
RESEARCH OVERVIEW
Alan Hammond

Here I give an overview of the various strands in my research, which concerns rigorous statistical
mechanics usually through the lens of probability theory. The order of topics is roughly made so that
those of greatest present active interest to me are earlier. Citations of the form [α2] or [δ1] are to the
bibliography of others’ work and of the form [A3] or [E1] to the appended publication list of mine.

A: Phase boundary fluctuation and randomly growing interfaces

This topic concerns the fluctuation exponents and scaling limits of static and dynamically defined
random models of interfaces. In such systems, local Gaussian fluctuation competes with global curvature
constraints to determine longitudinal and radial fluctuation exponents of 2/3 and 1/3. I have studied
static models, partly in collaboration with Yuval Peres, and more recently dynamic ones, in large part
with Ivan Corwin.

Phase separation: To set the scene for explaining the static results first, consider the ferrogmagnetic
Ising model, in which spins of two types, positive and negative, are assigned to the integer-lattice sites in
a domain such as a large box, with signs of opposite type in nearest-neighbour pairs being penalized
according to a fixed parameter. The two populations of spins each prefer their own type, and, at
supercritical inverse temperature, a dominant phase forms, with one type in the majority. If we condition
at positive magnetization on an excess of signs of the opposite type, these spins collect together in a
droplet. The droplet boundary is the object of study of phase separation. By duality considerations and
the Fortuin-Kasteleyn representation, a close surrogate for this problem is the following one. For any
planar lattice circuit Γ, write INT(Γ) for the region enclosed by that circuit. Let Γ0 denote the
outermost open circuit Γ such that 0 ∈ INT(Γ). Condition a subcritical planar random cluster model P
on the area constraint

∣∣INT(Γ0)
∣∣ = n2, with n high, and study the fluctuations present in Γ0.

Three years ago, I addressed this last problem in the papers [B2,B3,B4]. The conditioned circuit Γ0

contains area n2 and has a diameter of order n. Local fluctuations have been defined [α1] by
considering how the circuit deviates from the boundary ∂conv

(
Γ0

)
of its convex hull. The maximum

local roughness MLR
(
Γ0

)
is defined to be the greatest distance of a point in the circuit from

∂conv
(
Γ0

)
. This radial notion of local deviation has a longitudinal counterpart in the form of maximum

facet length MFL
(
Γ0

)
, which is defined to be the length of the longest line segment of which the

polygon ∂conv
(
Γ0

)
is comprised. These local definitions of roughness are of particular interest, because

they are concerned with circuit behaviour on a scale at which the competition between local Gaussian
fluctuation and its global constraint by curvature is manifest. In 2001, K. Alexander proved that an
averaged version of local roughness scales as n1/3. It has been an open problem to provide uniform
control, to verify that MLR

(
Γ0

)
and MFL

(
Γ0

)
scale as n1/3 and n2/3. The principal conclusion of my

investigation is that there exist constants 0 < c < C < ∞ such that

P

(
c ≤

MLR
(
Γ0

)
n1/3

(
log n

)2/3
≤ C

∣∣∣∣ ∣∣INT
(
Γ0

)∣∣ = n2

)
→ 1, as n → ∞,

and that the same conclusion holds for the normalized quantity n−2/3
(
log n

)−1/3MFL
(
Γ0

)
. That is,

the conjectured exponents for the power-laws in radial and longitudinal local deviation are derived, as
well as exponents for the logarithmic correction for these quantities. These techniques are an extensive
application of surgeries on the circuit, first to establish regeneration structure in Γ0, and, then, to show
that long boundary facets may be surgically reconstructed into provably unusual excesses in captured
area. The logarithmic corrections identified are probably shared by a broad range of radially defined
stochastic interface models including the ferrogmagnetic Ising example above.

Randomly growing interfaces and KPZ: Many mathematical models of interfaces which grow in time
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Figure 1: Four snapshots of an evolving multi-line PNG model. Nucleations on the top interface result in
horizontally growing towers whose collision causes nucleations in the second line; over time, the nucleations
percolate downwards so that growth occurs in many levels.

and are subject to forces of surface tension and randomness are predicted at late time to fall in the
Kardar-Parisi-Zhang universality class. Members of this class of models are all expected to share the
scaling characteristics already mentioned: when the global length is of order t, longitudinal and radial
fluctuations will scale as t2/3 and t1/3.

In fact, the Gibbs resampling ideas which were so central to my investigation in 2009–10 of boundary
fluctuation in phase separation have a conceptual counterpart in the realm of KPZ scaling limits. Ivan
Corwin and I are engaged in a programme of research of studying the Gibbs properties of several
canonical KPZ-style scaling limits and the consequence of these properties.

To explain how resampling is valuable in a dynamic setting, consider first an example, the polynuclear
growth model, which was introduced in [α3]. Picture the real line as a terrain on which raindrops fall
according to a space-time Poission process of unit intensity. At time zero, the fertile interval consists of
the set {0}; as time evolves, this interval grows to the left and right at unit rate, taking the form [−t, t]
at time t ≥ 0. Whenever a raindrop falls on the fertile interval, a line segment “tower” of unit height
whose base is the location of impact is formed. Any given tower grows to both the left and the right at
unit speed; when the sides of two towers touch, these two sides disappear, and the towers merge.
Raindrops may fall also on the flat tops of existing towers, so that new towers are built on old ones.

In this way, the profile of tower tops is a interface exhibiting a local growth mechanism with smoothing,
slope-dependent growth rates and space-time independent disorder. In fact, the model has a natural
extension as a collection of growing interfaces (the multi-line PNG model), of which the tower top
profile is the top curve: as illustrated in the figure, collision of tower sides in one layer causes nucleation
of a new tower in the level below, so that over time, a sequence of collisions may propagate downwards
causing several layers to begin growing.

It is a consequence of the Robinson-Schensted-Knuth correspondence that, at any given time t ≥ 0,
there is a simple rule for the conditional distribution of any given collection of curves on a given interval
in the multi-line PNG model, given all the information about the curves elsewhere: the resampling rule
involves several continuous time random walks conditioned on a natural mutual avoidance requirement.

This resampling rule is representative of a powerful analogy between static phase separation models and
dynamic KPZ universality. If the time-width-height of the time-t multi-line PNG model is scaled by the
classic KPZ scalings of t/t2/3/t1/3, one of the canonical limit objects of KPZ universality, the multi-line
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Airy process, is obtained. In this scaling, it may be expected that the discrete resampling rule enjoyed by
the multi-line PNG passes to a continuum counterpart that we call the Brownian-Gibbs property, under
which several Brownian bridges are conditioned on mutual avoidance. In [B5], we prove that this is so,
introducing a probabilistic perspective to KPZ universality which complements existing techniques such
as asymptotic analysis of determinantal formulae. The new approach is used to augment convergence of
certain discrete models to the multi-line Airy process, to provide L∞ control on scaling limit interfaces
and thus to prove a conjecture of Johansson [α2] regarding longitudinal deviation limits of such models
as the top PNG curve.

As we will discuss in forthcoming work, the resampling approach may also be used to analyse the
Hopf-Cole solution of the KPZ equation. This is because the solution of this equation at given time may
be represented as the top curve in a system of many interfaces which satisfy a resampling property
where Brownian bridges are sampled and an energetic penalty is applied should the curves go out of
order (so that the new resampling rule is a soft version of the hard avoidance condition in the Airy
case); this perspective may be invoked to prove strong regularity statements for the KPZ equation, and
yields universal scaling exponents for the KPZ equation begun from very general initial data.

B: Biased motion in disordered media: ballisticity and trapping

When an external field to applied to a particle in open space, the particle will be set in motion. The
Einstein relation predicts a linear relation between the velocity of a particle in the external field and the
diffusivity of the particle without such a field. However, if the random medium in which the particle
resides is disordered enough, and the external force is large, it has been expected physically that this
linear response may be disrupted, and replaced by a phenomenon known as aging. Under aging, a
random system becomes trapped in deep wells, spending a time there proportional to the system age. It
has been predicted [β3] that aging describes the dynamics of low temperature spin-glasses, and it has
been proved [β1] to arise in effective models, in which random walker jumps are time-changed at a
random rate associated to walker location. The natural next step is to prove aging in systems where
trapping occurs not by being built into the model’s definition, but arises naturally in long-time dynamics.

In work initiated with Gérard Ben Arous at NYU, and pursued more recently with Alexander Fribergh,
we have undertaken a detailed examination of the phenomenon of trapping and ballisticity of a biased
particle in certain models of disordered systems. This programme of research may be roughly divided
into three phases, the first two completed and the third in progress, as I now describe.

Part I. Biased walk on supercritical Galton-Watson trees.

In this problem, a random walk has a bias β > 1 away from the root in a random environment given by
a supercritical Galton-Watson tree with leaves. This choice of environment is convenient for a study of
ballisticity and trapping, because it splits natually into two pieces: a backbone, comprising of vertices
from which emanates an infinite forward-going path to infinity, and a collection of finite traps, each of
which hangs off the backbone. On the backbone, our biased walk will move linearly, while it is liable to
be waylaid by visits to any one of the traps. This effect of trapping becomes more pronounced as the
bias β increases, and indeed there exists a critical value βc for the bias above which the walk moves at
asymptotically zero speed. In this sub-ballistic regime, there is an explicitly computed exponent
describing the sub-linear displacement made by the walk at late time. To understand trapping, it is
natural to pose the question of whether we may scale particle distance and time in a manner that gives
rise to a scaling limit object, a random Cantor-like function whose constant intervals correspond to trap
sojourns.

In fact, in this problem, trap sojourn traps tend to concentrate around powers of the bias β. This
creates a persistent periodic inhomogeneity, a discrete effect which does not diminish under late time
rescaling, and which prevents the existence of any scaling limit. In [C1], we study subsequential scaling
limits and in effect describe the trapping mechanism in detail for this model.
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By modifying the bias β > 1 so that it is no longer deterministic but is chosen randomly and
independently for each edge according to a law satisfying a certain non-lattice condition, this discrete
periodic effect is disrupted, raising the prospect that scaling limits for walk displacement exist and are
given by stable laws. We prove that this is indeed the case in [C2] and [C3], in a study which entails
understanding the implications on long-term walk displacement made by the limiting random
environments seen near the top, and the base, of the traps encountered at late time by the walk.

Part II. Biased random walk on the supercritical percolation cluster in Zd: exponents.

A more physically realistic model of biased motion impeded by obstacles is provided by choosing as the
environment supercritical percolation on the Euclidean lattice Zd, for some d ≥ 2. Conditionally on the
origin belonging to the unique infinite component, a particle begins there, making random jumps only to
neighbouring open sites, and favouring a certain direction with a bias β > 1. Predicted since the eighties
to exhibit trapping [β4], the model was the subject of works in 2003 by Sznitman [β5], and Berger,
Gantert and Peres [β2], showing that small values of the bias yield ballistic motion and high values
sub-ballistic motion.

Pursuing this line of inquiry, Alex Fribergh and I have shown in [C4] that the transition from ballisticity
to trapping in this model is sharp: for any dimension d ≥ 2 and supercritical percolation parameter
p > pc, there is a critical point βc for the bias above which asymptotic walk speed is zero and below
which it is positive. Intimately related to finding this critical value is an investigation of the sub-ballistic
exponent for walk displacement in the zero speed case and of the geometry of the traps near the base of
which the walk resides at late time. A novel technique of modifying the walk to skip trap sojourns is
combined with electrical resistance theory to prove stronger estimates than previously known to the
effect that long-term walk displacement occurs in ther direction of the drift.

Part III. Biased random walk on the supercritical percolation cluster in Zd: scaling limits.

The sharp phase transition to zero speed and the exponents for sub-ballistic displacement having been
identified, a third phase of research naturally presents itself: to rescale time and space and prove
convergence of walk displacement to a random scaling limit, a task completed now for biased walk on
Galton-Watson trees. This task is the subject of an ongoing joint project with Alex Fribergh. There is
significant geometric input arising from the nature of the traps into each which the walk may fall at late
time: the width of their top and the means by which the walk approaches them, and the shape of the
base and how this modifies by constant order the time spent in them. A striking dichotomy between the
two and higher dimensional cases for this trap geometry occurs, with the traps having uniformly
bounded cross sections only in the latter case.

In the tree case, constantly biased walk produced concentration of trap sojourn times on all scales that
prevents the existence of walk displacement scaling limits, and non-lattice edge-bias randomization
causes this effect to disappear. Interestingly, in the physical setting of Zd, the two effects appear to
reside simultaneuously, the discrete inhomogeneity being present for rational choices of bias direction,
and stable limits existing for generic directions due to a non-lattice condition on bias components being
available in this case. Rigorously explaining these phenomena form an important part of the third phase
of this inquir.

C: Self-avoiding walk

The self-avoiding walk is a celebrated model in probability, famous both for the simplicty of its definition
and the difficulty of obtaining rigorously non-trivial information about its properties. Fixing any
dimension d ≥ 2, a self-avoiding walk γ of length n is an injective map γ : {0, . . . , n} → Zd begun at
the origin, γ(0) = 0, each of whose consecutive elements (γi, γi+1) are nearest-neighbors. That γ is
injective – no vertex is visited twice – forces the walk to be self-avoiding. The self-avoiding walk (with
length n) is then the uniform measure µSAWn on the finite set of such walks.

It is anticipated by physicists that the typical endpoint displacement, given by the standard deviation of
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the Euclidean norm of γn, of the walk γ under µSAWn , scales as nφ, where φ is a dimension-dependent
exponent. For example, when d ≥ 4, it is anticipated that φ = 1/2, reflecting the similarity between
self-avoiding walk and Brownian motion in higher dimensions. In dimensions two and three, it is
expected that φ ∈ (1/2, 1), with φ = 3/4 when d = 2 predicted by conformal field theory and SLE.

Rigorous analysis of the behaviour of µSAWn has been undertaken in dimension d ≥ 5 by Brydges and
Slade [γ1]. In dimensions two and three, however, there are very few rigorous results, and there has
been none concerning the behaviour of the endpoint displacement.

In the direction of showing that φ < 1, Hugo Duminil-Copin and I have proved in [D1] the following
theorem, which shows that self-avoiding walk in any dimension d ≥ 2 is sub-ballistic.

Theorem 0.1 Let v > 0. There exists ε > 0 such that, for each n ∈ N,

µSAWn

(
max

{
||γk|| : 0 ≤ k ≤ n

}
≥ vn

)
≤ e−εn .

Central to ruling out ballisticity is showing that ballistic walks typically have a positive proportion of
sites which are at renewal levels – these are points visited only once by say the vertical coordinate of the
walk. Our proof uses unfolding surgery to manufacture walks with more renewal levels. We show that
such surgery is efficient by an argument which owes something to the proof of Kesten’s pattern theorem;
this classical result [γ2] asserts that a finite subpath which is capable of appearing in the walk’s interior
actually appears in the walk on a uniformly positive fraction of occasions with overwhelming probability.

D: Noise sensitivity and dynamical percolation

In 1960, Kesten [δ1] proved that the critical point of bond percolation on Z2 is 1
2 , and that critical

percolation in this model has no infinite cluster. As the percolation parameter increases through the
critical point, large-scale, but not infinite, structure emerges at this value. In the physics literature, the
term infinite incipient cluster has been applied to describe the large-scale clusters typically present at the
critical point; it has been given mathematical meaning by Kesten, who defined the IIC to be the weak
limit of the cluster of the origin at the critical point conditionally on this cluster having high radius.

Critical dynamical percolation, under which the open and closed bits constituting an instance of critical
percolation are independently updated at rate one, is a canonical means of coupling together an
uncountable collection of instances of critical percolation. Schramm and Steif proved in [δ2] that, on a
measure zero set of times, the cluster of the origin is infinite under the process. In this sense, dynamical
percolation offers a means of witnessing rare instances of inifinte structure in dynamical percolation, and
it is natural to enquire how the IIC may be obtained from dynamical percolation.

In joint work [E2] with Gábor Pete and Oded Schramm, we have answered this question, first by
showing that the natural first guess that the configuration at the first exceptional time under dynamical
percolation differs from the IIC by being thinner than the latter measure, and by providing an alternative
and rather explicit means of selecting a uniform exceptional time at which the configuration does have
this property. Our work harnesses moment bounds on the length of absence of exceptional times
available in [E1], in which we formulate theorems on exit-time tails from given sets in reversible Markov
chains.

E: Spatial random permutations and the random stirring model

Background: In 1953, R. P. Feynman [ε1] used the path-formulation of quantum mechanics that he had
recently introduced to propose a microscopic theory explaining a remarkable phase transition that occurs
in liquid helium at extremely low temperatures. At such temperatures, a fraction of the helium becomes
a superfluid, an extraordinary substance of zero viscosity, which creeps around the side of any container
in which it is held, to form a mono-particle layer. Using what is now known as the Feynman-Kac
representation, Feynman proposed a vivid interpretation of Bose-Einstein condensation, which is a
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phenomenon closely related to superfluidity, in terms of a system of repulsive diffusing particles.

Viewed mathematically, Feynman’s model is a beautiful example of a random permutation whose law is
induced by a natural spatial structure. The model has two parameters: λ ∈ (0,∞), the particle density,
and β ∈ (0,∞), an inverse temperature, or, as we shall see, an index for a period of time. In the model,
a dimension d ≥ 2 is set, and a large box, of volume N � 0 (and sidelength N1/d) is given. Initially, a
total of λN particles are scattered independently, and uniformly at random, into the box. The particles
then evolve as independent Brownian motions for a period β of time, with the box having periodic
boundary conditions. These two randomnesses, of placement and movement, are then jointly
conditioned by the requirement that the set of locations occupied by the particles at time β be the same
as it was at time 0. This requirement permits the particles to exchange positions, so that, for each
realization, a permutation on the set of particle indices is induced, in which the trajectory of each
particle is followed for time β, with the particle moving from one element of the set of initial locations
to another. As described, the model is a representation of an ideal bosonic gas. To model a weakly
interacting gas, such as liquid helium, the model is adapted in the following way, in which we describe
the case of a hard-core interaction for the sake of ease of exposition. Particles are scattered and evolve
as before. In addition to conditioning on the ensemble of particle locations coinciding at times 0 and β,
we further condition that, at no moment of time t ∈ [0, β] is it the case that the members of any pair of
particles are at distance less than one from each another. A permutation is associated to each realization
as in the ideal case, and both models induce a measure on the symmetric group Sn of n elements.

The phenomena of superfluidity and Bose-Einstein condensation have long been expected [ε3] to
correspond to the presence of certain phase transitions in the behaviour of this permutation measure as
the inverse temperature β is increased at fixed density λ, with the transition emerging as the system size
N is taken to infinity. For both the ideal and weakly interacting gas, it has been conjectured that, in
dimension d ≥ 3, there exists βc ∈ (0,∞) such that, for β > βc, the probability that the random
permutation contains a cycle with a macroscopic fraction of elements (i.e., at least ε ∈ (0, 1)) tends to 1
(in the sense that ε ↘ 0 after the limit N → ∞ has been taken); and that, for β ∈ (0, βc), the cycles
remain finite, in the sense that the distribution of the cycle of containing a given point is tight in N .
This phase transition is very widely believed by physicists to correspond to the occurrence of
Bose-Einstein condensation (at sufficiently low temperature). In the case of an ideal gas, this conjecture
has been verified, and indeed, the critical value explicitly identified [ε4], by an insightful analysis in
Fourier variables that is, however, unavailable in the interacting case.

The Feynman-Kac representation of the repulsively interacting Bose gas is physically of great
importance and has an obvious mathematical appeal. In the mathematical literature, beyond the ideal
case, proofs that infinite cycles arise may have limited. For a natural related model whose physical
interest has been highlighted by Balint Tóth [ε5], the random stirring model, Omer Angel [ε1] has
proved the existence of such cycles for certain parameter values on regular trees.

In recent work, [F1] and F2], that extends Angel’s, I have established that the transition from finite
cycles to infinite ones occurs at a single critical point for a class of infinite trees including regular ones
satisfying a lower bound on degree.

F: Kinetic limits of coagulating diffusive systems

An important aim in rigorous statistical mechanics is to explain how it is that all of the microscopic data
consisting of the dynamical states of the particles composing a certain body may be reduced to an
effective description which involves far fewer parameters but which is accurate for practical purposes.
For example, a complete description of the molecules comprising the air in a room might specify the
mass, location and momentum of all the constituent particles, while a practically accurate reduced
description would record merely the values at macroscopic locations of a limited number of
thermodynamic quantities, such as pressure and temperature, and explain how these quantities evolve.
In this case, the mass of random data will typically reduce to a deterministic macroscopic description
modelled by partial differential equations accounting for evolution of temperature or pressure as a
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function of macroscopic spatial variables.

The Smoluchowski diffusion-coagulation equation is a system of partial differential equations which one
may expect to arise as such a limiting description when individual mass-bearing particles diffuse and are
subject to an interaction of coagulation in pairs at close range. The functions
fn : Rd × [0,∞) → [0,∞), n ∈ N solve the PDE if, for each n ∈ N and (x, t) ∈ Rd × [0,∞),

∂fn

∂t
(x, t) = d(n)∆fn(x, t) + Qn

1 (f)(x, t) − Qn
2 (f)(x, t) .

The final two terms are interaction terms, a gain term given by

Qn
1 (f)(x, t) =

1
2

n−1∑
m=1

β(m,n − m)fm(x, t)fn−m(x, t) ,

and a loss term by

Qn
2 (f) = fn(x, t)

∞∑
m=1

β(m,n)fm(x, t) .

The quantity fn(x, t) has the interpretation of the density of mass n particles close to macroscopic
location x at time t. I was introduced to the problem of deriving this system from a suitable microscopic
model by James Norris, and undertook with Fraydoun Rezakhanlou and others an analysis which
included such a derivation, in dimensions d ≥ 3 [A2], d = 2 [A1], in the case of continuous mass variable
[A4], and which further established conditions for mass conservation and uniqueness of solutions of the
Smoluchowski PDE [A3]. Our kinetic derivation extends earlier analysis for the case of constant diffusion
rates [ζ1] and for particles that annihilate rather than coagulate on collision [ζ2].

Note that the equations have two sets of parameters, diffusion rates d : N → (0,∞) and coagulation
propensities β : N2 → (0,∞). In the underlying microscopic model, a large number N of particles of
varying masses are scattered initially, diffuse at the mass-determined rates d(n), and are liable to
coagulate in pairs inside an interaction range ε = εN ; εN is chosen so that a typical particle will
experience a bounded rate of interaction per unit time, uniformly in a high N limit. One of the
challenges of deriving the Smoluchowski PDE system in such a high N limit is to determine how β
depends on the microscopic parameters, that is, on the diffusion rates and on the details of pairwise
collision inside the interaction range. A key element in the derivation is the proof of the Stosszahlansatz,
the “collision number” ansatz, which asserts a pairwise independence of particle densities at all times.
This result is a counterpart to one which was invoked by Boltzmann in his heuristic derivation of the
eponymous equation for particle collision in a hard-core gas. Integral to proving the Stosszahlansatz,
and to correctly deriving a formula for the macroscopic coagulation propensities β in terms of
microscopic parameters, is the task of quantifying a short-range repulsive tendency in the model,
wherein the microscopic neighbourhood of any given particle is less liable than average to contain
another particle, due to the vulnerability of particles at close range to coagulation.
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Gábor Pete and Oded Schramm. Preprint.

E: Spatial random permutations and the random stirring model

• Infinite cycles in the random stirring model on trees. Submitted.

• Sharp phase transition in the random stirring model on trees. Submitted.

1



F: Coagulation and diffusion: the Smoluchowski PDE

• Kinetic limit for a system of coagulating planar Brownian particles. With Fraydoun Rezakhanlou. J.
Stat. Phys. 124, 997–1040 (2006).

• The kinetic limit of a system of coagulating Brownian particles. With Fraydoun Rezakhanlou. Arch.
Rational Mech. Anal. 185, 1–67 (2007).

• Moment bounds for the Smoluchowski equation and their consequences. With Fraydoun
Rezakhanlou. Comm. Math. Phys. 276, no. 3, 645–670 (2007).

• Coagulation, diffusion and the continuous Smoluchowski equation. With Mohammad Reza
Yaghouti and Fraydoun Rezakhanlou. Stochastic Process. Appl. 119 , no. 9, 3042–3080 (2009).

G: Further topics

• Critical exponents in percolation via lattice animals. Electron. Comm. Probab. 10, no.4, 45–59
(2005).

• Greedy lattice animals: geometry and criticality. Ann. Probab. 34, no.2, 593–637 (2006).

• Monotone loop models and rational resonance. With Richard Kenyon. Probab. Theory Related
Fields 150, no. 3-4 ,613–633 (2011).

• Power-law Polya’s urn and fractional Brownian motion. With Scott Sheffield. Probab. Theory and
Related Fields, to appear.
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