that
(
d−1(x)− 1

)−1 ≤ 3 for such x. Applying these
bounds alongside Lemma 6.7(5) to (51), we see that

T`+1 − T` ≤ 3 ·
∏̀
i=2

2 · 61−2i−2
= 3(12)`−161−2

`−1

for x ≥ 1/3 and ` ≥ 2. Whence Lemma 6.5(2). �

Two further lemmas will permit the derivation of Proposition 6.4 from Lemma 6.5.

Lemma 6.8. We have that

x−1
∣∣Mk+1,` −M`,k

∣∣ ≤ max
{
Sk+1 − Sk , (Sk + T`)(Pk+1 − Pk)

}
,
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and

x−1
∣∣M`,k+1 −M`,k

∣∣ ≤ max
{
T`+1 − T` , (Sk + T`)(Q`+1 −Q`)

}
.

Proof. Since Pj and Qj are at least one whenever j is at least one, it is enough to show that

x−1
∣∣Mk+1,` −M`,k

∣∣ ≤ max

{
Sk+1 − Sk
Pk+1 +Q`

,
(Sk + T`)(Pk+1 − Pk)
(Pk+1 +Q`)(Pk +Q`)

}
, (53)

and

x−1
∣∣M`+1,k −M`,k

∣∣ ≤ max

{
Tk+1 − Tk
Pk+1 +Q`

,
(Sk + T`)(Qk+1 −Qk)
(Pk+1 +Q`)(Pk +Q`)

}
. (54)

Note that

x−1
(
Mk+1,` −M`,k

)
=

Sk+1 + T`
Pk+1 +Q`

− Sk + T`
Pk +Q`

=
(Sk+1 + T`)(Pk +Q`)− (Sk + T`)(Pk+1 +Q`)

(Pk+1 +Q`)(Pk +Q`)
.

The numerator in the latter term equals (Pk + Q`)(Sk+1 − Sk) − (Sk + T`)(Pk+1 − Pk). Since this
is a difference of positive terms, and the right-hand denominator above is positive, we obtain (53).

Note further that

x−1
(
M`+1,k −M`,k

)
=

Sk + T`+1

Pk +Q`+1
− Sk + T`
Pk +Q`

=
(Sk + T`+1)(Pk +Q`)− (Sk + T`)(Pk +Q`+1)

(Pk +Q`+1)(Pk +Q`)
.

In this case, the numerator in the last line is (Pk + Q`)(T`+1 − T`) − (Sk + T`)(Q`+1 − Q`). By
reasoning as we did above, we obtain (54). This completes the proof of Lemma 6.8. �

Lemma 6.9.

(1) For x ≤ 3, supk≥1 Sk ≤ 3/2.

(2) For x ≥ 1/3, supk≥1 Tk ≤ 12.

Proof: (1). By S0 = 1 and Lemma 6.5(2), supk≥1 Sk ≤ 1 +
∑∞

k=0 22k+161−2
k+1

= 1 + 3−1 +

2−43−7 + 2−103−15 + · · · = 1.333361 · · · ≤ 3/2.

(2). Recall that, by definition, T1 = 0. The quantity T2 equals
(
d−1(x)− 1

)−1
which is at most 3

when x ≥ 1/3, as we noted in the proof of Lemma 6.5(4). Using these alongside Lemma 6.5(4), we

find that supk≥1 Tk ≤ 3 +
∑∞

`=2 3(12)`−161−2
`−1

= 3 +
∑∞

k=0 2k6k+3−2k+1 ≤ 12. �

Proof of Proposition 6.4. By Lemma 6.8(1), Lemma 6.9(1,2) and Lemma 6.5(1,3), we have that

x−1
∣∣Mk+1,` −M`,k

∣∣ ≤ max
{

22k+161−2
k+1

, 22k−464−2
k}

for k ≥ 0 and ` ≥ 1, where here we used 27
2 · 2

2k61−2
k

= 22k−464−2
k
. And by Lemma 6.8(1),

Lemma 6.9(1,2) and Lemma 6.5(2,4),

x−1
∣∣M`+1,k −M`,k

∣∣ ≤ max
{

3(12)`−161−2
`−1
, 272 22`61−2

`}
for k ≥ 0 and ` ≥ 2. In each of the two displayed maximums, it is the first expression which is the

greater for the stated ranges of k and `. Set g(i) = 22i−161−2
i

and h(j) = (12)j−161−2
j−1

, and note
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that g(i + 1)/g(i) ≤ 1/3 and h(j + 1)/h(j) ≤ 1/3 provided that i ≤ k and j ≥ ` where k ≥ 0 and
` ≥ 2. What we learn is that

x−1 sup
i≥k+1
j≥`+1

∣∣Mi,j −M`,k

∣∣ ≤ 3
2 ·
(

3322k−161−2
k

+ 3(12)`−161−2
`−1
)

for k ≤ 0, ` ≥ 2 and 1/3 ≤ x ≤ 3. Using x ≤ 3, and rewriting the product of three and the
right-hand side of this display, we obtain Proposition 6.4. �

6.1.3. Proofs via the finite trail Mina margin map.

Proof of Theorem 2.23(1). Note that

Mk,k(x) =
n−k − nk
mk −m−k

→ n−∞ − n∞
m∞ −m−∞

= M(x) (55)

where the convergence, which is in the limit k → ∞, is explained by the proof of Theorem 2.3(3);
the latter equality here is due to the specification of M(x) in Definition 2.22 and to Lemma 6.1.
Note next that, for i ∈ Z, the standard element in C

(
si(x)

)
is equal to the left shift by i places of

the standard element in C(x). Thus,

Mk,k

(
si(x)

)
=

n−k+i − nk+i
mk+i −m−k+i

.

The left-hand side converges to M
(
si(x)

)
in the limit of high k, by (55). The right-hand side

converges to n−∞−n∞
m∞−m−∞ =M(x) since m- and n-differences vanish asymptotically at high values of

the index by Theorem 2.14. Thus we find that M
(
si(x)

)
=M(x) for i ∈ Z and x ∈ [1/3, 3]. Since

∪i∈Zsi[1/3, 3] = (0,∞), we see that M(x) exists for all x ∈ (0,∞), and that in fact M
(
si(x)

)
=

M(x) for i ∈ Z and x ∈ (0,∞). This completes the proof of Theorem 2.23(1).

Proof of Theorem 2.23: (2). We first show that M is continuous on (0,∞). Proposition 6.4
shows that Mk,k converges uniformly as k → ∞ on [1/3, 3]. By (55), the limiting function is the
restriction of M to [1/3, 3]. Since the constituent functions ci, di : (0,∞) → (0,∞), i ∈ Z, are
continuous, we see that the map Mk,k : [1/3, 3] → (0,∞) is continuous for any k ∈ N+. Thus,
M is continuous on this interval. But M(x) = M(s(x)) for x ∈ (0,∞) by Theorem 2.23(1), and
M(3) = M(1/3) since s(3) = 1/3. Since s : (0,∞) → (0,∞) is seen to be continuous from its
specification in Definition 2.18, we confirm that M is continuous on (0,∞).

To derive the formula for M(x) claimed in Theorem 2.23(2), note, by decoding the notation for
products in Definition 2.20, that this formula may expressed in our present notation in the form
n−∞−n∞
m∞−m−∞ = x(S∞+T∞)

P∞+Q∞
, where in fact we have extended this notation to write ∗∞ for limk→∞ ∗k

with ∗ ∈ {P,Q, S, T}. Since x = m0−m−1

n−1−n0
, the sought formula is a consequence of

m∞ −m−∞ = (P∞ +Q∞)(m0 −m−1) and n−∞ − n∞ = (S∞ + T∞)(n−1 − n0) .

To obtain these identities, we take the limit in high k and ` of the two formulas in (52), using
Theorem 2.3(3) to justify that the limiting expressions are finite real numbers. This completes the
proof of Theorem 2.23(2). �

6.1.4. Some further consequences. In order to prove Theorem 2.4 and Theorem 2.23(3),
we now offer a definition of the quantity λ ∈ (0, 1] to which these results refer.

Definition 6.10. We set λ = inf{M(x) : x ∈ [1/3, 3]}.



6.1. APPROXIMATING THE MINA MARGIN BY ITS FINITE TRAIL COUNTERPART 70

Lemma 6.11. There exists x0 ∈ [1/3, 3] such that M(x0) = λ. We have that

λ = inf{M(x) : x ∈ (0,∞)} .

Proof. Since M : [1/3, 3] → (0,∞) is continuous by Theorem 2.23(2), the infimum is attained on
[1/3, 3], and we may find x0 ∈ [1/3, 3] so thatM(x0) = λ ∈ (0,∞). The proof of Lemma 5.10 shows
that ∪i∈Zsi[1/3, 3] = (0,∞). By Theorem 2.23(3), we see thus that λ = inf{M(x) : x ∈ (0,∞)}. �

Lemma 6.12. For x ∈ (0,∞), M(x−1) =M(x)−1.

Proof. Recall from Definition 2.22 that M(x) = nst−∞(x) for x ∈ (0,∞) is the Mina margin of the

standard solution
(
asti (x), bsti (x),mst

i (x), nsti (x) : i ∈ Z
)
. The φ0-value of this solution is equal to

nst
−1(x)−nst

0 (x)

mst
0 (x)−mst

−1(x)
= x. By Proposition 3.2 and dilation, the quadruple

nst−∞(x)−1 ·
(
bst−i(x) , ast−i(x) , nst−i(x) , mst

−i(x) : i ∈ Z
)

is also a standard ABMN solution. Its φ1-value equals
mst

0 (x)−mst
−1(x)

nst
−1(x)−nst

0 (x)
= x−1. The left shift by

one place of the displayed quadruple is thus a standard ABMN solution whose φ0-value equals
x−1. The quantity M(x−1), which by definition equals nst−∞(x−1), is thus found to be equal to
nst−∞(x)−1 · mst

∞(x) = nst−∞(x)−1 = M(x)−1. Here, we used that mst
∞(x) = 1 since the solution(

asti (x), bsti (x),mst
i (x), nsti (x) : i ∈ Z

)
is standard. �

Lemma 6.13. We have that λ−1 = sup{M(x) : x ∈ [1, 3, 3]} = sup{M(x) : x ∈ (0,∞)}. Further,
there exists y0 ∈ [1, 3, 3] such that M(y0) = λ−1.

Proof. The rangesM[1/3, 3] andM(0,∞) are invariant under the transformation z → z−1 in view
of Lemma 6.12. The supremum of the continuous function M is attained on [1/3, 3]. �

Proof of Theorem 2.23(3). The range M[1/3, 3] has maximum λ−1 and minimum λ, by Lem-
mas 6.11 and 6.13. By the continuity of M on [1/3, 3], M[1/3, 3] is seen to equal [λ, λ−1]. Since
∪i∈Zsi[1/3, 3] = (0,∞), M(0,∞) equals M[1/3, 3]. Note that λ ∈ (0, 1] since M[1/3, 3] = [λ, λ−1]
and M is continuous. The remaining assertion that we need to validate, which is that λ is at most
0.999904, is Theorem 2.4(3), whose proof will appear in Section 6.3. �

Proof of Theorem 2.4(1). Theorem 2.23(3) shows that the set of values of the Mina margins of
standard positive ABMN solutions is equal to [λ, λ−1]. Now consider an arbitrary positive ABMN
solution. The value of the Mina margin is shared between this solution and the equivalent standard
solution. Thus, no new values for the Mina margin emerge as the solution set is enlarged from
standard to general.

(2). Consider a positive ABMN solution (a, b,m, n) with boundary data (m−∞,m∞, n−∞, n∞) ∈
R4. By Theorem 2.3(1), (a, b,m, n) is strict. Thus, m−∞ < m∞ and n∞ < n−∞. By Theorem 2.4(1),
n−∞−n∞
m∞−m−∞ ∈ [λ, λ−1].

Conversely, suppose that (m−∞,m∞, n−∞, n∞) ∈ R4 satisfies m−∞ < m∞, n∞ < n−∞ and
n−∞−n∞
m∞−m−∞ ∈ [λ, λ−1]. Set x equal to the latter quantity. In the notation of Section 2.3, the image

of the standard solution
(
asti (x), bsti (x),mst

i (x), nsti (x) : i ∈ Z
)

under the transformation χx,y ◦ τu,
where x = m−∞, n = n−∞ and u = m∞ −m−∞, is a positive ABMN solution with boundary data
(m−∞,m∞, n−∞, n∞). This completes the proof of Theorem 2.4(2). �
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Proof of Theorem 2.8. Let x ∈ (0,∞). By Theorem 2.6, the game Standard(x) has a time-
invariant Nash equilibrium if and only if there exists a positive ABMN solution whose Mina margin
equals x. The latter condition is equivalent to x ∈ [λ, λ−1] by Theorem 2.4(1). �

Proof of Theorem 2.10. Let y ∈ [1/3, 3], M(y) = λ−1, be the value y0 assured by Lemma 6.13.
Let w ≤ y be maximal such that M(w) = λ, where Theorem 2.23 assures the existence of this
quantity. We have that w < y because M is continuous and assigns different values to these two
points. Set z = s−1(w). By Proposition 3.4 and Lemma 5.3(5), z > w. Since M(z) = M(w) = λ
by Theorem 2.23(1), we thus have that z > y.

Now let x ∈ (λ, λ−1). By the continuity of M, we may find u ∈ (w, y) and v ∈ (y, z) such that
M(u) =M(v) = x. Note that w < u < v < z = s−1(w). The quadruples(

asti (u), bsti (u),mst
i (u), nsti (u) : i ∈ Z

)
and

(
asti (v), bsti (v),mst

i (v), nsti (v) : i ∈ Z
)

are standard ABMN solutions of Mina margin x. They are shift inequivalent because u is not equal to
si(v) for any i ∈ Z. Indeed, the condition si(v) ∈ [w, s−1(w)) implies that i = 0, but s0(v) = v 6= u.
This pair of solutions demonstrates that Q(x) ≥ 2, as required to obtain Theorem 2.10. �

We end this section by proving Theorem 2.24, in part as a consequence of Theorem 2.23(1). This
makes now a convenient moment to derive the next result, thus rendering rigorous a verbal argument
in the first paragraph of Section 2.3.

Proof of Proposition 2.17. To prove the two parts of this result, it is enough to argue that there
is a unique standard solution, and a unique default solution, to which any positive ABMN solution
is equivalent. Suppose then that (a, b,m, n) =

{
(ai, bi,mi, ni) ∈ (0,∞)2 × R2 : i ∈ Z

}
is a positive

ABMN solution. The boundary values m−∞ and n∞ exist as real numbers by Theorem 2.3(3).

Note then that the translation (a′, b′,m′, n′) = τ−m−∞,−n∞ has m′−∞ = n′∞ = 0. Write x =
n′−1−n′0
m′0−m′−1

and y = m′∞ − m′−∞. By applying the dilation τu to (a′, b′,m′, n′), we obtain a default solution
if u = x−1 and a standard solution if u = y−1. We have seen that τx−1 ◦ χ−m−∞,−n∞(a, b,m, n)
is a default ABMN solution. It is clear that any variation of the parameters (x−1,m−∞, n∞) will
result in an ABMN solution that fails to be default. Likewise, τy−1 ◦χ−m−∞,−n∞(a, b,m, n) has been

shown to be a standard ABMN solution. Any variation of (y−1,m−∞, n∞) will result in an ABMN
solution that fails to be standard. Thus we complete the proof of Proposition 2.17. �

Proof of Theorem 2.24(1). By Theorem 2.6, a time-invariant Nash equilibrium in Standard(x)
is the reverse-ordered (a, b)-component of a standard ABMN solution whose Mina margin equals x.
Since Proposition 2.17 implies that standard ABMN solutions are indexed by the value z ∈ (0,∞)
of their CenRatio, we obtain Theorem 2.24(1).

(2). By Theorem 2.23(1) and Proposition 3.4,M(sk(x)) equalsM(x) for all x ∈ (0,∞) and k ∈ Z.
This, the set X is the disjoint union of sk(Y ) as k ranges over Z. Proposition 2.26 then yields
Theorem 2.24(2). �

6.2. The Mina margin map after domain coordinate change

In this section, we prove Theorem 2.28. The map Θ : R→ (0,∞) is an increasing surjection, so we
may set Ψ = Θ−1 : (0,∞)→ R. The proof of the theorem will harness the next result.

Lemma 6.14. There exists a constant C > 0 such that |θ(x)−Ψ(x)| ≤ C for x ≥ 1/3.

Two further results will serve to prove Lemma 6.14.
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Lemma 6.15. We have that

Ψ(x) =

{
log2

(
log2(x) + 1

)
if x ∈ [1,∞) ,

− log2
(
− log2(x) + 1

)
if x ∈ (0, 1) .

Proof. The formulas follow from the expressions 22
x−1 and 2−(2

−x−1) for Θ(x) that are respectively
valid when x ≥ 0 and x < 0. �

For x ∈ [1/3, 3] and i ∈ N, we write s−i(x) in the form 22
ici(x)−1.

Lemma 6.16. There exists a constant C > 0 and a function c : [1/3, 3]→ (0,∞) such that the bound
|ci(x)− c(x)| ≤ C2−i holds for x ∈ [1/3, 3] and i ∈ N. Further, inf

{
c(x) : x ∈ [1/3, 3]

}
> 0.

Proof. From the relation
si(x) = 2s−(i−1)(x)2 +O

(
s−(i−1)(x)

)
and the form s−j(x) = 22

icj−1 (where we write cj = cj(x)), we find that

22
jcj−1 = 22

jcj−1(x)−1 +O
(
22
j−1cj−1(x)−1

)
= 22

jcj−1(x)−1
(

1 + 2−2
j−1cj−1(x)

)
so that

2jcj = 2jcj−1 − 1 + Θ(1)2−2
j−1cj−1

and
cj = cj−1 − 2−j + Θ(1)2−j−2

j−1cj−1 = cj−1 + Θ(1)2−j .

We thus learn that there exists c = c(x) ∈ [0,∞) such that |cj − c| ≤ O(1)2−j . We may exclude the
possibility that c equals zero because, in this case, we would have that cj ≤ O(1)2−j , which would

imply the false assertion that s−j(x) = 22
jcj−1 = O(1) is bounded above independently of j ∈ N.

We now argue that inf
{
c(x) : x ∈ [1/3, 3]

}
> 0. This follows from c(1/3) > 0 and the fact that

s−i(x) is increasing in x ∈ [1/3, 3] for each i ∈ N. This completes the proof of Lemma 6.16. �

Proof of Lemma 6.14. Note that s−i(x) ≥ 3 for i ∈ N+ and x ∈ [1/3, 3]. By Lemma 6.15 and

s−i(x) = 22
ici(x)−1, we find that Ψ

(
s−i(x)

)
= i+ log2 ci. Indeed, we find that∣∣Ψ(s−i(x)

)
− i
∣∣ = log2

(
ci/c

)
= log

(
1 + ci−c

c

)
≤ O(1)2−i ,

the inequality due to Lemma 6.16.

On the other hand, θ
(
s−i(x)

)
is equal to the unique value J ∈ Z such that sJ

(
s−i(x)

)
∈ [1/3, 3).

When x ∈ [1/3, 3), we see then that J = i.

We find then that |Ψ(x)− θ(x)| = O(1) for x ≥ 1/3, as we sought to do in proving Lemma 6.14. �

Proof of Theorem 2.28(1,2). We first claim that

sk
(
θ−1(x+ k)

)
= θ−1(x) . (56)

To check this, note that θ
(
sk(z)

)
= θ(z)− k, so that

θ
(
sk
(
θ−1(x+ k)

))
= θ
(
θ−1(x+ k)

)
− k = (k + x)− x = x ,

as desired.

Note then that

ψ(x) =M
(
θ−1(x)

)
=M

(
s
(
θ−1(x+ 1)

)
=M

(
θ−1(x+ 1)

)
= ψ(x+ 1)
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where the respective equalities are due to the definition of ψ; the above claim with k = 1; Theo-
rem 2.23(1); and the definition of ψ once more. We have obtained Theorem 2.28(1).

Note next that SkStSol(x+ k) equals

Sk
(
ast
(
θ−1(x+ k)

)
, bst
(
θ−1(x+ k)

)
,mst

(
θ−1(x+ k)

)
, nst

(
θ−1(x+ k)

))
=

(
ast
(
sk
(
θ−1(x+ k)

))
, bst
(
sk
(
θ−1(x+ k)

))
,mst

(
sk
(
θ−1(x+ k)

))
, nst

(
sk
(
θ−1(x+ k)

)))
,

the latter equality by Proposition 2.26. Applying (56), we find that

SkStSol(x+ k) =
(
ast
(
θ−1(x)

)
, bst
(
θ−1(x)

)
,mst

(
θ−1(x)

)
, nst

(
θ−1(x)

))
= StSol(x) .

This implies that StSol(x+ k) = S−kStSol(x), which is what Theorem 2.28(3) asserts.

(3). Let z ∈ R and set Θ(z) = x. Since |Ψ(x) − θ(x)| = O(1) by Lemma 6.14, and Ψ and θ are
increasing, we have that

Θ
(
z −O(1)

)
≤ θ−1(z) ≤ Θ

(
z +O(1)

)
.

Substituting the expressions for 22
z−1 and 2−(2

−z−1) for Θ(z), valid when z ≥ 0 and z < 0, we
obtain Theorem 2.28(3). �

6.3. The Mina margin map is not identically equal to one

Here we prove Theorem 2.4(3). We will obtain evidence for Conjecture 2.5 as we do so.

Proposition 6.17. The value of M5,4(0.58) lies in the interval [0.9999032032, 0.9999032038].

Proof of Theorem 2.4(3). Since λ is equal to the infimum of M(x) over x ∈ (0,∞), we have
that λ ≤M(0.58).

Note that Proposition 6.4 with (`, k) = (5, 4) implies that the value M(z) = limjMj,j(z) (where
z = 0.58 ∈ [1/3, 3]) satisfies∣∣M(z)−M5,4(z)

∣∣ ≤ 3.3× 10−8 + 5.95× 10−7 ≤ 6.3× 10−7 .

Applying the upper bound on M5,4(z) in Proposition 6.17, we find that

M(0.58) ≤ 0.9999032038 + 6.3× 10−7 = 0.9999038338 .

We confirm then that λ, being at most M(0.58), is bounded above by 0.999904. This completes
the proof of Theorem 2.4(3). �

Numerical work with Mathematica indicates that M5,4(0.5809) equals 0.999903202726 to twelve
decimal places; that M5,4(0.5809) equals min

{
M5,4(x) : x ∈ [1/3, 3] ∩ 10−4Z

}
; and that the error

between inf
{
M5,4(x) : x ∈ [1/3, 3]

}
and this minimum may jeopardise only the final digit of the

twelve. If this evidence is admitted, then the preceding proof yields that inf
{
M(x) : x ∈ [1/3, 3]

}
is at least M5,4(0.5809)− 10−11 − 6.3× 10−7 ≥ 0.99990257 ≥ 0.999902; whence Conjecture 2.5. In
fact, the conjecture is cautious: λ is likely to exceed 0.999903, as an estimate on a higher indexed
M`,k might show.

The formula for (0,∞) → R : x →M5,4(x) in Lemma 6.3 may be recorded explicitly—it involves
several applications of such operations as inverse and square-root—but it is messy, and would
occupy several pages of standard print. Arguably a claim that mathematical software evaluates this
function at 0.58 to be within the range claimed by Proposition 6.17 may be admitted as a proof of
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this result. But a diligent reader who is given this information has no practical way to confirm it.
In the following proof, we provide an approximation scheme, from above and below, for computing
M5,4(0.58). All quantities in the scheme are values in 10−10Z, and the proof is reduced to verifying
about fifty explicit statements of the form ‘if x = u, then f(x) = v’, where u and v are given
elements of 10−10Z, and f is the application of a function such as s, c and d from Definition 2.18
followed by a rounding down or up on to the lattice 10−10Z. In this way, the diligent reader has a
mundane but manageable task to verify every detail of the derivation of Proposition 6.17.

We note that, were M5,4 shown to be differentiable, and a suitable bound on its derivative found,
then a similarly explicit record of the values of M5,4 on a fine enough mesh of points in [1/3, 3]
would furnish a proof of Conjecture 2.5. If the number of points in the mesh were large, then a
manual check on the explicit bounds would be impracticable, so that in such a case the proof would
be at least modestly computer-assisted.

We now turn to introducing and implementing the approximation scheme. Let k ∈ N, and set

bxck = 10−kb10kxc and pxqk = 10−kb10kxc+ 10−k ∈ R .

Namely, the real line is partitioned

R =
⋃
j∈Z

10−k · [j, j + 1)

into intervals whose endpoints are consecutive elements in the lattice 10−kZ ;
[
bxck, dxek

)
is the

unique interval in the partition that contains x. From the outset, we set the parameter k equal to
ten, and omit to denote it. It should thus be understood that bxc and dxe denote bxc10 and dxe10,
rather than the usual integer roundings of x.

Recall Definition 2.18. We specify s↑, s↓, c↑, c↓, d↑, d↓ : (0,∞)→ (0,∞) by setting

∗↑(x) = d∗(x)e and ∗↓ (x) = b∗(x)c for ∗ ∈ {s, c, d} .

For x ∈ (0,∞), we specify
{
s↑i (x) : i ∈ Z

}
and

{
s↓i (x) : i ∈ Z

}
, the upper and lower s-sequences

evaluated at x. Indeed, we set s↑0(x) = s↓0(x) = x. For i ≥ 1, we then iteratively set s↑i (x) =

s↑
(
s↑i−1(x)

)
and s↓i (x) = s↓

(
s↓i−1(x)

)
. We further set s↑−1(x) = ds−1(x)e and s↓−1(x) = bs−1(x)c .

For i ≤ −2, we iteratively set s↑−i(x) = s↑−1
(
s↑−i+1(x)

)
and s↓−i(x) = s↓−1

(
s↓−i+1(x)

)
.

Set z = 0.58.

We will write s↑i = s↑i (z) and s↓i = s↓i (z) for i ∈ Z. In this way, the value of z = 0.58 is understood.

We further define the upper and lower c- and d-sequences,
{
c↑i , c

↓
i , d
↑
i , d
↓
i : i ∈ Z

}
, where again the

value of z is understood. We set c↑i = c↑(s↑i ), c
↓
i = c↓(s↓i ), d

↑
i = d↑(s↑i ) and d↓i = d↓(s↓i ).

The data
{
s↑i , s

↓
i , c
↑
i , c
↓
i , d
↑
i , d
↓
i

}
, i ∈ J−4, 3K, are forty-eight elements of 10−10Z. These values are

presented in Tables 1 and 2. Two of the values are known without computation: s↑0 = s↓0 = 0.58. The
remaining values may be computed, one at a time, where each step is a computation INPUT →
OUTPUT of one element of the lattice 10−10Z from another. Each step takes one of the forms

s↑i → s↑i+1 for i ∈ J0, 2K; s↑i → s↑i−1 for i ∈ J−3, 0K; s↑i → c↑i or s↑i → d↑i for i ∈ J−4, 3K; or it is formed
by replacing ↑ by ↓ in one of these steps. Forty-six such steps lead to the completion of the two
tables, given the two initial entries.
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i s↑i s↓i
-4 954911606.03 954911605.92
-3 21848.5122538904 21848.5122525938
-2 102.3071054647 102.3071054616
-1 5.3556473847 5.3556473846
0 0.5800000000 0.5800000000
1 0.0504077253 0.0504077252
2 0.0010408205 0.0010408204
3 0.0000005392 0.0000005391

Table 1. Values of s↑i and s↓i for i ∈ J−4, 3K

i c↑i c↓i d↑i d↓i
-4 477488579.78 477488579.73 10926.0060411432 10926.0060404948
-3 11081.6603248978 11081.6603242447 52.8859257466 52.8859257450
-2 62.5133614707 62.5133614689 4.2201465577 4.2201465576
-1 5.7859121540 5.7859121538 1.5182994418 1.5182994417
0 1.8055756566 1.8055756565 1.0700124766 1.0700124765
1 1.0944264319 1.0944264316 1.0019497202 1.0019497201
2 1.0020784046 1.0020784043 1.0000010767 1.0000010766
3 1.0000010785 1.0000010782 1.0000000001 1.0000000000

Table 2. Values of c↑i , c
↓
i , d

↑
i and d↓i for i ∈ J−4, 3K

According to Lemma 6.3,

M5,4(z) =
z(S4 + T5)

P4 +Q5
,

where

P4 = 1 + (c0 − 1) + (c0 − 1)(c1 − 1) + (c0 − 1)(c1 − 1)(c2 − 1) + (c0 − 1)(c1 − 1)(c2 − 1)(c3 − 1) ;

Q5 =
(
c−1 − 1

)−1
+
(
c−1 − 1

)−1(
c−2 − 1

)−1
+
(
c−1 − 1

)−1(
c−2 − 1

)−1(
c−3 − 1

)−1
+
(
c−1 − 1

)−1(
c−2 − 1

)−1(
c−3 − 1

)−1(
c−4 − 1

)−1
;

S4 = 1 + (d0 − 1) + (d0 − 1)(d1 − 1) + (d0 − 1)(d1 − 1)(d2 − 1) + (d0 − 1)(d1 − 1)(d2 − 1)(d3 − 1) ;

and

T5 =
(
d−1 − 1

)−1
+
(
d−1 − 1

)−1(
d−2 − 1

)−1
+
(
d−1 − 1

)−1(
d−2 − 1

)−1(
d−3 − 1

)−1
+
(
d−1 − 1

)−1(
d−2 − 1

)−1(
d−3 − 1

)−1(
d−4 − 1

)−1
.

We further specify quantities ∗↑ and ∗↓, where ∗ ∈ {P4, Q5, S4, T5}. To do so, we record variable
dependence in the form P4 = P4(c0, c1, c2, c3), S4 = S4(d0, d1, d2, d3), Q5 = Q5(c−1, c−2, c−3, c−4)
and T5 = T5(d−1, d−2, d−3, d−4). We may then set

P ↑4 = dP4(c
↑
0, c
↑
1, c
↑
2, c
↑
3)e and P ↓4 = bP4(c

↓
0, c
↓
1, c
↓
2, c
↓
3)c ;

S↑4 = dS4(d↑0, d
↑
1, d
↑
2, d
↑
3)e and S↓4 = bS4(d↓0, d

↓
1, d
↓
2, d
↓
3)c ;

Q↑5 = dQ5(c
↓
−1, c

↓
−2, c

↓
−3, c

↓
−4)e and Q↓5 = bQ5(c

↑
−1, c

↑
−2, c

↑
−3, c

↑
−4)c ;
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and

T ↑5 = dT5(c↓−1, c
↓
−2, c

↓
−3, c

↓
−4)e and T ↓5 = bT5(c↑−1, c

↑
−2, c

↑
−3, c

↑
−4)c .

(Note the reversals of the uses of ↓ and ↑ in the replaced terms for Q5 and T5.)

The tables then permit us to record the values (all of which are elements of the lattice 10−10Z)

S↑4 = 1.0701489815 , S↓4 = 1.0701489813 (57)

T ↑5 = 2.5400964392 , T ↓5 = 2.5400964386

P ↑4 = 1.8818013910 , P ↓4 = 1.8818013906

Q↑5 = 0.2123436589 , Q↓5 = 0.2123436587 .

Next we specify two further elements of 10−10Z:

M↑5,4(z) =

⌈
z(S↑4 + T ↑5 )

P ↓4 +Q↓5

⌉
and M↓5,4(z) =

⌊
z(S↓4 + T ↓5 )

P ↑4 +Q↑5

⌋
. (58)

Lemma 6.18. Let i ∈ Z.

(1) s↓i ≤ si ≤ s
↑
i .

(2) c↓i ≤ ci ≤ c
↑
i .

(3) d↓i ≤ di ≤ d
↑
i .

(4) P4 ↓≤ P4 ≤ P ↑4 , Q4 ↓≤ Q4 ≤ Q↑4, S4 ↓≤ S4 ≤ S↑4 and T4 ↓≤ T4 ≤ T ↑4 .

(5) M↓5,4 ≤M5,4 ≤M↑5,4.

Proof. Note that s↓(x) ≤ s(x) ≤ s↑(x) for x ∈ (0,∞) by the definitions of s↓ and s↑. By induction

on i ≥ 1, we will show that s↑i ≥ si. Indeed, note that s↑i = s↑(s↑i−1) ≥ s(s
↑
i−1) ≥ s(si−1) = si, where

the latter inequality is due to the inductive hypothesis at index i − 1 and to Lemma 5.3(1:s). We

also prove that s↑−i ≥ s−i for i ≥ 1 by induction on i. In this regard, note that s−i−1 = s↑−1(s
↑
−i) ≥

s−1(s
↑
−i) ≥ s−1(s−i) = s−1−i, where the first bound is due to s↑−1(x) ≥ s−1(x) for x ∈ (0,∞), which

follows from the definition of s↑−1; the second is due to the inductive hypothesis at index i and
x→ s−1(x) being increasing, which fact follows from Proposition 3.4 and Lemma 5.3(1:s).

Similar arguments prove that s↓i ≤ si for i ∈ Z.

(2). Note that c↑(s↑i ) ≥ c(s↑i ) ≥ c(si) = ci, where the first bound is due to the definition of c↑ and

the second is due to s↑i ≥ si and Lemma 5.3(1:c). Similarly may we show that c↓i ≤ ci.

(3). This is similar to the preceding part.

(4). Note that P4 is an increasing function of the variables ci, i ∈ J0, 3K; Q5 is decreasing in c−i,
i ∈ J1, 4K; S4 is increasing in di, i ∈ J0, 3K; and T5 is decreasing in d−i, i ∈ J1, 4K. (The noted
properties of Q5 and T5 are valid only insofar as the variables c−i and d−i remain greater than
one. But this condition is always met in applications, including the present one.) Given these
monotonicities, Lemma 6.18(2) shows that

P4(c
↓
0, c
↓
1, c
↓
2, c
↓
3) ≤ P4 ≤ P4(c

↑
0, c
↑
1, c
↑
2, c
↑
3) ,
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so that the monotonicities of b·c and d·e prove the assertions concerning P4. The derivation for Q5

is similar. So are the others: Lemma 6.18(3) is used in regard to S4; and Lemma 6.18(4) for T5.

(5). The expression M5,4 is an increasing function of S4 and T5, and it is decreasing in P4 and
Q5—thus, we may use the preceding part to reach the desired conclusion. �

Proof of Proposition 6.17. Using the data (57), note that the expressions (58) have the evalua-
tions

M↑5,4 =

⌈
0.58× 1.0701489815 + 2.5400964392

1.8818013906 + 0.2123436587

⌉
= 0.9999032038

and

M↓5,4 =

⌊
0.58× 1.0701489813 + 2.5400964386

1.8818013910 + 0.2123436589

⌋
= 0.9999032032 .

By Lemma 6.18(5), we learn that M5,4 ∈ [0.9999032032, 0.9999032038], as Proposition 6.17 states.
�



CHAPTER 7

Trail prospects

We discuss five topics prompted by the article.

7.1. Properties of the Mina margin map and prospective routes to conjectures

Conjecture 2.11 concerns the level sets of the Mina margin map, and via (15), Conjecture 2.30
concerns the level sets of the finite trail counterparts to this map. Consider the Θ-transformed
finite-trail Mina margin mapsMj+1,k+1 ◦Θ : R→ (0,∞) depicted for several pairs (j + 1, k+ 1) in
Figure 2.3. In these sketches, there are a total of 2(j+k)−5 elements in any level set through which
every swerve of the function passes; such level sets are indexed by [λ, λ−1] for λ = 0.999903 · · · up
to an error that vanishes in high j and k; the functions converge to a limit M◦ Θ : R → (0,∞),
and this limit has level sets with two elements in each period (such as in Θ−1(1/3, 3]) for heights
in (λ, λ−1). These claims constitute the content of the two conjectures and they can be said to
be visually more-or-less evident. But can they be proved? In regard to Conjecture 2.11 at least,
control on derivatives and explicit evaluation on a suitably fine mesh may be a tractable approach:
see the discussion regarding Conjecture 2.5 in Section 6.3.

7.2. The possible existence of further Nash equilibria

We have studied time-invariant Nash equilibria. It is natural to ask whether further Nash equilibria
exist. We discuss two directions.

7.2.1. Time-invariant random Nash equilibria. Our formulation of the notion of Nash
equilibrium in Section 2.1 is deterministic. What if time-invariant random play is permitted? A
strategy would consist of a set of laws on the non-negative reals indexed by Z. When such a
strategy is played, the stake offered would be sampled from the law indexed by the present counter
location, the sampling being independent of other randomness. To avoid extra notation, we have
not formulated this notion in the main part of the article. We do not believe that non-trivial
random time-invariant Nash equilibria exist. Indeed, we remarked after the Penny Forfeit Lemma 3.5
that random play is suboptimal for the one-step game. By iterating this result and invoking the
monotonicity in Penny Forfeit argued in the proof of Lemma 4.16(2), the possibility of a non-trivial
role for randomness of the form we have discussed may be excluded.

7.2.2. Nash equilibria that are not time-invariant. A deterministic strategy pair that
may not be time-invariant takes the form (b, a) : Z × N+ → (0,∞)2. We may anticipate that,
were such a pair a Nash equilibrium, the naturally associated dynamical quadruple (a, b,m, n),
specified by suitably modifying Definition 2.1, would satisfy a dynamical form dABMN of the
ABMN system on Z. For simplicity, we describe these equations on a finite trail J−K − 1,K + 1K
and for a finite time interval J0, T K (so that K + 1, T ∈ N+). Boundary data is a quadruple
(m−K ,mK , nK , n−K) ∈ R4 which equals (0, 1, 1, 0) in the simple symmetric case; and two terminal
functions mter, nter : J−K − 1,K + 1K → R. If write ∗i(j) = ∗(i, j) for ∗ ∈ {a, b,m, n}, so that, for

78
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example, ai(j) is the stake offered by Maxine at the jth turn in the event that Xj−1 = i, the revised
equations are(

ai(j) + bi(j)
)(
mi(j) + ai(j)

)
= ai(j)mi+1(j + 1) + bi(j)mi−1(j + 1) dABMN(1)(

ai(j) + bi(j)
)(
ni(j) + bi(j)

)
= ai(j)ni+1(j + 1) + bi(j)ni−1(j + 1) dABMN(2)(

ai(j) + bi(j)
)2

= bi(j)
(
mi+1(j + 1)−mi−1(j + 1)

)
dABMN(3)(

ai(j) + bi(j)
)2

= ai(j)
(
ni−1(j + 1)− ni+1(j + 1)

)
dABMN(4) ,

where (i, j) ranges over J−K,KK× J0, T − 1K. Boundary conditions enter via

m±(K+1)(j) = m±(K+1) , n±(K+1)(j) = n±(K+1) for j ∈ J1,KK; and

mi(T ) = nterm(i) , ni(T ) = nterm(i) for i ∈ J−K,KK .

Of course, any ABMN solution (a, b,m, n) solves dABMN if we extend notation to set ∗i(j) = ∗i
for (i, j) ∈ Z× N+ and ∗ ∈ {a, b,m, n} (and then restrict the domain suitably). Do other solutions
of dABMN exist?

Certainly there are some such. Points (i, j) in Z × N+ are odd or even according to whether i + j
is odd or even. The parity of j + Xi(j) never changes from its initial j = 0 value in any instance

of the trail game. If we select two solutions (a′, b′,m′, n′) and (â, b̂, m̂, n̂) of the ABMN equations,
and set

(a, b,m, n)(i, j) =

{
(a′i, b

′
i,m

′
i, n
′
i) when i+ j is even ,

(âi, b̂i, m̂i, n̂i) when i+ j is odd ,

then (a, b,m, n) solves dABMN (when suitably restricted in the domain) and Theorem 2.6 directly
implies that (b, a) is a Nash equilibrium in the trail game. Conceptually, this is not really a new
solution, however. Gameplay resides on the odd or even lattice and use of any of these new Nash
equilibria will coincide with that of a time-invariant Nash equilibrium in any given game.

For k ∈ N+, the system dABMN can be solved on J−K,KK × J1, kK by choosing a given terminal
condition

{
mi(k), ni(k)

)
: i ∈ J−K−1,K+1K

}
and iteratively solving dABMN for decreasing values

of j. In searching for a solution that is not invariant in time, we seek a terminal condition such
that, if this condition is imposed even for a very high value of k, the solved solution stabilises for
bounded values of j to a form that is not time-invariant. We have tested a few terminal conditions;
Figure 7.1 depicts a solution of dABMN on the trail J−8, 8K. The m-component of the terminal
condition, defined on this trail, rises sharply at both ends, and otherwise has the form of a rough
plateau of height one-half; the n-component is the reflection of the m-component in the vertical axis.
The region of each sharp rise for the m-component represents a battlefield which may be rather
stable as time evolves. As the two plots in Figure 7.1 show, the two battlefields rapidly approach
one another by a short distance, and then remain in a rough stasis in which a gradual movement
towards the origin is discernible, before rapidly breaking towards a single central battlefield. A total
of 4200 time-steps are involved in the simulation, with the j = 140 black curve in each plot (which
is the penultimate depicted in the backwards-in-time evolution) showing an eruption towards the
centre, and the final black curve in each plot adopting the central location which is in essence the
fixed point of the evolution. Battlefield pairs with greater separation may endure much longer, and
may present a metastable effect for dABMN that causes these equations to converge very slowly to
fixed points. There is no evidence however of non-convergence: our limited investigation has not
produced examples that support the notion that further time-invariant Nash equilibria exist beyond
the simple parity-based class discussed above.
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Figure 7.1. The dynamic ABMN equations dABMN on trail J−8, 8K and time in-
terval J0, 4200K are solved with mter : J−8, 8K → [0, 1], mter(−8) = 0, mter(8) = 1,
rising sharply from zero to run along a rough plateau at height one-half, and ending
with a further sharp rise to height one. We set nter(·) = mter(−·) and work with a
standard symmetric boundary quadruple (0, 1, 1, 0). The red curve on the right plot,
which is most exposed both on the left and the right, is mter. The solutions of the
equations are depicted at values of j in J0, 4200K that are multiples of 140, so that
thirty curves excepting the final condition are depicted in each plot. On the left, the
a-components of dABMN on the open-play set J−7, 7K for the j-values in question are
shown (with linear interpolation between integers); on the right, the m-components
on the trail J−8, 8K with such interpolation are shown. The curves are coloured on
a spectrum leading from red to black as time passes backwards. These curves make
a staccato advance (with this flow of time) from the sides to the centre, with the
final black curve in each plot, indexed by j = 0, representing a single battlefield
around the origin. The b- and n-components are formed by reflecting the a- and
m-components in the vertical axis.

7.3. Gameboards beyond Z

By use of a setup involving directed graphs, self-funded stake-governed random-turn games derived
from games such as Hex or Go may be considered. It would be of interest to determine for a
suitable class of games whether some of the features of the Trail of Lost Pennies of Z are present
more generally. The central ratio n−1−n0

m0−m−1
is the ratio of changes in mean payoff for Mina and

Maxine arising from Mina’s victory at the first turn. This or similar quantities may be considered
in suitable infinite games, permitting us to ask whether Theorem 2.8 generalizes to these games:
do Nash equilibria exist precisely when the quantity lies in an interval of the form [λ, λ−1]? Do
these game-determined λ-values differ from one by a notably small but positive quantity, as this
value for the trail game on Z appears to differ by about 10−4? Do more general games exemplify
as ours does the Battlefield Cyl Fog premise from Section 1.1.1, having one (or perhaps several)
bounded battlefield regions of the space of configurations on the gameboard, specified by any given
Nash equilibrium, in which players concentrate their stake expenditure, with the outcome of turns
occurring therein being highly influential in the overall game? As we recalled in Section 1.2, Peres
and Šunić [51] found a path decomposition that leads to rapid computation of λ-biased infinity
harmonic functions. To address the last question, it may be natural at first to work with trees with
suitable boundary data, and to seek to iteratively determine Nash equilibria for the player-funded
stake-governed tug-of-war along elements in a suitable path decomposition. In this way, solutions
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for this game in a broader class of graphs may decompose into components, these being trail games
as we have analysed.

7.4. The trail game and “Incentive Inch, Outcome Mile”

We have suggested that the Trail of Lost Pennies advances the premise “Incentive Inch, Outcome
Mile” presented in Section 1.1.1. Here we examine this point more closely, for the game on finite
intervals and on Z. The premise for the trail game on these graphs may be summarised as follows.

(1) When the Mina margin exceeds λ−1 + o(1), Mina is the dominant player, and is able to
secure victory at little cost from any starting position (except perhaps a few near the right
boundary).

(2) When the Mina margin is less than λ− o(1), it is Maxine who is dominant, and is likewise
able (except near the left boundary).

(3) In a short interval of Mina margin values of length of order 10−4 around one, namely
[λ+ o(1), λ−1 − o(1)], there are many equilibria, and the dominance of one or other player
as above arises from any starting vertex (except a few near the boundary) under a suitable
equilibrium.

Here, o(1) refers to a positive expression that vanishes in the limit of long finite intervals, and is
zero in the case of Z. The qualifications in parentheses should be omitted in the Z-case. By ‘many’
in the third part, we mean 2n+Θ(1) for a finite interval of length n ≥ 6, and countably many for Z.

To evaluate the premise as just presented in the case of finite trails and Z, we begin by focusing
on a Mina margin value that lies marginally in the regime of Mina’s claimed dominance for the
gameboard J−6, 6K (whose set of open play is J−5, 5K). The associated Θ-transformed Mina margin
map M6,6 ◦ Θ : R → (0,∞) is depicted in Figure 2.3(left). Select z = 1 + 10−4, a value that lies
slightly above λ−1 according to Conjecture 2.5 (so that the purple curve in Figure 2.3(left) has
turned left off the highway to cross this height). Indeed, the equation M6,6(x) = z is found (by
some trail-and-error work in Mathematica) to have a unique solution in x ∈ R, with this solution
taking the form x = 4.04493 up to five decimal places. The corresponding standard solution
(a, b,m, n) : J−5, 5K→ (0,∞)2 × R2 is depicted in Figure 7.2.

The solution has central ratio n−1−n0

m0−m−1
= Θ(x) equal to 46538 up to rounding error: the origin is

comfortably to the left of the battlefield index. Indeed, this index lies at four, since φ4 = 0.719 · · · ∈
[1/3, 3). Mina’s stake at vertex three is the greater, and she dominates staking, and mean payoffs, at
vertices two and below. Were we to consider the analogous solution on longer gameboards J−`, `K,
` > 6, we would see that its battlefield index rises in `, and that the region around the origin
falls progressively further into the territory that Mina controls. In this territory, she vastly outbids
Maxine, even though all stakes are tiny. The weak limit in high ` of the gameplay starting at
the origin that is governed by the reverse-ordered (a, b)-component of the solution is likely to be
a deterministic left-moving walk on Z. The conclusion may seem to be that, when x exceeds λ−1,
the Trail of Lost Pennies on Z has become uncompetitive because Mina’s position is too strong:
she should, it appears, win without expenditure. And as usual likewise for Maxine in the opposing
case, when x is less than λ. But care is needed in this interpretation. After all, the limit in high `
of the stakes offered near the origin is zero for both players, and the double-zero strategy will not
gratify Mina’s ambition to win without cost. Overall, then, the limit from finite gameboards creates
a sense of utter dominance for the player with a favourable value of the Mina margin, but our
formal results are agnostic: as Theorem 2.8 shows, there are no time-invariant Nash equilibria in
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Figure 7.2. The unique standard solution (a, b,m, n) : J−5, 5K → (0,∞)2 × R2 for
the trail game on J−6, 6K with Mina margin equal to 1+10−4 is depicted. The stakes
(ai, bi) and expected mean payoffs (mi, ni) are displayed for i ∈ J0, 5K in the left and
right charts. Note that the leftmost displayed data is indexed by the origin: the data
to the left, indexed by J−5,−1K, is visually indistinguishable from the zero-indexed
data in the two displays.

the infinite game; since this is the solution concept we have studied, our results offer no guidance
to Mina as she prepares to play the trail game on Z with boundary data specifying a value of the
Mina margin that exceeds λ−1. We expect “Incentive Inch, Outcome Mile” as presented above to
be validated by lengthy finite trails; and we expect the third property, concerning the brief middle
phase, to be valid for Z; but the properties concerning the phases of Mina’s or Maxine’s supposed
dominance have no clear mathematical meaning for Z.

7.5. The game of chicken in the Trail of Lost Pennies

Theorems 2.8 and 2.10 show that, for any x ∈ (λ, λ−1), the trail game with boundary data
(m−∞,m∞, n−∞, n∞) = (0, 1, x, 0) has at least two distinct time-invariant Nash equilibria of any
given integral battlefield index; if x ∈ {−λ, λ}, then there is at least one such. For any x ∈ [−λ, λ],
we may thus find an element S20∩N of battlefield index zero. For k ∈ Z, we denote by (S−(k), S+(k))
the right-shift by k places of (S−, S+). This is an element of S20 ∩N of battlefield index k. Suppose
that the counter begins at the origin. Game outcomes under the strategy pairs (S−(k), S+(k))
become more favourable to Mina, and less favourable to Maxine, as the index k increases; as The-
orem 2.15 indicates, the probability of victory for Maxine decays rapidly as k becomes positive.
Suppose the game is about to begin, and players must commit to strategies. Mina may consider
playing one of the strategies S−(k) for k ∈ Z. If her opponent elects to play S+(k), then Mina
would much prefer that the shared value of k be positive; Maxine would naturally prefer a negative
choice. But the players must consider the case that the opposing player elects a different value of k.
What then?

For simplicity, consider the symmetric game where x = 1. Suppose that S+ = a and S− = b in
the usual notational abuse, where ai = b−i for i ∈ Z. (The choice (a, b) = (ast(3), bst(3)) meets
this condition, as we will see in Proposition A.1(1).) Let k ∈ N+. Suppose that Mina chooses
between the soft S−(−k) and the tough S−(k), while Maxine elects to play either the soft S+(k)
or the tough S+(−k). By this restriction, we consider a two-person game where each player has
two alternatives, and in Table 1, we depict mean payoffs in a two-by-two array whose rows index
Mina’s choice, whose columns index Maxine’s, and each of whose coordinates contains a list of
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Maxine Soft : S+(k) Maxine Tough : S+(−k)
Mina Soft : S−(−k) M, M B, G
Mina Tough : S−(k) G , B C,C

Table 1. Mina and Maxine choose between their components in two given Nash
equilibria with battlefield indices −k and k, for some k ∈ N+. The respective mean
payoffs for Mina and Maxine for each of the four strategy pairs are recorded in each
entry of the 2 × 2 array. The possible outcomes are G = Good, M = Medium,
B = Bad and C = Catastrophic.

Mina’s and Maxine’s mean payoffs when the indexing strategy pair is played. The good outcome G
has value 1 − exp{−2kO(1)}. The medium outcome M takes the form 1/2 − exp{−2kO(1)}. The
bad outcome B has value exp{−2kO(1)}. And the value C of the catastrophic outcome is ... minus
infinity! We will illustrate how to obtain these assertions rather than present formal derivations.

The outcomes of G and B arise in the off-diagonal cases, where Nash equilibria are played, so that
the claimed forms for G and B arise from Theorem 2.14 in the sense of the paragraph that follows
this theorem. Consider the strategy pair (Soft = S−(−k), Soft = S+(k)). At the first turn, Mina is
playing k units to the right of her presumed location of the battlefield vertex, as if she has as good
as lost already. But Maxine is playing k units to the left of where she is claiming the battlefield
index to be, and also in effect nearly admits defeat. Maxine’s and Mina’s stakes are a−k and bk:
both very small, but equal in our special case. So the first turn victor is chosen by the outcome
of a fair coin toss. And this early winner will lose even one later move only with probability
exp{−2kO(1)} as the estimates in Theorem 2.14 show, because the victor’s stakes rise and her
opponent’s fall as the counter moves closer to the victor’s presumed battlefield location. In the
case of (Tough = S−(k),Tough = S+(−k)) play, a phenomenon opposite to the eventual unanimity
of gameplay in Theorem 2.15 occurs. The counter location at late time has law approaching an
equilibrium which heavily charges the origin and a few nearby sites. When the counter moves
slightly to the left of the origin, it comes closer to Maxine’s presumed battlefield index at −k than
it does to Mina’s at k, so that Maxine’s stake rises far higher than Mina’s, and the counter is
restored towards the origin. An opposing leftward force naturally acts on the counter when it is to
the right of the origin. The implicit consensus against lengthy play in a bounded region discussed
around Theorem 2.15 has been broken with double-tough play, and the players are trapped in an
unending mutually destructive cycle.

In the classic game of chicken [52, Chapter 10], two players choose between soft and tough options
of swerving or driving straight. When one player drives straight and the other swerves, their payoffs
are the pleasure G of winning and the annoyance B of showing weakness. When both swerve, both
receive an intermediate value M . When both drive straight, the shared outcome is a highly negative
C as the cars crash. We see then that the Trail of Lost Pennies on Z embeds the game of chicken.
The translation symmetry of Z makes the selection of which Nash equilibrium to play a difficult
choice for players who may be infinitely punished for a perhaps unintentionally tough decision. The
counterpart embedding of chicken occurs in the finite trail game, where the value of C, while often
highly negative, is finite.



7.6. PLAY BETWEEN PEOPLE AND ALGORITHMS 84

7.6. Play between people and algorithms

The finite trail J−j, kK—perhaps for values of j and k somewhere between one and five—may
provide an attractive context for investigating how people or algorithms play the trail game. Given
the smallness of 1 − λ and the multiplicity of Nash equilibria for many of the games with longer
trails, it seems fanciful to believe that two people who play the same game repeatedly will typically
adhere to such an equilibrium (at least when j + k is high enough). Other strategies may seem
natural.

7.6.1. Cooperative behaviour. Trust could be established during iterated play. If two play-
ers each stake zero throughout a standard symmetric trail game on J−k, kK, k ∈ N+, whose counter
starts at zero, their running costs are zero, and their mean payoffs are one-half (this is because play
ends in finite time on a finite trail; we use the 0/0 = 1/2 rule from Section 2.1).

7.6.2. Tit-for-tat. A consistent zero strategy has the flaw of being vulnerable to exploitation,
and a player in an iterated game may prefer a tit-for-tat approach: stake zero in every game until the
opponent makes a positive stake; in the next game, play more aggressively; revert to playing zero if
the opponent reacts modestly to the aggressive play. Of course, there are degrees of aggression that
may be adopted. The iterated prisoner’s dilemma is a classic example where the Nash equilibrium
(which proposes uncooperative play) often predicts wrongly how people will play, and where tit-for-
tat and variants thereof are commonly adopted strategies for humans [17] that have been found in
computer-against-computer tournaments to be effective [10].

7.6.3. The loadsamoney bully. On a finite trail, the loadsamoney bully chooses ε > 0 small
and consistently stakes ε against an opponent who stakes zero. He plays aggressively when the
opponent makes a positive stake: he may react to a stake a > 0 by staking 2a at the next turn,
for example. This player wins games against a zero-staking opponent while incurring almost no
running cost. He seeks to rein financial terror on the opponent who deviates from a zero strategy,
by seeming prepared to win the concerned game no matter what the cost. Hoping to create a sense
of formidable financial resources, his long-term plan for the iterated game is to cow the opponent
into a submissive zero strategy.



APPENDIX A

Proofs of the further formulas

A.1. Deriving alternative formulas for standard solutions and Mina margins

Proof of Theorem 2.31(1). In the notation of Definition 2.20, mdef
1 (x) − mdef

0 (x) = c(x) − 1
and mdef

0 (x) − mdef
−1 (x) = 1, so that M0(x) = c(x). And ndef0 (x) − ndef1 (x) = x(d(x) − 1), while

ndef−1 (x) − ndef0 (x) = x, which leads to N0(x) = xd(x). The formulas for adef0 (x) and bdef0 (x) in

terms of M0(x) and N0(x) yield that adef0 (x) = c(x)f(x) and bdef0 (x) = xd(x)f(x). By (12) and
Proposition 2.26, we obtain Theorem 2.31(1).

(2). By (12), mdef
0 (x)−mdef

−1 (x) = 1 and ndef−1 (x)−ndef0 (x) = x, we see thatmst
0 (x)−mst

−1(x) = Z(x)−1

and nst−1(x)−nst0 (x) = xZ(x)−1. Proposition 2.26 then implies the special cases of Theorem 2.31(2)
noted after the general cases, which are then derived by summation.

(3). This follows from (14) in the formMj+1,k+1(x) =
(
nst−j−1(x)−nstk+1(x)

)(
mst
k+1(x)−mst

−j−1(x)
)−1

,
and the preceding part.

(4). By Theorem 2.3(3), the numerator and denominator in the just obtained expression forMj,k(x)
converge in the limits j, k →∞ to nst−∞(x)−nst∞(x) = nst−∞(x) and mst

∞(x)−mst
−∞(x) = 1. Since the

ratio of the latter quantities equalsM(x), we obtain Theorem 2.31(4) from the limiting numerator.
�

Remark. By considering the limiting denominator in the argument for Theorem 2.31(4), we obtain
the identity ∑

i∈Z
Z
(
si(x)

)−1
= 1 for x ∈ (0,∞) .

A.2. The symmetric game and the A equations

Here we prove Theorem 2.32.

A.2.1. The AM equations. Let Q ∈ Z be a parameter; we will consider Q = 0 and Q = −1.
The AM system on Z with parameter Q is a set of equations in the real variables ai and mi indexed
by i ∈ Z. These equations are

(ai + aQ−i)(mi + ai) = aimi+1 + aQ−imi−1 AM(Q, 1)

(ai + aQ−i)
2 = aQ−i

(
mi+1 −mi−1

)
AM(Q, 2)

with the index i running over Z.

Proposition A.1. Let
{

(ai, bi,mi, ni) : i ∈ Z
}

be an ABMN solution for which CenRatio is equal
to a positive parameter x, and m−∞ = n∞ = 0.

First let x equal to three.

(1) For i ∈ Z, ai = b−i and mi = n−i.

85
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(2) The a- and m-variables solve the AM system on Z with parameter Q = 0.

(3) The a-variables solve the A system on Z (when we take Ai = ai for i ∈ Z).

Now instead take x equal to one.

(4) For i ∈ Z, ai = b−1−i and mi = n−1−i for i ∈ Z.

(5) The a- and m-variables solve the AM system on Z with parameter Q = −1.

(6) With a half-integer offset, the a-variables solve the A system on Z + 1/2: that is, the
variables Ai = ai−1/2 for i ∈ Z + 1/2 solve this system.

Proof: (1). We will argue that (a, b,m, n) is equal to R(a, b,m, n), where R is the role-reversal

map from Definition 3.1. This will suffice to prove Proposition A.1. For i ∈ Z, let φ̂i denote the
φi-value of R(a, b,m, n). Note that φ0 = n−1−n0

m0−m−1
= 3 and φ̂1 = m0−m−1

n−1−n0
= 1/3. From the latter,

and Proposition 3.4, φ̂0 = s−1(1/3) = s−1(1/3) = 3. We have learnt that the value of CenRatio is
shared between the ABMN solutions (a, b,m, n) and R(a, b,m, n) (the value equals three).

We write R(a, b,m, n) = (â, b̂, m̂, n̂), and extend the hat-notation to boundary data. We next argue
that this data satisfies

m̂−∞ = n̂∞ = 0 = m−∞ = n∞ . (59)

That m−∞ = n∞ = 0 holds by assumption. But then we have m̂−∞ = limk→∞ m̂−k = limk→∞ nk =
n∞ = 0. Likewise, n̂∞ = 0.

We further argue that

m∞ = n−∞ and m̂∞ = n̂−∞ . (60)

To see these, note thatM(3) = 1, because this is a high k consequence of Corollary 3.3. But in the
present case M(3) equals both n−∞/m∞ and n̂−∞/m̂∞; whence (60).

The two preceding displays imply that m̂∞, n−∞, n̂−∞ and m∞ have a shared value. Let u ∈ (0,∞)
denote the reciprocal of this value. The quadruples τu(a, b,m, n) and τuR(a, b,m, n) are both the
unique standard solution with CenRatio equal to three. The uniqueness of this solution asserted by
Proposition 2.17(2) implies that these quadruples are equal. But then (a, b,m, n) and R(a, b,m, n)
have been shown to be equal, as we sought to show in deriving Proposition A.1(1).

(4). We will argue that (a, b,m, n) and A(a, b,m, n) are equal, where A = S1 ◦R is the left shift (by
one place) of the role reversal map. This suffices to prove Proposition A.1(4). With a tilde notation

for A(a, b,m, n) objects, we have that φ̃0 = 1/φ0 = 1. Thus, (a, b,m, n) and A(a, b,m, n) are ABMN
solutions, each with CenRatio = 1. Since M(1) = 1 by Corollary 3.3 in a high k limit, we find,
similarly to above, that the values of m̃∞, n−∞, ñ−∞ and m∞ coincide. The proof continues to
mimic that of Proposition A.1(1).

(2). Given the first part, ABMN(1), or ABMN(2), implies AM(0, 1), while ABMN(3), or ABMN(4),
implies AM(0, 2).

(5). Similarly, given the fourth part, and with AM(−1, 1) and AM(−1, 2) being implied.

(3,6). The AM system (for general Q) satisfies

(ai + aQ−i)(mi + ai) = ai

(
(ai + aQ−i)

2

aQ−i
+mi−1

)
+ aQ−imi−1 .
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This identity is seen to be equivalent to each of the following equalities in turn:

(ai + aQ−i)(mi + ai −mi−1)aQ−i = ai(ai + aQ−i)
2 ;

ai(ai + aQ−i) = aQ−i(mi + ai−mi−1); and mi−mi−1 = a2i a
−1
Q−i. By summing the last of these over

two consecutive indices, we find that

mi+1 −mi−1 =
a2i
aQ−i

+
a2i+1

aQ−i−1
.

Using AM(Q, 2) here, we obtain

(ai + aQ−i)
2

aQ−i
=

a2i
aQ−i

+
a2i+1

aQ−i−1
.

Rearranging, and cancelling aQ−i 6= 0, leads to

aQ−i−1(2ai + aQ−i) = a2i+1

for i ∈ Z. When Q = 0, the a-variables are thus seen to satisfy the A system on Z, as Proposi-
tion A.1(3) asserts. When Q = −1, the A-variables

{
Aj : j ∈ Z + 1/2

}
, Aj = aj−1/2, solve the

system A−i−3/2(2Ai+1/2 +Ai−1/2) = A2
i+3/2 as i varies over Z. Setting k = i+ 1/2, we find that

A−k−1(2Ak +A−k) = A2
k+1

for k ∈ Z+ 1/2. Thus, the variables
{
Aj : j ∈ Z+ 1/2

}
solve the A system on Z+ 1/2, as we sought

to show in proving Proposition A.1(6). This completes the proof of Proposition A.1. �

A.2.2. Deriving Theorem 2.32. We are ready to derive the remaining result.

Proof of Theorem 2.32(1). If
{
ai : i ∈ Z

}
solves the A system on Z with a0 = 1, then λai solves

this system with λai = λ. Thus it is without loss of generality that we take λ = 1.

Given that a0 = 1, the 0- and −1-indexed equations in the A system on Z state that 3a−1 = a21
and 2a−1 + a1 = 1. These uniquely determine positive a−1 and a1. We may group the remaining
A equations into pairs, indexed by i = k and i = −k− 1 for k ≥ 1, with the generic pair taking the
form

O−(2I+ + I−) = O2
+ and I+(2O− +O+) = I2− (61)

with input pair (I−, I+) = (a−k, ak) and output pair (O−, O+) = (a−k−1, ak+1). These equation
pairs may be iteratively solved, for k ∈ N+ rising, each step producing a unique pair of positive
values in the output. The outcome is the unique solution

{
ai : i ∈ Z

}
to the A system subject to

a0 = 1.

(2). Similarly to the first part, we may restrict to the case where A−1/2 = 1. The −1/2-indexed

equation then reads 2 + A1/2 = A2
1/2 and produces a unique positive value for A1/2. Inductively

we determine the Ai-values for |i| ≤ k − 1/2. The equation pair indexed by i = −k + 1/2 and
i = k − 1/2 takes the form (61) with (I−, I+) = (A−k+1/2, Ak−1/2) and (O−, O+) = A−k−1/2,k+1/2,
with a unique positive pair of outputs given the input pair. In this way, we construct the unique
positive solution

{
Ai : i ∈ Z + 1/2

}
of the A system on Z + 1/2 subject to A−1/2 = 1.

(3). Since M(3) = 1, Theorem 2.6 implies that each strategy pair of the form

λ ·
(
bsti (3), asti (3) : i ∈ Z

)
for λ ∈ (0,∞) (62)

is a time-invariant Nash equilibrium in the symmetric game. Note that
{(
bsti (3), asti (3)

)
: i ∈ Z

}
equals

{(
ast−i(3), asti (3)

)
: i ∈ Z

}
by Proposition A.1(1), and that

{
asti (3) : i ∈ Z

}
solves the A
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system on Z by Proposition A.1(3). By Theorem 2.32(1), we see that the collection (62) takes the
form {

λ ·
(
a−i, ai : i ∈ Z

)
: λ ∈ (0,∞)

}
,

where
{
ai : i ∈ Z

}
is the unique solution of the A system on Z subject to a0 = 1. The sequence shift

operation leaves invariant the space of time-invariant Nash equilibria for a given game, because it
preserves boundary data. Since each of the last displayed maps is an equilibrium in the symmetric
game, we have found that each element of S1 is also such an equilibrium.

Since M(1) = 1, similar reasoning, which invokes Proposition A.1(4,6), shows that every element
of {

λ ·
(
A−i−1/2, Ai+1/2 : i ∈ Z

)
: λ ∈ (0,∞)

}
is a time-invariant Nash equilibrium for the symmetric game. All shifts of such equilibria are
also equilibria; thus, we see that every element of S2 is a time-invariant Nash equilibrium in the
symmetric game.

It remains to argue that there is no coincidence between two elements specified in the definitions
of the sets S1 and S2. Our task is to extract from a strategy pair of the form λ ·

(
bsti+k(z), a

st
i+k(z)

)
that is specified by the data (λ, k, z) ∈ (0,∞) × Z × {1, 3} the value that this triple takes in the
indexing set. Proposition 2.26 permits us to write the pair in the form λ ·

(
bsti (sk(z)), a

st
i (sk(z))

)
.

By Theorem 2.6, we may equally attempt to extract the data (λ, k, z) from the ABMN solution
λ ·
(
asti (sk(z)), b

st
i (sk(z)),m

st
i (sk(z)), n

st
i (sk(z))

)
. The value of CenRatio for the latter solution lies

in the set
{
sk(z) : k ∈ Z , z ∈ {1, 3}

}
. We may extract k since it is the unique integer i for

which s−i(CenRatio) ∈ (1/3, 3]. The value of s−k(CenRatio) lies in {1, 3} and equals z. Since
mst
∞ −mst

−∞ = 1, the value of λ may be identified as equal to mst
∞(sk(z)) −mst

−∞(sk(z)). We have
confirmed that there is no coincidence between the elements in the union of S1 and S2.

(4). We suppose that Q(1) = 2. Since M(1) = M(3) = 1, there are no further solutions to
M(x) = 1 among x ∈ (1/3, 3]. Theorem 2.24 implies that the set of time-invariant Nash equilibria
in the game Standard(1) equals the set of pairs of the form

(
bsti+k(z), a

st
i+k(z) : i ∈ Z

)
for z ∈ {1, 3}

and k ∈ Z. The game Standard(1) is the symmetric game where m∞ = 1. For the general
cases, where m∞ = λ ∈ (0,∞), the set of Nash equilibria is given by the set of pairs formed by
multiplying the indicated expression by λ. In other words, the set in question is simply the union
of S1 and S2. �
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2012.

[38] Kai A. Konrad and Dan Kovenock. Multi-battle contests. Games and Economic Behavior, 66(1):256–274, 2009.
[39] Andrew J. Lazarus, Daniel E. Loeb, James G. Propp, Walter R. Stromquist, and Daniel H. Ullman. Combinatorial

games under auction play. Games and economic behavior, 27(2):229–264, 1999.
[40] Andrew J. Lazarus, Daniel E. Loeb, James G. Propp, and Daniel H. Ullman. Richman games. Games of no

chance, Math. Sci. Res. Inst. Publ., 29:439–449, 1994.
[41] Tom Lee and Louis L. Wilde. Market structure and innovation: A reformulation. The Quarterly Journal of

Economics, 94(2):429–436, 1980.
[42] Marta Lewicka. A Course on Tug-Of-War Games with Random Noise: Introduction and Basic Constructions.

Universitext. Springer International Publishing AG, Cham, 2020.
[43] Marta Lewicka and Juan J. Manfredi. The obstacle problem for the p-laplacian via optimal stopping of tug-of-war

games. Probability theory and related fields, 167(1-2):349–378, 2017.
[44] Peter. Lindqvist. Notes on the Stationary p-Laplace Equation. SpringerBriefs in Mathematics. Springer Interna-

tional Publishing, Cham, 1st ed. 2019. edition, 2019.
[45] David Malueg and Andrew Yates. Testing contest theory: Evidence from best-of-three tennis matches. The Review

of Economics and Statistics, 92(3):689–692, 2010.
[46] Juan J. Manfredi. Introduction to Random Tug-of-War Games and PDEs, pages 133–151. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2012.
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