ON THE PROBABILITY OF SEVERAL NEAR GEODESICS WITH SHARED ENDPOINTS IN BROWNIAN LAST PASSAGE PERCOLATION, AND BROWNIAN BRIDGE REGULARITY FOR THE AIRY LINE ENSEMBLE

ALAN HAMMOND

Abstract. The Airy line ensemble is a positive-integer indexed system of continuous random curves whose finite dimensional distributions are given by the multi-line Airy process. It is a natural object in the KPZ universality class: for example, its highest curve, the Airy$_2$ process, describes after the subtraction of a parabola the limiting law of the scaled weight of a geodesic running from the origin to a variable point on an anti-diagonal line in such problems as Poissonian last passage percolation. The ensemble of curves resulting from the Airy line ensemble after the subtraction of the same parabola enjoys a simple and explicit spatial Markov property, the Brownian Gibbs property.

In this paper, we employ the Brownian Gibbs property to make a close comparison between the Airy line ensemble’s curves after affine shift and Brownian bridge, proving the finiteness of a superpolynomially growing moment bound on Radon-Nikodym derivatives.

We also determine the value of a natural exponent describing the decay in probability for the existence of several near geodesics with common endpoints in Brownian last passage percolation, where the notion of ‘near’ refers to a small deficit in scaled geodesic weight, with the parameter specifying this nearness tending to zero.

To prove both results, we introduce a technique that may be useful elsewhere for finding upper bounds on probabilities of events concerning random systems of curves enjoying the Brownian Gibbs property.

1991 Mathematics Subject Classification. 82C22, 82B23 and 60H15.

Key words and phrases. Brownian last passage percolation, multi-line Airy process, Airy line ensemble, polymer weight and geometry, eigenvalue deviation bounds.

The author is supported by NSF grant DMS-1512908.
1. Introduction 3
1.1. Acknowledgments 5
2. Main results 5
2.1. Brownian bridge regularity for curves in the Airy line ensemble 5
2.2. Near geodesics with common endpoints in Brownian last passage percolation 7
2.3. Deviation inequalities for GUE eigenvalues at or near the edge 10
3. Preliminaries: bridge ensembles and the Brownian Gibbs property 11
3.1. General notation 11
3.2. Mutually avoiding Brownian bridges: some definitions 12
3.3. Line ensembles and the Brownian Gibbs property 13
3.4. regular sequences of Brownian Gibbs line ensembles 14
3.5. The Airy line ensemble after parabolic shift enjoys the Brownian Gibbs property 15
4. Statements of principal results concerning Brownian Gibbs ensemble sequences 15
4.1. The one-point lower tail estimate extends to curves of higher index 15
4.2. The close encounter of several curves at the edge 16
4.3. Brownian bridge regularity for affinely translated ensemble curves 17
4.4. Modulus of continuity for ensemble curves 18
4.5. A rough guide to the paper’s structure 18
5. Some generalities: notation and basic properties of Brownian Gibbs ensembles 19
5.1. Some helpful lemmas and basic notation 19
5.2. Bounds on maximum fluctuation of bridge ensembles 22
5.3. Some basic properties of Brownian Gibbs ensemble regular sequences 23
6. The close encounter probability in finite systems of mutually avoiding Brownian bridges 25
7. The reconstruction of the missing closed middle 31
7.1. Specifying the missing closed middle reconstruction procedure 31
8. Proving Theorem 4.4, the lower bound on the k-curve closeness probability 39
9. The jump ensemble method 41
9.1. The need for a further method: how the Wiener candidate falls short 41
9.2. Setting the missing close middle reconstruction parameters 44
9.3. Specifying the favourable event F_{av} 45
9.4. More promising than the Wiener candidate: the jump ensemble 46
9.5. The jump ensemble’s promise realized: Proposition 9.2 48
9.6. The Wiener candidate’s prospects of promotion to the jump ensemble 49
9.7. The jump ensemble method: summary 49
10. General tools for the jump ensemble method 50
10.1. Trying for jump ensemble status: the Wiener candidate’s flying leap 50
10.2. Subpolynomial success probability for the jump ensemble 52
11. Upper bound on the probability of curve closeness over a given point 63
11.1. Upper bound on curve closeness high above the tent map 63
11.2. Curve closeness at low height: the snap up and the swing through 66
12. Closeness of curves at a general location 74
13. Brownian bridge regularity of the ensemble \mathcal{L}_n 79
14. Scaled Brownian LPP line ensembles form regular sequences 88
15. The lower tail of the lower curves: deriving Proposition 14.1 89
References 96
1. Introduction

As the surveys [Fer10, FS11] and [Joh06] discuss, collections of one-dimensional Markov processes, such as random walks or Brownian motion, conditioned on mutual avoidance, form an important class of random models which arise in the study of random matrix theory, last passage percolation (or directed polymers), determinantal point processes, random tiling problems and asymmetric growth processes.

An integrable technique is central to the analysis of such systems. The Karlin-McGregor formula, or, in different guises, the Lingstrom-Gessel-Viennot formula and the method of free fermions in physics, expresses joint distributions of such systems as determinants whose entries are transition probabilities for the underlying Markov processes. In applications, such as the study of growth processes at advanced time, asymptotic analysis may be applied to these determinantal formulae, with exact expressions emerging for certain universal scaling limits; convergence to the limit is in the sense of finite dimensional distributions. An important example is the polymer weight in Poissonian last passage percolation (LPP) from the origin to a point on the anti-diagonal through \((t, t)\); scaling distance to \((t, t)\) on this line by a factor of order \(t^{-2/3}\), and the centred polymer weight by \(t^{-1/3}\), the origin-to-point polymer weight converges in finite dimensional distributions as the point varies on the line to a stochastic process which, after the addition of a parabola, is known as the Airy, or sometimes the Airy_2, process. This behaviour was identified by [PS02] and [BDJ99] who proved limit theorems for the polymer weight finite dimensional distributions in terms of Fredholm determinants involving the extended Airy_2 kernel. In fact, exactly solvable techniques have been used by Johansson [Joh03] to derive a functional central limit theorem (for LPP with geometric random variables) and prove the existence of a continuous version of the Airy_2 process.

The Robinson-Schensted-Knuth (RSK) correspondence naturally embeds the origin-to-point polymer weight function in Poissonian LPP as the top curve in a random system of mutually avoiding continuous time simple random walks. It is natural to seek to understand the collective behaviour of this random system of curves under the late time limit and the \((t^{2/3}, t^{1/3})\)-scaling. This problem was also addressed in [PS02], who found, after the addition of a parabola, a limiting consistent family of finite dimensional distributions known as the multi-line Airy process.

A continuous time analogue of Poissonian LPP is Brownian last passage percolation, which we will shortly review. Here, RSK makes contact not with collections of non-intersecting random walks but rather with systems of mutually avoiding Brownian bridges.

Such systems are very well suited to analysis by probabilistic techniques. Indeed, they enjoy an explicit resampling property, concerning say the conditional distribution of the top curve on a given interval given this curve’s values at the interval’s endpoints and the status of all the other curves. (The rule is simple: the conditional distribution is Brownian bridge between the endpoints conditioned to remain above the given second curve.) In [CH14], this Brownian Gibbs property was exploited in order to reexamine and develop the passage to the limit from mutually avoiding Brownian bridge systems at their edge to the multi-line Airy process. By establishing a certain uniform regularity at the edge of such systems, which holds after the \((t^{2/3}, t^{1/3})\) scaling is taken, it was argued that convergence occurs, after a parabolic shift, to the Airy line ensemble, a positive integer-indexed ordered collection of continuous random curves on the real line, stationary under horizontal shifts, whose curves are locally Brownian, and whose finite dimensional distributions are given by the multi-line Airy process.
In this paper, we continue to advocate the use of the Brownian Gibbs property as a valuable probabilistic tool in the study of such systems as random growth processes, eigenvalue laws in random matrix ensembles, and last passage percolation models. A central role is played by Brownian last passage percolation, because the mutually avoiding Brownian bridge systems to which the RSK correspondence associates this model enjoy the Brownian Gibbs property in the prelimit; in other models, such as Poissonian LPP, this connection emerges only as the late time limit is taken. Although Poissonian LPP enjoys its own random walk Gibbs property, the symmetries and invariance properties of Brownian motion make the Brownian Gibbs property a more attractive one for the purpose of study.

Our conclusions in this paper include:

- in Theorem 2.1, an assertion of the close resemblance between Brownian bridge and affinely shifted curves in the Airy line ensemble, expressed as the finiteness of a super polynomial moment of the Radon-Nikodym derivative of the ensemble’s curves;
- in Theorem 2.3 and Corollary 2.4, the solution of a natural problem concerning the probability of the presence of several near geodesics with macroscopically similar weights in Brownian LPP;
- and, in Theorem 2.7, control on the tails of edge eigenvalues in the Gaussian unitary ensemble that extend results presently known only for the top eigenvalue.

In proving these results, we will introduce a general technique, the jump ensemble method, for proving upper bounds on the probabilities of events associated to ensembles of random curves that enjoy the Brownian Gibbs property; the technique is applicable after the natural \((t^{2/3}, t^{1/3})\) scaling is taken.

The Brownian Gibbs technique is proving fruitful, and we believe that it may remain so for several directions of inquiry. The solution of the near geodesic exponent problem in Theorem 2.3 is likely to be valuable for studying the coalescence structure of geodesics in Brownian LPP after \((t^{2/3}, t^{1/3})\) scaling. This topic is pertinent in an inquiry into tightness and regularity properties in the class of universal objects such as the Airy sheet associated to the anticipated renormalization fixed point of the KPZ universality class. In [CQR15], some key aspects of the conjectural KPZ point, such as the Airy sheet, are described non-rigorously.

When a certain parabola is subtracted from each curve in the Airy line ensemble, the resulting non-intersecting ensemble enjoys the Brownian Gibbs property. The property is shared [CHL] by perturbations of the parabolically shifted ensemble in which the highest curves are lifted away from the parabola far from the origin to become ‘Airy wanderers’ [BBAP05]. It may be expected that it is shared by Z-indexed tacnode processes [Joh13, DKZ11, BD11], which may be visualized crudely by inverting one parabolically shifted Airy line ensemble and placing it above another so that the curves of the two are forced into a deformation in and around a bounded region due to their mutual avoidance; by the Pearcey process [TW06], another Z-indexed ensemble in which mutually avoiding Brownian motions split at a ‘cusp’ into two packets in a neighbourhood of the origin, with the higher group surging upwards and the lower group falling away. The Airy line ensemble emerges from the tacnode [Gir14] at a generic edge location, and from the Pearcey process far from the cusp; see [BC13] for examples of such relationships. Dyson Brownian motion [Dys62], a Z-indexed collection of mutually avoiding Brownian motions that may be expected to arise as a bulk scaling limit of the Airy, Pearcey and tacnode line ensembles, is a closely related example. It would be interesting to construct rigorously the Dyson, Pearcey and tacnode line ensembles, as the Airy
The Brownian Gibbs technique has found application in scaling limits that lead to softenings of the hard-core avoidance constraints among curves. The KPZ equation has been predicted since [KPZ86] to model in a universal way surface growth with local randomness, smoothness and slope dependent growth speed, as the survey [Cor12] discusses. The equation has a narrow wedge solution, which models growth initiated at a point, that may be centred at late time t and scaled by the characteristic factors of $(t^{2/3}, t^{1/3})$. The resulting scaled solution for time $t > 0$ was shown in [CH] to be embedded as the lowest indexed curve in a KPZ$_t$ line ensemble that enjoys a softening of the Brownian Gibbs property determined by a Hamiltonian H_t that energetically penalizes but does not forbid curve crossing. Strong inferences result regarding the Brownian regularity of the scaled solution. The counterpart to the prelimiting mutually avoiding Brownian bridge systems seen in the zero-temperature, Airy, theory is played by pairwise repulsive diffusions associated to the quantum Toda lattice Hamiltonian. These diffusions and their connections to directed polymers were discovered by O’Connell [O’C12]; they correspond to LPP (or directed polymers) in an intermediate disorder regime [AKQ14] where the temperature scales to zero as a function of the system size. The narrow wedge KPZ solution is the logarithm of the solution of the stochastic heat equation with multiplicative white noise with Dirac delta initial condition. In [OW16], a multi-layer extension of this solution was constructed, with a conjectural Markovian evolution in time that was recently proved in [LW]; it has also been recently proved in [Nic16] that this multi-layer continuum system is the limit of the above mentioned multi-layer directed polymer model associated to the quantum Toda lattice and, as such, the logarithm of the multi-layer continuum system is given by the KPZ line ensemble after scaling.

The authors of [OTT14] have constructed an infinite-dimensional stochastic differential equation modelling Dyson’s Brownian motion and proved existence and pathwise uniqueness of solutions. They have also shown [OT16] that the multi-line Airy process satisfies these stochastic dynamics, so that the SDE description and the multi-line Airy process are the same.

Systems of non-intersecting random walks are known as vicious walkers and were introduced by de Gennes [CQR68] as a soluble model of long thin fibres at thermal equilibrium subject to unidirectional stretching. These walks furnish examples of line ensembles with discrete variants of the Brownian Gibbs property; the survey [Spo05] discusses examples of growth processes associated to such line ensembles. Non-intersecting systems of discrete and continuous Markov processes are connected to the theory of symmetric functions [Ges90], including Schur functions, and to Young tableaux [AvM05], and have interpretations in terms of two-dimensional Yang-Mills theory [FMS11].

1.1. Acknowledgments. I am very grateful to Riddhipratim Basu and Jeremy Quastel for extensive and valuable discussions regarding this paper and related ideas. I would like to thank Ivan Corwin, Shirshendu Ganguly and Jim Pitman for helpful comments.

2. Main results

2.1. Brownian bridge regularity for curves in the Airy line ensemble. The Airy line ensemble was constructed in [CH14 Theorem 3.1]. It is a random collection $\mathcal{A} : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ of continuous curves $\mathcal{A}(j, \cdot)$, indexed by the positive integers $j \in \mathbb{N}$, defined under a probability measure that we label \mathbb{P}. For $I \subseteq \mathbb{R}$, we may define the random variable $\mathcal{A}[I]$ under \mathbb{P} to be the point process on
Inherently related to the construction of the ensemble supported on such collections of continuous curves such that, for each finite \(I = \{t_1, \cdots, t_m\} \), the process \(A[I] \) is a determinantal point process whose kernel is the extended Airy_2 kernel \(K_2^{\text{ext}} \), specified by

\[
K_2^{\text{ext}}(s_1, x_1; s_2, x_2) = \begin{cases}
\int_0^\infty e^{-\lambda(s_1-s_2)} \text{Ai}(x_1 + \lambda) \text{Ai}(x_2 + \lambda) \, d\lambda & \text{if } s_1 \geq s_2, \\
-\int_0^\infty e^{-\lambda(s_1-s_2)} \text{Ai}(x_1 + \lambda) \text{Ai}(x_2 + \lambda) \, d\lambda & \text{if } s_1 < s_2,
\end{cases}
\]

where \(\text{Ai} : \mathbb{R} \to \mathbb{R} \) is the Airy function. The Airy line ensemble’s curves are ordered, with \(A(1, \cdot) \) uppermost.

Under the law \(\mathbb{P} \), we further define

\[
\mathcal{L} : \mathbb{N} \times \mathbb{R} \to \mathbb{R}, \quad \mathcal{L}(i, x) = 2^{-1/2} \left(A(i, x) - x^2 \right) \quad \text{for } (i, x) \in \mathbb{N} \times \mathbb{R}.
\]

The ensemble \(A \) is stationary, and indeed ergodic [CS14], under horizontal shifts. This symmetry is of course lost for \(\mathcal{L} \). However, \(\mathcal{L} \) is a natural object: for example, its top curve \(\mathcal{L}(1, \cdot) \) has the limiting law of a suitably scaled polymer weight profile in such models as geometric LPP [Joh03, Theorem 1.2]. (The factor of \(2^{-1/2} \) used in specifying \(\mathcal{L} \) is employed in order that the curves of \(\mathcal{L} \) locally resemble Brownian motion with a diffusion parameter equal to one.)

Inherently related to the construction of the ensemble \(A \) in [CH14] is the assertion that the ensemble \(\mathcal{L} \) satisfies the Brownian Gibbs property. From this assertion, it readily follows that, if we affinely shift the curves in \(\mathcal{L} \) in order to compare them with Brownian bridge, the Radon-Nikodym derivative associated to this comparison is almost surely finite. Our first result presents a conclusion about how close this comparison is in terms of a moment bound on this Radon-Nikodym derivative.

Theorem 2.1. Letting \(K \in \mathbb{R} \) and \(d \geq 1 \), we write \(\mathcal{C} = \mathcal{C}[K, K + d] \) for the space of real-valued continuous functions on \([K, K + d]\) whose endpoint values vanish, endowed with the topology of uniform convergence. For \(k \in \mathbb{N} \), we define \(\mathcal{L}^{[K,K+d]}(k, \cdot) : [K, K + d] \to \mathbb{R} \),

\[
\mathcal{L}^{[K,K+d]}(k, x) = \mathcal{L}(k, x) - (K + d - x)d^{-1} \mathcal{L}(k, K) - (x - K)d^{-1} \mathcal{L}(k, K + 1),
\]

this being the affine translation of \(\mathcal{L}(k, \cdot) \) that lies in \(\mathcal{C}_K \). We further write \(\mathcal{B} = \mathcal{B}^{[K,K+d]} \) for the law of Brownian bridge \(B : [K, K + d] \to \mathbb{R} \) with \(B(K) = B(K + d) = 0 \); that is, the law of \(W(\cdot - K) : [K, K + d] \to \mathbb{R} \) where \(W : [0, d] \to \mathbb{R} \) is standard Brownian motion conditioned to vanish at time one.

The distribution of \(\mathcal{L}^{[K,K+d]}(k, \cdot) \) under \(\mathbb{P} \), and the law \(\mathcal{B} \), are both supported on the space \(\mathcal{C} \). Let \(f_k = f_{k,K} : \mathcal{C} \to [0, \infty) \) denote the Radon-Nikodym derivative of the former distribution with respect to the latter. There exists a sequence \(\{\alpha_k : k \in \mathbb{N}\} \), whose terms lie in \((0, 1]\) and which depends on \(d \) but not on \(K \), and which satisfies \(\inf \alpha_k^{1/k} > 0 \), such that the quantity

\[
h_k = \int_{\mathcal{C}} \exp \left\{ \alpha_k \left(\log f_k \right)^{6/5} \right\} \, dB,
\]

which is independent of \(K \in \mathbb{R} \), is finite for each \(k \in \mathbb{N} \). Specifically, for each \(k \in \mathbb{N} \), \(f_k \) has finite \(L^p(\mathcal{C}_K, \mathcal{B}) \)-norm for all \(p \in [1, \infty) \) (with this \(p \)-norm being independent of \(K \in \mathbb{R} \)).

(The property that \(\inf \alpha_k^{1/k} > 0 \) has been stated as a convenient summary of the deduction made in proving Theorem 2.1. However, the main interest in the theorem is probably that it makes an assertion for any given value of \(k \in \mathbb{N} \); efforts to take \(k \) to infinity using this result should not be expected to yield sharp conclusions.)
In the next corollary, the first statement is in essence a restatement of Theorem 2.1 that seeks to explain its meaning. The second is an example of an inference that can be drawn from this assertion and should be compared to the Brownian bridge probability $B^{[0,1]}(\sup_{x \in [0,1]} |B(x)| \geq s)$ lying in the interval $[e^{-2s^2}, 2e^{-2s^2}]$ for all $s > 0$, (a fact that follows from the upcoming Lemma 5.9).

Corollary 2.2. For $d \geq 1$, let $\{\alpha_k : k \in \mathbb{N}\}$ and $\{h_k : k \in \mathbb{N}\}$ be specified by Theorem 2.1. Let $K \in \mathbb{R}$.

1. For each $k \in \mathbb{N}$ and any measurable $A \subset C[K, K + d]$,
 \[
 \mathbb{P}\left(L^{[K,K+d]}(k, \cdot) \in A \right) \leq a \cdot 49e^{189\alpha_k^{-5}} \exp \left\{ \alpha_k^{-5/6} \left(\log (a^{-1}(4h_k \lor 1)) \right)^{5/6} \right\}
 \]
 where a denotes $B^{[K,K+d]}(A)$. Specifically, this probability is $a \cdot \exp \left\{ (\log a^{-1})^{5/6} O_k(1) \right\} O_k(1)$, where $O_k(1)$ denotes a k-dependent term that is independent of a.

2. For each $k \in \mathbb{N}$ and $s > \left(\frac{1}{2} \log 2 \right)^{1/2} \lor \left(\frac{1}{2} \log(4h_k \lor 1) \right)^{1/2}$,
 \[
 \mathbb{P}\left(\sup_{x \in [K,K+d]} |L^{[K,K+d]}(k, x)| \geq s d^{1/2} \right) \leq 98e^{189\alpha_k^{-5}} \exp \left\{ -2s^2 \left(1 - 2^{2/3} \alpha_k^{-5/6} s^{-1/3} \right) \right\} .
 \]

2.2. Near geodesics with common endpoints in Brownian last passage percolation

We have stated Theorem 2.1 first because its explicit inference concerning the Airy line ensemble may serve to illustrate the utility of the Brownian Gibbs technique at the heart of this paper. However, the result is in essence a corollary of Theorem 1.5, a result that will require some notation before it is stated but which we anticipate may be a more flexible and useful tool. The applications that we have in mind for this result include aiming to gain uniform control in the prelimiting parameter of scaled coalescence times and polymer weight profiles for a sequence of random growth processes of which the Airy line ensemble offers a limiting description. A particularly useful example of such a sequence is offered by Brownian last passage percolation, which is a central object of study in this paper. The reason that the model is so convenient in the perspective we adopt is that it is naturally associated to a finite ensemble of curves that satisfy exactly the Brownian Gibbs property.

We now define Brownian LPP, state our principal inference Theorem 2.3 regarding the scaled behaviour of this model, and introduce the associated unscaled and scaled ensembles L_n and \mathcal{L}_n^{sc}.

Let $i, j \in \mathbb{N}$ with $i \leq j$, and let $x > 0$. Writing $[i, j]$ for the integer interval $\{i, \cdots, j\}$, an upright path from $[0, x]$ to $[i, j]$ is a non-decreasing surjection $\phi : [0, x] \to [i, j]$. Let $D_{i,j}(x)$ denote the set of such paths. For $\phi \in D_{i,j}(x)$, we define the sequence of ϕ’s jump times $x_k = x_k^\phi$, $k \in [i + 1, j]$, to be $x_k = \inf \{ u \in [0, x] : \phi(u) = k \}$. We also set $x_i = x_i^\phi = 0$ and $x_{j+1} = x_{j+1}^\phi = x$.

Let $B : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ denote an ensemble of independent two-sided standard Brownian motions $B(k, \cdot) : \mathbb{R} \to \mathbb{R}$, $k \in \mathbb{N}$. Define the energy $E(\phi)$ of an element $\phi \in D_{i,j}(x)$ to be

\[
E(\phi) = \sum_{k=1}^{j} \left(B(k, x_{k+1}) - B(k, x_k) \right) .
\]

We now introduce notation for collections of mutually avoiding upright paths and for the energy associated to them. Let $n \in \mathbb{N}$, $\ell \in [1, n]$ and $x > 0$. An ℓ-tuple of upright paths on $[0, x]$ to $[1, n]$ is a vector $(\phi_1, \cdots, \phi_\ell)$ where

- $\phi_j \in D_{j,n-\ell+j}(x)$ for $j \in [1, \ell]$,
• and the ranges of the paths ϕ_j are pairwise disjoint.

Let $D_{1,n}(x)$ denote the set of such ℓ-tuples. Each of the ℓ elements of any ℓ-tuple in $D_{1,n}(x)$ has an energy specified by $[\phi]$. Define the energy $E(\phi)$ of any $\phi = (\phi_1, \ldots, \phi_\ell) \in D_{1,n}(x)$ to be $\sum_{j=1}^\ell E(\phi_j)$.

Define the maximum ℓ-tuple energy

$$M_n^\ell(x) = \sup \left\{ E(\phi) : \phi \in D_{1,n}(x) \right\}.$$ \hfill (3)

When $\ell = 1$, an upright path attaining the maximum is called a geodesic or polymer.

For $n, k \in \mathbb{N}$ with $n \geq k$, as well as $x \in \mathbb{R}$ with $x \geq -n^{1/3}/2$, and $r > 0$, we define

$$\text{NearGeod}_{n,k}(x,r) = \left\{ M_n^k(n + 2n^{2/3}x) \geq k \cdot M_n^1(n + 2n^{2/3}x) - rn^{1/3} \right\}.$$

As the left and middle sketch in Figure 1 depict, this event entails the existence of a k-tuple of disjoint paths whose collective energy is atypically close to the maximum possible, the shortfall being $2^{-1/2}r$ when expressed in scaled units. The next theorem and corollary determine the first order decay for the probability of this event as $r \searrow 0$. Theorem 2.3 has something to say about the nature of coalescence of long polymers when viewed in scaled coordinates, a topic that is of relevance in the study of the collective scaled behaviour of the geometry and energy of polymers in Brownian last passage percolation. We shall not discuss these directions further in this article beyond the briefest allusion in Figure 1.

Theorem 2.3. There exist positive constants K_0, K_1, a_0 and r_0 and a positive sequence $\{\beta_k : k \in \mathbb{N}\}$ with $\limsup \beta_k^{1/k} < \infty$ such that, for $n, k \in \mathbb{N}$, $x \in \mathbb{R}$ and $r \in (0, (r_0)^{k^2})$ satisfying $k \geq 2$, $n \geq k \vee (K_0)^k (\log r^{-1})^{K_0} + 2 \leq a_0n^{1/9}$,

$$rk^{2-1} \cdot e^{-K_1k^5} \leq \mathbb{P}(\text{NearGeod}_{n,k}(x,r)) \leq rk^{2-1} \cdot \exp \left\{ \beta_k \left(\log r^{-1} \right)^{5/6} \right\}.$$

Corollary 2.4. Let $k \geq 2$ and $x \in \mathbb{R}$. Consider the limit supremum and limit infimum of

$$\left(\log r \right)^{-1} \cdot \log \mathbb{P}(\text{NearGeod}_{n,k}(x,r))$$

as the limits $n \to \infty$ followed by $r \searrow 0$ are taken. The two limits exist and equal $k^2 - 1$. Moreover, there exist positive constants K_0 and a_0 such that, for given $k \geq 2$, the limiting value is approached from above and below uniformly in the $r \searrow 0$ limit as the parameters (n, x) vary over the set $[k \vee (K_0)^k (\log r^{-1})^{K_0}, \infty) \times [-a_0n^{1/9}, a_0n^{1/9}]$.

Proof. The result is immediate from Theorem 2.3. \hfill \Box

In order to prove these results, we specify associated ensembles of curves. The n-indexed Brownian LPP line ensemble $L_n : [1, n] \times [0, \infty) \to \mathbb{R}$ is defined by insisting that, for $\ell \in [1, n]$,

$$M_n^\ell(x) = \sum_{i=1}^\ell L_n(i, x).$$ \hfill (4)

The *scaled* Brownian last passage percolation line ensemble

$$\mathcal{L}_n^{sc} : [1, n] \times \left[-\frac{1}{2}n^{1/3}, \infty \right) \to \mathbb{R}$$
is then specified for $(i, x) \in [1, n] \times \left[-\frac{1}{2} n^{1/3}, \infty \right)$ by setting

$$
L_n^{sc}(i, x) = 2^{-1/2} n^{-1/3} \left(L_n(i, n + 2n^{2/3} x) - 2n - 2n^{2/3} x \right).
$$

(5)

The reader may wish to glance ahead to Figure 2 to see a depiction of the ensembles L_n and L_n^{sc}.
The right sketch in Figure 1 shows how we will characterise the event \(\text{NearGeod}_{n,k}(x,r) \) in terms of the behaviour of the ensemble \(L_{n}^{sc} \). To gauge this behaviour, we will certainly need to understand basic tightness and parabolic curvature properties of the sequence \(\{L_{n}^{sc} : n \in \mathbb{N}\} \).

In order to obtain these properties, we will rely on the identity in law between \(L_{n} \) and Dyson Brownian motion which we now recall. For \(n \in \mathbb{N} \), the \(n \)-indexed Dyson Brownian motion line ensemble \(\text{DBM}_{n} : [1, n] \times [0, \infty) \to \mathbb{R} \) may formally be regarded as a system of \(n \) mutually avoiding Brownian motions, each begun at the origin at time zero. This initial condition creates a singular conditioning, which may be interpreted using the theory of the Doob-\(h \)-transform (which is discussed in the text [RW00]). Indeed, the function \(h(x) = \prod_{1 \leq i < j \leq n} (x_{i} - x_{j}) \), for \(x = (x_{1}, \ldots, x_{n}) \in \mathbb{R}^{n} \), is a strictly positive harmonic function for \(n \)-dimensional Brownian motion \(B : [1, n] \times [0, \infty) \to \mathbb{R} \cup \{c\} \) that departs to a cemetery state \(c \) on exit from the Weyl chamber \(\{x \in \mathbb{R}^{n} : x_{1} > \cdots > x_{n}\} \). We may define \(\text{DBM}_{n} \) to be the Doob \(h \)-transform of \(B \) with entrance point the origin in \(\mathbb{R}^{n} \).

The next result is [OY02] Theorem 7.

Proposition 2.5. For \(n \in \mathbb{N} \), the Brownian last passage percolation and Dyson Brownian motion line ensembles \(L_{n} \) and \(\text{DBM}_{n} \), each of which maps \([1, n] \times [0, \infty) \) to \(\mathbb{R} \), are equal in law.

2.3. Deviation inequalities for GUE eigenvalues at or near the edge.

For \(n \geq 1 \) and \(\sigma^{2} \in (0, \infty) \), the Gaussian unitary ensemble \(\text{GUE}_{n}(\sigma^{2}) \) with entry variance \(\sigma^{2} \) is the law on random \(n \times n \) Hermitian matrices whose upper triangular entries are complex normal random variables \(X_{i,j} \sim N(0, \sigma^{2}/2) + iN(0, \sigma^{2}/2) \) and whose diagonal entries are real normal random variables \(X_{i,i} \sim N(0, \sigma^{2}) \).

Under a probability measure that we denote by \(\mathbb{P} \), Hermitian Brownian motion \(\text{HBM}_{n} \) is the random process defined on \([0, \infty) \) and valued in \(n \times n \) Hermitian matrices, whose upper triangular entries \(\text{HBM}_{n}(t)_{ij} \) equal \(B_{i,j:1}(t/2) + iB_{i,j:2}(t/2) \), and whose diagonal entries \(\text{HBM}_{n}(t)_{ii} \) equal \(B_{i,i}(t) \), where the \(B \)-processes are independent real-valued standard Brownian motions. Note that the law \(\text{HBM}_{n}(t) \) equals \(\text{GUE}_{n}(t) \) for any \(t \in (0, \infty) \).

Let \(\lambda_{n} : [1, n] \times [0, \infty) \to \mathbb{R} \) be such that \(\{\lambda_{n}(k,t) : 1 \leq k \leq n\} \) is a decreasing list of the eigenvalues of the random matrix \(\text{HBM}_{n}(t) \).

The next result [Gra99] Theorem 3] indicates the relevance of the Gaussian unitary ensemble for our study.

Proposition 2.6. For any \(n \in \mathbb{N} \), the Hermitian Brownian motion eigenvalue process \(\lambda_{n} \) and Dyson Brownian motion \(\text{DBM}_{n} \) are equal in law.

Upper bounds on the upper and lower tail of the scaled top GUE eigenvalue are known. For the lower tail, [Led07] (5.16) states that there exist constants \(C', c' > 0 \) such that, for \(n \geq 1 \) and \(\epsilon \in [n^{-2/3}, 1] \),

\[
\mathbb{P}(\lambda_{n}(1,(4n)^{-1}) \leq 1 - \epsilon) \leq C' \exp \left\{-c'\epsilon n^{3/2}\right\}.
\]

(6)

For the upper tail, there exist by [Aub05] Proposition 1] constants \(\hat{C} \) and \(\hat{c} \) such that, for \(n \in \mathbb{N} \) and \(t \geq 0 \),

\[
\mathbb{P}(\lambda_{n}(1,(4n)^{-1}) \geq 1 + t) \leq \hat{C} \exp \left\{-\hat{c}nt^{3/2}\right\}.
\]

(7)

(The variance choice of \((4n)^{-1}\) is made in order that the edge eigenvalues be close to unity. Regarding (6), the lower bound in the condition \(\epsilon \in [n^{-2/3}, 1] \) is insignificant, since an increase in the value of \(C' \) can replace this condition by \(\epsilon \in [0, 1] \).)
The ordering of GUE eigenvalues implies that (4) holds for \(\lambda_n(1,(4n)^{-1}) \) for all eigenvalue indices \(i \in [1,n] \). Our next result extends the companion bound (7) to eigenvalues other than the first near the top of the spectrum.

Theorem 2.7. There exists \(n_0 \in \mathbb{N} \) such that, if \((n,k) \in \mathbb{N}^2 \) satisfies \(n \geq k \lor n_0 \), and \(t \in [0,2^{1/2}n^{-11/18}] \), then

\[
\mathbb{P}
\left(
\lambda_n(k,(4n)^{-1}) \leq 1-t \right)
\leq H_k \exp \left\{ -h_k n^{3/2} \right\},
\]

where these \(k \)-indexed constants satisfy \(\limsup H_k^{1/k} < \infty \) and \(\liminf h_k^{1/k} > 0 \).

Expressed in terms of the scaled Brownian LPP ensemble \(\mathcal{L}_{sc} \), our point of departure (4) and (7) is a quantified form of one-point tightness for the top curve \(\mathcal{L}_{sc}^n(1,\cdot) \). Theorem 2.7 makes this inference for higher index curves. Its proof is a variant of this paper’s central theme: the analysis of such ensembles as \(\mathcal{L}_{sc} \) by means of their Brownian Gibbs resampling property; the particular Brownian Gibbs argument used in this proof is a variant of one used to prove one of the key technical propositions in the construction [CH] of the KPZ line ensemble.

3. Preliminaries: bridge ensembles and the Brownian Gibbs property

In this section, we introduce some basic notation and then discuss the Brownian Gibbs property enjoyed by such ensembles of random curves as the unscaled and scaled Brownian last passage percolation ensembles \(L_n \) and \(L_{sc}^n \) (for any given \(n \in \mathbb{N} \)). The scaled ensembles \(\mathcal{L}_{sc}^n \) form a sequence in \(n \in \mathbb{N} \) whose elements verify the Brownian Gibbs property and have curves that are locally Brownian but globally parabolic, with the highest curves (which are those of lowest index) typically at unit-order height near the origin: see Figure 2. Also in this section, we present a definition (of regular sequences of Brownian Gibbs ensembles) obtaining to such sequences as \(\{\mathcal{L}_{sc}^n : n \in \mathbb{N}\} \) that captures such behaviour; our goal in introducing the definition is to provide a format for the statements of our results that is flexible enough to be convenient for the applications in this paper and perhaps elsewhere.

Indeed, the theorems that we have stated will be derived from counterpart assertions that concern such ensemble sequences. In Section 4, we present these assertions and provide the proofs of the main theorems. The section ends with an overview of the structure of the remainder of the paper.

3.1. General notation.

We write \(\mathbb{N} = \{1,2,\ldots\} \). For \(i,j \in \mathbb{N} \) with \(i \leq j \), the integer interval \(\{k \in \mathbb{N} : i \leq k \leq j\} \) will be (and has already been) denoted by \([i,j] \).

For \(x,y \in \mathbb{R} \), we write \(x \land y = \min\{x,y\} \) and \(x \lor y = \max\{x,y\} \). Division will take precedence over \(\land \) (and \(\lor \)) so that \(x \land y/2 = x \land (y/2) \).

Let \(k \in \mathbb{N} \). Vectors \(\bar{x} \in \mathbb{R}^k \) will be indicated with an overhead bar. We write \(\bar{0} = (0,\ldots,0) \in \mathbb{R}^k \) and \(\bar{t} = (k-1,k-2,\ldots,1,0) \). A \(k \)-vector \(\bar{x} = (x_1,\ldots,x_k) \in \mathbb{R}^k \) is called a \(k \)-decreasing list if \(x_i > x_{i+1} \) for \(1 \leq i \leq k-1 \). We write \(\mathbb{R}_<^k \subseteq \mathbb{R}^k \) for the set of \(k \)-decreasing lists. When \(I \subseteq \mathbb{R} \), we write \(I_I^k \) for the set of such lists each of whose components lies in \(I \). We also write \(I_I^k \) in the case that equality between consecutive elements is permitted.

For \(\bar{x} \in \mathbb{R}^k, s > 0 \) and \(A \subseteq \mathbb{R}^k \), \(\bar{x} + A = \{\bar{x} + \bar{a} : \bar{a} \in A\} \) and \(s \cdot A = \{s\bar{a} : \bar{a} \in A\} \).

With \(\mathbb{Q} \) a probability measure and \(A \) and \(B \) events, we will write \(\mathbb{Q}(A,B) \) for \(\mathbb{Q}(A \cap B) \) and \(\mathbb{Q}(\cdot|A,B) \) for \(\mathbb{Q}(\cdot|A \cap B) \). The event complementary to \(A \) will be denoted by \(\neg A \) or \(A^c \).
3.2. Mutually avoiding Brownian bridges: some definitions.

Throughout, Brownian motion and bridge have diffusion parameter one.

Definition 3.1. Let \(k \in \mathbb{N}, \ a, b \in \mathbb{R} \) with \(a < b \), and \(\bar{x}, \bar{y} \in \mathbb{R}^k \). Write \(B_{k, \bar{x}, \bar{y}}^{[a,b]} \) for the law of the ensemble \(B : [1,k] \times [a,b] \to \mathbb{R} \) whose constituent curves \(B(i, \cdot) : [a,b] \to \mathbb{R}, \ i \in [1,k], \) are independent Brownian bridges that satisfy \(B(i,a) = x_i \) and \(B(i,b) = y_i \).

Let \(f : [a,b] \to \mathbb{R} \cup \{-\infty\} \) be a measurable function such that \(x_k > f(a) \) and \(y_k > f(b) \). Define the non-touching event on an interval \(A \subset [a,b] \) with lower boundary data \(f \) by

\[
\text{NoTouch}^A_f = \left\{ \text{for all } x \in A, \ B(i,x) > B(j,x) \text{ whenever } 1 \leq i < j \leq k, \ \text{and } B(k,x) > f(x) \right\}.
\]
We omit the subscript \(f \) in the case that it equals \(-\infty\) throughout \([a, b]\) (and thus plays no role). We omit the superscript \(A \) in the case that \(A = [a, b] \). With this convention, the event NoTouch always imposes \textit{internal} curve avoidance, but only imposes \textit{external} avoidance of the lower boundary condition when this is indicated in the subscript.

The conditional measure \(B^{[a, b]}_{k; \bar{x}, \bar{y}} (\cdot | \text{NoTouch}_f) \) is the \textit{mutually avoiding Brownian bridge ensemble on the interval \([a, b]\) with entrance data \(\bar{x} \), exit data \(\bar{y} \) and lower boundary condition \(f \)}.

We will occasionally refer to the acceptance probability, which is defined to be \(B^{[a, b]}_{k; \bar{x}, \bar{y}} (\text{NoTouch}_f) \).

3.3. \textbf{Line ensembles and the Brownian Gibbs property.} The law \(B^{[a, b]}_{k; \bar{x}, \bar{y}} (\cdot | \text{NoTouch}_f) \) is a prototypical example of a line ensemble that enjoys the Brownian Gibbs property that we now define: this ensemble verifies the next definition with \(\Sigma = [1, k] \) and \(\Lambda = [a, b] \).

\begin{definition}
Let \(\Sigma \) be an interval of \(\mathbb{Z} \), and let \(\Lambda \) be an interval of \(\mathbb{R} \). Note that \(\Sigma \) may be infinite and \(\Lambda \) may have infinite length. Consider the set \(X \) of continuous functions \(f : \Sigma \times \Lambda \to \mathbb{R} \) endowed with the topology of uniform convergence on compact subsets of \(\Sigma \times \Lambda \). Let \(\mathcal{E} \) denote the \(\sigma \)-algebra generated by Borel sets in \(X \).

A \(\Sigma \)-\textit{indexed line ensemble} \(L \) is a random variable defined on a probability space \((\Omega, \mathcal{B}, \mathbb{P}) \), taking values in \(X \) such that \(L \) is a \((\mathcal{B}, \mathcal{E})\)-measurable function. We view \(L \) as a collection of random continuous curves (despite using the word ‘line’ to refer to them), indexed by \(\Sigma \), each of which maps \(\Lambda \) into \(\mathbb{R} \). We will slightly abuse notation and write \(L : \Sigma \times \Lambda \to \mathbb{R} \), even though it is not \(L \) which is such a function, but rather \(L(\omega) \) for each \(\omega \in \Omega \). Given a \(\Sigma \)-indexed line ensemble \(L \), and a sequence of such ensembles \(\{ L_n : n \in \mathbb{N} \} \), we say that the sequence converges \textit{weakly as a line ensemble to} \(L \) if the measure on \((X, \mathcal{E})\) induced by \(L_n \) weak-* converges as \(n \to \infty \) to the measure induced by \(L \). This means that, for all bounded continuous functionals \(f \), \(\int \mathbb{P}(\omega)f(\omega) \to \int \mathbb{P}(\omega)f(\omega) \) as \(n \to \infty \). A line ensemble is \textit{ordered} if, for all \(i, j \in \Sigma \), \(i < j \), \(L(i, x) > L(j, x) \) for all \(x \in \Lambda \). Note for example that \(B^{[a, b]}_{k; \bar{x}, \bar{y}} (\cdot | \text{NoTouch}_f) \) is ordered. Naturally, statements such as this are understood as being asserted almost surely with respect to \(\mathbb{P} \).

We also mention that we will sometimes omit the term ‘line’, so that ‘ensemble’ is a synonym of ‘line ensemble’.

We turn now to formulating the Brownian Gibbs property.

\begin{definition}
For \(n \in \mathbb{N} \) and an interval \(\Lambda \subseteq \mathbb{R} \), let \(k \in [1, n] \) and \(a, b \in \Lambda \), with \(a < b \). Set \(f = L_{k+1} \) unless \(k = n \) when \(f \equiv -\infty \). Write \(D_{k; a, b} = [1, k] \times (a, b) \) and \(D_{K; a, b} = ([1, n] \times \Lambda) \setminus D_{K; a, b} \).

Suppose that an ordered line ensemble \(L : [1, n] \times \Lambda \to \mathbb{R} \) has the property that, for all such choices of \(k, a \) and \(b \),

\[
\text{Law}
\left(L \big|_{D_{K; a, b}} \right) \text{ conditional on } L \big|_{D_{k; a, b}} = B^{[a, b]}_{k; \bar{x}, \bar{y}} (\cdot | \text{NoTouch}_f),
\]

where on the right-hand side the entrance data \(\bar{x} \) is taken equal to \((L(1, a), \ldots, L(k, a)) \), the exit data \(\bar{y} \) to \((L(1, b), \ldots, L(k, b)) \), and where it is understood that the restriction of \(f \) to \([a, b] \) is considered. Then the ensemble is said to have the Brownian Gibbs property, or, more simply, to be Brownian Gibbs.

\begin{remark}
For any \(k \)-curve ensemble \(E : [1, k] \times [a, b] \to \mathbb{R} \), we use the bar \(k \)-vector notation in the form \(\bar{E}(x) = (E(1, x), \ldots, E(k, x)) \) for \(x \in [a, b] \).
\end{remark}
3.4. regular sequences of Brownian Gibbs line ensembles. Let I be a closed interval in the real line and let $n \in \mathbb{N}$. In an extension of terminology, a line ensemble $\mathcal{L}_n : [1, n] \times I \to \mathbb{R}$ that is ordered when restricted to $[1, n] \times \text{int}(I)$, where \text{int}(I) denotes the interior of I, is said to have the Brownian Gibbs property if the ordered line ensemble given by the above restriction does so. With this usage, the curves in a Brownian Gibbs line ensemble may all be equal, to zero for example, at say the left-hand endpoint of their common domain of definition.

Definition 3.4. Let $\{z_n : n \in \mathbb{N}\}$ be a sequence of non-negative real numbers. Suppose that a collection of Brownian Gibbs line ensembles

$$\mathcal{L}_n : [1, n] \times [-z_n, \infty) \to \mathbb{R},$$

indexed by $n \in \mathbb{N}$, is defined on a probability space under the law \mathbb{P}. (The definition may also be applied when z_n equals ∞, except that in this case, we would take the domain of definition of \mathcal{L}_n to be $[1, n] \times \mathbb{R}$.) Consider a given three-component vector $\varphi \in (0, \infty)^3$. The sequence $\{\mathcal{L}_n : n \in \mathbb{N}\}$ is called φ-regular with constant parameters $(c, C) \in (0, \infty)^2$ if, for each $n \in \mathbb{N}$, the following conditions are satisfied.

1. **Left endpoint escape.** $z_n \geq cn^{\varphi_1}$.

2. **One-point lower tail.** If $z \geq -z_n$ satisfies $|z| \leq cn^{\varphi_2}$, then

$$\mathbb{P}\left(\mathcal{L}_n(1, z) + 2^{-1/2}z^2 \leq -s\right) \leq C \exp \left\{ -cs^{3/2} \right\}$$

for all $s \in [1, n^{\varphi_3}]$.

3. **One-point upper tail.** If $z \geq -z_n$ satisfies $|z| \leq cn^{\varphi_2}$, then

$$\mathbb{P}\left(\mathcal{L}_n(1, z) + 2^{-1/2}z^2 \geq s\right) \leq C \exp \left\{ -cs^{3/2} \right\}$$

for all $s \in [1, \infty)$.

A sequence of Brownian Gibbs line ensembles is called regular if it is φ-regular for some $\varphi \in (0, \infty)^3$.

We will refer to these regular sequence conditions in the form $\text{RS}(i)$, for $i \in [1, 3]$. Throughout the paper, we will reserve the symbols c and C for usage in denoting the constant parameters (c, C) in a regular sequence.

It may also be useful to impose a long-range decay condition, something of the form

- **Collapse near infinity.**

$$\mathbb{P}\left(\sup \left\{ \mathcal{L}_n(1, z) : z \in [-z_n, \infty) \cap [-cn^{\varphi_2}, cn^{\varphi_2}] \right\} > -\frac{1}{8}n^{2\varphi_4} \right\} \leq C \exp \left\{ -cn^{3\varphi_4} \right\}$$

for some $\varphi_4 > 0$. This further axiom would provide the tightness in $n \in \mathbb{N}$ of the maximizer of $x \to \mathcal{L}_n(1, x)$, for example. We might choose to call a Brownian Gibbs ensemble sequence φ-strongly regular for given $\varphi \in (0, \infty)^4$ in the case that $\text{RS}(1)$, (2) and (3) hold alongside some such decay condition. We work only with regular sequences in the present paper, however.

The right sketch of Figure 1 illustrated how the near geodesic event $\text{NearGeod}_{n,k}(x, r)$ will be characterized by near touching at distance of order r of the k highest curves in $\mathcal{L}_{n,k}$ at x. As such, the next proposition shows the relevance of the regular sequence definition for the purpose of proving the near geodesic Theorem 2.3.
Proposition 3.5. The sequence $L_n^\infty : [1, n] \times \left[-\frac{1}{2} n^{1/3}, \infty \right) \to \mathbb{R}$, $n \in \mathbb{N}$, of scaled Brownian LPP line ensembles is a φ-regular sequence of Brownian Gibbs line ensembles with $\varphi = (1/3, 1/9, 1/3)$.

3.5. The Airy line ensemble after parabolic shift enjoys the Brownian Gibbs property. Note that the Airy line ensemble $\mathcal{A} : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ recalled in Section 2.1 is a continuous ordered \mathbb{N}-indexed line ensemble. The next proposition is asserted by the principal Theorem 3.1 of [CH14].

Proposition 3.6. The ensemble $\mathcal{L} : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ associated to the Airy line ensemble via (1) has the Brownian Gibbs property.

If we set \mathcal{L}_n equal to the ensemble $\mathcal{L} : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ just specified for every index $n \in \mathbb{N}$, the resulting sequence is a degenerate example of a regular Brownian Gibbs sequence (as we shall demonstrate in the proof of Theorem 2.1 in the next section).

4. Statements of principal results concerning Brownian Gibbs ensemble sequences

We gather together our main conclusions concerning regular sequences of Brownian Gibbs ensembles. At the same time, we give the proofs of our main theorems, which follow directly from the new statements.

4.1. The one-point lower tail estimate extends to curves of higher index. The one-point lower tail condition $RS(2)$ has a counterpart for other ensemble curves.

To present our result to this effect, Proposition 4.1, we associate to any φ-regular sequence of Brownian Gibbs ensembles two sequences $\{C_k : k \geq 2\}$ and $\{c_k : k \in \mathbb{N}\}$. The dependence of the sequences on the ensemble sequence is communicated through the constant parameters (c, C). The sequences are specified by setting, for each $k \geq 2$,

$$C_k = \max \left\{ 10 \cdot 20^{k-1} 5^{k/2} \left(\frac{10}{3 - 2^{3/2}} \right)^{(k-1)/2} C, C/c^2 \right\}$$

and

$$c_k = \left((3 - 2^{3/2})^{3/2} 10^{-3/2} \right)^{k-1} c_1 ,$$

with $c_1 = 2^{-5/2} c \wedge 1/8$.

Note that the sequences satisfy $\limsup C_k^{1/k^2} < \infty$ and $\liminf c_k^{1/k} > 0$.

This usage of C_k and c_k will be made consistently in the paper (in accordance with the ensemble sequence under consideration at any given moment).

Proposition 4.1. Let $\varphi \in (0, \infty)^3$. Set $\delta = \varphi_1/2 \wedge \varphi_2/2 \wedge \varphi_3$. For each $k \in \mathbb{N}$, there exist constants $C_k, c_k > 0$ such that, for any φ-regular sequence $\{L_n : n \in \mathbb{N}\}$ of Brownian Gibbs line ensembles with constant parameters (c, C), the estimate

$$\mathbb{P}(L_n(k, x) + 2^{-1/2} x^2 \leq -s) \leq C_k \exp \left\{ - c_k s^{3/2} \right\}$$

is valid whenever $n \geq k \vee (c/3)^{-2(\varphi_1 \wedge \varphi_2)^{-1}} \vee 6^{2/\delta}, |x| \leq c/2 \cdot n^\delta$ and $s \in [0, 2n^\delta]$.

We will prove the proposition by establishing the stronger Proposition 15.1, which asserts a similar estimate for the lowest value adopted by $L_n(k, \cdot)$ on a compact interval.

Theorem 2.7 is a consequence of Proposition 4.1. Indeed, the next result is a restatement of the theorem with a more explicit description of its constant parameters.
Corollary 4.2. Suppose that \((n, k) \in \mathbb{N}^2\) satisfies \(n \geq k \lor (c/3)^{−2\varphi_2} \lor 6^{2/\delta}\), where \(\varphi_2 = 1/9\) and \(\delta = 1/18\). If \(s \in [0, 2^{1/2}n^{1/18−2/3}]\), then
\[
\mathbb{P}\left(\lambda_n(k, (4n)^{-1}) \leq 1 - s\right) \leq C_k \exp \left\{-\frac{2^{3/2}c_k n s^{3/2}}{n}\right\},
\]
where the parameters \((c, C)\) used to determine the sequences \((\mathcal{L})\) and \((\mathcal{K})\) are the constant parameters associated to the regular sequence \(\{\mathcal{L}_n^c : k \in \mathbb{N}\}\).

Proof. By Propositions 2.5 and 2.6 as well as Brownian scaling, \(2n\lambda_n(k, (4n)^{-1})\) has the law of \(L_n(k, n)\). Thus, \((\mathcal{K})\) implies that \(\lambda_n^c - 1\) has the law of \(2^{-1/2}n^{-2/3}\mathcal{L}_n^c(0, 0)\). Since \(\{\mathcal{L}_n^c : n \in \mathbb{N}\}\) is a \((1/3, 1/9, 1/3)\)-regular sequence of Brownian Gibbs line ensembles by Proposition 3.5, we may apply Proposition 4.1 to find that, for \(r \in [0, 2n^{1/18}]\),
\[
\mathbb{P}(\mathcal{L}_n^c(k, 0) \leq -r) \leq C_k \exp \left\{-c_k r^{3/2}\right\}.
\]
Setting \(r = 2^{1/2}n^{2/3}s\), so that the left-hand side equals \(\mathbb{P}(\lambda_n^c - 1 \leq -s)\), we obtain the corollary. □

4.2. The close encounter of several curves at the edge. Let \(m, k, n \in \mathbb{N}\) satisfy \(m \geq k\), and let \(a, b \in \mathbb{R}\) satisfy \(b > a\). If \(E : [1, m] \times [a, b] \rightarrow \mathbb{R}\) is an ordered ensemble, \(x \in [a, b]\) and \(\phi > 0\), we let \(\text{Close}(k; E, x, \phi)\) denote the event that
\[
E(1, x) \leq E(k, x) + \phi,
\]
also adopting this definition when \([a, b]\) is replaced by \([a, \infty)\).

Theorem 4.3. For \(\bar{\varphi} \in (0, \infty)^3\) and \(C, c > 0,\) there exists a sequence \(\{D_k = D_k(c) : k \geq 2\}\) satisfying \(\sup_{k \geq 2} D_k^{1/k} < \infty\) such that the following holds. Let
\[
\mathcal{L}_n : [1, n] \times [-z_n, \infty) \rightarrow \mathbb{R}, n \in \mathbb{N},
\]
be a \(\bar{\varphi}\)-regular sequence of Brownian Gibbs line ensembles with constant parameters \((c, C)\) defined under the law \(\mathbb{P}\). Let \(k \in \mathbb{N}, k \geq 2,\) and \(\varepsilon > 0\) satisfy \(\varepsilon < c^{-3/2}e^{-10^{k^2}}\). For \(n \in \mathbb{N}\) satisfying \(n \geq k \lor (c/3)^{−2(\varphi_1 \lor \varphi_2)^{-1}} \lor 6^{2/\delta}\) (where \(\delta = \varphi_1/2 \lor \varphi_2/2 \lor \varphi_3\)), and \(n^{\varphi_1 \lor \varphi_2 \lor \varphi_3/2} \geq (c/2 \lor 2^{1/2})^{-1} D_k \left(\log \varepsilon^{-1}\right)^{1/3}\),
(1) the bound
\[
\mathbb{P}\left(\text{Close}(k; \mathcal{L}_n, x_0, \varepsilon)\right) \leq 10^6 \exp \left\{8842k^{7/2}D_k^{5/2}(\log \varepsilon^{-1})^{5/6}\right\} \varepsilon^{k^2-1}
\]
holds for any given \(x_0 \in c/2 \cdot n^{\varphi_1 \lor \varphi_2} \cdot [-1, 1]\).

(2) and the bound
\[
\mathbb{P}\left(\exists x \in \mathbb{R}, |x - y| \leq \frac{1}{4} D_k \left(\log \varepsilon^{-1}\right)^{1/3} : \text{Close}(k; \mathcal{L}_n, x, \varepsilon)\right)
\]
\[
\leq \varepsilon^{k^2-3} \cdot 10^{46} 2^{6k^2} D_k^{18} \exp \left\{8844k^{7/2}D_k^{5/2}(\log \varepsilon^{-1})^{5/6}\right\}
\]
also holds whenever \(|y| \leq c/2 \cdot n^{\varphi_1 \lor \varphi_2}\).

Theorem 4.4. Let \(\bar{\varphi} \in (0, \infty)^3\) and \(C, c > 0\), and let
\[
\mathcal{L}_n : [1, n] \times [-z_n, \infty) \rightarrow \mathbb{R}, n \in \mathbb{N},
\]
be a \(\bar{\varphi} \)-regular sequence of Brownian Gibbs line ensembles with constant parameters \((c, C)\) defined under the law \(\mathbb{P} \). Set \(\delta = \varphi_1/2 \land \varphi_2/2 \land \varphi_3 \), and specify \(s_k = (8 \cdot 2c_k^{-1} \log(28C_k))^{2/3} \lor 2^{5/2} \) in terms of the sequences (8) and (9) for \(k \geq 2 \). Then, for \(\varepsilon \in (0, k^{-2}s_k^{-1}/4) \),
\[
\mathbb{P} \left(\text{Close}(k; \mathcal{L}_n, x, \varepsilon) \right) \geq e^{-52s_k^2k^3 \varepsilon^{k^2-1}}
\]
whenever \(|x| \leq c/2 \cdot n^{\varphi_1 \land \varphi_2}, k \geq 2 \) and \(n \geq k \lor (c/6)^{-2(\varphi_1 \land \varphi_2)^{-1}} \lor 6^{2/3} \lor (s_k/2)^{1/3} \).

Proof of Theorem 2.3. We consider \(k \geq 2, n \geq k \) and \(x \geq -n^{1/3}/2 \). Note first that, by (11),
\[
kM_n^k(n + 2n^{2/3}x) - M_n^k(n + 2n^{2/3}x) = \sum_{i=2}^k \left(L_n(1, n + 2n^{2/3}x) - L_n(i, n + 2n^{2/3}x) \right).
\]
For any \(r \geq 0 \), the event \(\text{NearGeod}_{n,k}(x, r) \) that the displayed quantity is at most \(rn^{1/3} \) may be expressed in the form
\[
\left\{ \sum_{i=2}^k \left(\mathcal{L}_n^{sc}(1, x) - \mathcal{L}_n^{sc}(i, x) \right) \leq 2^{-1/2}r \right\}.
\]
Since the ensemble \(\mathcal{L}_n^{sc} \) is ordered, we find that
\[
\mathcal{L}_n^{sc}(1, x) - \mathcal{L}_n^{sc}(k, x) \leq \sum_{i=2}^k \left(\mathcal{L}_n^{sc}(1, x) - \mathcal{L}_n^{sc}(i, x) \right) \leq (k - 1) \left(\mathcal{L}_n^{sc}(1, x) - \mathcal{L}_n^{sc}(k, x) \right).
\]
Thus,
\[
\mathbb{P} \left(\mathcal{L}_n^{sc}(1, x) - \mathcal{L}_n^{sc}(k, x) \leq (k - 1)^{-1}2^{-1/2}r \right) \leq \mathbb{P} \left(\text{NearGeod}_{n,k}(x, r) \right) \leq \mathbb{P} \left(\mathcal{L}_n^{sc}(1, x) - \mathcal{L}_n^{sc}(k, x) \leq 2^{-1/2}r \right).
\]
By Proposition 3.5, we are able to apply Theorem 4.3 (1) and Theorem 4.4 to \(\mathcal{L}_n^{sc} : n \in \mathbb{N} \) to bound the right and left-hand terms here above and below, whenever \(|x| \leq c/2 \cdot n^{1/3} \), where the constant parameter \(c > 0 \) is provided by this ensemble sequence. Doing so yields the bounds on \(\mathbb{P}(\text{NearGeod}_{n,k}(x, r)) \) stated in Theorem 2.3.

Remark. It is in fact technically incorrect to state that \(\mathcal{L}_n^{sc} \) is ordered, because its curves are equal to zero at the left endpoint \(-n^{1/3}/2\), so the ordering is not strict. This point is irrelevant for the application just made, as it will be subsequently, and we will call similar ensembles ordered later in the paper.

4.3. Brownian bridge regularity for affinely translated ensemble curves. Recall from Theorem 2.1 the notation for the function space \(\mathcal{C}[K, K + d] \) which we write simply as \(\mathcal{C} \) in the next result.

Theorem 4.5. Suppose that \(\{ \mathcal{L}_n : n \in \mathbb{N} \} \) is a \(\bar{\varphi} \)-regular sequence of Brownian Gibbs line ensembles, with \(\bar{\varphi} \in (0, \infty)^3 \) and constant parameters \((c, C)\). Let \(d \geq 1 \) denote a parameter. Setting \(\theta = \varphi_1 \land \varphi_2 \), let \(K \in \mathbb{R} \) satisfy \([K, K + d] \subset c/2 \cdot [-n^\theta, n^\theta] \), and let \(k \in \mathbb{N} \). The distribution of \(\mathcal{L}_{n,[K,K+d]}^k \) under \(\mathbb{P} \), and the standard bridge law \(\mathbb{B}_{[1,0,0]}^{[K,K+d]} \), are both supported on the space \(\mathcal{C} \). Let \(f_{n,k} : \mathcal{C} \rightarrow [0, \infty) \) denote the Radon-Nikodym derivative of the former distribution with respect to the latter. Then
\[
\sup_n \int_{\mathcal{C}} \exp \left\{ \int_0^1 d_0^{2/5} d^{-6/5} k^{-21/5} \left(\log f_{n,k} \right)^{6/5} \right\} d\mathbb{B}_{[1,0,0]}^{[K,K+d]} < \infty,
\]
where the supremum is taken over \(n \in \mathbb{N} \) high enough that \(n \geq k^2c^{-2(\varphi_1+\varphi_2)}^{-1} \sqrt{2c^{-1}(K+d)}^{1/\theta} \), and \(n^{\varphi_1+\varphi_2+\varphi_3/2} \geq (c/2 \wedge 2^{1/2})^{-1} D_k (\log \varepsilon^{-1})^{1/3} \), for \(\varepsilon > 0 \) given by \(2\varepsilon = (18)^{-3/2} C_k^{-3/2} D_k^{-3/2} \land \exp \left\{ -2 \cdot 10^7 k^{3/2} d^6 \right\} \). The constant \(d_0 \) equals \(\frac{1}{36k^3} \) and the sequence \(\{ D_k : k \in \mathbb{N} \} \), which will be specified explicitly in \([44]\), satisfies \(\sup D_k^{1/k} < \infty \); the sequence \(\{ C_k : k \in \mathbb{N} \} \) is specified in \([3]\).

There is an upper bound on the supremum that, while dependent on \(\varepsilon \), is specified explicitly in (44), satisfies \(\sup D_k^{1/k} < \infty \); the sequence \(\{ C_k : k \in \mathbb{N} \} \) is specified in \([3]\).
the beginnings of an explanation for the $k^2 - 1$ exponent in the one-point k-curve closeness problem: we derive it simply for k-curve systems of mutually avoiding Brownian bridges. We may then prove the lower bound Theorem 4.4 by arguing that k-curve closeness may be inherited from the k-curve system. This transfer of ensemble behaviour is effected by the missing closed middle reconstruction. Section 7 presents the general apparatus of this technique and, in Section 8 we use the technique to prove Theorem 4.4.

In Section 9 we explain why this reconstruction is inadequate for the purpose of proving such upper bounds as Theorem 4.3(1). We then develop, later in Section 9 and also in Section 10, the jump ensemble method, a further general technique that will help to do the job of proving Theorems 4.3(1) and 4.5.

Section 11 is devoted to the proof of Theorem 4.3(1), via the jump ensemble method and other reconstruction techniques (the snap up and swing through arguments).

Theorem 4.3(2), concerning k-curve closeness at a general location, is a consequence of the one-point version, Theorem 4.3(1), via the locally Brownian nature of ensemble curves. This Brownian nature, in essence Corollary 4.7, is established in Section 12 where the proof of Theorem 4.3(2) is given.

The jump ensemble method is employed again in Section 13 to yield the Radon-Nikodym moment bound Theorem 4.5.

In Section 14, we present the proof of Proposition 5.5, the result that makes the necessary connection from regular Brownian Gibbs sequences to Brownian last passage percolation. The higher curve index one-point lower tail bound Proposition 4.1 is necessary to set up the jump ensemble method. The final Section 15 proves this proposition by employing a different Brownian Gibbs argument, which is a variant of one used in the KPZ line ensemble construction [CH].

5. SOME GENERALITIES: NOTATION AND BASIC PROPERTIES OF BROWNIAN GIBBS ENSEMBLES

5.1. SOME HELPFUL LEMMAS AND BASIC NOTATION.

5.1.1. STRONG GIBBS PROPERTY. In order to explain this property of Brownian Gibbs line ensembles, we introduce the concept of a stopping domain.

Definition 5.1. Consider a line ensemble $\mathcal{L} : [1, n] \times [a, b] \to \mathbb{R}$. For $a < \ell < r < b$, and $k \in [1, n]$, denote the σ-algebra generated by \mathcal{L} outside $[1, k] \times [a, b]$ by

$$\mathcal{F}_{\text{ext}}(k; \ell, r) = \sigma\left\{ \mathcal{L} \text{ on } [1, k] \times (a, \ell] \cup [r, b] \right\} \text{, and } \mathcal{L} \text{ on } [k + 1, n] \times [a, b] \right\} .$$

The random subset $[1, k] \times (\ell, r)$ of the domain $[1, n] \times [a, b]$ of \mathcal{L} is called a *stopping domain* if, for all $\ell < r$,

$$\{ \ell \leq \ell, r \geq r \} \in \mathcal{F}_{\text{ext}}(k; \ell, r) .$$

In other words, the domain is determined by the information outside of it.

We will make use of a version of the strong Markov property where the concept of stopping domain introduced in Definition 5.1 plays the role of stopping time.
Let $C^k(\ell, r)$ denote the set of functions $f = (f_1, \ldots, f_k) : [1, k] \times [\ell, r] \to \mathbb{R}$ with each $f_i : [\ell, r] \to \mathbb{R}$ continuous. Define
\[C^k = \{(\ell, r, f) : \ell < r \text{ and } f \in C^k(\ell, r)\}. \]
Let bC^k denote the set of Borel measurable functions from $C^k \to \mathbb{R}$.

Lemma 5.2. Consider a line ensemble $\mathcal{L} : [1, n] \times [a, b] \to \mathbb{R}$ with the Brownian Gibbs property. Write \mathbb{P} and $\mathbb{E}[\cdot]$ for the probability measure and expectation associated to \mathcal{L}. Fix $k \in [1, n]$. For all stopping domains $[1, k] \times (L, R)$, the following strong Brownian Gibbs property holds: for all $F \in bC^k$, \mathbb{P} almost surely,
\[\mathbb{E}\left[F(L, R, \mathcal{L}_{\left[1,k\right] \times (L,R)}) \big| \mathcal{F}_{\text{ext}}(k; L, R) \right] = B_{k,\bar{x},\bar{y}}^{L,R}[F(L, R, B) \big| \text{NoTouch}_f], \]
where $\bar{x} = \{\mathcal{L}(i, L)\}_{i=1}^k$, $\bar{y} = \{\mathcal{L}(i, R)\}_{i=1}^k$, $f(\cdot) = \mathcal{L}_{k+1}(\cdot)$ (or $-\infty$ if $k = n$). On the right-hand side, a notational abuse is adopted under which $B_{k,\bar{x},\bar{y}}^{L,R}[\cdot \big| \text{NoTouch}_f]$ denotes conditional expectation with respect to this conditional measure.

This lemma is [CH14 Lemma 2.5]. The lemma’s message is that the conditional law of a line ensemble inside a stopping domain is dictated by the domain’s boundary data via the mutually avoiding Brownian bridge measure specified by this data.

5.1.2. Monotonicity results. The next two lemmas, [CH14 Lemma 2.6 and 2.7], state two simple but important monotonicities exhibited by mutually avoiding Brownian bridge ensembles.

Lemma 5.3. Fix $k \in \mathbb{N}$, $a < b$ and two measurable functions $f, g : [a, b] \to \mathbb{R} \cup \{-\infty\}$ such that for all $s \in [a, b]$, $f(s) \leq g(s)$. Let $\bar{x}, \bar{y} \in \mathbb{R}^k_>$ be two k-decreasing lists such that $x_k \geq g(a)$ and $y_k \geq g(b)$. Recalling Definition 3.1, set $\mathbb{P}_{k,f} = B^{[a,b]}(\cdot \big| \text{NoTouch}_f)$, and likewise define $\mathbb{P}_{k,g}$. Then there exists a coupling of $\mathbb{P}_{k,f}$ and $\mathbb{P}_{k,g}$ such that almost surely $B_{k,\bar{x},\bar{y}}^{a,b}[\cdot \big| \text{NoTouch}_f]$ and $B_{k,\bar{x}',\bar{y}'}^{a,b}[\cdot \big| \text{NoTouch}_f]$ may be coupled so that, denoting by B and B' the ensembles defined under the respective measures, $B'(i, x) \geq B(i, x)$ for all $(i, x) \in [1, k] \times [a, b]$.

Let $\bar{m} = (m_1, \ldots, m_k) \in \mathbb{R}^k$ be a k-vector, and let $\sigma^2 \in [0, \infty)$. We will write $\nu_{\bar{m},\sigma^2}$ for the law of a k-vector $\overline{N} = (N_1, \ldots, N_k)$ of independent Gaussian random variables, where N_i has mean m_i and variance σ^2 for $i \in [1, k]$. When $A \subseteq B \subseteq \mathbb{R}^k$, we denote by $\nu_{\bar{m},\sigma^2}(A \big| B)$ the conditional probability under $\nu_{\bar{m},\sigma^2}$ given $\overline{N} \in B$ that $\overline{N} \in A$.

In the special case where $k = 1$, and where we now take $m \in \mathbb{R}$, consider the choice $A = [y_1, y_2]$ and $B = [x, \infty)$ with $x \leq y_1 \leq y_2$. In this case, we will use the further shorthand $\nu_{m,\sigma^2}^1([y_1, y_2])$ to denote $\nu_{m,\sigma^2}(A \big| B)$. We also write $\nu_{m,\sigma^2}^{-1}(y_1, y_2)$ in place of $\nu_{m,\sigma^2}^{-1}([y_1, y_2])$. Furthermore, we will often omit the superscript in the notation $\nu_{\bar{m},\sigma^2}$ when $k = 1$.

When $k = 1$, and we take $m \in \mathbb{R}$, we will write $g_{m,\sigma^2} : \mathbb{R} \to [0, \infty)$,
\[g_{m,\sigma^2}(x) = (2\pi)^{-1/2}\sigma^{-1}\exp\left\{-\frac{x^2}{2\sigma^2}\right\} \tag{10} \]
for the density of ν_{m,σ^2}^1 at $x \in \mathbb{R}$.

Whenever one-dimensional Gaussian tail bounds are needed, the next lemma will be used. We will sometimes omit to mention that the lemma has been invoked.

Lemma 5.5. Let $m \in \mathbb{R}$ and $\sigma^2 \in [0, \infty)$ and let $x \in \mathbb{R}$ with $x \leq m$. Setting $t = (x - m)\sigma^{-1}$, we have

$$\nu_{m,\sigma^2}^1(x, \infty) \leq (2\pi)^{-1/2} \cdot t^{-1} \exp \left\{ - t^2 / 2 \right\};$$

and if $t \geq 1$, then

$$\nu_{m,\sigma^2}^1(x, \infty) \geq (2\pi)^{-1/2} \cdot (2t)^{-1} \exp \left\{ - t^2 / 2 \right\}.$$

Proof. The standard bounds

$$(2\pi)^{-1/2} \frac{t}{t^2 + 1} \exp \left\{ - t^2 / 2 \right\} \leq \nu_{0,1}^1(t, \infty) \leq (2\pi)^{-1/2} t^{-1} \exp \left\{ - t^2 / 2 \right\}$$

for $t \geq 0$ may be found in [Wil91, Section 14.8]. Note that $\frac{t}{t^2 + 1} \geq (2t)^{-1}$ for $t \geq 1$.

On one occasion, we will also use the next fact.

Lemma 5.6. Let $a \in \mathbb{R}$ and $\sigma^2 > 0$. For any $r > 0$, the map $\mathbb{R} \to \mathbb{R} : s \to \nu_{a,\sigma^2}(s+r, \infty)$ is strictly decreasing. That is, for a normal random variable N of any given mean and positive variance, the conditional probability $P(N \geq s + r \mid N \geq s)$ is strictly decreasing in $s \in \mathbb{R}$, for any given $r > 0$.

Proof. Let N denote a normal random variable of mean a and variance σ^2. Note that

$$\log P(N \geq s + r \mid N \geq s) = \log \int_{s+r}^{\infty} \exp \left\{ - \frac{(x-a)^2}{2\sigma^2} \right\} dx - \log \int_{s}^{\infty} \exp \left\{ - \frac{(x-a)^2}{2\sigma^2} \right\} dx$$

has derivative in s given by

$$f_s^\infty \exp \left\{ - \frac{(s-a)^2 - (x-a)^2 - r^2}{2\sigma^2} \right\} \left(- \exp \left\{ - \frac{(s-a)r}{\sigma^2} \right\} + \exp \left\{ - \frac{-r(x-a)}{\sigma^2} \right\} \right) dx$$

$$\int_{s+r}^{\infty} \exp \left\{ - \frac{(s-a)^2}{2\sigma^2} \right\} dx \int_{s}^{\infty} \exp \left\{ - \frac{(s-a)^2}{2\sigma^2} \right\} dx.$$

The integrand is strictly negative for all $x > s$.

We typically denote means and variances of Gaussian random variables by m and σ^2 using subscripts for vector component indices. Each use of this notation is made locally with, we hope, little prospect for confusion between them.

5.1.4. **Standard bridges, general or Brownian.** Let $a, b \in \mathbb{R}$, with $a \leq b$. A continuous function $f : [a, b] \to \mathbb{R}$ with $f(a) = f(b) = 0$ will be called a standard bridge. The space of such functions will be denoted $C_{0,0}(a, b, \mathbb{R})$ (a usage that will supersede the earlier use of $\mathcal{C}[K, K + d]$ when $[a, b] = [K, K + d]$ with $K \in \mathbb{R}$ and $d \geq 1$).

When $f : [a, b] \to \mathbb{R}$ is general, the standard bridge obtained from f by affine translation will be denoted $f^{[a, b]}$, so that

$$f^{[a, b]}(x) = f(x) - \frac{x-a}{b-a} f(a) - \frac{x-a}{b-a} f(b) \text{ for } x \in [a, b].$$

This notation extends to line ensembles: for example, if $\mathcal{L}_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}$ and $[a, b] \subset [-z_n, \infty)$, then $\mathcal{L}_n^{[a, b]} : [1, n] \times [a, b] \to \mathbb{R}$ is the line ensemble whose value $\mathcal{L}_n^{[a, b]}(i, x)$ is specified by the displayed formula with $f = \mathcal{L}_n(i, \cdot)$.
When $k = 1$ is taken in $B_{k;x,y}^{[a,b]}$, we will write $B : [a, b] \to \mathbb{R}$ in place of $B(1, \cdot)$. Note then that the process $B^{[a,b]}$ has law $B_{1:0,0}^{[a,b]}$. It will be called standard Brownian bridge.

5.1.5. Brownian bridge basics.

Lemma 5.7. Let $a, b \in \mathbb{R}$ with $a < b$. For $l \in \mathbb{N}$, let x_1, \ldots, x_l be an increasing sequence of elements of (a, b). Also let $x, y \in \mathbb{R}$. Then the joint distribution under $B_{1:x,y}^{[a,b]}$ of $(B(x_1), \ldots, B(x_l)) \in \mathbb{R}^l$ has density at $(z_1, \ldots, z_l) \in \mathbb{R}^l$ given by

$$Z^{-1} \prod_{i=0}^{l} g_{0,x_{i+1}-x_i}(z_{i+1} - z_i),$$

where we take $x_0 = a$ and $x_{l+1} = b$, as well as $z_0 = x$ and $z_{l+1} = y$; the quantity Z equals $g_{0,b-a}(y-x)$.

Proof. Let $W : [a, b] \to \mathbb{R}$ denote Brownian motion with $W(a) = x$. The law $B_{1:x,y}^{[a,b]}$ is the weak limit as $\phi \searrow 0$ of the law of W given that $W(b) \in (y - \phi, y + \phi)$. The claimed formula for the density arises from Bayes' theorem after this limit is taken. \hfill \Box

The next result is a trivial but sometimes useful consequence.

Corollary 5.8. For choices of parameters given in Lemma 5.7, let $A_1, \ldots, A_l \subseteq \mathbb{R}$ be a collection of intervals. Also set $A_0 = \{x\}$ and $A_{l+1} = \{y\}$. Writing μ for Lebesgue measure, we have that

$$B_{1:x,y}^{[a,b]} \left(\bigcap_{i=1}^{k} \{B(x_i) \in A_i\} \right) \geq \frac{1}{g_{0,b-a}(y-x)} \prod_{i=1}^{l} \mu(A_i) \cdot \prod_{i=0}^{l} g_{0,x_{i+1}-x_i}(s_i),$$

where $s_i = \sup \{|z - z'| : z \in A_i, z' \in A_{i+1}\}$.

When applying the bound, also note that $g_{0,b-a}(y-x)^{-1} \geq (2\pi(b-a))^{1/2}$.

5.2. Bounds on maximum fluctuation of bridge ensembles.

5.2.1. Maximum fluctuation of standard Brownian bridge.

Lemma 5.9. Let $a, b \in \mathbb{R}$ with $b > a$. For any $h \in \mathbb{R}$ and $r > 0$,

$$B_{1:h,h}^{[a,b]} \left(\sup_{x \in [a,b]} B(x) \geq h + r \right) = \exp \left\{ -\frac{r^2}{h-a} \right\}.$$

Equality also holds when the condition $\inf_{x \in [a,b]} B(x) \leq h - r$ is considered instead.

Proof. By Brownian scaling and symmetry, the second statement reduces to the first and the first to the case where $a = 0$, $b = 1$ and $h = 0$. The result then follows from equation (3.40) in [KS88, Chapter 4]. \hfill \Box
5.2.2. Maximum fluctuation of mutually avoiding Brownian bridges.

Lemma 5.10. Let $k \in \mathbb{N}$, $\bar{x}, \bar{y} \in \mathbb{R}_+^k$ and $[a, b] \subset \mathbb{R}$. Then, for any $r > 0$,
$$
\mathcal{B}_{k; x, \bar{y}}^{[a, b]} \left(\inf_{x \in [a, b]} B(k, x) < x_k \land y_k - \sqrt{2}(b - a)^{1/2}(i - 1 + r) \right \mid \text{NoTouch}^{[a, b]} \right) \leq (1 - 2e^{-1})^{-k} e^{-2r^2} .
$$

Proof. Specify $\bar{z} \in \mathbb{R}_+^k$ so that $z_i = x_i \land y_i - \sqrt{2}(b - a)^{1/2}(i - 1)$. Note that z_i is at most both x_i and y_i, and also that $z_i - z_{i-1} \leq -\sqrt{2}(b - a)^{1/2}$. By Lemma 5.4, the probability in question may only increase if \bar{x} and \bar{y} are replaced by \bar{z}. Under this new law, each curve is a vertical displacement of standard Brownian bridge, and there is a clear route to the mutual avoidance event NoTouch$^{[a, b]}$: it is achieved if each of the standard bridges has a supremum in absolute value of at most $2^{-1/2}(b - a)^{1/2}$. Each bridge has probability at least $1 - 2e^{-1}$ of being constrained in this way by Lemma 5.9. Another use of Lemma 5.9 yields the result. \(\square\)

5.3. Some basic properties of Brownian Gibbs ensemble regular sequences.

5.3.1. Basic parabolic symmetry of regular sequences of Brownian Gibbs line ensembles. Let $Q : \mathbb{R} \to \mathbb{R}$ denote the parabola $Q(x) = 2^{-1/2}x^2$, and let $l : \mathbb{R}^2 \to \mathbb{R}$ be given by $l(x, y) = -2^{-1/2}y^2 - 2^{1/2}y(x - y)$. Note that $x \to l(x, y)$ is the tangent line of the parabola $x \to -Q(x)$ at the point $(y, -Q(y))$. Note also that, for any $x, y \in \mathbb{R}$,

$$
Q(x) = -l(x, y) + Q(x - y) .
$$

For $\{z_n : n \in \mathbb{N}\}$ a sequence of non-negative real numbers, consider a line ensemble sequence $\mathcal{L}_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}$. For any $y_n > -z_n$, define $\mathcal{L}_{n, y_n}^{\text{shift}} : [1, n] \times [-z_n - y_n, \infty) \to \mathbb{R}$ to be the shifted ensemble given by

$$
\mathcal{L}_{n, y_n}^{\text{shift}}(i, x) = \mathcal{L}_n(i, x + y_n) - l(x + y_n, y_n) .
$$

By (11), $\mathcal{L}_{n, y_n}^{\text{shift}}(i, x)$ equals $(\mathcal{L}_n(i, x + y_n) + Q(x + y_n)) - Q(x)$. In the case of a regular sequence of Brownian Gibbs ensembles, the last expression consists of the bracketed process, for which the influence of curvature has been cancelled, at least when $x + y_n = n^{\theta(1)}$, to which is added the basic parabolic decay term.

Lemma 5.11. Let $\varphi \in (0, \infty)^3$. Suppose that $\mathcal{L}_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}$, $n \in \mathbb{N}$, is a φ-regular sequence of Brownian Gibbs line ensembles with constant parameters (c, C). Set $\theta = \varphi_1 \land \varphi_2$. Whenever $\{y_n : n \in \mathbb{N}\}$ satisfies $|y_n| \leq c/2 \cdot n^\theta$, the sequence $\mathcal{L}_{n, y_n}^{\text{shift}}$ is a φ-regular sequence of Brownian Gibbs line ensembles with constant parameters $(c/2, C)$.

Proof. Note that the domain of definition of $\mathcal{L}_{n, y_n}^{\text{shift}}$ has left-hand endpoint $-z_n - y_n$ at most $-c n^{\varphi_1} + c/2 \cdot n^\theta \leq -c/2 \cdot n^{\varphi_2}$. Thus $RS(1)$ holds.

Note that the parabolically adjusted random variable $\mathcal{L}_{n, y_n}^{\text{shift}}(1, z) + Q(z)$ with which $RS(2)$ and (3) are concerned equals $\mathcal{L}_n(1, z + y_n) - l(z + y_n, y_n) + Q(z) = \mathcal{L}_n(1, z + y_n) - Q(z + y_n) \in$ view of (11). Thus $RS(2)$ and (3) for $\mathcal{L}_{n, y_n}^{\text{shift}}$ follow from their counterparts for \mathcal{L}_n, for values of $|z|$ at most $c n^{\varphi_2} - y_n$ and thus when $|z| \leq c/2 \cdot n^{\varphi_2}$. \(\square\)
5.3.2. The upper tail of the maximum of a Brownian Gibbs ensemble top curve. We now present a result similar to the ‘no big max’ Lemma 5.1 of [CH14]. Our proposition roughly asserts that the upper tail estimate \(\exp\{-O(t^{3/2})\} \) for the one-point law in RS(3) remains valid when we instead consider the maximum top curve value.

Proposition 5.12. Let \(\mathcal{L}_n \) be a \(\varphi \)-regular sequence of Brownian Gibbs line ensembles for some given \(\varphi \in (0, \infty)^3 \) and constant parameters \((c, C)\). For \(r \in [0, c/2 \cdot n^{\varphi_1 \wedge \varphi_2}] \), \(t \in [2^{7/2}, 2n^{\varphi_3}] \) and \(n \geq (2c)^{-2(\varphi_1 \wedge \varphi_2)^{-1}} \),

\[
\mathbb{P}\left(\sup_{x \in [-r,r]} (\mathcal{L}_n(1, x) + 2^{-1/2} x^2) \geq t \right) \leq (r + 1) \cdot 6C \exp\left\{-2^{-9/2}ct^{3/2}\right\}.
\]

As we will shortly demonstrate, the proposition reduces via the parabolic invariance Lemma 5.11 to the next lemma, which concerns the top curve supremum over a bounded interval. The proof of the lemma is an early illustration of the utility of the Brownian Gibbs property, showing how when a Brownian Gibbs ensemble attains a very high value at a possibly exceptional time, it in fact typically adopts rather high values on a neighbourhood of nearby times; thus, such behaviour may occur only with probability dictated by the one-point upper bound axiom RS(3).

Lemma 5.13. Let \(\mathcal{L}_n \) be a \(\varphi \)-regular sequence of Brownian Gibbs line ensembles for some given \(\varphi \in (0, \infty)^3 \). For \(t \in [2^{7/2}, 2n^{\varphi_3}] \) and \(n \geq (2c)^{-2(\varphi_1 \wedge \varphi_2)^{-1}} \),

\[
\mathbb{P}\left(\sup_{x \in [-2,2]} \mathcal{L}_n(1, x) \geq t \right) \leq 6C \exp\left\{-ct^{3/2}/8\right\}.
\]

Proof of Proposition 5.12. Note that

\[
\sup_{x \in [-r,r]} (\mathcal{L}_n(1, x) + 2^{-1/2} x^2) \leq \max \sup_{x \in [m-1,m+1]} (\mathcal{L}_n(1, x) + 2^{-1/2} x^2),
\]

where the maximum is taken over even integers \(m \) with \(|m| \leq r\). The supremum on the right-hand side equals

\[
\sup_{x \in [-1,1]} (\mathcal{L}^{\text{shift}}_{n,m}(1, x) + 2^{-1/2} x^2).
\]

As such, we will now be able to use Lemma 5.11 to reduce Proposition 5.12 to Lemma 5.13 using a union bound to find that the probability in the proposition is at most an \((r + 1)^{\text{st}}\) multiple of

\[
\mathbb{P}\left(\sup_{x \in [-1,1]} (\mathcal{L}^{\text{shift}}_{n,m}(1, x) + 2^{-1/2} x^2) \geq t \right) \leq \mathbb{P}\left(\sup_{x \in [-1,1]} \mathcal{L}^{\text{shift}}_{n,m}(1, x) \geq t/2 \right),
\]

where we used \(t \geq 25/2 \). We now apply Lemma 5.13 to bound this quantity, noting from Lemma 5.11 that the shifted ensembles \(\mathcal{L}^{\text{shift}}_{n,m} \) over the range \(|m| \leq r\) are \(\varphi \)-regular, because \(r \leq c/2 \cdot n^{\varphi_1 \wedge \varphi_2} \). This completes the proof of Proposition 5.12.

Proof of Lemma 5.13. We will prove the lemma in the guise

\[
\mathbb{P}\left(\sup_{x \in [-2,0]} \mathcal{L}_n(1, x) \geq t \right) \lor \mathbb{P}\left(\sup_{x \in [0,2]} \mathcal{L}_n(1, x) \geq t \right) \leq 3C \exp\left\{-ct^{3/2}/8\right\},
\]

for \(t \geq 2^{7/2} \).

We prove (12) only for the latter probability, the two proofs being the same. Let \(\chi \) denote the supremum of values \(x \in [0,2] \) for which \(\mathcal{L}_n(1, x) \geq t \), with \(\chi = -\infty \) if no such point exists. It is our
aim then to bound \(\mathbb{P}(\chi \in [0, 2]) \). For \(r > 0 \), let \(\cup p_1^{-2}(r) \) denote the event that \(\mathcal{L}_n(1, -2) \geq -2^{3/2} - r \), so that the one-point lower bound \(\text{RS}(2) \) implies that

\[
\mathbb{P}(- \cup p_1^{-2}(r)) \leq C \exp \left\{ - c r^{3/2} \right\}
\tag{13}
\]

provided that \(r \in [1, n^{1/3}] \), since \(c n^{1/3} \geq 2 \). Note that \(\{1\} \times [-2, \chi \vee -2] \) is a stopping domain. We now consider the choice \(r = t/2 - 2^{3/2} \), this value lying in the interval \([1, n^{1/3}]\) due to our assumption on \(t \). By the strong Gibbs Lemma \(5.2\) and the monotonicity Lemma \(5.3\) the conditional distribution of \(\mathcal{L}_n(1, \cdot) : [-2, \chi] \to \mathbb{R} \) under \(\mathbb{P} \) given \(\{\chi \in [0, 2]\} \cap \cup p_1^{-2}(t/2 - 2^{3/2}) \) stochastically dominates \(\mathcal{B}_{1, -t/2, t}^{[-2, \chi]} \). Since zero is closer to \(\chi \) than it is to \(-2\), the probability that the latter bridge at zero exceeds \(t/2(t - t/2) = t/4 \) is at least one-half. Thus,

\[
\mathbb{P}\left(\mathcal{L}_n(1, 0) \geq t/4 \bigg| \chi \in [0, 2], \cup p_1^{-2}(t/2 - 2^{3/2}) \right) \geq \frac{1}{2},
\]

from which we find that

\[
\mathbb{P}(\chi \in [0, 2]) \leq 2 \mathbb{P}\left(\mathcal{L}_n(1, 0) \geq t/4 \right) + \mathbb{P}\left(- \cup p_1^{-2}(t/2 - 2^{3/2}) \right).
\]

Applying RS(3) using \(2 \geq cn^{1/9} \) and \((13)\),

\[
\mathbb{P}(\chi \in [0, 2]) \leq 2 C \exp \left\{ - c 2^{-3} t^{3/2} \right\} + C \exp \left\{ - c (t/2 - 2^{3/2})^{3/2} \right\}.
\]

Since \(t \geq 2^{7/2} \), we obtain \((12)\). \(\square \)

6. The close encounter probability in finite systems of mutually avoiding Brownian bridges

We now study the \(k \)-curve closeness probability in \(k \)-curve systems, finding that the \(k^2 - 1 \) exponent arises for them. The principal conclusion of this section will be Proposition \(6.3\).

First we need the next proposition, a basic input from integrable probability. Recall that \(\bar{i} \) denotes the \(k \)-decreasing list \((k - 1, k - 2, \cdots, 1, 0) \in \mathbb{R}_k^k\).

Proposition 6.1. Let \(k \in \mathbb{N} \) and \(\rho, K > 0 \), and let \(\bar{y} \in [-K, K]^+_{\mathbb{R}} \) and \(\eta \in (0, \rho k^{-2} K^{-1}) \).

1. We have that

\[
\mathbb{R}_{k, \eta, \bar{y}}^{[0, \rho]} \left(\text{NoTouch}^{[0, \rho]} \right) = \eta^{k(k-1)/2} \cdot \rho^{-k(k-1)/2} \cdot \prod_{1 \leq i < j \leq k} (y_j - y_i) \cdot (1 + E),
\tag{14}
\]

where the error term \(E \) satisfies

\[
-2\eta \rho^{-1} k^2 K \leq E \leq (\rho^2 - 1) \eta \rho^{-1} k^2 K.
\tag{15}
\]

2. Suppose that the left endpoint vector \(\bar{\eta} \) in the left-hand side of \((14)\) is replaced by any vector \(\bar{x} \in \mathbb{R}^k_\mathbb{R} \) for which \(x_1 < x_k + \eta \). Then the upper bound on the error term \(E \) stated in \((13)\) remains valid.

3. Suppose instead that this same vector \(\bar{\eta} \) is replaced by any vector \(\bar{x} \in \eta \bar{\eta} + \mathbb{R}^k_\mathbb{R} \) : that is, by any vector with the property that each of its consecutive component differences is at least \(\eta \). Then the lower bound on \(E \) stated in \((13)\) is still valid.
Proof: (1). Set $\bar{x} = \eta \bar{y}$. By the Karlin-McGregor formula,

$$B_{k,\eta,\bar{y}}^{[0,\varrho]}(\text{NoTouch}^{[0,\varrho]}) = \left(\prod_{i=1}^{k} h(x_i, y_i) \right)^{-1} \det \left(h(x_i, y_j) \right)_{1 \leq i, j \leq k},$$

where $h : \mathbb{R}^2 \to [0, \infty)$ equals $h(x, y) = g_{0, \varrho}(y - x) = (2\pi \varrho)^{-1/2} \exp \left\{ - \frac{(x-y)^2}{2\varrho} \right\}$. (This form of the Karlin-McGregor formula follows from equation (4) in their paper [KM59] in the case of Brownian motions, taking $n = k$, $E_i = (y_i - \epsilon, y_i + \epsilon)$ and considering the limit $\epsilon \searrow 0$. In fact, the authors demand that the processes involved be stationary. The method of proof does not require this hypothesis in our case; however, if we insist on applying the result directly, we might do so by making use of Brownian motions on a circle and letting the circle’s radius tend to infinity.) Thus,

$$B_{k,\eta,\bar{y}}^{[0,\varrho]}(\text{NoTouch}^{[0,\varrho]}) = \exp \left\{ - \varrho^{-1} \sum_{i=1}^{k} x_i y_i \right\} \cdot \det \left(e^{x_i y_j \varrho^{-1}} \right)_{1 \leq i, j \leq k}. $$

The determinant is Vandermonde, and thus may be factored:

$$\det \left(e^{x_i y_j \varrho^{-1}} \right)_{1 \leq i, j \leq k} = \det \left(\left(e^{y_j \varrho^{-1}} \right)^{i-1} \right)_{1 \leq i, j \leq k} = \prod_{1 \leq i < j \leq k} \left(e^{y_j \varrho^{-1}} - e^{y_i \varrho^{-1}} \right).$$

Writing the term in the product in the form $\eta(y_j - y_i) \varrho^{-1} e^{y_i \varrho^{-1}}$ for certain $t_{i,j} \in [y_i, y_j]$ using the mean value theorem, we find that $B_{k,\eta,\bar{y}}^{[0,\varrho]}(\text{NoTouch}^{[0,\varrho]})$ equals

$$\left(\eta \varrho^{-1} \right)^{k(k-1)/2} \cdot \left(\prod_{1 \leq i < j \leq k} (y_j - y_i) \right) \cdot (1 + E),$$

where

$$1 + E = \exp \left\{ - \varrho^{-1} \sum_{i=1}^{k} x_i y_i \right\} \cdot \exp \left\{ \eta \varrho^{-1} t \right\}$$

with $t = \sum_{1 \leq i < j \leq k} t_{i,j}$. The two right-hand factors will now be bounded by the same upper and lower bounds: so do, we begin by seeing that the terms $\sum_{i=1}^{k} x_i y_i$ and ηt are in absolute value at most $\eta k^2 K$. In the latter case, this follows from $|t| \leq k^2 K$, a fact which is due to $\bar{y} \in [-K, K]^k$. In the former, it is a consequence of Cauchy-Schwarz. Since $\eta \varrho^{-1} k^2 K$ is at most one by hypothesis, the inequality $e^x \leq 1 + (e-1)x$, $x \in [0, 1]$, yields an upper bound on both of the last displayed factors; a lower bound on each is furnished by $1 + x \leq e^x$, $x \in \mathbb{R}$. What we have learnt is that

$$\left(1 - \eta \varrho^{-1} k^2 K \right)^2 \leq 1 + E \leq \left(1 + (e-1)\eta \varrho^{-1} k^2 K \right)^2.$$

Another use of $\eta \varrho^{-1} k^2 K \leq 1$ yields Proposition (1).

Remark. The preceding proof is a variant of arguments in [Gra99], which derives asymptotic avoidance probabilities for Brownian ensembles with various constraints.

(2). The differences between successive components of the vector \bar{x} are all less than η. The law $B_{k,\eta,\bar{y}}^{[0,\varrho]}$ may be obtained from $B_{k,\bar{x},\bar{y}}^{[0,\varrho]}$ by an affine translation of each curve. Since the differences between successive components of the vector \bar{x} are all less than η, the occurrence of $\text{NoTouch}^{[0,\varrho]}$ is maintained by this procedure.

(3). The role-reversed observation applies. □
Definition 6.2. Let \(k, m \in \mathbb{N} \) satisfy \(m \geq k \). For \([a, b] \subseteq \mathbb{R}, x \in [a, b], \phi > 0\), and an ensemble \(E : [1, m] \times [a, b] \to \mathbb{R} \), we define the event \(\text{Close}(k; E, x, \phi) \) that

\[
E(i, x) - E(k, x) \in (0, \phi) \text{ for each } i \in [1, k - 1] .
\]

When the ensemble \(E \) is ordered, this event is specified by the condition that \(E(1, x) < E(k, x) + \phi \), consistently with the usage of this notation in Theorem 4.3.

Theorems 4.3(1) and 4.4 assert that this event’s probability behaves as \(\varepsilon^{k^2 - 1 + o(1)} \) in a limit of \(\varepsilon \downarrow 0 \). We now present a simple result that gives a first indication as to why this behaviour may be expected. A system of \(\varepsilon \) long corridors has such a probability of near-touch at the midpoint time, provided that the entrance and exit data are both well-spaced; moreover, this remains true in the presence of a lower boundary condition that consistently remains a respectful distance below the endpoint locations.

Proposition 6.3.

1. Suppose that \(\bar{x}, \bar{y} \in 2i + [0, \infty)_k \) and \(f : [-1, 1] \to [-\infty, -1] \) is measurable. Moreover, we assume that \(x_1 \vee y_1 \leq K \) for some given constant \(K \geq 1 \). Then

\[
B_{k; \bar{x}, \bar{y}}([-1, 1]) \left(\text{Close}(B, 0, \phi) \mid \text{NoTouch}_f^{[-1, 1]} \right) \leq \phi^{k^2 - 1} \cdot (1 - 2e^{-1})^{-k} \pi^{-(k-1)/2} K^{k^2} e^{4k^4}.
\]

2. Suppose that \(\bar{x}, \bar{y} \in \bar{x} + [0, \infty)^k \), that \(\bar{x}, \bar{y} \in [0, K]^k \) for some given \(K \geq 1 \); and also that \(f : [-1, 1] \to \mathbb{R} \) is measurable and satisfies \(f \leq -2k \). If \(\phi \leq (2kK)^{-1} \), then

\[
B_{k; \bar{x}, \bar{y}}^{[-1, 1]} \left(\text{Close}(B, 0, \phi) \mid \text{NoTouch}_f^{[-1, 1]} \right) \geq \phi^{k^2 - 1} \cdot (1 - 2\pi^{1/2} e^{-1}) \frac{1}{16} (2k)^{-2k^2 - 1} \pi^{-2k} \exp \left\{ -2(k - 1)(2k + 1)^2 \right\}.
\]

Note that the case \(f = -\infty \) of an absent lower boundary condition is included.

Proof of Proposition 6.3. By Bayes’ theorem, the conditional probability in question equals

\[
B_{k; \bar{x}, \bar{y}}^{[-1, 1]} \left(\text{NoTouch}_f^{[-1, 1]} \right) ^{-1} \cdot B_{k; \bar{x}, \bar{y}}^{[-1, 1]} \left(\text{Close}(B, 0, \phi), \text{NoTouch}_f^{[-1, 1]} \right) .
\]

The first factor is the reciprocal of the acceptance probability associated to the law \(B_{k; \bar{x}, \bar{y}}^{[-1, 1]} \). This probability is bounded below for our parameter choices, as we now show.

Lemma 6.4. When \(\bar{x}, \bar{y} \in 2i + [0, \infty)^k \) and \(f : [-1, 1] \to \mathbb{R} \) satisfies \(f \leq -1 \),

\[
B_{k; \bar{x}, \bar{y}}^{[-1, 1]} \left(\text{NoTouch}_f^{[-1, 1]} \right) \geq (1 - 2e^{-1})^k.
\]

Proof. Consider the planar line segments \(\ell_i \subset [-1, 1] \times \mathbb{R} \) that interpolate the boundary data \((-1, x_i)\) and \((1, y_i)\) for \(i \in [1, k] \). The corridor \(C_i \subset [a, b] \times \mathbb{R} \) consists of points whose vertical displacement from \(\ell_i \) is less than one. Under our assumption, the \(k \) corridors are disjoint, with the lowest one, \(C_k \), lying above the graph of \(f \). Thus, for a sample of \(B_{k; \bar{x}, \bar{y}}^{[-1, 1]} \) to realize the event \(\text{NoTouch}_f^{[-1, 1]} \), it is enough that each of the \(k \) curves remain in the corridor that shares its
index. We may express this eventuality in terms of the standard bridges associated to the curves: in these terms, this event is

\[\bigcap_{i=1}^{k} \left\{ |B^{[-1,1]}(i, x)| < 1 \quad \forall x \in [-1, 1] \right\}. \]

The standard bridges are independent under $B^{[-1,1]}_{k,\bar{x},\bar{y}}$. Thus, Lemma 5.9 implies that the $B^{[-1,1]}_{k,\bar{x},\bar{y}}$-probability of the displayed event is at least $(1 - 2e^{-1})^k$.

We may write the second factor in (16) in the form of a product of three terms

\[B^{[-1,1]}_{k,\bar{x},\bar{y}} \left(\text{Close}(B, 0, \phi), \text{NoTouch}^{[-1,1]}_f \right) = A_1 \cdot A_2 \cdot A_3, \tag{17} \]

where the first term is the probability of closeness

\[A_1 = B^{[-1,1]}_{k,\bar{x},\bar{y}} \left(\text{Close}(B, 0, \phi) \right); \]

the second is the conditional probability of avoidance on the left interval $[-1, 0]$ given closeness

\[A_2 = B^{[-1,1]}_{k,\bar{x},\bar{y}} \left(\text{NoTouch}^{[-1,0]}_f \bigg| \text{Close}(B, 0, \phi) \right), \]

and the third is the conditional probability of avoidance on the right interval $[0, 1]$,

\[A_3 = B^{[-1,1]}_{k,\bar{x},\bar{y}} \left(\text{NoTouch}^{[0,1]}_f \bigg| \text{Close}(B, 0, \phi), \text{NoTouch}^{[-1,0]}_f \right). \]

As we will now show, these events have probabilities in the low ϕ limit described by the dominant terms ϕ^{k-1}, $\phi^{k(k-1)/2}$ and $\phi^{k(k-1)/2}$. Indeed, this triple product probability and the formula

\[\phi^{k^2-1} = \phi^{k-1} \cdot \phi^{k(k-1)/2} \cdot \phi^{k(k-1)/2}, \]

is a useful overview of the reason why we may at least begin to expect to see the exponent $k^2 - 1$ in the one-point k-curve closeness estimate in Theorems 4.3(1) and 4.4.

We now substantiate these claims about dominant behaviour in the $\phi \searrow 0$ limit. The next lemma treats upper bounds and in view of (17) completes the proof of Proposition 6.3(1).

Lemma 6.5. Let $f : [-1, 1] \to \mathbb{R} \cup \{-\infty\}$ be measurable.

1. For any vectors $\bar{x}, \bar{y} \in \mathbb{R}^k$,

\[A_1 \leq \pi^{-(k-1)/2} \phi^{k-1}. \]

2. If $\bar{x}, \bar{y} \in [0, K]^k$ for some given $K \geq 1$, then A_2 and A_3 are both at most $\phi^{k(k-1)/2} \cdot K^{k^2/2} e^{2k^2}$.

Proof (1). We may condition on the value of $B(k, 0)$; if it is taken equal to x, then the closeness event takes the form $\cap_{i=1}^{k-1} \{ B(i, 0) \in [x, x + \phi] \}$. The random variable $B(i, 0)$ is normally distributed under $B^{[-1,1]}_{k,\bar{x},\bar{y}}$ with mean $(x_i + y_i)/2$ and variance $1/2$; from (10), we thus see that it has probability at most $\phi \pi^{-1/2}$ to belong to any given interval of length ϕ. The upper bound in the lemma’s first part results from multiplying this bound over the $k - 1$ indices.

Proof (2). The quantity A_2 is at most the supremum of

\[B^{[-1,0]}_{k,\bar{x},\bar{y}} \left(\text{NoTouch}^{[-1,0]}_f \right) \]

as \bar{x} varies over $[0, K]^k$ and \bar{z} over vectors in some displacement of the set $[0, \phi]^k$. We may eliminate the lower boundary condition by setting $f = -\infty$, since Lemma 5.3 shows that doing so only
increases the probability in question. We then apply Proposition 6.1(2) with \(\eta = \phi \) and \(\rho = 1 \) to find that

\[
A_2 \leq \phi^{(k-1)/2} \cdot K^{k(k-1)/2} (1 + (e^2 - 1)\phi k^2 K).
\]

Using \(\phi \leq 1 \leq K \), we confirm the stated upper bound on \(A_2 \).

The quantity \(A_3 \) is at most the supremum of

\[
B_{[0,1]}^{0,1} \left(\text{NoTouch}_{f}^{[0,1]} \right)
\]

as \(\bar{y} \) varies over \([0, K]^k\) and \(\bar{z} \) over vectors in some displacement of the set \([0, \phi]^k\). The argument in the preceding lemma proves the upper bound on \(A_3 \).

In order to prove the lower bound on \(B_{[k:z;\bar{y},\bar{z}]}^{[1,1]} \left(\text{Close}(B, 0, \phi), \text{NoTouch}_{f}^{[-1,1]} \right) \) in Proposition 6.3(2), we first specify a convenient sufficient condition for the occurrence of \(\text{Close}(B, 0, \phi) \). Let \(D \subset \mathbb{R}^k \) denote the box

\[
D = \left[2k - 2, 2k - 1 \right] \times \cdots \times \left[2, 3 \right] \times \left[0, 1 \right],
\]

and (using the bar notation for \(k \)-vectors) note that

\[
\left\{ \bar{B}(0) \in \frac{1}{2k} \phi \cdot D \right\} \subset \text{Close}(B, 0, \phi).
\]

In place of (17), we may thus write

\[
B_{[k:z;\bar{y},\bar{z}]}^{[-1,1]} \left(\bar{B}(0) \in \frac{1}{2k} \phi \cdot D, \text{Close}(B, 0, \phi), \text{NoTouch}_{f}^{[-1,1]} \right) = H_1 \cdot H_2 \cdot H_3,
\]

where

\[
H_1 = B_{[k:z;\bar{y},\bar{z}]}^{[-1,1]} \left(\bar{B}(0) \in \frac{1}{2k} \phi \cdot D \right),
\]

\[
H_2 = B_{[k:z;\bar{y},\bar{z}]}^{[-1,1]} \left(\text{NoTouch}_{f}^{[-1,0]} \left| \bar{B}(0) \in \frac{1}{2k} \phi \cdot D \right. \right),
\]

and

\[
H_3 = B_{[k:z;\bar{y},\bar{z}]}^{[-1,1]} \left(\text{NoTouch}_{f}^{[0,1]} \left| \bar{B}(0) \in \phi \frac{1}{2k} D, \text{NoTouch}_{f}^{[-1,0]} \right. \right).
\]

Proposition 6.3(2) thus follows from the next lemma. \(\square \)

Lemma 6.6.

1. If \(\phi \leq 1 \) and \(\bar{x}, \bar{y} \in [0, K]^k \) for some given \(K \geq 1 \), then

\[
H_1 \geq \phi^{k-1} \cdot (1 - 2\pi^{-1/2}e^{-1})(2k)^{(k-1)\pi-(k-1)/2} \exp \left\{ - (k - 1)(2K + 1)^2 \right\}.
\]

2. If \(\phi \leq (2kK)^{-1} \), \(\bar{x}, \bar{y} \in i + \left[0, \infty \right)^k \) and \(f : [-1, 1] \to \mathbb{R} \) is measurable and satisfies \(f \leq -2k \), then both \(H_2 \) and \(H_3 \) are at least

\[
\phi^{k(k-1)/2} \cdot \frac{1}{2} (2k)^{-k(k-1)/2}.
\]

Proof (1). Recall that \(B(i, 0) \) has law \(\nu_{(x_i + y_i)/2,1/2} \) under \(B_{[k:z;\bar{y},\bar{z}]}^{[-1,1]} \). Note that each of these means \((x_i + y_i)/2 \) lies in \([0, K] \). The probability that \(B(k, 0) \) adopts a value in \([-1, K + 1] \) is at least

\[
1 - 2g_{0,1/2}(1, \infty) \geq 1 - 2\pi^{-1/2}e^{-1}.
\]

Supposing that it adopts such a value \(x \in [-1, K + 1] \), we may consider \(i \in [1, k - 1] \) and note that the event that \(B(i, 0) \) lies in any given interval of length \(\frac{1}{2k} \phi \) inside \([x, x + \phi]\) occurs with probability at least \(\int_I g_{0,1/2}(x) \, dx \) where the interval \(I \) is of length \(\frac{1}{2k} \phi \) and is contained in \([-2K, 2K + \phi]\). Since \(\phi \leq 1 \), this expression is at least \(\frac{1}{2k} \phi \pi^{-1/2} \exp \left\{ -(2K + 1)^2 \right\} \).
Note that H_2 is at least the infimum of
\[
B_{k;\bar{x},\bar{z}}^{-1,0} \left(\text{NoTouch}^{-1,0}_f \right)
\]
as \bar{x} varies over elements of $\bar{\bar{x}} + [0,\infty)^k$ and \bar{z} over elements of $\bar{\bar{z}}^{-1}D$. The displayed quantity may be represented
\[
B_{k;\bar{x},\bar{z}}^{-1,0} \left(\text{NoTouch}^{-1,0} \right) \cdot B_{k;\bar{x},\bar{z}}^{-1,0} \left(\text{NoTouch}^{-1,0}_f \mid \text{NoTouch}^{-1,0} \right).
\]
A lower bound on the first term in the product is provided by Proposition 6.11(3) with the choice $\eta = \frac{\phi}{2\pi}$ (and $\rho = 1$). The assumption that $\phi < (2kK)^{-1}$ implies that the term $1 + E$ is at least $1/2$. The second term is bounded below by means of Lemma 5.10 taking $[a,b]$ equal to $[-1,0]$ and \bar{x} equal to its present value, as well as $\bar{y} = \bar{z}$ and $r = k$. The lemma bounds above the probability of the complementary event, finding this probability to be at most $(1 - 2e^{-1})^{-1}e^{-2}\pi^2$, which is at most $1/2$. Thus, the second term is at least $1/2$.

The lower bound on H_3 follows similarly.

We end this section by noting a related result that will be used later.

Lemma 6.7. For any $\phi \in (0, e^{-1})$, $k \geq 2$ and $\bar{x}, \bar{y} \in \mathbb{R}^k$,
\[
B_{k;\bar{x},\bar{y}}^{-1,1} \left(\text{NoTouch}^{-1,1} \cap \text{Close}(B, 0, \phi) \right) \leq 4258 \cdot (36)^k (k^2 - 1)k^2 \phi k^{2 - 1}(\log \phi^{-1})^2/2.
\]

Proof. Suppose in the first instance that $(x_1 - x_k) \vee (y_1 - y_k) \leq \hat{C}(\log e^{-1})^{1/2}$, where $\hat{C} = 6(k^2 - 1)^{1/2}$. By the affine symmetry of Brownian bridge, we may suppose that $\bar{x}, \bar{y} \in [0,K]^k$ with $K = \hat{C}(\log e^{-1})^{1/2} \geq 1$. With this choice of K, we may apply Lemma 6.10 to the formula (17) to learn that
\[
B_{k;\bar{x},\bar{y}}^{-1,1} \left(\text{NoTouch}^{-1,1} \cap \text{Close}(B, 0, \phi) \right) \leq \phi k^{2 - 1}(\log \phi^{-1})^{3/2} \hat{C}k^2 \cdot e^{-(k-1)/2} e^4 k^{-4}.
\]
The post-right-hand term is at most 4258, (because $\sup_{k \geq 2} \pi^{-k/2} k^4$ is attained by $k = 7$ and is thus at most 44).

Suppose instead that $(x_1 - x_k) \vee (y_1 - y_k) > \hat{C}(\log e^{-1})^{1/2}$. In this case, note that
\[
B_{k;\bar{x},\bar{y}}^{-1,1} \left(\text{Close}(B, 0, \phi) \right) \leq \sum_{i=1}^k B_{k;0,0}^{-1,1} \left(|B(i,0)| \geq \frac{1}{6} \hat{C}(\log \phi^{-1})^{1/2} \right)
\]
\[
\leq k \cdot 2(2\pi)^{-1/2} \left(\frac{1}{6} \hat{C}(\log \phi^{-1})^{1/2} \right)^{-1} \exp \left\{ - \frac{1}{18} \hat{C}^2 \log \phi^{-1} \right\} \leq \phi^{C^2/36},
\]
where in the first inequality, we used $\phi < \frac{1}{6} \hat{C}(\log \phi^{-1})^{1/2}$ (a bound due to $\phi \leq e^{-1}$ and $\hat{C} \geq 6$); and then $\hat{C}(\log \phi^{-1})^{1/2} \geq 3\sqrt{2} \pi^{1/2}k$. Since $C^2/36 = k^2 - 1$, we find that
\[
B_{k;\bar{x},\bar{y}}^{-1,1} \left(\text{Close}(B, 0, \phi) \right) \leq \phi^{k^2 - 1}.
\]
This completes the proof of Lemma 6.7. \qed
7. THE RECONSTRUCTION OF THE MISSING CLOSED MIDDLE

Thus far, we have reduced Theorem 2.3 to Theorems 4.3(1) and 4.4, which concern regular sequences of Brownian Gibbs ensembles. Our other main theorem, Theorem 2.1, which concerns Brownian bridge regularity of the Airy line ensemble, will be derived in Section 13 as a consequence of Theorem 4.5, this being the companion result phrased in terms of regular Brownian Gibbs sequences.

As such, these sequences are consistently employed, and henceforth our standing and implicit assumption is that $L_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}$, $n \in \mathbb{N}$, denotes a regular sequence of Brownian Gibbs line ensembles.

Our principal results amount to upper bounds on the probability of events expressed in terms of Brownian Gibbs ensemble curves where the bound is expressed in units of the Brownian bridge ensemble probability of the same event. An example that is clearly in this vein is Corollary 2.2(1). Another is Theorem 4.3(1), which asserts that k-curve ε-closeness has dominant behaviour of the form at most $\varepsilon^{k^2 - 1 + o(1)}$ in the $\varepsilon \to 0$ limit. In Proposition 6.3, we have seen this behaviour manifest in a simpler model of k mutually avoiding Brownian curves.

The guiding theme of the paper is a technique for proving such upper bounds that we will call the jump ensemble method. We now begin to set up some of the apparatus needed for the method. As we do so, it is useful to bear in mind that the lower bound counterpart Theorem 4.4 to the upper bound Theorem 4.3(1) is an easier result to prove. A part of the apparatus necessary for our upper bound method will be sufficient for the proof of Theorem 4.4, and it is this structure that we will introduce momentarily.

To motivate this structure, it is useful to give a sense of the guiding ideas of the proof of Theorem 4.4. The essence of these ideas is quite straightforward. We may consider the eventuality that the highest k curves of the ensemble L_n are separated from one another to unit order above locations -1 and 1, and are comfortably above the curve $L_n(k + 1, \cdot)$ throughout the interval $[-1, 1]$. If we can argue that this circumstance occurs with a probability that is uniform in the parameter n, then we may note that the conditional distribution of $L_n : [1, k] \times [-1, 1] \to \mathbb{R}$ verifies the hypotheses of Proposition 6.3; the lower bound in Theorem 4.3 will then result.

(We have just made the first use of a notational abuse that we will sometimes employ. The line ensemble L_n has domain of definition $[1, n] \times [-z_n, \infty)$. When we are interested in an ensemble’s behaviour on a subdomain, we will refer to such objects as $L_n : [1, k] \times [-1, 1] \to \mathbb{R}$, even though this is technically incorrect.)

We will verify that this separation circumstance has uniformly positive probability by introducing a procedure by which the law of the entire ensemble $L_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}$ may be sampled. The procedure may be viewed as a reconstruction: the law is realized, with the information that specifies it being represented in a certain convenient form. Some pieces of information in the representation are retained, and others are forgotten. The lost data is then reconstructed according to its conditional distribution given the retained data, so that a new, reconstructed, copy of the ensemble results.

Since the procedure and its jump ensemble elaboration will play such a key role in this paper, as we now present the procedure, we will discuss in some detail how it may be interpreted probabilistically.

7.1. Specifying the missing closed middle reconstruction procedure. Beyond the total curve number index n and the fixed index $k \in [1, n]$, the missing closed middle reconstruction
Alternatively, this data may be represented in the form:

\[P_{\text{middle}} \cdot \text{data} \]

and how may we conveniently depict this randomness? The perspective of the witness of the

\[L_{\text{middle}} \]

Clearly picturing the conditional law of what is unknown have a convenient and explicit representation?

We should address then the posed questions about the perspective of the witness of

\[L_{\text{middle}} \]

\[F \]

\[P \]

\[L_{\text{middle}} \]

\[\text{middle interval} \]

\[[\ell, r] \]

\[\text{straddled by the side intervals } [-2T, \ell] \]

\[[r, 2T] \]

Let \(a, b \in \mathbb{R} \) satisfy \(a \leq b \). For \(n \in \mathbb{N} \), recall the standard bridge ensemble \(L_{n}^{[a,b]} : [1, n] \times [a, b] \to \mathbb{R} \) induced on \([a, b] \) by \(L_{n} \), namely

\[L_{n}^{[a,b]}(i, x) = L_{n}(i, x) - \ell_{n}^{[a,b]}(i, x) \]

where \(\ell_{n}^{[a,b]}(i, \cdot) \) denotes the affine function whose values at \(a \) and \(b \) are \(L_{n}(i, a) \) and \(L_{n}(i, b) \).

Let \(F \) denote the missing closed middle \(\sigma \)-algebra, generated by the following collection of random variables:

- the curves \(L_{n} : [k + 1, n] \times [-z_{n}, \infty) \to \mathbb{R} \) of index at least \(k + 1 \);
- the highest \(k \) curves \(L_{n} : [1, k] \times [-z_{n}, -2T] \cup [2T, \infty) \to \mathbb{R} \) outside \((-2T, 2T)\);
- and the \(2k \) standard bridges \(L_{n}^{[-2T,\ell]}(i, \cdot) \) and \(L_{n}^{[r,2T]}(i, \cdot) \), where \(i \in [1, k] \).

This \(\sigma \)-algebra clearly depends on the index \(k \), though we omit display of this dependence in our notation.

Let \(P_{F} \) denote the conditional probability given \(F \). That is, \(P_{F}(A) = \mathbb{E}(1_{A} \, | \, F) \) for any measurable event \(A \). The law \(P_{F} \) represents the information available to, and statistical uncertainty of, the observer who is informed by an experimenter who samples the law \(P \) only of the data constituting \(F \).

To this observer, whom we may call the witness of \(F \), certain aspects of the behaviour of the line ensemble \(L_{n} : [1, n] \times [-z_{n}, \infty) \to \mathbb{R} \) remain unknown, and random.

The use of the law \(P_{F} \) is central to the proofs of our main results. It is thus valuable to carefully consider the nature of this object, a task which amounts to understanding the perspective of the witness of \(F \) as he considers the conditional law of the entire line ensemble given the available data. In this regard, we should ask: what is known to the witness, and what is random? Does the conditional law of what is unknown have a convenient and explicit representation?

Clearly picturing the \(F \)-witness’s perspective is also useful, because we will later present arguments based on resamplings of the line ensemble \(L_{n} \) under which the data that is frozen is an augmentation of that specifying \(F \). The concerned data in such arguments will be specified by a larger \(\sigma \)-algebra than \(F \), with the associated probability experiment having its own, more knowledgeable, witness. We will again evoke the perspective of these witnesses when we present these later arguments; the groundwork is set by clearly understanding the nature of \(P_{F} \).

We should address then the posed questions about the perspective of the witness of \(F \). What is known to this observer? Clearly, the three item list of data that specifies \(F \). What data is random, and how may we conveniently depict this randomness? The \(F \)-random data consists of

- \(L_{n} : [1, k] \times [\ell, r] \to \mathbb{R} \).

Alternatively, this data may be represented in the form:

- and the endpoint \(k \)-vectors \((L_{n}(i, \ell) : i \in [1, k]) \) and \((L_{n}(i, r) : i \in [1, k]) \);
- and the standard bridges \(L_{n}^{[\ell,r]}(i, \cdot) \) for \(i \in [1, k] \).
Both of these ways of writing the \mathcal{F}-random data will be used. We will call them the one-piece and two-piece list presentations. We speak of the missing closed middle because, as the two-piece list shows, the witness of \mathcal{F} is unaware of middle interval endpoint data as well as standard bridge data.

Consider for now the two-piece list presentation of the data. We first present a specification of a space of possible outcomes for the form of \mathcal{F}-random data in two-piece list form adopts the values (\bar{x}, \bar{y}) in the first item and \bar{b} in the second. Indeed, the witness may reconstruct the top k curves in this eventuality: for each $i \in [1, k]$, the i^{th} curve so reconstructed may be denoted by

$$\mathcal{L}_{n,i,y_i;b_i}^x(i, \cdot): [-z_n, \infty) \to \mathbb{R}.$$

It is specified by

$$\mathcal{L}_{n,i,y_i;b_i}^x(i, s) = \begin{cases}
\mathcal{L}_n(i, s) & s \in [-z_n, -2T), \\
\mathcal{L}_{n,-2T,\ell}^x(i, s) + \frac{\ell-s}{\ell+2T} \mathcal{L}_n(i, -2T) + \frac{s+2T}{\ell+2T} x_i & s \in [-2T, \ell], \\
\frac{s}{2T} x_i + \frac{s-r}{2T} y_i + b_i(s) & s \in [\ell, r], \\
\mathcal{L}_{n,r,2T}^x(i, s) + \frac{2T-s}{2T} y_i & s \in [r, 2T], \\
\mathcal{L}_n(i, s) & s \in (2T, \infty).
\end{cases} \quad (18)$$

Note that indeed the curve $\mathcal{L}_{n,i,y_i;b_i}^x(i, \cdot)$ depends on its parameters only via the i-indexed variables (x_i, y_i, b_i). The curve is compatible with the data in \mathcal{F} in the sense that the curve is specified by its form outside $(-2T, 2T)$, standard bridges on $[-2T, \ell]$ and on $[r, 2T]$, and its form on $[\ell, r]$; of these three pieces of data, the first two coincide with the data specified by \mathcal{F}.

As such, the set of k-vectors of reconstructed curves given by

$$\left(\mathcal{L}_{n,i,y_i;b_i}^x(i, \cdot): [-2T, 2T] \to \mathbb{R}, i \in [1, k] \right)$$

as the triple $(\bar{x}, \bar{y}, \bar{b})$ varies over $\mathbb{R}^k \times \mathbb{R}^k \times C_{0,0}([\ell, r], \mathbb{R})^k$ constitutes for the witness of \mathcal{F} a space of possible outcomes for the form of \mathcal{L}_n on $[1, k] \times [-2T, 2T]$. Note that here we have begun to neglect the region outside $[-2T, 2T]$ where \mathcal{F}-data dictates the outcome.

What law on this set of triples gives the conditional distribution for the witness of \mathcal{F} of the outcome $\mathcal{L}_n: [1, k] \times [-2T, 2T] \to \mathbb{R}$?

To answer this question, we begin by embuing the outcome set $\mathbb{R}^k \times \mathbb{R}^k \times C_{0,0}([\ell, r], \mathbb{R})^k$ with a reference measure, namely the product measure of k-dimensional Lebesgue measure in the first two coordinates, and the standard k-dimensional Brownian bridge law $\mathbb{B}_{k,0,0}^{[\ell,r]}$ in the third.

We may then find a form for the conditional distribution in question by finding its Radon-Nikodym distribution with respect to the reference measure. Indeed, we let $h : \mathbb{R}^k \times \mathbb{R}^k \times C_{0,0}([\ell, r], \mathbb{R})^k \to [0, \infty)$ denote the density with respect to the reference measure of the conditional law under $\mathbb{P}_\mathcal{F}$ of the triple of k-vectors

$$\left(\mathcal{L}_n(i, \ell) : i \in [1, k] \right), \left(\mathcal{L}_n(i, r) : i \in [1, k] \right), \left([\ell, r] \to \mathbb{R} : x \to \mathcal{L}_n^x([\ell, r])(i, x) : i \in [1, k] \right).$$
The Brownian bridge basic Lemma 5.7 may be used to explicitly compute h: $h(\bar{x}, \bar{y}, \bar{b})$ equals

$$Z^{-1} \prod_{i=1}^{k} \exp \left\{ -\frac{1}{2(\ell+2T)} \left(L_n(i, -2T) - x_i \right)^2 - \frac{1}{2(r-\ell)} (x_i - y_i)^2 \right\} \cdot M_{1,k+1}(\bar{x}, \bar{y}, \bar{b}) ,$$

where $M_{1,k+1}(\bar{x}, \bar{y}, \bar{b})$ denotes the indicator function of the event

$$\left\{ L_n^{x_i,y_i,b_i}(i,s) > L_n^{\bar{x}_{i+1},\bar{y}_{i+1},\bar{b}_{i+1}}(i+1,s) \quad \forall (s,i) \in [-2T,2T] \times [1,k-1] \right\} \cap \left\{ L_n^{x_k,y_k,b_k}(k,s) > L_n(k+1,s) \quad \forall s \in [-2T,2T] \right\} ;$$

the role of the \mathcal{F}-measurable quantity $Z \in (0,\infty)$ in (19) to normalize h so that it is the density function of a probability measure. This means that Z is specified by

$$Z = \int \prod_{i=1}^{k} \exp \left\{ -\frac{1}{2(\ell+2T)} \left(L_n(i, -2T) - x_i \right)^2 - \frac{1}{2(r-\ell)} (x_i - y_i)^2 \right\} \cdot M_{1,k+1}(\bar{x}, \bar{y}, \bar{b}) \, d\bar{x} \, d\bar{y} \, d\bar{b} ,$$

where the integral is over the outcome set.

In other words, the witness of \mathcal{F}, in considering the eventuality that the \mathcal{F}-random data adopts the value $(\bar{x}, \bar{y}, \bar{b})$, determines that this outcome occurs with density h evaluated at this point. Two considerations, that may be labelled kinetic and potential, contribute to the formula for h: the first, represented by the omission of the factor $M_{1,k+1}(\bar{x}, \bar{y}, \bar{b})$ in (19), expresses the Gaussian costs associated to the placement of the endpoint vectors \bar{x} and \bar{y} at ℓ and r. The second, potential, factor is concerned with the need to check that the line ensemble that results from the placement of curves dictated by the triple $(\bar{x}, \bar{y}, \bar{b})$ observes the curve avoidance requirements of the ensemble. It is useful to categorize the avoidance conditions that are expressed by the equation $M_{1,k+1}(\bar{x}, \bar{y}, \bar{b}) = 1$. Before we do this, a word on our notation: we write $M_{1,k+1}$ to indicate that all of the top $k+1$ curves are implicated in the constraints; indeed, the concerned event, in (20), may be viewed as the intersection of an internal avoidance constraint involving the top k curves (that are random for the witness), and an external constraint that stipulates avoidance of the kth curve with the non-random boundary condition $L_n(k+1, \cdot) : [-2T,2T] \to \mathbb{R}$.

For $A \subseteq [-2T,2T]$, write $M_{1,k+1}^A(\bar{x}, \bar{y}, \bar{b})$ for the indicator function of the event

$$\left\{ L_n^{x_i,y_i,b_i}(i,s) > L_n^{\bar{x}_{i+1},\bar{y}_{i+1},\bar{b}_{i+1}}(i+1,s) \quad \forall (s,i) \in A \times [1,k-1] \right\} \cap \left\{ L_n^{x_k,y_k,b_k}(k,s) > L_n(k+1,s) \quad \forall s \in A \right\} .$$

The quantity $M_{1,k+1}(\bar{x}, \bar{y}, \bar{b})$ is thus alternatively denoted $M_{1,k+1}^{[-2T,2T]}(\bar{x}, \bar{y}, \bar{b})$. It equals the product

$$M_{1,k+1}^{[-2T,\ell]} \cdot M_{1,k+1}^{[\ell,r]} \cdot M_{1,k+1}^{[r,2T]}$$

evaluated at $(\bar{x}, \bar{y}, \bar{b})$.
We may think of the witness of \(\mathcal{F} \) as testing the viability of the data \((\bar{x}, \bar{y}, \bar{b})\) by performing two checks: a side intervals test, which checks that both \(M^{[r,2T]}_{1,k+1}\) and \(M^{[r,2T]}_{1,k+1}\) equal one; and a middle interval test, which checks that \(M^{[r,2T]}_{1,k+1}\) also equals one. Each of these conditions is determined by \((\bar{x}, \bar{y}, \bar{b})\) and the \(\mathcal{F}\)-measurable data to which the witness is privy. In fact, the two criteria in the side intervals test are determined respectively by \(\bar{x}\) and \(\bar{y}\) along (aside the data in \(\mathcal{F}\)). We demonstrate this fact now, by providing an explicit characterization of when the two side interval subtests are met in terms of the values of \(\bar{x}\) and \(\bar{y}\).

Lemma 7.1. There exists \(\text{Corner}^{\ell,\mathcal{F}}_i \in \mathbb{R}_+^k\) such that \(\bar{x} \in \mathbb{R}^k\) satisfies \(M^{[r,2T]}_{1,k+1}(\bar{x}) = 1\) if and only if \(\bar{x} - \text{Corner}^{\ell,\mathcal{F}}_i \in (0, \infty)^k_+\), i.e., this vector is a \(k\)-decreasing list of positive elements. Similarly, there exists \(\text{Corner}^{\ell,\mathcal{F}}_i \in \mathbb{R}_+^k\) such that \(\bar{y} \in \mathbb{R}^k\) satisfies \(M^{[r,2T]}_{1,k+1}(\bar{y}) = 1\) if and only if \(\bar{y} - \text{Corner}^{\ell,\mathcal{F}}_i \in (0, \infty)^k_+\).

Remark. The lemma demonstrates that the admissible set of \(\bar{x}\)-locations is a set in \(\mathbb{R}^k\) with a ‘lower’ extreme point at \(\text{Corner}^{\ell,\mathcal{F}}_i\). We will encounter a similar circumstance also in regard to later \(\sigma\)-algebras that contain \(\mathcal{F}\), and we will use this corner notation for them as well. The bar notation for \(k\)-vectors is being used for \(\text{Corner}^{\ell,\mathcal{F}}_i\) and \(\text{Corner}^{\ell,\mathcal{F}}_i\) in a slightly altered form, so that it does not look ugly.

Proof of Lemma 7.1 The second statement is proved similarly to the first and we prove only the first, illustrating the proof with Figure 3. It is natural to think of specifying the components \(\text{Corner}^{\ell,\mathcal{F}}_i, \ i \in [1, k]\), in decreasing order of the index \(i\). Thus take \(i = k\) to begin. Since the curve \(\mathcal{L}_n(k+1, \cdot)\), and the \(\mathcal{F}\)-measurable bridge \(\mathcal{L}_n^{[-2T, \ell]}(k, \cdot) : [-2T, \ell] \to \mathbb{R}\) are almost surely continuous functions, there is a unique value \(\text{Corner}^{\ell,\mathcal{F}}_k \in \mathbb{R}\) such that the curve

\[
\mathcal{L}_n^{\text{Corner}^{\ell,\mathcal{F}}_k, y_k b_k}(k, s) \text{ touches, but does not cross underneath, } \mathcal{L}_n(k+1, s) \text{ on the interval } s \in [-2T, \ell].
\]

(The values of \(y_k \) and \(b_k \) are irrelevant here.) Similarly, we may choose \(\text{Corner}^{\ell,\mathcal{F}}_{k-1} \in \mathbb{R}\) to be the unique value such that

\[
\mathcal{L}_n^{\text{Corner}^{\ell,\mathcal{F}}_{k-1}, y_k b_k}(k-1, s) \text{ touches, but does not cross, } \mathcal{L}_n^{\text{Corner}^{\ell,\mathcal{F}}_k, y_k b_k}(k, s) \text{ for } s \in [-2T, \ell].
\]

Iteratively, we construct the vector \(\text{Corner}^{\ell,\mathcal{F}}_i\). Note that this vector specifies the values at \(\ell\) of a collection of curves \(\{\mathcal{L}_n^{\text{Corner}^{\ell,\mathcal{F}}_i, y_i b_i}(i, s) : i \in [1, k]\}\) that do not cross each other for \(s \in [-2T, \ell]\); again, it makes no difference what the values of \(y_i \) and \(b_i \) are. In this way, we see that \(\text{Corner}^{\ell,\mathcal{F}}_i \in \mathbb{R}_+^k\).

If \(\bar{x} \in \mathbb{R}^k\) is to satisfy the non-touching condition that \(M^{[r,2T]}_{1,k+1}(\bar{x}) = 1\), then \(x_k > \text{Corner}^{\ell,\mathcal{F}}_k\) is required, in order that the curves with indices \(k\) and \(k+1\) do not touch. Moreover, if we begin by considering the curves’ location dictated by the vector \(\text{Corner}^{\ell,\mathcal{F}}_k\) at \(\ell\), then an upward push of \(x_k - \text{Corner}^{\ell,\mathcal{F}}_k\) made to curve \(k\) must also be delivered to all curves of lower index, in order that no pair of consecutive curves among them begin to cross. After these equal pushes, the curves with indices \(k-1\) and \(k\) remain in contact, the higher requiring a further upward push, delivered via an increase in the value of \(x_{k-1}\), with the lower indexed curves again being subjected to the same push via a similar increase in order to maintain non-crossing. Proceeding through the indices \(i \in [1, k]\) in decreasing order, we see then that the difference vector \(\bar{x} - \text{Corner}^{\ell,\mathcal{F}}_i\) must be strictly increasing in its reverse-ordered components if and only if the condition \(M^{[r,2T]}_{1,k+1}(\bar{x}) = 1\) is to be satisfied. □
Figure 3. The proof of Lemma 7.1 is illustrated for $k = 3$. The top two curves on the left are $L_n^{\text{Corner},1, y_1, b_1} (1, \cdot)$ and $L_n^{\text{Corner},2, y_2, b_2} (2, \cdot)$, where the y and b data is irrelevant. The top pair of beads over ℓ in the left sketch are located at $\text{Corner}^{\ell,\mathcal{F}}$. On the right, this pair has been displaced to $\text{Corner}^{\ell,\mathcal{F}} + (a, b)$, where (a, b) represents a generic point in $(0, \infty)^2$; thus, the new pair verifies $M_{\mathbb{1}_3, 3}^{-2T, \ell} (\text{Corner}^{\ell,\mathcal{F}} + (a, b)) = 1$.

The middle interval test is more naturally analyzed using the one-piece list presentation. In order to explain why, and to present a satisfying characterization of the overall condition $M_{\mathbb{1}_{k+1}}^{-2T, 2T} = 1$, we begin by equipping the probability space carrying the law \mathbb{P} with some auxiliary random variables. The vectors

$$L_n (-2T) = \left(L_n (i, -2T) : i \in [1, k] \right) \quad \text{and} \quad L_n (2T) = \left(L_n (i, 2T) : i \in [1, k] \right)$$

are \mathcal{F}-measurable random variables valued in \mathbb{R}^k. Denote these two vectors temporarily by \bar{u} and \bar{v}, the lower-case notation reflecting the deterministic status of these vectors in the eyes of the witness of \mathcal{F}. Recall that $\mathcal{B}^{-2T, 2T}_{k, \bar{u}, \bar{v}}$ denotes a collection $B(i, \cdot) : [-2T, 2T] \to \mathbb{R}$, of independent Brownian bridges indexed by $i \in [1, k]$ with endpoints $B(i, -2T) = u_i$ and $B(i, 2T) = v_i$. We augment the probability space that carries the law \mathbb{P} with copies of these bridge laws. (How this construction is carried out is irrelevant for our purpose, but for example one may take a single copy of the law $\mathcal{B}^{-2T, 2T}_{k, 0, 0}$ that is independent of \mathcal{F} and then affinely shift each of its k curves in an \mathcal{F}-determined manner in order to produce the desired distribution $\mathcal{B}^{-2T, 2T}_{k, \bar{u}, \bar{v}}$.) We will be concerned with these new processes only via their form on the subset $[1, k] \times [\ell, r]$, and will denote them there by the symbol W. In this way, the witness of \mathcal{F} constructs an ensemble $W : [1, k] \times [\ell, r] \to \mathbb{R}$ with the marginal law on $[\ell, r]$ of the above bridge ensemble. For reasons to be explained shortly, the...
ensemble W will be called the Wiener candidate. We may express the new ensemble in the two-piece list presentation, at the same time recalling a little notation:

- we write $\overline{W}(\ell) = (W(i, \ell) : i \in [1, k])$ and $\overline{W}(r) = (W(i, r) : i \in [1, k])$;
- and $W^{[\ell, r]} : [1, k] \times [\ell, r] \to \mathbb{R}$ for the standard bridge ensemble on $[\ell, r]$ formed from W.

Note the relationship between this construction and the two-piece list Radon-Nikodym derivative discussion. Under the law $\mathbb{P}_{\mathcal{F}}$, the random triple of k-vectors $(\overline{W}(\ell), \overline{W}(r), W^{[\ell, r]})$ has Radon-Nikodym derivative evaluated at $(\tilde{x}, \tilde{y}, \tilde{b})$ with respect to the reference measure given by (19) where the factor of $M_{1,k+1}(\tilde{x}, \tilde{y}, \tilde{b})$ is omitted, (and where the normalization Z is now specified by (21) with this same factor also omitted). Kinetic and potential considerations dictate the law of the top k curves of \mathcal{L}_n for the witness of \mathcal{F}. The witness views the Wiener candidate $W : [1, k] \times [\ell, r] \to \mathbb{R}$ – or, alternatively represented, the triple $(\overline{W}(\ell), \overline{W}(r), W^{[\ell, r]})$ – as the random process that results when kinetic costs are considered but potential constraints are neglected.

For this reason, the conditional distribution under $\mathbb{P}_{\mathcal{F}}$ of $\mathcal{L}_n : [1, k] \times [\ell, r] \to \mathbb{R}$ is given by the ensemble $W : [1, k] \times [\ell, r] \to \mathbb{R}$ conditioned on the potential constraint that

$$M_{1,k+1}^{[-2T,2T]}(W^{[\ell,r]}) = 1.$$

When we wish to think of the question of whether this constraint is satisfied using the one-piece list presentation, we will instead write

$$M_{1,k+1}^{[-2T,2T]}(W) = 1,$$

with the use of a single argument, rather than a triple, indicating the meaning. Similarly, of course, if we replace the superscript by a set $A \subset [-2T,2T]$. For example, the middle interval test

$$M_{1,k+1}^{[\ell,r]}(W) = 1$$

(22)

is more naturally expressed in the one-piece presentation, when it amounts to checking the ordering of the curves of W and that $W(k, \cdot)$ exceeds $\mathcal{L}_n(k, \cdot)$ on $[\ell, r]$.

That the conditional law of $\mathcal{L}_n : [1, k] \times [\ell, r] \to \mathbb{R}$ under $\mathbb{P}_{\mathcal{F}}$ may be obtained by conditioning W helps to explain the reason for the Wiener candidate name. The witness of \mathcal{F} constructs W and regards it as a candidate for the process $\mathcal{L}_n : [1, k] \times [\ell, r] \to \mathbb{R}$: the candidate is successful if the condition $M_{1,k+1}^{[-2T,2T]}(\overline{W}(\ell), \overline{W}(r), W^{[\ell,r]}) = 1$ is met; indeed, under $\mathbb{P}_{\mathcal{F}}$, the process W conditioned on success has the law of \mathcal{L}_n. See Figure 4.

We may summarise our understanding about how to check the outcome of the examination to which the candidate is subject by writing the examination indicator function in the form

$$M_{1,k+1}^{[-2T,2T]}(\overline{W}(\ell), \overline{W}(r), W^{[\ell,r]}) = \text{SideLeft}(\overline{W}(\ell)) \cdot \text{Middle}(W) \cdot \text{SideRight}(\overline{W}(r)),$$

where the three right-hand factors are indicator functions whose meaning we now review.

The left and right side interval tests may be written

$$\text{SideLeft}(\overline{W}(\ell)) = M_{1,k+1}^{[-2T,\ell]}(\overline{W}(\ell), \overline{W}(r), W^{[\ell,r]})$$

and

$$\text{SideRight}(\overline{W}(r)) = M_{1,k+1}^{[r,2T]}(\overline{W}(\ell), \overline{W}(r), W^{[\ell,r]})$$.

Note that Lemma 7.1 indeed implies that it is only the first argument in each triple that is used to determine the value of these right-hand sides.
The middle interval test is naturally examined by using the one-piece list:

$$\text{Middle}(W) = M_{1,k+1}^{[\ell,r]}(W).$$

A final remark about the one-piece list perspective. For $i \in [1,k]$, the witness of F may seek to reconstruct the curve $\mathcal{L}_n(i, \cdot)$ on the basis that the unknown data associated to this curve equals $f_i : [\ell, r] \to \mathbb{R}$. Denoting the reconstructed curve by $\mathcal{L}_n^f(i, \cdot) : [-z_n, \infty) \to \mathbb{R}$, with the use of a single argument superscript indicating that the one-piece list presentation is being used, we have
Observation of these data, the conditional distribution of
whenever
Proof of Proposition 8.1.
\[\bar{\psi} \]
Proof of Theorem 4.4.

Proposition 8.1. Let \(\bar{\psi} \in (0, \infty)^3 \) and let
\[
\mathcal{L}_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}, \; n \in \mathbb{N},
\]
be a \(\bar{\psi} \)-regular sequence of Brownian Gibbs line ensembles defined under the law \(\mathbb{P} \). Set \(\delta = \varphi_1/2 \wedge \varphi_2/2 \wedge \varphi_3 \), and, for \(k \in \mathbb{N} \), \(s_k = (8c_k^{-1} \log(28C_k))^{2/3} \wedge 2^{5/2} \). Then, for \(\varepsilon \in (0, k^{-2}s_k^{-1}/4) \),
\[
\mathbb{P} \left(\text{Close}(k; \mathcal{L}_n, 0, \varepsilon) \right) \geq e^{-52s_k^{2/3} \varepsilon^{k^2-1}}
\]
whenever \(n \geq k \vee (c/3)^{-2(\varphi_1 \wedge \varphi_2)^{-1}} \vee 6^{2/\delta} \vee (s_k/2)^{1/\delta} \).

Proof of Theorem 4.4. We use parabolic invariance Lemma 6.11 and Proposition 8.1 with the parameter choice \((\bar{\psi}, c/2, C) \), while noting that the value of \(c_k \) in \(\mathbb{P} \) determined by \(c/2 \) is at least one-half of the value determined by \(c \).

Preparing to prove Proposition 8.1 let \(\Delta \subset \mathbb{R}^k \) denote the box \([2k, 2k + 1] \times \cdots \times [4, 5] \times [2, 3] \).

For \(s > 0 \), let \(H_s = H_{k,s} \) denote the event that
- the \(k \)-vectors \(\tilde{Z}_n(-1) \) and \(\tilde{Z}_n(1) \) belong to \(s \cdot \Delta \);
- and \(\sup_{x \in [-1, 1]} \mathcal{L}_n(k + 1, x) \leq s \).

The next result carries out the plan for proving the curve closeness probability lower bound outlined in the fifth paragraph of Section 7, the eventuality in question being \(H_{k,t} \).

Proposition 8.2. If \(t \geq (8c_k^{-1} \log(28C_k))^{2/3} \wedge 2^{5/2} \), then
\[
\mathbb{P}(H_{k,t}) \geq \frac{1}{2} \cdot 2^{-3k/2} \pi^{-k} \exp \left\{ -16k^3t^2 \right\}
\]
provided that \(n \geq k \vee (c/3)^{-2(\varphi_1 \wedge \varphi_2)^{-1}} \vee 6^{2/\delta} \vee (t/2)^{1/\delta} \), where \(\delta = \varphi_1/2 \wedge \varphi_2/2 \wedge \varphi_3 \).

Proof of Proposition 8.1 Consider a given instance of data \(\tilde{Z}_n(-1), \tilde{Z}_n(1) \) and \(\mathcal{L}_n(k + 1, \cdot) : [-1, 1] \to \mathbb{R} \). Denote these pieces of data by \(\bar{x}, \bar{y} \) and \(f \). Under the law \(\mathbb{P} \) conditionally on the observation of these data, the conditional distribution of \(\mathcal{L}_n : [1, k] \times [-1, 1] \to \mathbb{R} \) is
\[
B_{k; \bar{x}, \bar{y}}^{[-1,1]} (\cdot \mid \text{NoTouch}_{j}^{[-1,1]})
\]
If the data \((\bar{x}, \bar{y}, f)\) is such that the event \(H_{k,t}\) occurs for a value \(t\) that is at least \(2k\), then this conditional distribution, after a downward shift of \(\bar{x}, \bar{y}\) and \(f\) by the amount \(t+2k\), satisfies the hypotheses of Proposition 6.3(2) with \(K = 2k(t-1)\). Applying this result, we find that
\[
\mathbb{P}
\left\{ \text{Close}(L_n, 0, \phi) \big| H_{k,t} \right\}
\geq \phi^{k^2-1} \cdot \left(1 - \frac{2\pi^{-1/2}e^{-1}}{16} \right)^2 (2k)^{-(k^2-1)} \pi^{-(k-1)} \exp \left\{ -32k^3t^2 \right\},
\]
where \(\phi\) is assumed to be at most \((4k^2(t-1))^{-1}\). We thus obtain Proposition 8.1 by taking \(\phi = \varepsilon\) and invoking Proposition 8.2, taking \(t\) equal to the lowest value permitted in the proposition. \(\Box\)

Proof of Proposition 8.2. We will make use of missing closed middle reconstruction with the parameter choices \(T = 1, \ell = -1\) and \(r = 1\). For \(t > 0\), consider the *favourable* event \(F_t\) that
\[
\begin{align*}
\bullet & \quad L_n(i, -2) \in [-t, t] \text{ and } L_n(i, 2) \in [-t, t] \text{ for } i \in [1, k]; \\
\bullet & \quad \text{Corner}^\ell_{t} \in [-t, t] \text{ and } \text{Corner}^r_{t} \in [-t, t] \text{ for } i \in [1, k]; \\
\text{and} & \quad L_n(k+1, x) \leq t \text{ for } x \in [-1, 1].
\end{align*}
\]

Lemma 8.3. For any \(t > 0\), the event \(F_t\) is \(\mathcal{F}\)-measurable. If \(t \geq (8c_k^{-1}\log(28C_k))^{2/3} \vee 2^{5/2}\), then
\[
\mathbb{P}(F_t) \geq 1/2
\]
for all \(n \geq k \vee (c/3)^{-2(\varphi_1 \wedge \varphi_2)}^{-1} \vee 6^{2/5} \vee (t/2)^{1/5}\) (with \(\delta = \varphi_1/2 \wedge \varphi_2/2 \wedge \varphi_3\)).

Proof. By ensemble ordering and Proposition 4.1 applied with \(x = \pm 2\) and \(s = t - 2^{3/2}\), the lower tail conditions in the first bullet point fail with probability at most \(4C_k \exp \left\{-c_k(t-2^{3/2})^{3/2} \right\}\). The proposition applies because \(t - 2^{3/2} \in [0, 2n^\delta]\), as well as \(2 \leq c/2 \cdot n^\delta\). The upper tail conditions in this bullet point fail with probability at most \(2C \exp \left\{-c t^{3/2} \right\}\) due to ensemble ordering and RS(3) in light of \(2 \leq c n^{\delta}\).

Regarding the next point, note that
\[
[\text{Corner}^\ell_{t}, \text{Corner}^r_{t}] \subseteq [L_n(k+1, -1), L_n(1, -1)].
\]
Bounds on the lower tail of \(L_n(k+1, -1)\) and on upper bound of \(L_n(1, -1)\) will yield an estimate on the probability of failure of the \(\ell\)-condition second point. Similarly of course for the \(r\)-condition. Arguing as in the preceding paragraph with \(s = t - 2^{-1/2}\), we find that the probability that the event in this bullet point does not occur is at most
\[
4C_k \exp \left\{-c_k(t-2^{-1/2})^{3/2} \right\} + 2C \exp \left\{-c t^{3/2} \right\}
\]
since \(t - 2^{-1/2} \in [1, 2n^\delta]\).

The third point is treated by means of ensemble ordering and the ‘no big max’ Lemma 5.13. The failure probability is at most \(6C \exp \left\{-c t^{3/2}/8 \right\}\).

Using \(C_k \geq C, c_k \leq c\) and \(t \geq 2^{5/2}\), failure among any of the three points is seen to occur with probability at most \(14C_k \exp \left\{-c_k t^{3/2}/8 \right\}\). This quantity is at most one-half for the value of \(t\) in the lemma’s statement. \(\Box\)

We now suppose that \(t\) satisfies the lower bound stated in Lemma 8.3. Let \(G_t = G_t(L_n)\) denote the event that \(\bar{L}_n(-1)\) and \(\bar{L}_n(1)\) belong to \(t \cdot \Delta\). We also write \(G_t(W)\) when \(W\) is considered in place
of \mathcal{L}_n. Note that $G_t \cap F_i \subseteq H_t$ and thus
\[
\mathbb{P}(H_t) \geq \mathbb{P}(G_t \cap F_i) = \mathbb{E}\left[\mathbb{P}_F(G_t) \mathbf{1}_{F_i}\right] = \mathbb{E}\left[\mathbb{P}_F\left(G_t(W) \mid M_{1,k+1}^{-2,2}(W) = 1\right) \cdot \mathbf{1}_{F_i}\right] \\
\geq \mathbb{E}\left[\mathbb{P}_F\left(G_t(W), M_{1,k+1}^{-2,2}(W) = 1\right) \cdot \mathbf{1}_{F_i}\right].
\] (24)

We have that
\[
\mathbb{P}_F\left(G_t(W), M_{1,k+1}^{-2,2}(W) = 1\right) \cdot \mathbf{1}_{F_i} = \mathbb{P}_F(G_t(W)) \cdot \mathbb{P}_F\left(M_{1,k+1}^{-2,2}(W) = 1 \mid G_t(W)\right) \cdot \mathbf{1}_{F_i}.
\] (25)

With the present choices of ℓ, r and T, recall that, under \mathbb{P}_F, the Wiener candidate $W : [1, k] \times [-1, 1] \to \mathbb{R}$ is the marginal law on $[-1, 1]$ of the Brownian bridge ensemble $B_{k; \mathcal{L}_n(-2), \mathcal{E}_n(2)}$. Applying Corollary 5.8 in regard to the curve $W(i, \cdot)$, $i \in [1, k]$, with $l = 2$, $a = -2$, $b = 2$, $A_0 \subset [-t, t]$, $A_1 = A_2 = t \cdot [2k + 2 - 2i, 2k + 3 - 2i]$ and $A_3 \subset [-t, t]$, we learn that
\[
\mathbb{P}_F(G_t(W)) \cdot \mathbf{1}_{F_i} \geq 2^{-k/2} \pi^{-k} \prod_{i=1}^{k} \exp\left\{\frac{(t + t(2k + 3 - 2i))^2}{2} + \frac{t^2}{4} + \frac{(t + t(2k + 3 - 2i))^2}{2}\right\},
\]
where we made use of the length of each interval A_i being at least one (which is due to $t \geq 1$). Thus,
\[
\mathbb{P}_F(G_t(W)) \cdot \mathbf{1}_{F_i} \geq 2^{-k/2} \pi^{-k} \exp\left\{-4k(k + 2)^2 t^2\right\}. \tag{26}
\]

Consider now the conditional law $\mathbb{P}_F(\cdot \mid G_t(W))$. For the demand that $M_{1,k+1}^{-2,2}(W) = 1$ to be met for this conditioned process, it is enough that each standard bridge $W([-1,1])$ have absolute value whose supremum is less than $t/2$. Since these bridges independently have law $B_{1,0,0}$ under the measure in question, Lemma 5.9 implies that
\[
\mathbb{P}_F\left(M_{1,k+1}^{-2,2}(W) = 1 \mid G_t(W)\right) \cdot \mathbf{1}_{F_i} \geq \left(1 - 2e^{-t^2/4}\right)^k \geq 2^{-k}
\] (27)
since $t \geq 2(\log 2)^{1/2}$. Using (24), (25), (26), (27) and Lemma 8.3, we find that
\[
\mathbb{P}(H_t) \geq \frac{1}{2} \cdot 2^{-k/2} \pi^{-k} \exp\left\{-4k(k + 2)^2 t^2\right\} \cdot 2^{-k}.
\]

Since $k \geq 2$, we obtain Proposition 8.2. \qed

9. The jump ensemble method

In this section, we will present the apparatus of this general method for proving upper bounds on probabilities of events expressed in terms of the curves in Brownian Gibbs ensembles. The new tool will later be used to prove k-curve closeness Theorem 4.3 and the Radon-Nikodym moment bound Theorem 4.5.

9.1. The need for a further method: how the Wiener candidate falls short. We begin by advocating the need for a new approach by examining the k-curve closeness example. We will explain why the upper bound Theorem 4.3 may be expected to be harder to prove than the lower bound Theorem 4.4. This discussion will motivate the need for some of the apparatus of the jump ensemble method that we will specify later in Section 9.

We may try to use missing closed middle reconstruction and the Wiener candidate W, constructed under \mathbb{P}_F, in order to prove upper bounds on probabilities of events expressed in terms of the ensemble \mathcal{L}_n. Suppose that we set the reconstruction parameters T, ℓ and r equal to 1, -1 and 1,
as we did when we proved Theorem 4.4. Recall that, under \mathbb{P}_F, the conditional distribution of $L_n : [1,k] \times [-1,1] \to \mathbb{R}$ is given by the conditional law of the candidate ensemble $W : [1,k] \times [-1,1] \to \mathbb{R}$ given that $M_{1,k+1}^{[-2,2]}(W) = 1$.

The Wiener candidate is by its definition essentially a system of independent Brownian motions. In proving either the lower bound Theorem 4.4 or the upper bound Theorem 4.3 we seek to transmit information about the k-curve closeness probability for independent Brownian motions in Proposition 6.3 to learn something comparable about the ensemble L_n. Conditioning as we do on the data specifying F, this transfer is a matter of specifying a reasonably probable favourable \mathcal{F}-measurable event F with the property that under the law \mathbb{P}_F for a choice of \mathcal{F}-data causing the occurrence of F, the conditional probability that $M_{1,k+1}^{[-2,2]}(W) = 1$ is itself quite probable.

We saw this idea in the proof of Proposition 8.2. There, we may choose the event F to be F_i; this event is after all \mathcal{F}-measurable, and has a positive probability, uniformly in the parameter n, while we saw in (26) and (27) during the proof of the proposition that

$$
\mathbb{P}_F\left(M_{1,k+1}^{[-2,2]}(W) = 1\right) \cdot \mathbf{1}_{F_i} \geq 2^{-3k/2} \pi^{-k} \exp \left\{ -4k(k+2)^2 \ell^2 \right\}.
$$

As we consider applying this approach to prove the upper bound, it is clear that it must be carried out in a more exacting way. From the form of Theorem 4.3(1), it is apparent that we must specify a favourable event F in terms of \mathcal{F}-data whose complement has a superpolynomial decay in $\varepsilon \searrow 0$ (or anyway a decay faster than ε^{k^2-1}). This event specified, we must then argue that, under the associated \mathbb{P}_F law, the condition $M_{1,k+1}^{[-2T,2T]}(W) = 1$ is met with at least a subpolynomially decaying $\varepsilon^{o(1)}$ probability as $\varepsilon \searrow 0$. If this scenario can be realized, then the probability of the putatively rare event $\text{Close}(L_n,0,\varepsilon)$ may be gauged as follows:

$$
\mathbb{P}\left(\text{Close}(L_n,0,\varepsilon)\right) \leq \mathbb{E}\left[\mathbb{P}_F\left(\text{Close}(W,0,\varepsilon) \mid M_{1,k+1}^{[-2T,2T]}(W) = 1\right) \cdot \mathbf{1}_F \right] + \mathbb{P}(F^c).
$$

The latter term on the right-hand side is $o(\varepsilon^{k^2-1})$ while the former is at most

$$
\mathbb{E}\left[\frac{\mathbb{P}_F(\text{Close}(W,0,\varepsilon))}{\mathbb{P}_F(M_{1,k+1}^{[-2T,2T]}(W) = 1)} \cdot \mathbf{1}_F \right].
$$

In the ratio here, the denominator behaves as $\varepsilon^{o(1)}$ as $\varepsilon \searrow 0$. The numerator concerns the k-curve closeness probability for a system of Brownian bridges and as such by Proposition 6.3 is at most $\varepsilon^{k^2-1+o(1)}$.

That is, $\mathbb{P}(\text{Close}(L_n,0,\varepsilon)) \leq \varepsilon^{k^2-1+o(1)}$ is implied by this method.

We now turn to considering how we may hope to carry out such an approach. The parameters $T > 0$, $\ell \in [-T,0]$ and $r \in [0,T]$ serve to specify the the missing closed middle reconstruction σ-algebra \mathcal{F}.

Is the choice $T = 1$, $\ell = -1$ and $r = 1$ that we have been considering realistic for the upper bound argument? The favourable event F must stipulate that the lower boundary condition $L_n(k+1,\cdot) : [\ell,r] \to \mathbb{R}$ not rise too high. After all, if \mathcal{F}-data that causes F to occur is to result in at least a modest \mathbb{P}_F-probability of $M_{1,k+1}^{[-2T,2T]}(W) = 1$, then it must also entail such a probability for the weaker middle interval condition that $M_{1,k+1}^{[\ell,r]}(W) = 1$. In the latter condition, we are demanding
inter alia that Brownian bridges begun at unit-order locations at the presently chosen unit-order boundary times \(-2T\) and \(2T\) consistently rise above the curve \(L_n(k + 1, \cdot)\) during \([\ell, r]\).

Since \(L_n\) is a regular Brownian Gibbs sequence, satisfying the one-point upper tail axiom \(\text{RS}(3)\), which is moreover ordered, we have that

\[
P\left(L_n(k + 1, 0) \geq s\right) \leq C \exp\left\{-cs^{3/2}\right\}
\]

for \(s \geq 1\). In demanding that \(P(F^c) = o(\varepsilon^{k^2-1})\), we may thus incorporate into the definition of \(F\) a demand on the \((k + 1)\text{st}\) curve in \(L_n\) no stronger than

\[
\sup_{x \in [\ell, r]} L_n(k + 1, x) \leq O\left(\log \varepsilon^{-1}\right)^{2/3}.
\]

The boundary data \(L_n(i, \pm 2T), i \in [1, k]\), are typically of unit-order (if \(T = 1\) at least). Under \(P_x\), the \(k\) Brownian bridges on \([-2T, 2T]\) used to form the candidate ensemble \(W: [1, k] \times [\ell, r] \to \mathbb{R}\) are being required to jump over a hill whose height is \(O\left(\log \varepsilon^{-1}\right)^{2/3}\). If \(T\) is of unit order, the probability of this happening is \(\exp\left\{-O(\log \varepsilon^{-1})^{4/3}\right\}\). This four-thirds exponent is inadequate for our purpose: we want it to be less than one to carry out the proposed method.

We may improve matters by increasing the value of \(T\). However, as we do so, we pay a price: the typical boundary data at \(\pm 2T\) will no longer be at a unit-order location but instead at a parabolically determined location around \(-O(T^2)\).

Suppose we write \(T = \left(\log \varepsilon^{-1}\right)^{\alpha}\) for \(\alpha > 0\). The interval \([-2T, 2T]\) has length of order \(\left(\log \varepsilon^{-1}\right)^{\alpha}\).

The \(k\) Wiener candidate curves defined on this interval begin and end at heights of order \(-\left(\log \varepsilon^{-1}\right)^{2\alpha}\).

They must clear a height of order \(\left(\log \varepsilon^{-1}\right)^{2/3}\) on an interval of times including zero. The probability that they do so has order

\[
\exp\left\{-\frac{1}{(\log \varepsilon^{-1})^\alpha}\left(\left(\log \varepsilon^{-1}\right)^{2/3} + \left(\log \varepsilon^{-1}\right)^{2\alpha}\right)^2 O(1)\right\} = \exp\left\{-\left(\log \varepsilon^{-1}\right)^{(4/3-\alpha)\alpha^3} O(1)\right\}.
\]

This expression is maximized by setting \(\alpha = 1/3\) when it takes the form \(\exp\left\{O(\log \varepsilon^{-1})\right\}\).

We were seeking a sub-polynomial decay in low \(\varepsilon\), for which such an expression would clearly qualify only if it took the form \(\exp\left\{\left(\log \varepsilon^{-1}\right)^{1-\zeta}\right\}\) for some \(\zeta > 0\); and this we did not find. Although the outcome that \(\zeta = 0\) is possible is ambiguous, it may seem unlikely, on the basis of these heuristics, that the method may work.

Indeed, a slightly closer review would show that it cannot work, and we will need to refine our approach in order to prove the upper bound Theorem\([1, 3, 1]\). We will allude to the problem identified here – that \(\zeta\) cannot be made positive – as the high jump difficulty.

Note the role of the basic parameter \(\varepsilon > 0\) in our discussion. For the \(k\)-curve closeness problem, its role is to specify up to a power the order of probability of \(k\)-curve \(\varepsilon\)-closeness for a reference mutually avoiding Brownian bridge ensemble, this probability being \(\varepsilon^{k^2-1+o(1)}\) by Proposition\([6, 3]\).

Other upper bounds on Brownian Gibbs ensemble probabilities will be sought, such as in the proof of Theorem\([1, 5]\), a result which quantifies the assertion that the change of measure from mutually avoiding Brownian bridge law to Brownian Gibbs ensemble law transforms small probability events in the manner \(\varepsilon \to \varepsilon^{1-o(1)}\). Here, the parameter \(\varepsilon > 0\) again plays the role of determining the order of magnitude of the probability of an event under study for the law in the transform’s preimage. The parameter \(\varepsilon\) is embedded in the jump ensemble method that we are developing, and the use of
Note that explain how this is an irrelevant difficulty in practice.

dictates the values of probability for a prelimiting ensemble sequence. It would be of interest however to revisit this proof with merely the use of missing closed middle reconstruction. (by which was proved the key technical Proposition 3.5 showing a uniform lower bound on acceptance probability for a prelimiting ensemble sequence. It would be of interest however to revisit this proof with merely the use of missing closed middle reconstruction.)

9.2. Setting the missing close middle reconstruction parameters. Set back by the high jump difficulty we may seem to be, but we have learnt something useful: a sensible choice of the parameter \(T > 0 \). We now set, for the rest of the paper, the value of \(T \) to be equal to \(D_k \left(\log \varepsilon^{-1} \right)^{1/3} \).

The quantity \(D_k > 0 \) is a constant, without dependence on \(\varepsilon > 0 \), though it depends on \(k \geq 2 \); in the general formulation of the jump ensemble method, we will take

\[
D_k \geq \max \left\{ c_k^{-1/3} \left(2^{-9/2} - 2^{-5} \right)^{-1/3}, 36(k^2 - 1) \right\},
\]

where the \(c \)-sequence is specified in (9). We adopt equality in (29) by default, but permit an increase in the value of \(D_k \) as the need arises in the specific applications for which the method will be used.

On the parameter \(\varepsilon > 0 \), we will shortly impose a \(k \)-dependent upper bound. The ensemble index \(n \geq k \) will be supposed to satisfy

\[
n^{2(\varphi_1 \wedge \varphi_2)} \geq \left(c / 2 \wedge 2^{1/2} \right)^{-1} D_k \left(\log \varepsilon^{-1} \right)^{1/3}
\]

and

\[
n \geq k \vee (2c)^{-2(\varphi_1 \wedge \varphi_2)^{-1}}.
\]

We must also set the values of \(\ell \in [-T,0] \) and \(r \in [0,T] \). It would be natural enough to consider the choice \(\ell = -T \) and \(r = T \). In fact, we will make choices slightly closer to the origin than these, in a way that ensures that the lower boundary condition \(\mathcal{L}_n(k+1,\cdot) : [\ell,r] \to \mathbb{R} \) enjoys a little more regularity than would be the case with the choice \(\ell = -T \) and \(r = T \).

To specify our choice of \((\ell,r)\), we introduce the least concave majorant \(\zeta_+: [-T,T] \to \mathbb{R} \) of the curve \(\mathcal{L}_n(k+1,\cdot) : [-T,T] \to \mathbb{R} \).

Define a random variable pair \((l,t)\) according to

\[
l = \inf \left\{ x \in [-T,T] : \zeta'_+(x) \leq 4T \right\}
\]

and \(t = \sup \left\{ x \in [-T,T] : \zeta'_+(x) \geq -4T \right\}, \)

where the convention that \(\inf \emptyset = T \) and \(\sup \emptyset = -T \) is adopted.

We now specify, for the rest of the paper, our choice of \((\ell,r)\) to be equal to \((l,t)\). As such, we will be working with the missing closed middle reconstruction whose side intervals are \([-2T,l]\) and \([r,2T]\) and whose middle interval is \([l,t]\). There is a formal problem that \(l > t \) is possible, but we will soon explain how this is an irrelevant difficulty in practice.

Note that \([1,k+1] \times (l,t)\) is not a stopping domain, because the form of \(\mathcal{L}_n(k+1,\cdot) \) near the origin dictates the values of \(\zeta_+ \) further away. What is needed for our purpose is that \((l,t)\) is \(\mathcal{F} \)-measurable (which is true because the entire \((k+1)^{st} \) curve is known to the witness of \(\mathcal{F} \)).

(The use of the pair \((l,t)\) develops a technique in the construction [CH14] of the Airy line ensemble by which was proved the key technical Proposition 3.5 showing a uniform lower bound on acceptance probability for a prelimiting ensemble sequence. It would be of interest however to revisit this proof with merely the use of missing closed middle reconstruction.)
9.3. **Specifying the favourable event** Fav. Disregarding for a moment longer the identified high jump difficulty, we endeavour to specify in precise terms the form of the proposed method, now defining the favourable set Fav: we set

$$
\text{Fav} = F_1 \cap F_2 \cap F_3,
$$

where

$$
F_1 = \left\{ \mathcal{L}_n(i, x) \in T^2 \left[-2\sqrt{2} - 1, -2\sqrt{2} + 1 \right] \text{ for } (i, x) \in [1, k] \times \{-2T, 2T\} \right\},
$$

$$
F_2 = \left\{ -T^2 \leq \mathcal{L}_n(k + 1, x) \leq T^2 \text{ for } x \in [-T, T] \right\},
$$

and

$$
F_3 = \bigcap_{i \in [1, k]} \left\{ \text{Corner}_i^{x,F} \in [-T^2, T^2] \right\} \cap \left\{ \text{Corner}_i^{y,F} \in [-T^2, T^2] \right\}.
$$

Note that, since $\mathcal{L}_n(k + 1, l) \geq \mathcal{L}_n(k + 1, -T) + 4T(1 + T)$, the occurrence of $\text{Fav} \subseteq \{ \mathcal{L}_n(k + 1, -T) \geq -T^2 \} \cap \{ \mathcal{L}_n(k + 1, l) \leq T^2 \}$ entails that $1 \leq -T/2$; similarly, it ensures that $r \geq T/2$. Thus, $[-T/2, T/2]$ is always a subset of the middle interval $[l, r]$ whenever middle interval reconstruction is attempted.

The next lemma establishes that the favourable event Fav has the superpolynomial decay property that the upper bound method we have been proposing demands of it: $\mathbb{P}(\text{Fav}^c) = O(\varepsilon^{\mathcal{O}(c_k D_k^3)})$ as $\varepsilon \searrow 0$, so that high choices of D_k give rise to any desired polynomial decay.

Lemma 9.1. We have that

$$
\mathbb{P}(\text{Fav}^c) \leq \varepsilon^{2 - k_c D_k^3}.
$$

Remark. When applications are made, the value of D_k will be increased if necessary over the explicit value given in $[29]$ in order to ensure that the decay rate $\mathbb{P}(\text{Fav}^c)$ is suitable for the problem at hand.

Proof of Lemma 9.1. We must bound above $\mathbb{P}(F_i^c)$ for each $i \in [1, 3]$.

Bounding $\mathbb{P}(F_1^c)$. By hypothesis, $\{ \mathcal{L}_n : n \in \mathbb{N} \}$ is a regular sequence of Brownian Gibbs line ensembles. As such, the one-point Proposition 11 with $x = \pm 2T$ and $s = T^2$ provides the estimate

$$
\mathbb{P}(F_1^c) \leq 2\mathbb{P}\left(\mathcal{L}_n(k, x) + 2^{-1/2}x^2 \leq -s \right) \leq 2C_k \exp \left\{ -c_k T^3 \right\} = 2C_k \varepsilon^{c_k D_k^3},
$$

since $n \geq k$, $|x| \leq n^{\varphi_2}$ and $s \in [1, n^{\varphi_3}]$.

Bounding $\mathbb{P}(F_2^c)$. The probability that the lower bound condition in F_2 fails satisfies

$$
\mathbb{P}\left(\mathcal{L}_n(k + 1, x) < -T^2 \text{ for } x \in [-T, T] \right) \leq \mathbb{P}\left(\inf_{x \in [-T, T]} \left(\mathcal{L}_n(k + 1, x) + 2^{-1/2}x^2 \right) \leq -(1 - 2^{-1/2})^{3/2} T^3 \right)
$$

$$
\leq 2T \cdot C_k \exp \left\{ -c_k (1 - 2^{-1/2})^{3/2} T^3 \right\} = 2TC_k \varepsilon^{(1 - 2^{-1/2})^{3/2} c_k D_k^3},
$$

where the second inequality was a consequence of Proposition 15.1.

We will treat the upper tail condition in F_2 by applying Proposition 5.12 in order to find that

$$
\mathbb{P}\left(\sup_{x \in [-T, T]} \mathcal{L}_n(1, x) \geq T^2 \right) \leq 12TC_k \varepsilon^{2 - 3/2 \varphi_2 D_k^3}.
$$

(33)
For this application of Proposition 5.12, recall that \(\{ \mathcal{L}_n : n \in \mathbb{N} \} \) is supposed to be a \(\varphi \)-regular sequence for some \(\varphi \in (0, \infty)^3 \). Set \(r = T \) and \(t = T^2 \). The proposition’s hypotheses are \(\frac{1}{2} c_1 \varphi_1 \land \varphi_2 \land 2^{1/2} n^{5 \varphi_3 / 2} \geq T \geq 2^{7/4} n^{5 \varphi_3 / 2} \geq T \geq 2^{7/4} n^{5 \varphi_3 / 2} \) and \(n \geq (2c)^{-2(\varphi_1 \land \varphi_2)} \); they hold by (30) and (31). Applying the proposition and using \(T \geq 1 \), we bound the probability in (33) above by \(12 TC \exp \left\{ -2^{-9/2} c T^3 \right\} \), and thus derive (33).

Note then that, if the upper tail condition in \(F_2 \) fails, the event in the displayed estimate occurs. Indeed, although the \(F_2 \)-condition concerns the \((k + 1)^{\text{st}} \) curve, rather than the first, the event becomes less probable if the \((k + 1)^{\text{st}} \) curve is considered, because the ensemble \(\{ \mathcal{L}_n : n \in \mathbb{N} \} \) is ordered.

Combining (32) with (33), we arrive at the bound
\[
\mathbb{P}(F_2^c) \leq 12 TC \varepsilon^{2^{-9/2} c D_k^3} + 2 TC k \varepsilon^{(1 - 2^{-1/2})^{3/2} c k D_k^3}.
\]

Bounding \(\mathbb{P}(F_2^c) \). Note that Corner\(i \uparrow F \geq \mathcal{L}_n(k + 1, l) \) and Corner\(i \downarrow F \geq \mathcal{L}_n(k + 1, t) \) for \(i \in [1, k] \).

Since \(\{l, r\} \subset [-T, T] \), we see that the lower tail conditions in the definition of \(F_2 \) are in fact implied by the conditions in \(F_2 \). Regarding the upper conditions, note that, for such \(i \), Corner\(i \uparrow F \leq \mathcal{L}_n(1, l) \) and Corner\(i \downarrow F \leq \mathcal{L}_n(1, t) \). Since \(\{l, r\} \subset [-T, T] \), the occurrence of the event in (33) entails that these conditions are satisfied. In this way, our upper bound in (33) may cover both the upper tail conditions in \(F_2 \) and \(F_3 \) at once.

Gathering the estimates. In this way, we find that
\[
\mathbb{P}(F \text{av}^c) \leq 2 C_k \varepsilon^{c_k D_k^3} + 2 TC k \varepsilon^{(1 - 2^{-1/2})^{3/2} c k D_k^3} + 12 TC \varepsilon^{2^{-9/2} c D_k^3} + 2 TC k \varepsilon^{(1 - 2^{-1/2})^{3/2} c k D_k^3}.
\]

Since \(T \geq 1 \), \(C_k \geq C \) and \(c_k \leq c \), we have that \(\mathbb{P}(F \text{av}^c) \leq 18 C_k T \varepsilon^{2^{-9/2} c D_k^3} \). Using \(\varepsilon^2 \leq (18)^{-3} C_k^{-3} D_k^{-3} \), we have \(18 C_k T \leq \varepsilon^{-1} \); note also that \(D_k \geq k^{-1/3} \left(2^{-9/2} - 2^{-5} \right)^{-1/3} \) ensures that \(\varepsilon^{2^{-9/2} c D_k^3} \leq \varepsilon \cdot \varepsilon^{c_k 2^{-5} D_k^3} \). Thus, we obtain Lemma 9.1.

9.4. More promising than the Wiener candidate: the jump ensemble. Consider the law \(\mathbb{P}_F \) for such \(F \)-data that \(F \text{av} \) occurs. We have understood that the candidate examination condition \(M_{1, k+1}^{[-2T, 2T]} (W) = 1 \) may be satisfied with \(\mathbb{P}_F \)-probability \(\varepsilon^{O(1)} \) as \(\varepsilon \searrow 0 \), rather than with the desired \(\varepsilon^{o(1)} \) probability.

We must change our approach in order to solve the discussed high jump difficulty: we will consider a variant of the Wiener candidate ensemble \(W : \llbracket 1, k \rrbracket \times \llbracket l, r \rrbracket \rightarrow \mathbb{R} \). The new ensemble will be called the jump ensemble and denoted by \(J : \llbracket 1, k \rrbracket \times \llbracket l, r \rrbracket \rightarrow \mathbb{R} \). Under \(F \text{av} \)-satisfying choices of \(F \), it will verify \(M_{1, k+1}^{[-2T, 2T]} (J) = 1 \) with the sought subpolynomial \(\varepsilon^{o(1)} \) \(\mathbb{P}_F \)-probability.

The Wiener candidate has been found wanting because of the difficulty it encounters in passing the middle interval test (22). We now specify a new test, the jump test, the passing of which will be a necessary condition for (22) to hold. The new test will demand that the \(k \) candidate curves jump over a large set of extreme points with \(x \)-coordinates in \(\llbracket l, r \rrbracket \) of the graph of the \((k + 1)^{\text{st}} \) curve convex majorant \(c_+ \), so that the Wiener candidate who passes the jump test necessarily has an overall curve geometry that offers a viable prospect of success. We will define the jump ensemble \(J \) by conditioning the Wiener candidate on passing the jump test, alongside the side intervals test; this ensemble will indeed resolve the high jump difficulty.
Recall then that \(c_+ : [-T, T] \to \mathbb{R} \) is the least concave majorant of the curve \(\mathcal{L}_n(k + 1, \cdot) : [-T, T] \to \mathbb{R} \). Let \(\text{xExt}(c_+) \subseteq [l, r] \) denote the set of \(x \)-coordinates of extreme points of the closed set \(\{(x, y) : 1 \leq x \leq r, \ y \leq c_+(x)\} \). Note that \(\text{xExt}(c_+) \) consists of the set of \(x \)-coordinates of jump discontinuities in \([l, r] \) of \(c_+ \); necessarily, \([l, r] \subseteq \text{xExt}(c_+) \). Introducing a parameter \(d_{ip} \in [1, r - l] \), we let \(P \) denote a subset of \(\text{xExt}(c_+) \) with the properties that

- \(\{i, r\} \in P \);
- any distinct elements \(p_1, p_2 \in P \) satisfy \(|p_1 - p_2| > d_{ip} \);
- and, if \(x \in \text{xExt}(c_+) \setminus P \), then some element \(p \in P \) satisfies \(|p - x| \leq d_{ip} \).

In fact, several subsets of \(\text{xExt}(c_+) \) may satisfy these conditions. If this is the case, we may select \(P \) to be the subset among the choices of maximal cardinality that is maximal in the lexicographical ordering. The set \(P \), rather than \(\text{xExt}(c_+) \), will be the focus of our attention; we will sometimes call it the "pole set." The quantity \(d_{ip} \) is the "inter-pole distance" parameter. (The role of this parameter is determined by the application; if an understanding of the behaviour of for example \(\mathcal{L}_n(1, \cdot) \) is sought on an interval of a certain length \(l \), we would set \(d_{ip} \) to equal \(l \), or perhaps a bounded multiple thereof. In many applications, we may think of \(d_{ip} \) as being a constant, independent of \(\varepsilon > 0 \) and even of \(k \geq 2 \).)

We record for future use that

\[|P| \leq 2T . \tag{34} \]

Indeed, elements of \(P \) are separated by a distance that exceeds \(d_{ip} \geq 1 \) and all lie in \([l, r] \subseteq [-T, T] \).

We also define the "tent" map \(\text{Tent} : [l, r] \to \mathbb{R} \) to be the piecewise affine function which on any closed interval between consecutive pole set values \(p_1 \) and \(p_2 \) is equal to the affine function whose values at \(p_1 \) and \(p_2 \) are respectively \(\mathcal{L}_n(k + 1, p_1) \) and \(\mathcal{L}_n(k + 1, p_2) \). Note that \(\text{Tent} \) is an \(\mathcal{F} \)-measurable function.

We choose these names because we may think of a pole \(\{p\} \times (-\infty, \mathcal{L}_n(k + 1, p)] \) being built over each element \(p \in P \), so that the leftmost and rightmost poles are supported at \(l \) and \(r \). The graph of the tent map \(\text{Tent} : [l, r] \to \mathbb{R} \) is thus propped up by the collection of poles.

We say that the Wiener candidate passes the "jump test" if each of its curves clears all the pole tops, namely if

\[W(i, x) > \mathcal{L}_n(k + 1, x) \quad \text{for all } (i, x) \in [1, k] \times P . \]

The middle interval test is comprised of internal and external avoidance constraints for \(W \) on \([l, r] \). These constraints collectively ensure that each \(W \)-curve exceeds \(\mathcal{L}_n(k + 1, \cdot) \) throughout \([l, r] \). The jump test checks that the latter condition holds only at points in \(P \). Since \(P \subseteq [l, r] \), the jump test is weaker than the middle interval test.

In summary, then: under \(\mathbb{P}_{\mathcal{F}} \), the candidate \(W \)'s overall success \(M_{[1,k+1]}^{[-2T,2T]}(W) = 1 \) may be tested in three steps:

- Test 1 is the side intervals test: in one-piece notation, \(M_{[1,k+1]}^{[-2T,[l,2T]}(W) = 1; \)
- Test 2 is the jump test;
- and Test 3 is the middle interval test, i.e., \(M_{[1,k+1]}^{[l]}(W) = 1. \)

Since Test 2 is weaker than Test 3, \(W \) passes the test sequence if and only if it is successful.
The event whose indicator function is checked to be one in Test i will be called T_i, for $i \in [1, 3]$. We also write for example $T_{12} = T_1 \cap T_2$; thus, T_{123} denotes the event that $M_{1,k+1}^{[-2T,2T]}(W) = 1$.

We now construct the jump ensemble J under the law P. The ensemble $J : [1, k] \times [i, \tau] \to \mathbb{R}$ is constructed so that, under P_F, it has the conditional distribution of $W : [1, k] \times [i, \tau] \to \mathbb{R}$ given that $T_{12} = 1$.

![Figure 5](image.png)

Figure 5. The jump ensemble depicted with $k = 2$. The pole set P in this example equals $\{i, p_1, p_2, \tau\}$. The vertical poles are depicted in thick solid lines. The point x is an element of $\text{Ext}(\varepsilon_+)$ but not of P, because $|x - p_1| < 1$. (In fact, there are almost surely infinitely many elements of $\text{Ext}(\varepsilon_+) \setminus P$.) The piecewise affine dashed curve defined on $[i, \tau]$ is Tent. The rougher dashed curves are the jump ensemble $J : [1, 2] \times [i, \tau] \to \mathbb{R}$. The jump ensemble fails the criterion $T_3(J) = 1$ due to the meeting of the two J-curves and contact between $J(1, \cdot)$ and $L_n(3, \cdot)$.

In this way, to the witness of \mathcal{F} the jump ensemble J is a candidate W that passes Tests 1 and 2. The construction is depicted in Figure 5.

Remark. The upper bound imposed on the parameter $\varepsilon > 0$ may now be expressed: it is

$$\varepsilon < (18)^{-3/2}C^{-3/2}_kD_k^{-3/2} \exp \left\{ -2 \cdot 10^7k^{3/2}d_{ip}^6 \right\}. \quad (35)$$

9.5. **The jump ensemble’s promise realized: Proposition 9.2.** The jump ensemble represents a halfway-house between the unadulterated Brownian randomness of the Wiener candidate W and
the desired conditional distribution under \(\mathbb{P}_F \) of the actual line ensemble \(\mathcal{L}_n \). Under \(\mathbb{P}_F \), the latter distribution is obtained as the law of the jump ensemble conditioned on \(T_3(J) = 1 \). Our next result emphasises how the jump ensemble is a serious contender for passing the third and final test: provided that the highly typical \(F \)-measurable event \(\text{Fav} \) occurs, this ensemble meets the demand that \(T_3(J) = 1 \) with a probability that decays slowly, subpolynomially, as \(\varepsilon \downarrow 0 \).

Proposition 9.2. We have that

\[
\mathbb{P}_F \left(T_3(J) = 1 \right) \cdot 1_{\text{Fav}} \geq \exp \left\{ -3973k^{7/2}d_H^2 D_k^2 (\log \varepsilon^{-1})^{2/3} \right\}.
\]

In a sense, we have solved the high jump difficulty: with a choice of \(\zeta = 1/3 \), the \(\mathbb{P}_F \)-probability that \(J \) passes \(T_3(J) = 1 \), and so renders to the witness of \(F \) a copy of the law \(\mathcal{L}_n \), is at least \(\exp \left\{ - (\log \varepsilon^{-1})^{1-\zeta} \right\} \).

9.6. The Wiener candidate’s prospects of promotion to the jump ensemble.

The next result provides a lower bound on the \(\mathbb{P}_F \)-probability of this eventuality and may be seen as part of the overall apparatus of the jump ensemble method. It will be used to prove Proposition 9.2.

Proposition 9.3. We have that

\[
\mathbb{P}_F \left(T_{12}(W) = 1 \right) \geq \varepsilon^{36(k+1)^2} D_k^2 2^{-k} 1_{\text{Fav}}.
\]

We may summarise the jump ensemble method for upper bounds by revisiting the articulation in (28) of the proposed Wiener candidate method (that was found wanting for some such purposes), and formulating a counterpart inequality for the jump ensemble. Consider a general event \(A \), expressed as a collection of \(k \) curves on \([l, r]\). The analogue of (28) in the new formulation is

\[
\mathbb{P} \left(\mathcal{L}_n \in A \right) \leq \mathbb{E} \left[\mathbb{P}_F \left(J \in A \mid T_3(J) = 1 \right) \cdot 1_{\text{Fav}} \right] + \mathbb{P} (\text{Fav}^{\text{c}}).
\]

On the left-hand side, we have abused notation to write \(\mathcal{L}_n \) to indicate the restriction of this ensemble to \([1, k] \times [l, r]\). Recall that the favourable event \(\text{Fav} \) has been specified in Section 9.3.

Using Proposition 9.2 and Lemma 9.1, we see that

\[
\mathbb{P} \left(\mathcal{L}_n \in A \right) \leq \varepsilon^{-o(1)} \mathbb{E} \left[\mathbb{P}_F \left(J \in A \right) \cdot 1_{\text{Fav}} \right] + \varepsilon^\infty,
\]

where in fact \(\varepsilon^{-o(1)} \) is \(\exp \{ O_k(1)(\log \varepsilon^{-1})^{2/3} \} \) (with \(O_k(1) \) bounded for given \(k \)) and \(\varepsilon^\infty \) indicates arbitrarily fast polynomial decay whose exponent is determined by choosing \(D_k > 0 \) high enough.

The scenario that we sought to realize in discussing (28) was not achievable, but now we have a new variant of that scenario. In spirit, the jump ensemble method works as follows. Consider an event \(A \) of the type we are discussing, whose Brownian bridge probability is of order \(\varepsilon \). This means something to the effect that \(\mathcal{B}_{k; \bar{u}, \bar{v}}^{[0,1]}(A) = \varepsilon \), where \(\bar{u} \) and \(\bar{v} \) are say typical unit-order entrance and exit data. (We could also randomize over these vectors, choosing them to have say a Gaussian law conditional on being \(k \)-decreasing lists.) Then, in order to conclude that the ensemble probability \(\mathbb{P} \left(\mathcal{L}_n \in A \right) \) is at most \(\varepsilon^{1-o(1)} \), it is enough to establish the jump ensemble estimate that \(\mathbb{P}_F (J \in A) \) is comparable (at most a large constant multiple would suffice) to the Brownian bridge probability \(\mathcal{B}_{k; \bar{u}, \bar{v}}^{[0,1]}(A) \), for all instances of \(F \)-measurable data for which \(\text{Fav} \) occurs.
In this section, we complete our discussion of the general apparatus of the jump ensemble method by proving Propositions 9.2 and 9.3.

10.1. Trying for jump ensemble status: the Wiener candidate’s flying leap. Here we prove Proposition 9.3. Recall that, conditionally on \(\mathcal{F} \), the jump ensemble \(J \) has the law of \(W \) given \(T_1(W) = 1 \). We begin by providing an explicit condition on \(W \) that ensures that these two tests are passed. Define the *flying leap* event

\[
\text{FlyLeap} = \left\{ W(t) \in \text{Corner}^{t,F} + 3T^2 \cdot D, \; W(t) \in \text{Corner}^{t,F} + 3T^2 \cdot D \right\}
\]

\[
\cap \left\{ |W^{[t,j]}(i,x)| < T^2 \; \forall (i,x) \in [1,k] \times [1,\bar{r}] \right\}.
\]

Here, \(D \) denotes the box \([2k-1, 2k] \times \cdots \times [3, 4] \times [1, 2] \) and \(3T^2 \cdot D \) the dilation by a factor of \(3T^2 \). We first check the inclusion

\[
\text{Fav} \cap \text{FlyLeap} \subseteq \left\{ T_{12}(W) = 1 \right\}.
\]

To verify this, note first that Lemma 7.1 implies that the side intervals test \(T_1(W) = 1 \) is passed provided that \(W(t) - \text{Corner}^{t,F} \in (0,\infty)^k \) and \(W(t) - \text{Corner}^{t,F} \in (0,\infty)^k \). Clearly, these latter conditions apply, because \(3T^2 \cdot D \subset (0,\infty)^k \). For the jump test \(T_2(W) = 1 \) to be passed, it is sufficient that \(W(i,x) \) exceed \(\mathcal{L}_n(k+1,x) \) whenever \((i,x) \in [1,k] \times [1,\bar{r}] \). Taking \(i = k \), we have that, for all such \(x \), the occurrence of \(\text{FlyLeap} \) entails that \(W(i,x) > 3T^2 + \text{Corner}^{F,F} \cap \text{Corner}^{\bar{r},F} - T^2; \)

on \(\text{Fav} \), \(\text{Corner}^{F,F} \geq \mathcal{L}_n(k+1,1) \geq -T^2 \) and similarly \(\text{Corner}^{F,F} \geq -T^2 \). Thus, on \(\text{Fav} \cap \text{FlyLeap} \), \(W(i,x) > T^2 \). On the other hand, \(\text{Fav} \) entails that \(\mathcal{L}_n(k+1,x) \leq T^2 \) (since \([1,\bar{r}] \subseteq [-T,T] \)). The lower bound on \(W(i,x) \) is equally true for \(i < k \): we have confirmed (36).

In view of (36), in order to prove Proposition 9.3, it is enough to verify that

\[
\mathbb{P}_\mathcal{F}(\text{FlyLeap}) \geq \varepsilon^{36(k+2)^2 k D^3} 2^{-k} 1_{\text{Fav}}.
\]

We now do so. Let \(i \in [1,k] \). When \(\text{Fav} \) occurs, \(\text{Corner}^{t,F}_i \) and \(\text{Corner}^{t,F}_i \) lie on the interval \([-T^2, T^2]\), while \(\mathcal{L}_n(i,-2T) \) and \(\mathcal{L}_n(i,2T) \) are at distance at most \(T^2 \) from \(-2\sqrt{2}T^2\). Thus, the quantity

\[
\mathbb{P}_\mathcal{F}\left(W(i,1) \in \text{Corner}^{t,F}_i + 3T^2 \cdot [2k + 1 - 2i, 2(k + 1 - i)]\right),
\]

\[
W(i,\bar{r}) \in \text{Corner}^{t,F}_i + 2T^2 \cdot [2k + 1 - 2i, 2(k + 1 - i)]\right)
\]

is seen to be at least

\[
\inf \mathcal{B}_{i,x,y}^{[-2T, 2T]} \left(B(1) \in a + 3T^2 \cdot [2k + 1 - 2i, 2(k + 1 - i)],
\right),
\]

when \(\text{Fav} \) occurs. The infimum is taken over choices of \(x \) and \(y \) in the interval \([-2\sqrt{2} - 1, -2\sqrt{2} + 1]T^2\) and of \(a \) and \(b \) in the interval \([-T^2, T^2]\). We may now use Corollary 5.8 to find a lower bound on the expression whose infimum is taken. Using \(3T^2 \geq 1 \) in order to omit the product of the interval lengths in the corollary, we find that the expression is at least

\[
Z^{-1}G_1(x,a)G_2(a,b)G_3(b,y)
\]
where

\[G_1(x, a) = \inf_{u \in 3T^2, [2k+1−2i, 2(k+1−i)]} g_{x,t+2T,a+u}, \]

\[G_2(a, b) = \inf_{u, v \in 3T^2, [2k+1−2i, 2(k+1−i)]} g_{a+u, x−l, b+v}, \]

and

\[G_3(b, y) = \inf_{v \in 3T^2, [2k+1−2i, 2(k+1−i)]} g_{b+v, 2T−l, y}. \]

The normalization \(Z \) equals \(g_{x, 4T}(y) \); note that \(Z^{-1} \geq 1 \) since \(4T(2\pi)^{1/2} \geq 1 \).

Write \(G_1 \) for the infimum of \(G_1(x, a) \) over the stated choices of \((x, a)\); and similarly define \(G_2 \) and \(G_3 \). Note that

\[G_1 \geq g_{(-2\sqrt{2}−1)T^2, t+2T} \left(T^2 + 6T^2(k+1−i)\right) \geq (2\pi)^{-1/2} \left(\frac{2}{3\pi}\right)^{1/2} \exp \left\{ -\frac{1}{2\pi} \left(6(k+1−i)+2\sqrt{2}+2\right)T^2 \right\}, \]

since \(T \leq t + 2T \leq 3T/2 \). Thus,

\[G_1 \geq (2\pi)^{-1/2} \left(\frac{2}{3\pi}\right)^{1/2} \cdot \exp \left\{ -\frac{1}{2\pi} (6k + 5)T^2 \right\} \geq \exp \left\{ -18(k + 1)^2T^3 \right\}; \]

in the latter inequality, we bounded the pre-term below by \(\varepsilon_5D_k^3 \), using \(\varepsilon_3D_k^2 \leq (3\pi D_k)^{-3} \) to do so.

The quantity \(G_3 \) satisfies the same bound.

Note that

\[G_2 \geq g_{0,t−l} \left(4T^2 \right) \geq (2\pi)^{-1/2} \left(\frac{1}{2\pi}\right)^{1/2} \cdot \exp \left\{ -\frac{1}{2\pi} 16T^4 \right\} \]

since \(T \leq t − l \leq 2T \). Using \(\varepsilon_3D_k^{-1} \leq 2^{-6}\pi^{-3}D_k^{-3} \), we find that

\[G_2 \geq \exp \left\{ -5T^3 \right\}. \]

In this way, we find that the quantity in (38) is at most

\[\exp \left\{ -36(k + 1)^2T^3 - 5T^3 \right\} \geq \varepsilon_3^{36(k+2)^2D_k^3}. \]

We have found that the first event of the pair whose intersection constitutes FlyLeap has \(\mathbb{P}_F \)-probability at least \(\varepsilon_3^{36(k+2)^2D_k^3} \) when \(\text{Fav} \) occurs, because the event is the intersection over \(i \in [1, k] \) of the event in (38).

Next, note that, for \(i \in [1, k] \),

\[\mathbb{P}_F \left(\sup_{x \in [l, t]} |W[i, t](i, x)| \leq T^2 \right) = 1 - 2 \exp \left\{ -2 \frac{T^2}{r−l} \right\}; \]

since \(\text{Fav} \subseteq \{r−l \geq T \} \) (and \(T \geq 1 \)), the right-hand side is at least \(1 - 2 \exp \left\{ -2T^3 \right\} \geq 1 - 2e^{-2} \geq 1/2 \) when \(\text{Fav} \) occurs.

The bridge \(W[i, t](i, \cdot) \) is independent of the values \(W(i, l) \) and \(W(i, r) \). Thus, we obtain (37) and Proposition 9.3. \(\square \)
10.2. Subpolynomial success probability for the jump ensemble. We now prove Proposition 9.2. To do so, we introduce an augmentation of the missing closed middle σ-algebra \mathcal{F}.

The pole set P, which is determined by the curve $\mathcal{L}_n(k+1, \cdot) : [-T,T] \to \mathbb{R}$, contains at most $2T$ elements, as we noted in (34). Let $\{p_r : r \in [1,|P|]\}$ be a list of P’s elements in increasing order. In particular, $p_1 = \mathfrak{t}$ and $p_{|P|} = \mathfrak{r}$.

The jump ensemble $J : [1,k] \times [1,\mathfrak{r}] \to \mathbb{R}$ is specified by the data

1. The difference values $J(i,p_{r+1}) - J(i,p_r)$ for $(i, r) \in [1,k] \times [1,|P| - 1]$;
2. The standard bridges $J^{[p_r,p_{r+1}]}(i, \cdot) : [p_r,p_{r+1}] \to \mathbb{R}$, $i \in [1,k]$, $1 \leq r \leq |P| - 1$, defined between each pair of consecutive pole set values;
3. The values $J(i,\mathfrak{t})$ for $i \in [1,k]$.

Write \mathcal{F}^1 for the σ-algebra generated by \mathcal{F} and the first item in the list, and let $\mathbb{P}_{\mathcal{F}^1}$ denote conditional probability given \mathcal{F}^1. The σ-algebra generated by \mathcal{F}^1 and the third item in the list will be called \mathcal{F}^{13}.

We wish to note that the conditional distribution under $\mathbb{P}_{\mathcal{F}^{13}}$ of the item (2) data coincides with this law under $\mathbb{P}_{\mathcal{F}^1}$: in each case, the product law of $B_{k,0,0}^{[p_r,p_{r+1}]}$ over $r \in [0,|P| - 1]$. That is so may be seen by noting that this product law, which is enjoyed under $\mathbb{P}_{\mathcal{F}}$ by the bridges associated to the Wiener candidate W, is unperturbed by the conditioning on $T_{12}(W) = 1$ that results in the ensemble J. Indeed, the conditions in these two tests are expressible in terms of the k-vectors $\overline{W}(x)$ as x varies over P, including its endpoints \mathfrak{t} and \mathfrak{r}. The second item plays no role in determining the values of the k curves in J over any point in P because these values are dictated by the first and third items.

Similarly, for $i \in [1,k]$ given, the witness of \mathcal{F}^1 needs one piece of data to know the form of $J(i,\cdot) : [-2T,\mathfrak{t}] \cup P \cup [\mathfrak{r},2T] \to \mathbb{R}$: the value $J(i,\mathfrak{t})$. She may reconstruct this curve supposing that this unknown value equals $z \in \mathbb{R}$. Writing $J^z : P \to \mathbb{R}$ for the reconstructed curve, we have $J^z(p) = z + J(i,p) - J(i,\mathfrak{t})$; note that the J-difference here is \mathcal{F}^1-measurable. The proposed value z also dictates a reconstructed form for \mathcal{L}_n at $s \in [-2T,\mathfrak{t}]$, given by the second line of the formula in (18) with x_i taken equal to z. In the present context, we will record this formula by $J^z(s)$. (This is out of keeping with the domain of definition of the jump ensemble being $[1,\mathfrak{r}]$, which excludes such a choice of s, but other notational choices such as \mathcal{L}^z_n clash with earlier usage.) Similarly, when $s \in [\mathfrak{r},2T]$, we set $J^z(s)$ equal to the fourth line in (18) with y_i set equal to $z + J(i,\mathfrak{r}) - J(i,\mathfrak{t})$.

Let $h_{\mathcal{F}^1} : \mathbb{R}^k \to [0,\infty)$ denote the density with respect to Lebesgue measure on \mathbb{R}^k of the conditional law under $\mathbb{P}_{\mathcal{F}^1}$ of the k-vector $\overline{J}(\mathfrak{t})$. Using Lemma 5.7, note that $g_{\mathcal{F}^1}(\tilde{x})$ equals

$$Z_{\mathcal{F}^1}^{-1} \prod_{i=1}^k \exp \left\{ -\frac{1}{2(t+2T)} \left(\mathcal{L}_n(i, -2T) - x_i \right)^2 - \frac{1}{2(2T-t)} \left(x_i + J(i,\mathfrak{r}) - J(i,\mathfrak{t}) - \mathcal{L}_n(i, 2T) \right)^2 \right\} \cdot M_{\mathcal{F}^1}(\tilde{x}),$$

(39)

where $M_{\mathcal{F}^1}(\tilde{x})$ denotes the indicator function of the event

$\big\{ J^{z_1}(i,s) > J^{z_{i+1}}(i+1,s) \ \forall (s,i) \in ([-2T,\mathfrak{t}] \cup [\mathfrak{r},2T]) \times [1,k-1] \big\}$

$\cap \big\{ J^{z_k}(k,s) > \mathcal{L}_n(k+1,s) \ \forall s \in [-2T,\mathfrak{t}] \cup [\mathfrak{r},2T] \big\}$

$\cap \big\{ J^{z_1}(i,s) > \mathcal{L}_n(k+1,s) \ \forall (s,i) \in P \times [1,k] \big\}.$
The normalizing quantity $Z_{F^1} \in (0, \infty)$ is F^1-measurable.

We now present a counterpart for the witness of F^1 to the ‘corner’ Lemma 7.1. The left sketch in Figure 6, a few pages hence, may be consulted for an illustration of the new lemma’s proof.

Lemma 10.1. There exists a F^1-measurable random vector $\overline{\text{Corner}}^{I,F^1} \in \mathbb{R}^k$ such that

$$\{ \bar{x} \in \mathbb{R}^k : M_{F^1}(\bar{x}) = 1 \} = \overline{\text{Corner}}^{I,F^1} + (0, \infty)^k.$$

Proof. Recall the one-piece list reconstructed curve notation in (23). Given F^1, and for any vector $\bar{x} \in \mathbb{R}^k$, consider the $k+1$ curves on $[-2T, 2T]$ the first k of which are given by the reconstructed jump ensemble $L_{x_1+i}(i, \cdot) : [-2T, 2T] \rightarrow \mathbb{R}, 1 \leq i \leq k$; and the $(k+1)^{st}$ of which equals $L_n(k+1, \cdot) : [-2T, 2T] \rightarrow \mathbb{R}$.

We begin by identifying the value of the vector $\overline{\text{Corner}}^{I,F^1}$. It is specified so that for each consecutive pair of indices $(i, i+1)$ of this $(k+1)$-curve system, there exists a value of x in the set $[-2T, 1] \cup P \cup [r, 2T]$ such that the two curves indexed by the pair are equal at x; moreover, if the i^{th} component of the vector is increased while the $(i+1)^{st}$ is held fixed, there is no such contact between the pair of curves. (This value of x is in fact unique \mathbb{P}-almost surely, but we will not use this fact. In this proof, we will call the value the $(i, i+1)$ contact point, in what we hope are the interests of exposition; however, our argument does not depend on the uniqueness that this phrase implicitly asserts.)

This description specifies the value of $\overline{\text{Corner}}^{I,F^1}$. It is useful however to describe a more explicit means of determining this vector’s value. Doing so offers an opportunity to consider the perspective of the witness of F^1, a point of view that is valuable in understanding our use of the jump ensemble J.

The vector $\overline{\text{Corner}}^{I,F^1}$ may be determined in decreasing order of its component index, similarly to the proof of Lemma 7.1. The highest indexed component $\text{Corner}_{k}^{I,F^1}$ equals the infimum of $q \in \mathbb{R}$ such that

- $q \geq \text{Corner}_{k}^{I,F}$;
- $q + J(k, p) - J(k, l) \geq L_n(k+1, p)$ for all $p \in P$;
- $q + J(k, v) - J(k, l) \geq \text{Corner}_{k}^{I,F}$.

Indeed, Lemma 7.1 shows that the first, and third, conditions correspond to the $(k, k+1)$-contact point lying in $[-2T, 1]$, or $[r, 2T]$. The second clearly corresponds to this point lying in the pole set P. Note also that the J-differences are F^1-measurable while the data $\text{Corner}_{k}^{I,F}$ and Corner_{k}^{F}, as well as the form of $L_n(k+1, \cdot)$, is measurable in the smaller σ-algebra F. Thus, the witness of F^1 is certainly equipped to determine $\overline{\text{Corner}}^{I,F^1}$ according to this rule.

At the generic step, $\text{Corner}_{i}^{I,F^1}$ will be determined for $i \in [1, k - 1]$. The values $\text{Corner}_{i}^{I,F^1}$ have been decided for $j \in [i+1, k]$, and now $\text{Corner}_{i}^{I,F^1}$ is set equal to the infimum of $q \in \mathbb{R}$ such that

- $q - \text{Corner}_{i+1}^{I,F^1} \geq \text{Corner}_{i}^{F} - \text{Corner}_{i+1}^{F}$;
- $q + J(i, p) - J(i, l) \geq L_n(k+1, p)$ for all $p \in P$;
- and $\left(q + J(i, v) - J(i, l) - \left(\text{Corner}_{i+1}^{I,F^1} + J(i+1, v) - J(i+1, l)\right)\right) \geq \text{Corner}_{i}^{F} - \text{Corner}_{i+1}^{F}$.

The three cases correspond to the location of the \((i, i + 1)\)-contact point just as they did in the specification of \(\text{Corner}^{L,F}_{k}\). Take the third item, for example. If the witness of \(F^1\) considers the eventuality that the unknown \(J(i, l)\) equals \(q\), the outcome that \(J(i, r)\) equals \(q + J(i, r) - J(i, l)\) would be dictated; alongside the circumstance that \(J(i + 1, l)\) equals \(\text{Corner}^{L,F}_{i+1}\), this would force \(J(i, r) - J(i + 1, r)\) to equal the third item left-hand side; thus, Lemma \(7.1\) shows that equality in the third condition stipulates a point of contact between the \(i^{th}\) and \((i + 1)st\) curves somewhere in \([r, 2T]\) and that there is no such contact when equality is replaced by strict inequality.

That \(\bar{x} \in \mathbb{R}^k\) satisfies \(M_{F^1}(\bar{x}) = 1\) precisely when \(\bar{x} - \overline{\text{Corner}}^{L,F}_{F^1} \in (0, \infty)^k\) follows by the reasoning in the final paragraph of Lemma \(7.1\)'s proof.

Let \(Fav_1\) denote the \(F_1\)-measurable event that

\[
\begin{align*}
&\bullet J(i, p) - J(i, l) \geq -37k^{3/2}T^2 \text{ for } (i, p) \in [1, k] \times P; \\
&\bullet J(i, r) - J(i, l) \leq 37k^{3/2}T^2 \text{ for } i \in [1, k].
\end{align*}
\]

Lemma 10.2. When \(Fav \cap Fav_1\) occurs,

\[-T^2 \leq \text{Corner}^{L,F}_{i} \leq 74k^{5/2}T^2\]

for each \(i \in [1, k]\).

Proof. We begin by arguing that

\[-T^2 \leq \text{Corner}^{L,F}_{k} \leq (37k^{3/2} + 1)T^2\]

on \(Fav \cap Fav_1\). Recall that \(\text{Corner}^{L,F}_{k}\) is an infimum over \(q \in \mathbb{R}\) satisfying the first set of three bullet-pointed lower bounds in the proof of Lemma \(10.1\). The first of these conditions implies that \(\overline{\text{Corner}}^{L,F}_{k}\) is at least \(-T^2\) in light of \(Fav \subseteq \{\text{Corner}^{L,F}_{k} \geq -T^2\}\).

To find an upper bound on \(\text{Corner}^{L,F}_{k}\), we must find for each bullet point an admissible value of \(q\). In the first case, that \(Fav\) entails \(\text{Corner}^{L,F}_{k} \leq T^2\) implies that \(q\) is satisfactory when it equals \(T^2\). In the second and the third cases, \(q = (37k^{3/2} + 1)T^2\) works. In the second case, this is a consequence of the \(Fav_1\) constraint that \(J(k, p) - J(k, l) \geq -37k^{3/2}T^2\) as well as \(P \subset [1, r]\) and the \(Fav\) constraint that \(L_n(k + 1, x) \leq T^2\) for \(x \in [1, r]\). In the third, it follows from \(\text{Corner}^{L,F}_{k} \leq T^2\) on \(Fav\) and this same \(Fav_1\) constraint.

We have established the base case \(i = k\) of the assertion that

\[-T^2 \leq \text{Corner}^{L,F}_{i} \leq (37k^{3/2} + 1 + (k - i)(74k^{3/2} + 2))T^2,\]

which we now verify by an induction in decreasing order on the variable \(i \in [1, k]\).

Taking \(i \in [1, k - 1]\) and assuming these bounds for index \(i + 1\), we recall the three bullet point inequalities specifying \(\text{Corner}^{L,F}_{i}\) and note that the first of these already demonstrates that \(\text{Corner}^{L,F}_{i} \geq \text{Corner}^{L,F}_{i+1}\) in view of \(\text{Corner}^{L,F}_{i+1} \geq \text{Corner}^{L,F}_{i+1}\) (a fact which is due to \(\overline{\text{Corner}}^{L,F}_{k} \in \mathbb{R}_\geq^k\)). Thus, we obtain the lower bound in the inductive hypothesis at index \(i\).

Regarding the upper bound, note that the three bullet point conditions are satisfied by the following values of \(q\):

\[
\bullet q = \text{Corner}^{L,F}_{i+1} + 2T^2, \text{ since } \text{Corner}^{L,F}_{i} \leq T^2 \text{ and } \text{Corner}^{L,F}_{i+1} \geq -T^2 \text{ on } Fav;
\]
• \(q = (37k^{3/2} + 1)T^2 \), since \(J(i, p) - J(i, l) \geq -37k^{3/2}T^2 \) on \(\text{Fav}_1 \) and \(\mathcal{L}_n(k + 1, p) \leq T^2 \) for \(p \in P \) on \(\text{Fav} \);

• and \(q = \text{Corner}_{i+1}^{\text{F}_i} + 2T^2 + 74k^{3/2}T^2 \), since \(\text{Corner}_{i}^{\text{F}_i} - \text{Corner}_{i+1}^{\text{F}_i} \leq 2T^2 \) on \(\text{Fav} \), and

\[
J(i, r) - J(i, l) \geq -37k^{3/2}T^2 \quad \text{and} \quad J(i + 1, r) - J(i + 1, l) \leq 37k^{3/2}T^2 \quad \text{on} \quad \text{Fav}_1.
\]

Hence, \(\text{Corner}_{i}^{\text{F}_i} \) is seen to be at most the maximum of \((37k^{3/2} + 1)T^2\) and \(\text{Corner}_{i+1}^{\text{F}_i} + (74k^{3/2} + 2)T^2 \).

The inductive hypothesis upper bound at index \(i \) thus follows from its counterpart at index \(i + 1 \).

The bounds stated in Lemma 10.2 follow directly from the inductively established bounds.

\[\square \]

Lemma 10.3.

\[
\mathbb{P}_\mathcal{F}(\text{Fav}_1) \cdot 1_{\text{Fav}} \leq \varepsilon^{15k^3D_k^3}.
\]

Proof. Define the counterpart to the event \(\text{Fav}_1 \) for the Wiener candidate \(W \), namely

\[
A = \bigcap_{(i, p) \in [1, k] \times P} \left\{ W(i, p) - W(i, l) \geq -37k^{3/2}T^2 \right\} \cap \bigcap_{i \in [1, k]} \left\{ W(i, r) - W(i, l) \leq 37k^{3/2}T^2 \right\}.
\]

We claim that

\[
\mathbb{P}_\mathcal{F}(A^c) \cdot 1_{\text{Fav}} \leq \varepsilon^{16k^3D_k^3}. \tag{40}
\]

To see this, note that, under \(\mathbb{P}_\mathcal{F} \), the Wiener candidate ensemble member \(x \to W(i, x) : [l, r] \to \mathbb{R} \), for given \(i \in [1, k] \), has the marginal law on \([l, r]\) of Brownian bridge \(B \) distributed as \(B_{[l, u_i, v_i]}^{[-2T, 2T]} \), where \(u_i \) and \(v_i \) each lie within \(T^2 \) of \(-2\sqrt{2}T^2\) should the \(\mathcal{F} \)-measurable event \(\text{Fav} \) occur. Consequently, if \(\text{Fav} \) occurs, then if it is the case that \(|W(i, x) - W(i, l)| > 37k^{3/2}T^2 \) for any given (or indeed \(\mathcal{F} \)-measurable) choice of \(x \in [l, r] \), it is easily seen that the standard bridge \([-2T, 2T] \to \mathbb{R} : x \to B_{[-2T, 2T]}(i, x) \) associated to \(B \) must have maximum absolute value at least \(\frac{1}{2} \left(\frac{37}{2}k^{3/2}T^2 - 2T^2 \right) \geq 18k^{3/2}T^2 \) (since \(k \geq 2 \)). This latter eventuality has probability at most \(2 \exp \left\{ -\frac{18k^3}{2T^2} \right\} \) as we see by applying Lemma 5.9 with \(r = 18k^{3/2}T^2 \) and \(b - a = 4T \). There are \(k |P| + k \leq k(2T + 2) \) such eventualities that may cause \(A \) to fail to occur. Recalling that \(T = D_k \left(\log \varepsilon^{-1} \right)^{1/3} \geq 1 \),

\[
\mathbb{P}_\mathcal{F}(A^c) \cdot 1_{\text{Fav}} \leq 8kD_k \left(\log \varepsilon^{-1} \right)^{1/3} \cdot \varepsilon^{16k^3D_k^3}.
\]

The first factor on the right-hand side is at most \(\varepsilon^{-D_k^3} \) because \(\varepsilon^{3D_k^3} \leq (8kD_k)^{-3} \). We have verified (40).

Note that

\[
\mathbb{P}_\mathcal{F}(\text{Fav}_1) \cdot 1_{\text{Fav}} = \frac{\mathbb{P}_\mathcal{F}(A^c, T_{12}(W) = 1)}{\mathbb{P}_\mathcal{F}(T_{12}(W) = 1)} \cdot 1_{\text{Fav}}.
\]

By Proposition 9.3 and (40), the right-hand side is when \(\text{Fav} \) occurs at most

\[
\varepsilon^{-36k(k+2)^2D_k^3} \cdot 2^k \cdot \varepsilon^{16k^3D_k^3} \leq 2^k \cdot \varepsilon^{16k^3D_k^3} \leq \varepsilon^{15k^3D_k^3},
\]

since \(k \geq 2 \), \(\varepsilon < 1/2 \) and \(D_k \geq 1 \). The proof of Lemma 10.3 is complete. \(\square \)

Lemma 10.4. The conditional distribution under \(\mathbb{P}_\mathcal{F} \) of the third item vector \(\mathcal{J}(1) \) is the law of an independent sequence \(\mathcal{N} = (N_i : i \in [1, k]) \) of normal random variables conditionally on the event that \(\mathcal{N} \in \text{Corner}_{i}^{\text{F}_i} + [0, \infty) \).
The component random variables N_i share a common, \mathcal{F}-measurable, variance σ^2 that satisfies $\sigma^2 \in T \cdot [1/2,3/4]$ when Fav occurs. The mean of N_i, which we denote by $m(i)$, is \mathcal{F}^1-measurable. When $\text{Fav} \cap \text{Fav}_1$ occurs, it satisfies $|m(i)| \leq 38k^{3/2}T^2$.

Lemma 10.5. Let $\ell_1 < a < b < \ell_2$ and $z, j \in \mathbb{R}$. Under the bridge law $B_{1,0,z}^{[\ell_1,\ell_2]}$ conditioned on $B(b) - B(a) = j$, the conditional distribution of $B(a)$ is normal with mean m and variance σ^2, where $m = \frac{b-a}{\ell_2-b} \sigma^2$ and $\sigma^{-2} = (a-\ell_1)^{-1} + (\ell_2-b)^{-1}$.

Proof. Let N_1 and N_2 be two independent normal random variables. The first has mean zero and variance $a - \ell_1$; the second, mean z and variance $\ell_2 - b$. Under the conditioning in the lemma, the random variable $(B(a), B(b))$ has the law of the pair (N_1, N_2) conditioned on $N_2 = N_1 + j$.

Thus, the conditioned random variable $B(a)$ adopts the value x with density given up to normalization by

$$\exp \left\{ -x^2 \frac{1}{2(a-\ell_1)} \right\} \cdot \exp \left\{ -(x+j-z)^2 \frac{1}{2(\ell_2-b)} \right\}.$$

When it is normalized, this quantity equals $g_{m,\sigma^2}(x)$. \hfill \square

Proof of Lemma 10.4. We apply Lemma 10.5 setting $\ell_1 = -2T$, $a = 1$, $b = \tau$, $\ell_2 = 2T$, $z = R_n(i, 2T) - R_n(i, -2T)$ and $j = J(i, \tau) - J(i, 1)$. In doing so, we learn that

$$\sigma^{-2} = (1+2T)^{-1} + (2T - \tau)^{-1}$$

and

$$m(i) = \frac{\mathcal{L}_n(i, 2T) - \mathcal{L}_n(i, -2T) - j_i}{(1+2T)^{-1}(2T - \tau) + 1},$$

where j_i denotes $J(i, \tau) - J(i, 1)$.

The occurrence of Fav entails that $I \in [-T,-T/2]$ and $\tau \in [T/2, T]$, whence $T/2 \leq \sigma^2 \leq 3T/4$.

The denominator in the expression for $m(i)$ is at least one. On Fav, the quantities $\mathcal{L}_n(i, -2T)$ and $\mathcal{L}_n(i, 2T)$ differ by at most $2T^2$; and, on Fav_1, $|j_i| \leq 37k^{3/2}T^2$. That $|m(i)| \leq 38k^{3/2}T^2$ follows from $k \geq 2$.

Proof of Proposition 9.2. If $[a,b] \subseteq [-T/2, T/2]$, the standard bridge ensemble $J_{[a,b]}^T(i, \cdot) : [a, b] \rightarrow \mathbb{R}$ derived from jump ensemble is well defined on the \mathcal{F}-measurable event Fav because $\text{Fav} \subseteq \{-T/2, T/2\} \subseteq [1, \tau]$.

For $\bar{q} \in \mathbb{R}_\geq^k$ and $\alpha, \beta > 0$, let the pair separated set $\text{PS}_{\alpha,\beta,\bar{q}} \subseteq \mathbb{R}_\geq^k$ be given by

$$\text{PS}_{\alpha,\beta,\bar{q}} = \left\{ \bar{x} \in \mathbb{R}_\geq^k : (x_i - q_i) - (x_{i+1} - q_{i+1}) \geq 2\alpha \text{ for all } i \in [1, k-1]; \text{ and } x_k \geq q_k + \beta \right\}.$$

We will prove Proposition 9.2 by adopting the perspective of the witness of \mathcal{F}^1 and considering the eventuality that

$$J(I) \in \text{PS}_{\alpha',\beta',\bar{q}'} \quad \text{where} \quad (\alpha', \beta', \bar{q}') = \left(T^{1/2}, S_{d_p}T + T^{1/2}, \text{Corner}_{1-\mathcal{F}^1} \right) \in (0, \infty) \times (0, \infty) \times \mathbb{R}_\geq^k.$$

Indeed, we set the value of $(\alpha', \beta', \bar{q}')$ in this way throughout the proof of this proposition (and thus for the remainder of Section 10).

There are two main steps for the proof: first, in Proposition 10.6 we will argue that this circumstance results in a subpolynomial decay in ε for the conditional probability of $T_3(J) = 1$; then, in
Proposition 10.10, we will find that the circumstance occurs with such a \mathbb{P}_{F_1}-probability. The right sketch in Figure 6 illustrates the ideas.

Proposition 10.6.

$$\mathbb{P}_{F_1}(\bar{T}_3(J) = 1 \mid \bar{J}(l) \in \text{PS}_{\alpha',\beta',\delta'}) \cdot 1_{\text{Fav} \cap \text{Fav}_1} \geq (1 - 2e^{-1})^{2Tk}.$$

Proof. The idea of the proof: under the conditioning in question, $J(k, l)$ has a margin of $8d_{ip}T + T^{1/2}$ over the minimum needed not to definitely violate an avoidance constraint in the eyes of the witness of F_1. The margin of $8d_{ip}T$ is needed because, as we shall see in Lemma 10.9, this is the amount by which $\mathcal{L}_n(k + 1, \cdot) : [1, \infty) \to \mathbb{R}$ may rise above the tent map; the extra margin of $T^{1/2}$, and an additional margin of $2T^{1/2}$ associated to the lower indices, permit the use of channels of width $2T^{1/2}$ about the affine interpolation of consecutive jump ensemble curve values over the pole set, with the channels being disjoint from each other and from the graph of $\mathcal{L}_n(k + 1, \cdot)$. This channel width is high enough that the channels may be shown via Lemma 10.7 to have a reasonable \mathbb{P}_{F_1}-probability of housing the ensemble’s curves.

Recall the system of standard bridges $\bar{J}^{[pr, p_{r+1}]}(i, \cdot) : [pr, p_{r+1}] \to \mathbb{R}, i \in [1, k], 0 \leq r \leq |P| - 1$, in the second item of the three-item list used in specifying F_1. Under the law \mathbb{P}_{F_1} given that $\bar{J}(l)$ is an element of $\text{PS}_{\alpha',\beta',\delta'}$, this system has the law of independent standard Brownian bridges on the respective intervals. It is straightforward to find a simple criterion for these bridges that is sufficient for the success of the final test condition $\bar{T}_3(J) = 1$ under this conditional law. Namely, the **modest bridge fluctuation** event MBF is given by

$$\text{MBF} = \left\{ \left| \bar{J}^{[pr, p_{r+1}]}(i, x) \right| \leq T^{1/2} : i \in [1, k], x \in [pr, p_{r+1}], 0 \leq r \leq |P| - 1 \right\}.$$

We will prove momentarily that MBF is such a criterion. First, we prove that this event is not atypical: its probability decays to zero at most subpolynomially as $\varepsilon \searrow 0$.

Lemma 10.7. We have that

$$\mathbb{P}_{F_{13}}(\text{MBF}) \geq (1 - 2e^{-1})^{2Tk}.$$

Proof. We have noted that, under $\mathbb{P}_{F_{13}}$, the bridge $\bar{J}^{[pr, p_{r+1}]}(i, \cdot)$ has the standard bridge law $\mathcal{B}^{[pr, p_{r+1}]}_{1,0} \mid \text{out}_{pr, p_{r+1}}$, independently of the other bridges. By Lemma 5.9, this bridge has maximum exceeding $T^{1/2}$, with probability at most exp $\{ -2T(p_{r+1} - p_r)^{-1} \}$; and likewise for the minimum being less than $-T^{1/2}$.

Since the pole set P is a subset of $[l, \infty) \subseteq [-T, T], p_{r+1} - p_r \leq 2T$ for $0 \leq r \leq |P| - 1$. Thus, $|\bar{J}^{[pr, p_{r+1}]}| \leq T^{1/2}$ with $\mathbb{P}_{F_{13}}$-probability at least $1 - 2e^{-1}$. By (34), the number of bridges is at most $k|P| \leq 2Tk$, whence we obtain Lemma 10.7.

Lemma 10.8. The inclusion

$$\text{MBF} \cap \left\{ \bar{J}(l) \in \text{PS}_{\alpha',\beta',\delta'} \right\} \subseteq \{ \bar{T}_3(J) = 1 \}$$

holds up to a \mathbb{P}-null set.

Proof. Consider the law \mathbb{P}_{F_1}. By Lemma 10.1, the vector $\bar{J}(l)$ is a random element of the set $\overline{\text{Corner}_{F_1} + (0, \infty)}_k$. If this random vector were to adopt the value $\overline{\text{Corner}_{F_1}}$ (the minimal possible value, which is in fact only in the closure of the support of the vector’s law), then each of the vectors $\bar{J}(x)$, for x in the pole set P, would be elements of $\mathbb{R}^k_>$, with equality between consecutive components
Figure 6. The two sketches depict different aspects of the perspective of the witness of \mathcal{F}^1, in an example where $k = 2$, $P = \{l,p_1,r\}$ and $d_{lp} = 1$. The three vertical poles are shown in bold and the tent map they support is dashed in both sketches. In each sketch, the thickest curves correspond to the top curve index and the second thickest to the second curve. Left sketch: The vertical location of the pair of circular beads hanging over l represents a possible outcome for the value of $(J(1,l), J(2,l))$ in the eyes of the witness; in this instance, this location is $\overline{\text{Corner}}_{\mathcal{F}^1} \in \mathbb{R}_+^2$. From each bead emanates a dotted piecewise affine curve on $[l,r]$. These two crooked rigid rods are \mathcal{F}^1-determined; they may be translated vertically by the witness of \mathcal{F}^1 by her rolling the circular beads up or down the line at l. In this way, the pair dictates the values of $J(1,\cdot)$ and $J(2,\cdot)$ on P. In the language of the proof of Lemma 10.1, the $(1,2)$-contact point is at $p_1 \in P$, and the $(2,3)$-contact point is in $[r,2T]$: see the two crosses. Right sketch: A sample of the witness’s randomness is depicted. The pair of circles $(J(1,l), J(2,l))$ have been translated from the left sketch location by (a,b), where $b \geq 8d_{lp}T + T^{1/2}$ and $a \geq b + 2T^{1/2}$. In the upper-right boxes, we see the random bridges: for $i \in \{1,2\}$, the dashed $J^\lfloor[l,p_1] (i,\cdot)$ and the dotted $J^\lfloor[p_1,r] (i,\cdot)$, with the higher box containing the bolder $i = 1$ curves. This sample illustrates the proof of Proposition 9.2 and it verifies $T_3(J) = 1$.

being possible, but not a strict violation of decreasing order. When the event $\mathcal{J}(l) \in \text{PS}_{\alpha', \beta', \bar{q}'}$ occurs, we may think of this vector of values being dynamically constructed as follows: from an initial vector equal to $\overline{\text{Corner}}_{\mathcal{F}^1}^{l-\mathcal{F}^1}$, the value $J(k,l)$ is determined by increasing from the initial value $\text{Corner}_{\mathcal{F}^1}^l$...
by at least $8d_{ip}T + T^{1/2}$; at the same time, each lower indexed value $J(i, 1)$ receives the same upward push from an initial location of Corner_i^{L,F_1}; $J(k - 1, 0)$ is then further pushed up by at least $2T^{1/2}$, with lower indexed J-values likewise rising; and each $J(i, 1)$ in decreasing i receives its own upward push of $2T^{1/2}$, similarly also forcing up lower indexed values, until the final outcome values of the vector are obtained.

The values of the J-vector at 1 dictate the corresponding values at any $x \in P$. Indeed, we may view the k-vector of J-values above x as being dynamically obtained from an initial state in correspondence with the choice that $\bar{J}(1) = \text{Corner}^{L,F_1}$ by the same process of upward pushes.

For $i \in [1, k]$, consider the piecewise affine function $A(i, \cdot) : [l, r] \to \mathbb{R}$ that adopts the values $J(i, x)$ for each $x \in P$. We may associate a corridor $C_i \subseteq [l, r] \times \mathbb{R}$, $C_i = \left\{(x, y) \in [l, r] \times \mathbb{R} : |y - A(i, x)| \leq T^{1/2}\right\}$.

Note then that the occurrence of the event $\mathcal{J}(l) \in \text{PS}_{\alpha', \beta', q'}$ ensures that

- the corridors are ordered, in the sense that, for any $x \in [l, r]$ and $i \in [1, k - 1]$, the interval of y-coordinates such that $(x, y) \in C_i$ lies strictly to the right of the corresponding interval for C_{i+1};

- and the corridor C_k lies above the graph of the tent map by more than a distance of $8d_{ip}T$, in that the corridor’s lower boundary function $[l, r] \to \mathbb{R} : x \mapsto A(i, x) - T^{1/2}$ strictly exceeds $[l, r] \to \mathbb{R} : x \mapsto \text{Tent}(x) + 8d_{ip}T$.

The event MBF entails that each jump ensemble curve $J(i, \cdot) : [l, r] \to \mathbb{R}$ has a graph that is a subset of the corridor C_i. When $\mathcal{J}(l) \in \text{PS}_{\alpha', \beta', q'}$ also occurs, we see that $J(i, x) > J(i + 1, x)$ for $(i, x) \in [1, k - 1] \times [l, r]$. Moreover, the two events’ occurrence forces $J(k, x) > \text{Tent}(x) + 8d_{ip}T$ for $x \in [l, r]$. Since $\mathcal{L}_n(k + 1, x) \leq \text{Tent}(x) + 8d_{ip}T$ for such x by Lemma 10.9, we see that $J(k, x) > \mathcal{L}_n(k + 1, x)$ for $x \in [l, r]$. We have verified that the occurrence of the two events ensures that $T_3(J) = 1$; this completes the proof. \hfill \Box

Lemma 10.9. For each $x \in [l, r]$, $\mathcal{L}_n(k + 1, x) \leq \text{Tent}(x) + 8d_{ip}T$.

Proof. Suppose the result fails at $x \in [l, r]$. Let $x \in [p_1, p_2]$ where p_1 and p_2 are consecutive elements in P. Write $\ell_{p_1,p_2} : \mathbb{R} \to \mathbb{R}$ for the affine function whose graph interpolates the points $(p_1, \mathcal{L}_n(k + 1, p_1))$ and $(p_2, \mathcal{L}_n(k + 1, p_2))$. Note that the graph of the function $[l, r] : \cdot \mapsto \mathcal{L}_n(k + 1, \cdot)$ intersects the region $\{ (u, v) : v > \ell_{p_1,p_2}(u) + 8d_{ip}T \}$. This forces the set of extreme points of the convex hull of this graph also to have such an intersection, at a location that we label $(y, \mathcal{L}_n(k + 1, y))$. Note that y is an element of the set $\text{xExt}(\mathcal{C}_+) \subseteq P$ by definition a subset; furthermore, if we let $y \in [p_3, p_4]$ for consecutive pole set values p_3 and p_4, the definition of P implies that $|p_3 - y| \leq d_{ip}$. Suppose that $|p_3 - y| \leq d_{ip}$; the other case is no different. Noting that $\text{Tent}(y)$ is bounded above by $\ell_{p_1,p_2}(y)$, and that the gradient of each of the planar line segments comprising the graph of $[l, r] \to \mathbb{R} : x \mapsto \text{Tent}(x)$ is in absolute value at most $4T$, we see that

$$\mathcal{L}_n(k + 1, y) > \ell_{p_1,p_2}(y) + 8d_{ip}T \geq \text{Tent}(y) + 8d_{ip}T \geq \text{Tent}(p_3) - 4T |p_3 - y| + 8d_{ip}T \geq \text{Tent}(p_3) + 4d_{ip}T,$$

where the last inequality used $|p_3 - y| \leq d_{ip}$. The points $(p_3, \mathcal{L}_n(k + 1, p_3))$ and $(y, \mathcal{L}_n(k + 1, y))$ lie on the graph of the convex hull of $[l, r] : \cdot \mapsto \mathcal{L}_n(k + 1, \cdot)$ (since they are extreme points of this graph). Thus, the absolute value of the gradient of the line that connects them is at most $4T$, and so

$$\mathcal{L}_n(k + 1, y) \leq \mathcal{L}_n(k + 1, p_3) + 4d_{ip}T.$$
Since $\text{Tent}(p_3) = \mathcal{L}_n(k+1, p_3)$, we have arrived at a contradiction and thus complete the proof. \(\square\)

Proposition 10.10. Recalling that $\left(\alpha', \beta', \bar{q}'\right) = \left(T^{1/2}, 8d_l\gamma T + T^{1/2}, \bar{\text{Corner}}^{1, \mathcal{F}^1}\right)$,
\[
\mathbb{P}_{\mathcal{F}^1} \left(J \mid \text{PS}_{\alpha', \beta', \bar{q}'} \right) \cdot \mathbf{1}_{\text{Fav} \cap \text{Fav}_1} \geq \frac{1}{2} \exp \left\{ -3970 k^{7/2} d_l^2 T^2 \right\}.
\]

Remark. It may be worth emphasising a basic feature of the upcoming proof, which is already apparent if we take $k = 1$. In this case, by Lemma 10.1 and 10.4, the distribution of $J(1,1)$ under $\mathbb{P}_{\mathcal{F}^1}$ is given by a Gaussian random variable N, with mean of order T^2 and variance of order $N \geq \text{Corner}^{1, \mathcal{F}^1}$, where $\text{Corner}^{1, \mathcal{F}^1}$ is itself of order T^2. Note then that the conditional probability that the underlying Gaussian random variable N exceeds $\text{Corner}^{1, \mathcal{F}^1}$ behaves as $\exp \left\{ -O(1)(T^2)^2 / T \right\} = \exp \left\{ -O(1)T^3 \right\} = \varepsilon^{O(1)}$, an unacceptably small term. However, when we discuss, as we need to, the conditional probability, given that N is at least $\text{Corner}^{1, \mathcal{F}^1}$, that N exceeds the sum of $\text{Corner}^{1, \mathcal{F}^1}$ and an extra margin x, we find that, if $x = o(T^2)$, this quantity behaves as
\[
\frac{\exp \left\{ -T_x \right\}}{\exp \left\{ -O(1)T^3 \right\}} = \exp \left\{ O(1)T_x \right\},
\]
which is the tolerable $\varepsilon^{o(1)}$. Note that there is a cancellation of first order kinetic costs in the displayed line, with the smaller cross term in the exponential left to dominate on the right-hand side. In the context of the upcoming proof, we will take $x = 8d_l\gamma T + T^{1/2}$. Pointing out this cancellation is an almost trivial observation, but similar such cancellations will play important roles in several arguments.

Proof of Proposition 10.10. Let $\bar{m} \in \mathbb{R}^k$ denote the vector $\left(m(i) : i \in [1, k]\right)$. By Lemma 10.4, the probability in question is given by $\nu_{\bar{m}, \sigma^2}^{k}(\text{PS}_{\alpha', \beta', \bar{q}'}, \bar{\text{Corner}}^{1, \mathcal{F}^1} + [0, \infty)_z)$, where the \mathcal{F}^1-measurable quantities \bar{m} and σ^2 satisfy bounds stated in that lemma.

Lemma 10.11. Let $\bar{q} \in \mathbb{R}^k_+$, and write $Q = \bar{q} + [0, \infty)_z^k$. For $M, \alpha, \beta > 0$ arbitrary, write
\[
B_{M, \alpha, \beta} = Q \cap \text{PS}_{\alpha, \beta, \bar{q}}^c \cap \{ \bar{x} \in \mathbb{R}^k : x_1 \leq M \}.
\]
If $\bar{a} \in [-M, \infty)^k$, then, for any $\psi^2 > 0$,
\[
\nu_{\bar{a}, \psi^2}^k(B_{M, \alpha, \beta} \mid Q) \leq (1 + \kappa)^{-1},
\]
where
\[
\kappa = \exp \left\{ -k \psi^2 \left(2M(2\alpha(k - 1) + \beta) + \frac{1}{2}(2\alpha(k - 1) + \beta)^2 \right) \right\}.
\]

Proof. Recall that $\tilde{a} \in \mathbb{R}^k_+$ denotes the vector $(k-1, k-2, \cdots, 0)$. Also write $\bar{\tilde{a}} \in \mathbb{R}^k$ for the constant vector whose components have value one. For $\alpha, \beta > 0$, define the translate $\Phi = \Phi_{\alpha, \beta} : \mathbb{R}^k \to \mathbb{R}^k$ according to $\Phi(\bar{x}) = \bar{x} + 2\bar{a} \tilde{a} + \bar{\tilde{a}}$. Note that $\Phi(Q) \subseteq Q$ and $\Phi(Q \cap \text{PS}_{\alpha, \beta, \bar{q}}^c) \subseteq \text{PS}_{\alpha, \beta, \bar{q}}$. Thus, $B_{M, \alpha, \beta}$ and $\Phi(B_{M, \alpha, \beta})$ are disjoint subsets of Q, so that
\[
\nu_{\bar{a}, \psi^2}^k(B_{M, \alpha, \beta} \mid Q) \leq \frac{\nu_{\bar{a}, \psi^2}^k(B_{M, \alpha, \beta})}{\nu_{\bar{a}, \psi^2}^k(B_{M, \alpha, \beta}) + \nu_{\bar{a}, \psi^2}^k(\Phi(B_{M, \alpha, \beta}))}.
\]
It is enough then to establish that
\[
\nu_{\bar{a}, \psi^2}^k(\Phi(B_{M, \alpha, \beta})) \geq \kappa \cdot \nu_{\bar{a}, \psi^2}^k(B_{M, \alpha, \beta}),
\]
(41)
and this we now do. Since the Jacobian of the translation Φ equals one, we have that

$$
\nu^k_{\alpha, \psi^2} (\Phi(B_{M, \alpha, \beta})) = \int_{\Phi(B_{M, \alpha, \beta})} g^k_{\alpha, \psi^2}(\bar{x}) \, d\bar{x} = \int_{B_{M, \alpha, \beta}} g^k_{\alpha, \psi^2}(\Phi(\bar{x})) \, d\bar{x}
$$

$$
\geq \kappa_0 \int_{B_{M, \alpha, \beta}} g^k_{\alpha, \psi^2}(\bar{x}) \, d\bar{x} = \kappa_0 \cdot \nu^k_{\alpha, \psi^2}(B_{M, \alpha}) ,
$$

where κ_0 denotes the infimum over $\bar{x} \in B_{M, \alpha, \beta}$ of $\frac{g^k_{\alpha, \psi^2}(\Phi(\bar{x}))}{g^k_{\alpha, \psi^2}(\bar{x})}$. For such \bar{x}, this last ratio equals

$$
\prod_{j=1}^k \exp \left\{ - \frac{1}{2} \psi^{-2} (x_j - a_j + 2\alpha (k - j) + \beta) \right\} \cdot \exp \left\{ \frac{1}{2} \psi^{-2} (x_j - a_j)^2 \right\}
$$

$$
= \prod_{j=1}^k \exp \left\{ - \psi^{-2} \left((x_j - a_j) \cdot (2\alpha (k - j) + \beta) + \frac{1}{2} (2\alpha (k - j) + \beta)^2 \right) \right\} .
$$

The set $B_{M, \alpha, \beta}$ is comprised of decreasing k-vectors whose first component is at most M. Thus, $x_j \leq M$ for $j \in [1, k]$. Also using $a_j \geq -M$, we find that κ_0 is at least κ, as we sought to show. We have verified (11) and thus completed the proof of Lemma [10.11].

To prove Proposition [10.10] recall that $\bar{q}' = \text{Corner}^{1,F_1}$ and note that

$$
P_{F_1} \left(\tilde{J}(1) \in \text{PS}_{\alpha', \beta', q'} \big| \nu^k_{m, \sigma^2} \left(\text{PS}_{\alpha', \beta', q'} \left| \bar{q}' + [0, \infty)^k \right] \right) \right) \cdot \nu^k_{m, \sigma^2} \left(\text{Corner}^{1,F_1} \right)
$$

$$
\geq \nu^k_{m, \sigma^2} \left(\left(-\infty, M \right)^k \cap \text{PS}_{\alpha', \beta', q'} \left| \bar{q}' + [0, \infty)^k \right) \right) \cdot \nu^k_{m, \sigma^2} \left(\left(-\infty, M \right)^k \cap \text{PS}_{\alpha', \beta', q'} \left| \bar{q}' + [0, \infty)^k \right) \right) \cdot \nu^k_{m, \sigma^2} \left(\left(-\infty, M \right)^k \cap \text{PS}_{\alpha', \beta', q'} \left| \bar{q}' + [0, \infty)^k \right) \right) \cdot \nu^k_{m, \sigma^2} \left(\left(-\infty, M \right)^k \cap \text{PS}_{\alpha', \beta', q'} \left| \bar{q}' + [0, \infty)^k \right) \right)
$$

the latter inequality depends on $\text{Corner}^{1,F_1} + [0, \infty)^k \subset \mathbb{R}^k$.

We now apply Lemma [10.11] with the choices $\psi = \sigma$, $M = (38k^{3/2} + 144k)T^2$, $\alpha = T^{1/2}$, $\beta = 8d_{ip}T + T^{1/2}$ and $\bar{q} = \text{Corner}^{1,F_1}$, recalling that $\sigma^{-2} \leq 2T^{-1}$ (and $d_{ip} \geq 1$, $k \geq 2$ and $T \geq 1$), and also using the bound $M \leq 140k^{3/2}T^2$ (valid since $k \geq 2$). Doing so while also making use of the next Lemma [10.12] and $k \geq 2$, we find that the last expression is at least

$$
\frac{1}{2} \exp \left\{ -3970d_{ip}^2 k^{7/2} T^2 \right\} \geq e^{1054k^2 D_k^3} .
$$

Of the two terms in this difference, the second has value at most one-half of the first, due to $\varepsilon < e^{-1}$, $D_k \geq 1$, $k \geq 2$ and $D_k (\log e^{-1})^{1/3} \geq 1054d_{ip}^2 k^{3/2}$. The proof of Proposition [10.10] is complete.

Lemma 10.12. When the event $\text{Fav} \cap \text{Fav}_1$ occurs,

$$
\nu^k_{m, \sigma^2} \left((M, \infty) \times \mathbb{R}^{k-1} \big| \text{Corner}^{1,F_1} + [0, \infty)^k \right) \leq e^{1054k^2 D_k^3} ,
$$

with $M - m(1) \geq (12)^2 k T^2$.

Proof. We will use the next result.
Lemma 10.13. On the event $\text{Fav} \cap \text{Fav}_1$,
\[\nu^k_{m,\sigma^2} \left(\text{Corner}^{1,F^1} + [0, \infty)^k \right) \geq \varepsilon^{12770k^2D^3_k} . \]

Proof. Set $B \subset \mathbb{R}^k$ equal to the box $[k-1, k] \times [k-2, k-1] \times \cdots \times [0, 1]$. Note that
\[\nu^k_{m,\sigma^2} \left(\text{Corner}^{1,F^1} + [0, \infty)^k \right) \geq \nu^k_{m,\sigma^2} \left(\text{Corner}^{1,F^1} + B \right) \]
\[= \prod_{j=1}^{k} \nu^j_{m(j),\sigma^2} \left(\text{Corner}^{1,F^1}_j + [j-1, j) \right) = \prod_{j=1}^{k} \int_{\text{Corner}^{1,F^1}_j + [j-1, j)} g_{m(j),\sigma^2}(x) \, dx \]
\[\geq \left(2\pi\sigma^2 \right)^{-k/2} \prod_{j=1}^{k} \exp \left\{ -\frac{1}{2}\sigma^2 (|\text{Corner}^{1,F^1}_j - m(j)| + j)^2 \right\} \]
\[\geq \left(3\pi T/2 \right)^{-k/2} \cdot \exp \left\{ -(113)^2 k^5 T^3 \right\} \geq \varepsilon^k \cdot \varepsilon(113)^2 k^5 D^3_k \geq \varepsilon^{12770k^2D^3_k} , \]
since $T/2 \leq \sigma^2 \leq 3T/4$ and $|m(j)| \leq 38k^{3/2}T^2$ by Lemma 10.4 and $|\text{Corner}^{1,F^1}_j| \leq 74k^{5/2}T^2$ by Lemma 10.2. The penultimate inequality uses $\varepsilon < \left(\frac{2}{3\pi D_k} \right)^{1/3}$.

Note also that
\[\nu^k_{m(1),\sigma^2}(M, \infty) \leq (2\pi)^{-1/2} \cdot \frac{\sigma}{M-m(1)} \cdot \exp \left\{ -\frac{1}{2}\sigma^2 (M-m(1))^2 \right\} \]
\[\leq \frac{1}{2} \cdot 3^{1/2}(2\pi)^{-1/2}(12)^{-2} k^{-1} T^{-3/2} \exp \left\{ -\frac{2}{3} (12)^4 k^2 T^3 \right\} \leq \varepsilon^{13824k^2D^3_k} , \]
where we used $T/2 \leq \sigma^2 \leq 3T/4$ and $M - m(1) \geq (12)^2 kT^2$.

Since
\[\nu^k_{m,\sigma^2} \left((M, \infty) \times \mathbb{R}^{k-1} \left| \text{Corner}^{1,F^1} + [0, \infty)^k \right) \leq \nu^k_{m(1),\sigma^2}(M, \infty) \right. \]
\[\left. \nu^k_{m,\sigma^2} \left((M, \infty) \times \mathbb{R}^{k-1} \left| \text{Corner}^{1,F^1} + [0, \infty)^k \right) \right. \leq \varepsilon^{-12770k^2D^3_k} \cdot \varepsilon^{13824k^2D^3_k} . \]
This completes the proof of Lemma 10.12.

We may now complete the proof of Proposition 9.2. Note that
\[\mathbb{P}_F(T_3(J) = 1) \mathbf{1}_{\text{Fav}} \geq \mathbb{E}_F \mathbb{P}_{F}(T_3(J) = 1) \mathbf{1}_{\text{Fav} \cap \text{Fav}_1} - \mathbb{P}_F(\neg \text{Fav}_1) \mathbf{1}_{\text{Fav}} . \]

We have that
\[\mathbb{E}_F \mathbb{P}_{F}(T_3(J) = 1) \mathbf{1}_{\text{Fav} \cap \text{Fav}_1} \]
\[\geq \mathbb{E}_F \mathbb{P}_{F}(T_3(J) = 1, J(l) \in \text{PS}_{T^{1/2} \cdot 8T^{1/2} \cdot T^{1/2} \cdot \text{Corner}^{1,F^1}}) \cdot \mathbf{1}_{\text{Fav} \cap \text{Fav}_1} \]
\[\geq \frac{1}{4} \exp \left\{ -3970k^{7/2} d_{ip}^2 D_k^2 (\log \varepsilon^{-1})^{2/3} \right\} \cdot (1 - 2\varepsilon^{-1})^{2kD_k(\log \varepsilon^{-1})^{1/3}} \]
\[\geq \exp \left\{ -3972k^{7/2} d_{ip}^2 D_k^2 (\log \varepsilon^{-1})^{2/3} \right\} , \]
where we used Propositions 10.6 and 10.10 in the second inequality as well as $k \geq 2$, $d_{ip} \geq 1$, $D_k \geq 1$ and $\varepsilon < e^{-1}$ in the third.
Since \(\mathbb{P}(-Fav) \mathbb{1}_{Fav} \leq e^{15k^3D_k^3} \) by Lemma \ref{lemma:10.3}, we return to (13) to find that
\[
\mathbb{P}_{\mathcal{T}}(T_3(J) = 1) \mathbb{1}_{Fav} \geq \exp \left\{ -3973k^{7/2} d_{ip}^2 D_k^2 (\log \varepsilon)^{2/3} \right\},
\]
provided that \(15k^3D_k^3 \log \varepsilon^{-1} \geq \log 2 + 3972k^{7/2} d_{ip}^2 D_k^2 (\log \varepsilon^{-1})^{2/3} \), which follows from
\[
e \varepsilon < e^{-1555302k^{3/2} d_{ip}^2 D_k^{-3}}
\]
since \(\varepsilon < e^{-1}, d_{ip} \geq 1, D_k \geq 1 \) and \(k \geq 1 \). This completes the proof of Proposition \ref{proposition:9.2} \(\square \)

11. **Upper bound on the probability of curve closeness over a given point**

This section is devoted to the proof of Theorem 4.3(1). (The next derives Theorem 4.3(2) as a consequence.) The result concerns the \(k \)-curve closeness probability over a given point that is permitted to lie in a rather long interval. We begin by reducing via Lemma \ref{lemma:5.11} to a counterpart result in which this interval is much shorter.

For this section and the next, we let the value of \(D_k \) be specified to be
\[
D_k = \max \left\{ c_k^{-1/3} \left(2^{-9/2} - 2^{-5} \right)^{-1/3}, 36(k^2 - 1), 32c_k^{-1}(k^2 - 1) \right\}, \tag{44}
\]
so that the value of \(D_k \) is increased from the expression in (29) if necessary so that it is at least \(32c_k^{-1}(k^2 - 1) \). The new condition ensures that Lemma \ref{lemma:9.1} implies that \(\mathbb{P}(Fav) \leq \varepsilon^{k^2-1} \).

Theorem 11.1. For \(\varphi \in (0, \infty)^3 \) and \(C, c > 0 \), let
\[
\mathcal{L}_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}, \ n \in \mathbb{N},
\]
be a \(\varphi \)-regular sequence of Brownian Gibbs line ensembles with constant parameters \(c, C \) defined under the law \(\mathbb{P} \). Let \(\varepsilon > 0 \) satisfy the bound (32). For \(n, k \in \mathbb{N} \) satisfying \(k \geq 2 \), \(n \geq k \vee (c/3)^{-2(\varphi_1 \wedge \varphi_2)^{-1}} \vee 6^{2/6} \) and (30), the bound
\[
\mathbb{P} \left(\text{Close}(k; \mathcal{L}_n, x_0, \varepsilon) \right) \leq 10^6 \exp \left\{ 4962k^{7/2} D_k^{5/2} (\log \varepsilon^{-1})^{5/6} \right\} \varepsilon^{k^2-1}
\]
holds for any given \(x_0 \in \mathbb{R} \) for which \(|x_0| \leq D_k \left(\log \varepsilon^{-1} \right)^{1/3}/2 \).

Proof of Theorem 4.3(1). We simply consider the choice \(x_0 = 0 \) in Theorem 11.1 and apply the parabolic invariance Lemma \ref{lemma:5.11}. The value of the parameter \(c \) drops by a factor of two, which in view of (29) entails the replacement of \(D_k^{5/2} \) by \(2^{5/6} D_k^{5/2} \). \(\square \)

11.1. **Upper bound on curve closeness high above the tent map.** It is our aim to use the jump ensemble method to find the upper bound on \(k \)-curve closeness in \(\mathcal{L}_n \) stated in Theorem 11.1. This involves finding an upper bound on such an occurrence in the jump ensemble \(J \), something that is easier to do if the vertical coordinate of the location at which the \(k \) curves gather is comfortably above the lower boundary condition (by which we mean at a significant distance above the tent map). In this subsection, we carry out the method in this circumstance, with the order of this distance being \((\log \varepsilon^{-1})^{1/2} \). In the next, we use different arguments to treat the probability of curve closeness at lower heights, and thus obtain Theorem 11.1.
Definition 11.2. Let X denote one of the ensembles J or \mathcal{L}_n. Define
\[\text{High}(X, x_0) = \text{High} \left(X, x_0, 15kD_k \left(\log \varepsilon^{-1} \right)^{1/2} \right) \]
to be the event that
\[X(i, x_0) - \text{Tent}(x_0) \geq 15kD_k \left(\log \varepsilon^{-1} \right)^{1/2} \text{ for } i \in [1, k]. \]

Proposition 11.3. We have that
\[\mathbb{P}_F \left(T_3(J) = 1, \text{High}(J, x_0), \text{Close}(J, x_0, \varepsilon) \right) \cdot 1_{\text{Fav}} \leq \left(10^4 D_k^{2k} + 2k \right) \varepsilon^{k^2-1} \left(\log \varepsilon^{-1} \right)^{k^2/2}. \]

The last two propositions provide the ingredients demanded when we seek to prove an upper bound on k-curve closeness high above the lower boundary condition using the jump ensemble as a candidate for \mathcal{L}_n. Indeed, we may now promptly infer the following on the basis of these two inputs.

Proposition 11.4.
\[\mathbb{P} \left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{High}(\mathcal{L}_n, x_0) \right) \leq 2 \left(10^4 D_k^{2k} + 2k \right) \exp \left\{ 3973k^{7/2}d_\gamma d_k^2 \left(\log \varepsilon^{-1} \right)^{2/3} \right\} \left(\log \varepsilon^{-1} \right)^{k^2/2} \varepsilon^{k^2-1}. \]

Proof. Under \mathbb{P}_F, the conditional law of $\mathcal{L}_n : [1, k] \times [1, \ell] \to \mathbb{R}$ coincides with the conditional law of $\mathcal{J} : [1, k] \times [1, \ell] \to \mathbb{R}$ given that $T_3(J) = 1$. For this reason, it follows from Propositions 9.2 and 11.3 that
\[\mathbb{P}_F \left(\text{High}(\mathcal{L}_n, x_0) \cap \text{Close}(\mathcal{L}_n, x_0, \varepsilon) \right) \cdot 1_{\text{Fav}} \leq \left(10^4 D_k^{2k} + 2k \right) \exp \left\{ 3973k^{7/2}d_\gamma d_k^2 \left(\log \varepsilon^{-1} \right)^{2/3} \right\} \left(\log \varepsilon^{-1} \right)^{k^2/2} \varepsilon^{k^2-1}. \]

We may now write
\[\mathbb{P} \left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{High}(\mathcal{L}_n, x_0) \right) \leq \mathbb{E} \left[\mathbb{P}_F \left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{High}(\mathcal{L}_n, x_0) \right) 1_{\text{Fav}} \right] + \mathbb{P}(\text{Fav}^c) \]
and apply the last inequality and Lemma 9.1 to deduce Proposition 11.4. \[\square \]

The remainder of Section 11.1 is devoted to the next proof.

Proof of Proposition 11.3. Set
\[\text{SmallJFluc} = \left\{ J(i, x) \geq \text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2} \text{ for } (i, x) \in [1, k] \times \{ x_0 - 1, x_0 + 1 \} \right\}. \]

Why is this event so named? We will use it alongside the event $\text{High}(J, x_0)$ that J-curves at x_0 exceed the tent map by $15kD_k \left(\log \varepsilon^{-1} \right)^{1/2}$. When the latter event occurs, the new event entails that the curves in J not fluctuate too much between x_0 and the neighbouring times $x_0 - 1$ and $x_0 + 1$.

Note that
\[\mathbb{P}_F \left(T_3(J) = 1, \text{High}(J, x_0), \text{Close}(J, x_0, \varepsilon), \text{SmallJFluc} \right) \cdot 1_{\text{Fav}} \leq \sup \mathbb{P}_F \left(\text{NoTouch}^{x_0-1,x_0+1}(J), \text{Close}(J, x_0, \varepsilon), J(x_0 - 1) = \bar{x}, J(x_0 + 1) = \bar{y} \right), \]
where the supremum is taken over all choices of \bar{x} and \bar{y} in the set $(\text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2}, \infty)^k$. (Conditioning the ensemble J to assume given values is a singular conditioning which nonetheless
has an unambiguous meaning because, under $\mathbb{P}_\mathcal{F}$, this ensemble is given as the marginal on $[i, \mathfrak{t}]$ of a Brownian bridge ensemble conditioned on an event of positive probability.) For any given such choice of \bar{x} and \bar{y}, we have that

$$
\mathbb{P}_\mathcal{F}\left(\text{NoTouch}^{[x_0-1,x_0+1]}(J), \text{Close}(J, x_0, \varepsilon) \mid J(x_0-1) = \bar{x}, J(x_0+1) = \bar{y}\right) \cdot 1_{\text{Fav}} \quad (45)
$$

That the denominator in the middle line is least one-half whenever Fav occurs should be justified. By Lemma 5.4, this denominator is minimized by taking both of the vectors \bar{x} and \bar{y} equal to the constant vector (that we denote by \bar{z}_0) whose components equal $\text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2}$; since $\mathcal{L}_n(k+1, p) = \text{Tent}(p) \leq \text{Tent}(x_0) + 4T$ for $p \in P \cap [x_0-1, x_0+1]$ on the event Fav (whose occurrence merely ensures that x_0, being at most $T/2$ in absolute value, is an element of the tent map domain $[i, \mathfrak{t}]$), we see by Lemma 5.9 that the denominator is at least

$$
\mathbb{P}_\mathcal{F}\left(\text{NoTouch}^{[x_0-1,x_0+1]}(B), \text{Close}(B, x_0, \varepsilon) \right) \leq 2 \mathbb{P}_\mathcal{F}\left(\text{NoTouch}^{[x_0-1,x_0+1]}(B), \text{Close}(B, x_0, \varepsilon) \right).
$$

(46)

Noting that $D_k \geq 36(k^2 - 1)$ and $\varepsilon < e^{-1}$, we may apply Lemma 6.7 with $\phi = \varepsilon$ to the probability in (46), finding that

$$
\mathbb{P}_\mathcal{F}\left(T_3(J) = 1, \text{High}(J, x_0), \text{Close}(J, x_0, \varepsilon), \text{SmallJFluc}\right) \cdot 1_{\text{Fav}} \leq 10^4 D_k^2 \varepsilon^{k^2-1} \left(\log \varepsilon^{-1}\right)^{k^2/2}.
$$

(47)

We will now argue that

$$
\mathbb{P}_\mathcal{F}\left(\neg \text{SmallJFluc}, \text{High}(J, x_0) \right) \cdot 1_{\text{Fav}} \leq 2k\varepsilon^{R^2/2}.
$$

(48)

To this end, let $i \in [1, k]$. Recall that Fav entails that $\mathcal{L}_n(i, -2T) \geq -(2\sqrt{2} + 1)T^2$. If this event occurs, we thus see in light of Lemmas 5.3 and 5.4 that, under $\mathbb{P}_\mathcal{F}$ given that $J(i, x_0)$ equals $h \in \mathbb{R}$, the conditional distribution of $J(i, \cdot)$ on $[i, x_0]$ stochastically dominates the marginal of $\mathcal{B}_{1, -(2\sqrt{2}+1)T^2, h}$ on $[i, x_0]$. Setting $R = 5kD_k$ and recalling Definition 11.2, we thus find that

$$
\mathbb{P}_\mathcal{F}\left(J(i, x_0 - 1) < \text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2}, \text{High}(J, x_0) \right) \cdot 1_{\text{Fav}} \leq \sup_{r \geq 0} \mathbb{P}_\mathcal{F}\left(\text{NoTouch}^{[1,-2T,x_0]}(B(1, x_0 - 1) < \text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2}) \right).
$$

The right-hand side equals

$$
\mathbb{P}_\mathcal{F}\left(\text{NoTouch}^{[1,-2T,x_0]}(B(1, x_0 - 1) < \text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2}) \right)
$$

by another use of Lemma 5.4. This last expression is increasing when regarded as a function of the variable $\text{Tent}(x_0)$. Since the occurrence of Fav entails that $\mathcal{L}_n(k+1, x)$, and thus also $\text{Tent}(x)$, is
at most \(T^2 \) whenever \(x \in [l, r] \), we see that
\[
P_F \left(J(i, x_0 - 1) < \text{Tent}(x_0) + (\log \varepsilon^{-1})^{1/2}, \text{High}(J, x_0) \right) \cdot 1_{\text{Fav}}
\leq B^{[-2T, x_0]}_{1; -\{(2\sqrt{2} + 2)T^2, 3R(\log \varepsilon^{-1})^{1/2}\}} \left(B(1, x_0 - 1) < (\log \varepsilon^{-1})^{1/2} \right).
\]
The random variable \(B(1, x_0 - 1) \) is normally distributed in the last line. Its mean is less than \(3R(\log \varepsilon^{-1})^{1/2} \) by
\[
\frac{1}{x_0 + 2T} \left(3R(\log \varepsilon^{-1})^{1/2} + 2(\sqrt{2} + 1)D_k^2(\log \varepsilon^{-1})^{2/3} \right)
\]
which quantity is, in view of the bounds \(x_0 \geq -T, \varepsilon < e^{-1}, D_k \geq 6 \) and \(R \geq 4(\sqrt{2} + 1)D_k \), at most \(R(\log \varepsilon^{-1})^{1/2} \). The mean is thus at least \(2R(\log \varepsilon^{-1})^{1/2} \). The event in (49) entails that \(B(1, x_0) \) drops below its mean by at least \((2R - 1)(\log \varepsilon^{-1})^{1/2} \). Since \(R \geq 1 \), we find that the expression (49) is at most
\[
B^{[-2T, x_0]}_{1; 0} \left(B(1, x_0 - 1) < -R(\log \varepsilon^{-1})^{1/2} \right)
\leq \nu_{0,1}(R(\log \varepsilon^{-1})^{1/2}, \infty) \leq (2\pi)^{-1/2}R^{-1}(\log \varepsilon^{-1})^{-1/2} \exp \left\{ -\frac{1}{2}R^2 \log \varepsilon^{-1} \right\} \leq \varepsilon^{R^2/2},
\]
where lastly we used \(R(\log \varepsilon^{-1})^{1/2} \geq 1 \). We now sum over \(i \in [1, k] \) to learn that, when \(\text{Fav} \) occurs, the probability
\[
P_F \left(\exists i \in [1, k] : J(i, x_0 - 1) < \text{Tent}(x_0) - (\log \varepsilon^{-1})^{1/2} \right) \cap \text{High}(J, x_0)
\]
is at most \(k\varepsilon^{R^2/2} \). A similar bound holds with \(x_0 + 1 \) in place of \(x_0 - 1 \) and thus we obtain (48).

Combining (47) and (48),
\[
P_F \left(T_3(J) = 1, \text{High}(J, x_0), \text{Close}(J, x_0, \varepsilon) \right) \cdot 1_{\text{Fav}}
\leq 10^4D_k^2\varepsilon^{k^2-1}(\log \varepsilon^{-1})^{k^2/2} + 2k\varepsilon^{R^2/2}.
\]
Noting that \(R^2/2 \geq k^2 - 1 \), we complete the proof of Proposition 11.3 \(\square \)

11.2. Curve closeness at low height: the snap up and the swing through. To obtain
Theorem 11.1, to which we have reduced Theorem 4.3(1), it remains to address the probability of
\(k \)-curviness closeness at lower locations than those with which the event \(\text{High}(\mathcal{L}_n, x_0) \) is concerned. This will be the subject of the present subsection. We want a version of Proposition 11.4 without the presence of the \(\text{High} \) event. We will use a snap up to prove this new version: if the top \(k \) curves in \(\mathcal{L}_n \) at \(x_0 \) come close, they do so at a random height that in this paragraph of overview we will denote simply by \(h \); (the value of \(h \) is essentially the same for each of the \(k \) curves, because they are close). If \(h \) is low relative to \(\text{Tent}(x_0) \), we will argue that this system of \(k \) curves in a locale of \(x_0 \) can collectively be snapped up; that is, all these curve pieces can be raised by a quite large common amount. By ‘quite large’, we mean at least the sum of two quantities: the distance below the tent map \(\text{Tent}(x_0) - h \), and the above tent margin \(15kD_k(\log \varepsilon^{-1})^{1/2} \) that appears in the \(\text{High} \) event Definition 11.2. This operation thus forces the occurrence of \(\text{High}(\mathcal{L}_n, x_0) \), while preserving the occurrence of the \(k \)-curve closeness event \(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \). We will seek to argue that the snapped up configuration is roughly as probable as the original: in this way, we will be able to invoke Proposition 11.4 to strengthen this proposition so that the presence of the \(\text{High} \) event is dropped from its statement (at the expense of a manageable increase in the right-hand side). We will succeed in arguing that the new configuration has a comparable probability to the old one only.
in the case that the below tent distance $\text{Tent}(x_0) - h$ is not too large, which is to say, at most $O(T^{3/2}) = O((\log \frac{1}{\varepsilon})^{1/2})$. We will specify an event BigDrop that the below tent distance exceeds this order. When it fails to occur, we will use the snap up; when it does, we will apply a different technique, the swing through, to argue that the occurrence of High may be forced with comparable probability. The main concepts in the two techniques are illustrated in Figure [7].

The snap and swing arguments make no use of the jump ensemble, though they do to a degree build on the more basic apparatus of the missing closed middle σ-algebra F. The natural perspective of the snap up argument is the viewpoint of the witness of a new σ-algebra G which we begin by specifying. It will contain F. For the new witness, the top k curves in L_n near x_0 will be in a determined configuration modulo a height shift. The only randomness for this witness will be a one-dimensional random variable that determines this height.

Recall that F is generated by the ensemble L_n outside of the index set $[1, k] \times (-2T, 2T)$ alongside the side interval standard bridges $I \to \mathbb{R} : x \to L^I_n(i, x)$, $i \in [1, k]$, with I equal to $[-2T, l]$ and $[r, 2T]$. The information absent from F may be gathered in the following form:

- the shifted curves $[i, r] \to \mathbb{R} : x \to L^I_n(i, x) - L_n(i, l)$, indexed by $i \in [1, k]$;
- the differences $L_n(i, l) - L_n(i + 1, l)$ for $i \in [1, k - 1]$;
- and the value $L_n(k, l)$.

In this section, we denote by G the σ-algebra generated by F and the first two items in this list. To the witness of G, whose perspective is represented by the conditional law P_G, only the \mathbb{R}-valued quantity $L_n(k, l)$ is random. If this random quantity adopts the value $u \in \mathbb{R}$, the ensemble may be reconstructed in its entirety by the witness. Denoting the reconstructed ensemble by L^u_n, we have that for $(i, x) \in [1, k] \times [l, r]$,

$$L^u_n(i, x) = u + \left(L_n(i, l) - L_n(k, l) \right) + \left(L_n(i, x) - L_n(i, l) \right).$$

The two bracketed terms are determined by the data in the second and first items in our new list; thus, the witness of G may compute $L^u_n(i, x)$ for these values.

For $(i, x) \in [1, k] \times ([-2T, l] \cup [r, 2T])$, we instead have

$$L^u_n(i, x) = \begin{cases} L_n[-2T, l](i, x) + \frac{l - x}{l + 2T} L_n(i, -2T) + \frac{x + 2T}{l + 2T} L^u_n(i, l) & x \in [-2T, l), \\ L_n[2T, r](i, x) + \frac{r - x}{r - 2T} L_n(i, 2T) + \frac{2T - x}{2T - r} L^u_n(i, r) & x \in [r, 2T], \end{cases}$$

similarly as we did in the F-case in (18). Note that the values $L^u_n(i, l)$ and $L^u_n(i, r)$ used in this formula have already been defined.

Our notation L^u_n clashes with that for the reconstruction made in Section [7] by the witness of F. Embellishing the notation with the symbol G would relieve this difficulty. Since the new notation is employed only in this subsection, we hope that by omitting the G symbol, there is little danger of confusion.

Let $h_G : \mathbb{R} \to [0, \infty)$ denote the density with respect to Lebesgue measure on \mathbb{R} of the conditional law under P_G of the random variable $L_n(k, l)$. By Lemma [5,7] $h_G(u)$ equals

$$Z_G^{-1} \prod_{i=1}^k \exp \left\{ -\frac{1}{2(l+2T)} \left(L_n(i, -2T) - L_n(i, l) \right)^2 - \frac{1}{2(r-2T)} \left(L_n(i, r) - L_n(i, 2T) \right)^2 \right\} \cdot M_G(u),$$

(50)
Figure 7. The snap up on the left and the swing through on the right, with \(k \) equal to two. Vertical poles are depicted in thick solid lines. In each sketch, \(s = (2(k - 1) + 4T)(2T)^{1/2} \) is the big drop distance and \(t = 15kD_k(\log \epsilon^{-1})^{1/2} \) is the smaller above-tent margin specifying the event \(\text{High}(\mathcal{L}_n, x_0) \). Left: The snap up is used to prove Lemma 11.9. The clear circular bead over \(l \) represents all that is random to the witness of \(\mathcal{G} \). As it rolls up or down, it dictates a joint displacement of the top two curves on \([l, r]\). An original configuration of these curves (dashed, thin), in which the governing bead is lower, is snapped up by pushing the bead higher to obtain a new configuration (dashed, thick) high above the tent map. Right: The upcoming proof of Lemma 11.10 is illustrated. The point \(x_0 \) lies in \([p_1, p_2]\) with \(p_1, p_2 \in P \) consecutive pole set elements. The original configuration of the top two curves on \([p_1, p_2]\) (dashed-dotted, thin) is \(\epsilon \)-close at \(x_0 \) and has a big drop. The kinetic energy bound up in these curves’ displacements during \([p_1, x_0]\) and \([x_0, p_2]\) is unleashed in the swing through configuration (dashed-dotted, thick) that as a result reaches high above the tent map at \(x_0 \) while maintaining \(\epsilon \)-closeness at \(x_0 \).

where \(M_{\mathcal{G}}(u) \) denotes the indicator function of the event

\[
\left\{ \mathcal{L}_n^u(k, x) > \mathcal{L}_n(k + 1, x) \quad \forall \ x \in [-2T, 2T] \right\}.
\]

The \(\mathcal{G} \)-measurable \(Z_{\mathcal{G}} \in (0, \infty) \) is of course a normalization.
There are only two kinetic terms in the product in (5): the third, associated to the middle interval \([l, r]\), is absent because it is independent of the value of \(u \in \mathbb{R}\).

Lemma 11.5. There exists a \(\mathcal{G}\)-measurable random variable \(\text{Corner}_{k, l}^{\mathcal{G}} \in \mathbb{R}\) such that

\[
\{ x \in \mathbb{R} : M_G(x) = 1 \} = (\text{Corner}_{k, l}^{\mathcal{G}}, \infty).
\]

Proof. Unsurprisingly, this result has a similar proof to Lemma 11.4. As \(u\) falls, so does the curve \(\mathcal{L}_n^\varphi(k, \cdot) : [-2T, 2T] \to \mathbb{R}\), until a value of \(u\) is reached at which the curve makes contact with \([-2T, 2T] \to \mathbb{R} : u \mapsto \mathcal{L}_n^\varphi(k + 1, u)\). The value of \(u\) at which contact is made is \(\text{Corner}_{k, l}^{\mathcal{G}}\). The location of contact may lie in \([-2T, l]\), \([l, r]\) or \([r, 2T]\). Indeed, we may specify a formula for \(\text{Corner}_{k, l}^{\mathcal{G}}\) by considering each of these three eventualities: \(\text{Corner}_{k, l}^{\mathcal{G}}\) equals the infimum of \(q \in \mathbb{R}\) such that

- \(q \geq \text{Corner}_{k, l}^{\mathcal{F}}\);
- \(q + \mathcal{L}_n^\varphi(k, x) - \mathcal{L}_n^\varphi(k, l) \geq \mathcal{L}_n^\varphi(k + 1, x)\) for all \(x \in [l, r]\);
- \(q + \mathcal{L}_n^\varphi(k, x) - \mathcal{L}_n^\varphi(k, l) \geq \text{Corner}_{k, l}^{\mathcal{F}}\).

That \(u \in \mathbb{R}\) satisfies \(M_G(u) = 1\) precisely when \(u > \text{Corner}_{k, l}^{\mathcal{G}}\) follows by the reasoning in the final paragraph of Lemma 11.4's proof.

Define the \(\mathcal{G}\)-measurable event

\[
\text{Fav}_G = \left\{ \left| \mathcal{L}_n^\varphi(i, x) - \mathcal{L}_n^\varphi(i, l) \right| \leq (2 + 2^{-1/2})T^2 \text{ for } i \in [1, k] \right\} \cap \{ \text{Corner}_{k, l}^{\mathcal{G}} \leq T^2 \}.
\]

Lemma 11.6. The conditional distribution of \(\mathcal{L}_n^\varphi(k, l)\) under \(\mathbb{P}_G\) is that of a normal random variable \(N\), of mean \(m\) and variance \(\sigma^2\), conditionally on the event that \(N \geq \text{Corner}_{k, l}^{\mathcal{G}}\). We have that

\[
m = k^{-1} \sum_{i=1}^{k} m(i), \text{ where } m(i) \text{ equals }
\]

\[
(\mathcal{L}_n^\varphi(k, l) - \mathcal{L}_n^\varphi(i, l)) + \frac{1 + 2T}{4T + 1 - r} \left(\mathcal{L}_n^\varphi(i, 2T) - (\mathcal{L}_n^\varphi(i, r) - \mathcal{L}_n^\varphi(i, l)) \right) + \frac{2T - r}{4T + 1 - r} \mathcal{L}_n^\varphi(i, -2T)
\]

and

\[
\sigma^{-2} = k \left((1 + 2T)^{-1} + (2T - r)^{-1} \right).
\]

The occurrence of the event \(\text{Fav} \cap \text{Fav}_G\) entails that \(m \geq -12T^2\) and \(\sigma^2 \in \left[\frac{1}{2}, \frac{3}{4} \right] \cdot T k^{-1}\).

Note that the first, bracketed, term in the expression for \(m(i)\) equals \(-\sum_{j=1}^{k-1} \left(\mathcal{L}_n^\varphi(j, l) - \mathcal{L}_n^\varphi(j+1, l) \right)\) and is thus \(\mathcal{G}\)-measurable; so is \(\mathcal{L}_n^\varphi(i, r) - \mathcal{L}_n^\varphi(i, l)\). The remaining random parameters, \(\mathcal{L}_n^\varphi(i, 2T)\), \(\mathcal{L}_n^\varphi(i, -2T)\), \(l\) and \(r\), are measurable in the smaller \(\sigma\)-algebra \(\mathcal{F}\). Thus, \(m(i)\) is \(\mathcal{G}\)-measurable and \(\sigma^2\) is \(\mathcal{F}\)-measurable.

Lemma 11.7. Let \(\ell_1 < a < b < \ell_2\), and let \(\tilde{y}, \tilde{z}, \tilde{j}\) and \(\tilde{r}\) be elements of \(\mathbb{R}^k\). Under the law \(\mathcal{B}_{k; \tilde{y}, \tilde{z}}^{\ell_1, \ell_2}\) conditioned on \(\mathcal{B}(b) - \mathcal{B}(a) = \tilde{y} \) and \(\mathcal{B}(i, a) - \mathcal{B}(i+1, a) = r_i - r_{i+1}\) for \(i \in [1, k-1]\), the conditional distribution of \(\mathcal{B}(k, a)\) is normal, of mean and variance that we denote by \(m_0\) and \(\zeta^2\). If we write \(\hat{x} = k^{-1} \sum_{i=1}^{k} x_i\) for any \(\hat{x} \in \mathbb{R}^k\), then

\[
m_0 = r_k - \hat{r} + \frac{a - \ell_1}{(a - \ell_1) + (\ell_2 - b)} (\hat{z} - \tilde{j}) + \frac{\ell_2 - b}{(a - \ell_1) + (\ell_2 - b)} \tilde{y}
\]

and

\[
\zeta^{-2} = k \left((a - \ell_1)^{-1} + (\ell_2 - b)^{-1} \right).
\]
Proof. The conditioned random variable $B(k, a)$ adopts the value x with density given up to normalization by

$$\prod_{i=1}^{k} \exp \left\{ -\frac{1}{2(a-\ell_i)} (x + r_i - r_k - y_i)^2 \right\} \cdot \exp \left\{ -\frac{1}{2(\ell_2-b)} (x + r_i - r_k + j_i - z_i)^2 \right\};$$

again up to normalization, this quantity equals

$$\exp \left\{ -\frac{k}{2} ((a - \ell_1)^{-1} + (\ell_2 - b)^{-1}) (x - m)^2 \right\};$$

where m_0 satisfies

$$m_0 k ((a - \ell_1) + (\ell_2 - b)) = -\sum_{i=1}^{k} \left((\ell_2 - b)(r_i - r_k - y_i) + (a - \ell_1)(r_i - r_k + j_i - z_i) \right).$$

Rearranging yields the stated formulas for m_0 and the reciprocal of ζ^2. □

Proof of Lemma 11.8. We apply Lemma 11.7 setting $\ell_1 = -2T$, $a = l$, $b = r$, $\ell_2 = 2T$, $y = \bar{\mathcal{L}}_n(-2T)$, $\bar{z} = \bar{\mathcal{Z}}_n(2T)$ and $\bar{y} = \bar{\mathcal{L}}_n(l) - \bar{\mathcal{Z}}_n(l)$ and $\bar{r} = \bar{\mathcal{L}}_n(l)$.

The occurrence of Fav entails that $l \in [-T, -T/2]$ and $r \in [T/2, T]$, whence $Tk^{-1}/2 \leq \sigma^2 \leq 3Tk^{-1}/4$.

The quantity $m(i)$ is a sum of three terms. When Fav occurs, these terms satisfy certain bounds:

- the first term satisfies
 $$\mathcal{L}_n(k, l) - \mathcal{L}_n(i, l) \geq -(2^{-1/2} + 1)T^2 - T^2 = -(2 + 2^{-1/2})T^2,$$
 since $l \in [-T, 0]$;

- the second term is at least $-\frac{3}{4\sqrt{2}} (5 + 3\sqrt{2})T^2$, since $|\mathcal{L}_n(i, r) - \mathcal{L}_n(i, l)| \leq (2 + 2^{-1/2})T^2$ on Fav_G and $\mathcal{L}(i, 2T) \leq -2\sqrt{2}T^2 + T^2 \cdot [-1, 1]$ on Fav, while
 $$\frac{l + 2T}{4T + l - r} \leq \frac{3T/2}{2T} = \frac{3}{4};$$

- and the third term satisfies $\mathcal{L}_n(i, -2T) \geq (\sigma^{-2}/2 \cdot [4/3, 2]$ since $2T - r$ and $l + 2T$ both lie in the interval $[T, 3T/2]$.

Note that $\sigma^{-2} \in kT^{-1} \cdot [4/3, 2]$ since $2T - r$ and $l + 2T$ both lie in the interval $[T, 3T/2]$. □

Lemma 11.8.

$$\mathbb{P}(\text{Fav}_G) \leq e^{k^2/4}.$$

Proof. Note that $\text{Corner}^G_{k, l} \leq \mathcal{L}_n(k, l) \leq \mathcal{L}_n(1, l)$. We have that

$$\mathbb{P}(\mathcal{L}_n(1, l) > T^2) \leq \mathbb{P}\left(\sup_{x \in [-T, T]} \mathcal{L}_n(1, x) \geq T^2 \right).$$

In the proof of Lemma 9.1, the right-hand probability was bounded above in (33), with the resulting bound then appearing as a term in an upper bound on $\mathbb{P}(\text{Fav}_G)$. Thus, $\mathbb{P}(\text{Fav}_G)$ satisfies the upper bound proved in this lemma for $\mathbb{P}(\text{Fav}_G)$. The remark following the lemma provides the stated upper bound. □

We are about to present our snap up assertion, Lemma 11.9, a result to the effect that the witness of G typically has a reasonable, $e^{o(1)}$-order, probability of observing a value for the random height
\[\mathcal{L}_n(k, l) \text{ which is high enough compared to its minimum Corner}^{G}_{k, l} \text{ that the High(} \mathcal{L}_n, x_0) \text{ event occurs. As we mentioned in overview, the snap up order of magnitude is great enough to deliver the occurrence of this High(} \mathcal{L}_n, x_0, 15kD_k(\log \varepsilon^{-1})^{1/2}) \text{ event with the requisite probability only if we impose a further ‘no big drop’ condition on } G\text{-measurable data.} \]

To describe the necessary condition, let \(r \in [1, |P| - 1] \text{ satisfy } x_0 \in [p_r, p_{r+1}) \text{ and define the event} \]

\[\text{NoBigDrop}(\mathcal{L}_n, x_0) = \left\{ \mathcal{L}_n^{[p_r, p_{r+1}]}(k, x_0) \geq -(2(k - 1) + 4T)(2T)^{1/2} \right\}. \]

This is the event that \(\mathcal{L}_n(k, x_0) \) does not drop by more than the stated quantity below the affine interpolation of the values of \(\mathcal{L}_n(k, \cdot) \) at the pole set values \(p_r \text{ and } p_{r+1} \text{ that neighbour } x_0 \). We also write BigDrop(\(\mathcal{L}_n, x_0 \)) for the complementary event \(\neg \text{NoBigDrop}(\mathcal{L}_n, x_0) \).

When the witness of \(G \) observes the \(G\text{-measurable event NoBigDrop}(\mathcal{L}_n, x_0) \) alongside certain other, typical, data, she deploys the snap up, as we now explain in detail.

Lemma 11.9.

\[\mathbb{P}_G\left(\text{High}(\mathcal{L}_n, x_0) \right) \geq \frac{1}{4} \exp \left\{ -987k^3T^{5/2} \right\} \cdot \mathbf{1}_{\text{Fav} \cap \text{Fav}_G \cap \text{NoBigDrop}(\mathcal{L}_n, x_0)} . \]

Proof. We claim that

\[\left\{ \mathcal{L}_n(k, l) \geq \text{Corner}^{G}_{k, l} + (2(k - 1) + 6T)(2T)^{1/2} + 15kD_k(\log \varepsilon^{-1})^{1/2} \right\} \cap \text{NoBigDrop}(\mathcal{L}_n, x_0) \]

is a subset of High(\(\mathcal{L}_n, x_0 \)). To verify this, consider an instance of the data specifying \(G \) for which NoBigDrop(\(\mathcal{L}_n, x_0 \)) occurs. Under the law \(\mathbb{P}_G \), the lowest value that the random variable \(\mathcal{L}_n(k, l) \) may adopt is \(\text{Corner}^{G}_{k, l} \), in which case, the maximal drop \(\text{Tent}(x_0) - \mathcal{L}_n(k, x_0) \) of the \(k^{th} \) curve in \(\mathcal{L}_n \) below the tent map at \(x_0 \) would be at most the quantity

\[(2(k - 1) + 4T)(2T)^{1/2} . \]

By raising \(\mathcal{L}(k, l) \) above this minimum value by this quantity, and then by a further distance of \(15kD_k(\log \varepsilon^{-1})^{1/2} \), the occurrence of the event High(\(\mathcal{L}_n, x_0, 15kD_k(\log \varepsilon^{-1})^{1/2} \)) is assured.

It is enough then to confirm the lemma’s statement with the event High(\(\mathcal{L}_n, x_0 \)) replaced by

\[\left\{ \mathcal{L}_n(k, l) \geq \text{Corner}^{G}_{k, l} + (2(k - 1) + 4T)(2T)^{1/2} + 15kD_k(\log \varepsilon^{-1})^{1/2} \right\} . \]

We remarked on the cancellation of first order kinetic costs after Proposition 10.10 and we now exploit a similar cancellation. Indeed, note that, for \(y > 0 \), on Fav \(\cap \text{Fav}_G \),

\[\mathbb{P}_G\left(\mathcal{L}_n(k, l) \geq \text{Corner}^{G}_{k, l} + y \right) = \frac{\nu_{m, \sigma^2}(\text{Corner}^{G}_{k, l} + y, \infty) - \nu_{m, \sigma^2}(\text{Corner}^{G}_{k, l}, \infty)}{\nu_{-12T^2, \sigma^2}(T^2 + y, \infty)} = \frac{\nu_{0, 1}(13T^2\sigma^{-1} + y\sigma^{-1}, \infty) - \nu_{0, 1}(13T^2\sigma^{-1}, \infty)}{13T^2\sigma^{-1} \frac{g_{0, 1}(13T^2\sigma^{-1} + y\sigma^{-1})}{g_{0, 1}(13T^2\sigma^{-1})}} \geq \frac{1}{3} \cdot \exp \left\{ -26kT_y - ky^2T^{-1} \right\} , \]

the first inequality due to Lemmas 5.6 and 11.6, the second to Lemma 5.5 via

\[13T^2\sigma^{-1} + y\sigma^{-1} \geq 1 , \]
which certainly follows from the bound \(\sigma^2 \leq \frac{3}{4}Tk^{-1} \); the third to \(y \leq 13T^2 \), and the fourth to \(\sigma^2 \geq Tk^{-1/2} \). We now take
\[
y = \left(2(k - 1) + 4T\right)(2T)^{1/2} + 15kD_k(\log \varepsilon^{-1})^{1/2}.
\]
Using \(T \geq 1 \), \(k \geq 2 \) and \(D_k \geq 1 \), we see that \(y \leq 21kT^3/2 \); thus, \(y \) is indeed at most \(13T^2 \), since \(\varepsilon < e^{-18D_k^{-3}k^6} \). Applying \(y \leq 21kT^3/2 \) and \(T \geq 1 \) to find a lower bound on the expression in line \(553 \) completes the proof of Lemma \(\ref{lemma:11.9} \).

\(\square \)

Of course, the witness of \(G \) may hold \(G \)-data that dictates the occurrence of BigDrop. The swing through will replace the snap up in this case. We now state the resulting conclusion, Lemma \(\ref{lemma:11.10} \).

We may then close out the proof of Theorem \(\ref{theorem:11.1} \) before providing the proof of the lemma.

Lemma 11.10.
\[
\mathbb{P}\left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{BigDrop}(\mathcal{L}_n, x_0) \cap \text{Fav} \right) \leq \mathbb{P}\left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{High}(\mathcal{L}_n, x_0) \right).
\]

Proof of Theorem 11.1. Applying Lemma \(\ref{lemma:11.9} \) we find that
\[
\mathbb{P}\left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{High}(\mathcal{L}_n, x_0) \right) = \mathbb{E}\left[\mathbb{P}_G(\text{High}(\mathcal{L}_n, x_0)) \right] \cdot 1_{\text{Close}(\mathcal{L}_n, x_0, \varepsilon)}
\geq \frac{1}{4} \exp \left\{ -987k^2 T^{5/2} \right\} \mathbb{P}\left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{Fav} \cap \text{Fav}_G \cap \text{NoBigDrop}(\mathcal{L}_n, x_0) \right).
\]

We set the inter-pole distance \(d_{ip} \) used to specify the jump ensemble equal to one. Using Proposition \(\ref{proposition:11.4} \) and Lemma \(\ref{lemma:11.10} \) we find that \(\mathbb{P}(\text{Close}(\mathcal{L}_n, x_0, \varepsilon)) \), being equal to
\[
\mathbb{P}\left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{NoBigDrop}(\mathcal{L}_n, x_0) \right) + \mathbb{P}\left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{BigDrop}(\mathcal{L}_n, x_0) \right),
\]
is at most
\[
\left(4 \exp \left\{ 987k^2 T^{5/2} \right\} + 1 \right) \cdot 2(10^4 D_k^2 + 2k) \exp \left\{ 3973k^2/2 D_k^2 \left(\log \varepsilon^{-1} \right)^{2/3} \right\} \left(\log \varepsilon^{-1} \right)^{k^2/2} \varepsilon^{k^2-1} + 2 \varepsilon^{k^2-1},
\]
where the \(2 \varepsilon^{k^2-1} \) term is composed of two parts, contributed by Lemmas \(\ref{lemma:9.1} \) and \(\ref{lemma:11.8} \).

Using \(\varepsilon < e^{-1} \) and \(D_k \geq 1 \), the right-hand side is bounded above by
\[
2 \cdot 7(10^4 D_k^2 + 2k) \exp \left\{ 4960k^7/2 D_k^2 \left(\log \varepsilon^{-1} \right)^{5/6} \right\} \left(\log \varepsilon^{-1} \right)^{k^2/2} \varepsilon^{k^2-1}
\]
and thus by
\[
14(10^4 + 1) \cdot \exp \left\{ 4961k^7/2 d_{ip}^2 D_k^5/2 \left(\log \varepsilon^{-1} \right)^{5/6} \right\} \left(\log \varepsilon^{-1} \right)^{k^2/2} \varepsilon^{k^2-1}.
\]

Since \(\varepsilon < e^{-23/2} \) ensures that \(x \leq e^{x^{5/6}} \) where \(x = \log \varepsilon^{-1} \), we use \(D_k \geq 1 \) to obtain the upper bound stated in Theorem \(\ref{theorem:11.1} \).

\(\square \)

Proof of Lemma 11.10. Recall that \(r \in [1, |P| - 1] \) satisfies \(x_0 \in [p_r, p_{r+1}] \). It is our task to explain why, conditionally on the top \(k \) curves \(\mathcal{L}_n \) collecting closely together at \(x_0 \in [p_r, p_{r+1}] \), it is not likely that the locale of this meeting is so low that the \(k^{th} \) of these curves (and by ensemble ordering, the higher \(k - 1 \) as well), must drop precipitously from time \(p_r \) to reach the locale at time \(x_0 \) before rising again rapidly as time \(p_{r+1} \) is reached. (At least, this description is correct in coordinates chosen so that the \(k^{th} \) curve has equal height at \(p_r \) and \(p_{r+1} \).)

Such downward swooping on the part of the \(k \) curves during \([p_r, p_{r+1}] \) is presumably kinetically costly. We will release this kinetic energy via the swing through in order to find an alternative
configuration of comparable probability in which k-curve closeness at x_0 is maintained but where $\text{High}(L_n, x_0)$ also occurs. To set up the swing through technique, we introduce another σ-algebra that we label $\mathcal{H}[x_0]$.

Note that the ensemble L_n is entirely specified by the data:

- the curves L_n on $[1, k] \times (p_r, p_{r+1})^c$ and $[k + 1, n] \times (-z_n, \infty)$;
- the standard bridges $L_n^{[p_r, x_0]} : [1, k] \times [p_r, x_0] \to \mathbb{R}$ and $L_n^{[x_0, p_{r+1}]} : [1, k] \times [p_r, x_0] \to \mathbb{R}$;
- the differences $L_n(i, x_0) - L_n(i + 1, x_0), i \in [1, k - 1]$;
- and the value $L_n(n, k, x_0)$.

Let $\mathcal{H}[x_0]$ denote the σ-algebra generated by the first three items. Note first that $\mathcal{F} \subset \mathcal{H}[x_0]$. Only the final one-dimensional piece of data remains random to the witness of $\mathcal{H}[x_0]$. This witness may be depicted as holding a bead at an unknown height $L_n(k, x_0)$ on a vertical rod at coordinate x_0; as the bead is pushed up or down, it forces the values of the lower indexed curves at x_0 in lockstep; these placements in turn force the form of the curves on the intervals $[p_r, x_0]$ and $[x_0, p_{r+1}]$ in accord with the fixed values at p_r and p_{r+1} by means of affine displacement.

Note that since the differences are fixed in the third bullet point, the event $\text{Close}(L_n, x_0, \epsilon)$ is $\mathcal{H}[x_0]$-measurable.

Under $P_{\mathcal{H}[x_0]}$, the occurrence of $\text{BigDrop}(L_n, x_0)$ is characterized by the condition that the random quantity $L_n(k, x_0)$ is at most an $\mathcal{H}[x_0]$-measurable quantity $R := \ell(x_0) - (2(k-1) + 4T)(2T)^{1/2}$. Here, $\ell : [p_r, p_{r+1}] \to \mathbb{R}$ denotes the affine interpolation of $p_r \to L_n(k, p_r)$ and $p_{r+1} \to L_n(k, p_{r+1})$. Under this same measure, on the other hand, the event $\text{High}(L_n, x_0, s)$ occurs precisely when $L_n(k, x_0)$ is at least $\text{Tent}(x_0) + s$ (for any $s > 0$).

Consider now the law $P_{\mathcal{H}[x_0]}$. By the argument that leads to Lemma 11.3, the conditional distribution of the random variable $L_n(k, x_0)$ takes the form of a Gaussian random variable conditioned to exceed a certain $\mathcal{H}[x_0]$-quantity that we label Corner^R_k. (We use the shorthand $\mathcal{H} = \mathcal{H}[x_0]$ in so doing.) This Gaussian has an $\mathcal{H}[x_0]$-measurable mean and variance that we denote by m and σ^2. With a view to making some inferences about the values of these parameters, we note that the kinetic energy associated to the Gaussian equals

\[
\frac{1}{2} \sum_{i=1}^{k} \left(\frac{1}{x_0 - p_r} \left(x + L_n(i, x_0) - L_n(k, x_0) - L_n(i, p_r) \right)^2 \right.
+ \left. \frac{1}{p_{r+1} - x_0} \left(x + L_n(i, x_0) - L_n(k, x_0) - L_n(i, p_{r+1}) \right)^2 \right),
\]

which up to normalization is given by

\[
\frac{k}{2} \cdot \frac{p_{r+1} - p_r}{(x_0 - p_r)(p_{r+1} - x_0)} \left(x + \frac{1}{k} \sum_{i=1}^{k} \left(L_n(i, x_0) - L_n(k, x_0) - L_n(i, p_r) \right)^{p_{r+1} - x_0} \right)
+ \left(L_n(i, x_0) - L_n(k, x_0) - L_n(i, p_{r+1}) \right)^{x_0 - p_r} \right)^2.
\]
We find then that
\[m = \frac{1}{k} \sum_{i=1}^{k} (\mathcal{L}_n(i, x_0) - \mathcal{L}_n(k, x_0)) + \frac{1}{k} \sum_{i=1}^{k} \left(\frac{p_{r+1} - x_0}{p_{r+1} - p_r} \mathcal{L}_n(i, p_r) + \frac{x_0 - p_r}{p_{r+1} - p_r} \mathcal{L}_n(i, p_{r+1}) \right), \]
and that \(\sigma^2 = k^{-1} (x_0 - p_r)(p_{r+1} - x_0) \).

In this formula for \(m \), the summand in the latter sum is at least the affine interpolation \(\ell(x_0) \) defined a few moments ago. On the event \(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \), the earlier summand, \(\mathcal{L}_n(i, x_0) - \mathcal{L}_n(k, x_0) \), lies in \((0, \varepsilon]\) for each \(i \in [1, k - 1] \); thus \(m \geq \ell(x_0) - \varepsilon \) on this event. Note also that \(\ell(x_0) \geq \text{Tent}(x_0) \) because \(\ell \) and \(\text{Tent} \) are both affine on \([p_r, p_{r+1}]\), with \(\ell \) having the higher boundary data since \(\text{Tent}(p) \) equals \(\mathcal{L}_n(k + 1, p) \) for \(p \in \{p_r, p_{r+1}\} \subset P \).

With these things observed, we may note that, for any specification of \(\mathcal{H}[x_0] \) that realizes \(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \),
\[
\mathbb{P}_{\mathcal{H}[x_0]}(\text{High}(\mathcal{L}_n, x_0)) = \nu_{m, \sigma^2} \left(\text{Tent}(x_0) + 15kD_k(\log \varepsilon^{-1})^{1/2}, \infty \right) \text{Corner}_{k, x_0, \infty}^\mathcal{H} \geq \nu_{m, \sigma^2} \left(\text{Tent}(x_0) + 15kD_k(\log \varepsilon^{-1})^{1/2}, \infty \right) \geq \nu_{\text{Tent}(x_0), \varepsilon, \sigma^2} \left(\text{Tent}(x_0) + 15kD_k(\log \varepsilon^{-1})^{1/2}, \infty \right) = \nu_{0, \sigma^2} \left((2(k - 1) + 4T)(2T)^{1/2} - \varepsilon, \infty \right),
\]
where recall that \(\text{High}(\mathcal{L}_n, x_0) = \text{High}(\mathcal{L}_n, x_0, 15kD_k(\log \varepsilon^{-1})^{1/2}) \). (In the second inequality, we used \(\ell(x_0) \geq \text{Tent}(x_0) \).) We also have that, for such a specification,
\[
\mathbb{P}_{\mathcal{H}[x_0]}(\text{BigDrop}(\mathcal{L}_n, x_0)) = \nu_{m, \sigma^2} \left(-\infty, R \right) \text{Corner}_{k, x_0, \infty}^\mathcal{H} \leq \nu_{m, \sigma^2} \left(-\infty, R \right) \leq \nu_{\ell(x_0) - \varepsilon, \sigma^2} \left(-\infty, \ell(x_0) - (2(k - 1) + 4T)(2T)^{1/2} \right) = \nu_{0, \sigma^2} \left((2(k - 1) + 4T)(2T)^{1/2} - \varepsilon, \infty \right).
\]
That
\[
15kD_k(\log \varepsilon^{-1})^{1/2} + \varepsilon \leq (2(k - 1) + 4T)(2T)^{1/2} - \varepsilon
\]
is due to \(D_k \geq 1, \varepsilon < \varepsilon^{-1} \) and \(D_k \geq \frac{1}{32}(15k + 1)^2 \); we learn that
\[
\mathbb{P}_{\mathcal{H}[x_0]}(\text{High}(\mathcal{L}_n, x_0)) \geq \mathbb{P}_{\mathcal{H}[x_0]}(\text{BigDrop}(\mathcal{L}_n, x_0)).
\]
That \(\mathcal{F} \subset \mathcal{H}[x_0] \) implies that \(\text{Fav} \) is \(\mathcal{H}[x_0] \)-measurable. Thus,
\[
\mathbb{P} \left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{BigDrop}(\mathcal{L}_n, x_0) \cap \text{Fav} \right) \\
\leq \mathbb{E} \left[\mathbb{P}_{\mathcal{H}[x_0]}(\text{BigDrop}(\mathcal{L}_n, x_0)) \cdot 1_{\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{Fav}} \right] \\
\leq \mathbb{E} \left[\mathbb{P}_{\mathcal{H}[x_0]}(\text{High}(\mathcal{L}_n, x_0)) \cdot 1_{\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{Fav}} \right] \leq \mathbb{P} \left(\text{Close}(\mathcal{L}_n, x_0, \varepsilon) \cap \text{High}(\mathcal{L}_n, x_0) \right).
\]
This completes the proof of Lemma 11.10 \(\square \)

12. Closeness of curves at a general location

In this section, we prove Theorem 4.3 (2) (and Corollary 4.11). In view of the theorem’s first part, the rough form of the second part is plausible: since the curves of \(\mathcal{L}_n \) are expected to be locally Brownian, the failure of \(k \)-curve \(\varepsilon \)-closeness at any given point may be expected to dictate this
eventuality in a neighbourhood of width \(\varepsilon^2 \) about the point. Since \(\varepsilon^{-2} \) such neighbourhoods are needed to cover a unit-order interval, the exponent value changes from \(k^2 - 1 \) and \(k^2 - 3 \) between the theorem’s first and second part. We will follow this proof approach, and for this reason, we begin by showing that the local fluctuation of ensemble curves is Gaussian in magnitude.

Recall the \(k \)-line modulus of continuity Definition [17.6]

Proposition 12.1. Take the inter-pole distance parameter \(d_{ip} \) equal to one. Let \(\phi \in (0, \frac{1}{4} T^{-1}) \). Then, for any \(C_1 \geq 96 \),

\[
\mathbb{P}_F \left(\omega_{k,[\cdot,t]}(J, \phi) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \cdot 1_{\text{Fav}} \leq \varepsilon^{-36(k+2)^2 k D_k^3} 2 k \cdot 3 k \cdot \phi^{C_2^2/4608}.
\]

Corollary 12.2. Let \(\phi \in \left(\varepsilon^8, \frac{1}{4} T^{-1} \right) \). Then, for any \(C_1 \geq 96 \),

\[
\mathbb{P} \left(\omega_{k,I} \left(\mathcal{L}_n, \phi \right) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \leq \phi^{C_2^2/4608} \cdot \varepsilon^{-36(k+2)^2 k D_k^3} 2 k \cdot 3 k \cdot \exp \left\{ 3973 k^{7/2} D_k^2 \left(\log \varepsilon^{-1} \right)^{2/3} \right\} + \varepsilon^{k^2 - 1},
\]

where the interval \(I \) is given by \(I = \frac{1}{4} D_k \left(\log \phi^{-1} \right)^{1/3} \cdot [-1, 1] \).

Proof. Note that, under \(\mathbb{P}_F \), the marginal law of \(\mathcal{L}_n \) on \([1,k] \times [l,t] \to \mathbb{R} \) given \(T_3(J) = 1 \). Since \(d_{ip} = 1 \), Propositions [12.1] and [12.2] thus imply that

\[
\mathbb{P}_F \left(\omega_{k,[\cdot,t]}(\mathcal{L}_n, \phi) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \cdot 1_{\text{Fav}} \leq \phi^{C_2^2/4608} \cdot \varepsilon^{-36(k+2)^2 k D_k^3} 2 k \cdot 3 k \cdot \exp \left\{ 3973 k^{7/2} D_k^2 \left(\log \varepsilon^{-1} \right)^{2/3} \right\}.
\]

Lemma [9.1] \(\text{Fav} \subseteq \{ [-T/2, T/2] \subseteq [l, t] \} \) and \(\phi \geq \varepsilon^8 \) implies the result. \(\square \)

Proof of Corollary 4.7. The hypotheses of the corollary imply that \(E_0 \geq 6(k+2)k^{1/2} \sqrt{3 \cdot 4608} \) and \(\varepsilon < \exp \{ -25 \cdot 2^k \} \wedge \exp \{ -\left(\frac{3973}{4} k^{3/2} D_k^2 \right)^3 \} \).

These in turn imply \(\frac{1}{3 \cdot 4608} E_0^2 \geq 36(k+2)^2 k \) and \(\frac{1}{3 \cdot 4608} E_0^2 \left(\log \varepsilon^{-1} \right)^{1/3} \geq 3973 k^{7/2} D_k^2 \). By Corollary [12.2] with \(\phi = \varepsilon \) and \(C_1 = E_0 \), we learn that

\[
\mathbb{P} \left(\omega_{k,I} \left(\mathcal{L}_n, \varepsilon \right) > E_0 \varepsilon^{1/2} \left(\log \varepsilon^{-1} \right)^{1/2} \right) \leq 24 k \cdot 2^k \varepsilon \frac{E_0^2}{3 \cdot 4608} + \varepsilon^{2 \cdot 5 \cdot c_k D_k^3}.
\]

Since \(\frac{1}{3 \cdot 4608} E_0^2 \geq 2^{-5} c_k D_k^3 \) and \(12 \cdot 4608(24k^2 + 1) \leq E_0^2 \log \varepsilon^{-1} \), the last expression is at most

\[
(24k^2 + 1) \varepsilon \frac{E_0^2}{3 \cdot 4608} \leq \varepsilon \frac{E_0^2}{3 \cdot 4608}.
\]

This completes the proof. \(\square \)

For the proof of Proposition [12.1], a lemma is needed.

Lemma 12.3. Let \(\delta \in (0, 1/6) \) and \(R \geq 24 \sqrt{2} \delta^{1/2} \left(\log \delta^{-1} \right)^{1/2} \). Then

\[
\mathcal{B}_{[0,1]}^{[0,1]}(\omega(B, \delta > R)) \leq 3 \exp \left\{ -\frac{1}{1152} R^2 \delta^{-1} \right\},
\]

where \(\omega = \omega_{1, [0,1]} \) denotes the modulus of continuity of a single curve.
Proof. Standard Brownian bridge $B : [0, 1] \to \mathbb{R}$ may be represented in the form

$$B(t) = (1 - t)X\left(\frac{1}{1-t}\right), \quad t \in [0, 1],$$

where $X : [0, \infty) \to \mathbb{R}$ is standard Brownian motion. Note that, when $r, s \in [0, 2/3]$, $r < s$,

$$|B(s) - B(r)| \leq \left|X\left(\frac{s}{1-s}\right) - X\left(\frac{r}{1-r}\right)\right| + (s - r) \sup_{x \in [0, 2/3]} |X|(\frac{s}{1-s}).$$

Since $[0, 2/3] : x \to x/(1 - x)$ has nine as a Lipschitz constant, we find that

$$\omega_{1,[0,2/3]}(B, \delta) \leq \omega_{1,[0,2]}(X, 9\delta) + \delta \sup_{t \in [0,2]} |X(t)|.$$

Note that, for any parameter $\phi > 0$, interval $I \subseteq \mathbb{R}$ of length at least ϕ, and function $f : I \to \mathbb{R}$,

$$\omega_{1,f}(f, \phi) \leq 2 \sup |f(x + y) - f(x)|,$$

where the supremum is taken over pairs $(x, y) \in \phi \mathbb{Z} \times [0, 2\phi]$ such that x and $x + y$ are elements of I. From this, we find that, if we write

$$X = 2 \max_{i \in [0,2/[9\phi)]} \sup_{t \in [0,18\phi]} |X(9\delta i + t) - X(9\delta i)| + \delta \sup_{t \in [0,2]} |X(t)|,$$

then X is an upper bound on $\omega_{1,[0,2/3]}(B, \delta)$. A random variable sharing the law of X offers an upper bound on $\omega_{1,[1/3,1]}(B, \delta)$, from which it follows in light of $\delta \in (0, 1/6)$ and stationarity of Brownian motion increments that

$$\mathbb{B}^{[0,1]}_{1/0,0}\left(\omega(B, \delta) > R\right) \leq 2 \left(\frac{2}{9\phi} + 1\right) \mathbb{P}\left(2 \sup_{t \in [0,18\phi]} |X(t)| > R/2\right) + 2 \mathbb{P}\left(\delta \sup_{t \in [0,2]} |X(t)| > R/2\right);$$

here, we write \mathbb{P} for the probability measure associated to the Brownian motion X. Using $\delta \leq 1$, the $X \to -X$ symmetry of Brownian motion, and the reflection principle, followed by the standard upper bound on the tail of the Gaussian distribution, we find that

$$\mathbb{B}^{[0,1]}_{1/0,0}\left(\omega(B, \delta) > R\right) \leq \frac{22}{9} \frac{\pi}{\delta} - 1 \cdot 4 \mathbb{P}(X(18\delta) > R/4) + 8 \mathbb{P}(X(2) > 1/2 R^{-1}) \leq \frac{88}{3} \pi^{1/2} \delta^{-1/2} R^{-1} \cdot \exp \{- \frac{R^2}{32 - 183}\} + 8 (2\pi)^{-1/2} \cdot 2 \sqrt{2} R^{-1} \delta \cdot \exp \{- \frac{R^2}{1652}\}.$$

We make use of our assumption that $R^2 \geq 2 \cdot 32 \cdot 18 \delta \log \delta^{-1}$ (and also use $\delta \leq 1/e$) in order to find that the latter expression is at most

$$\frac{88}{3} \pi^{1/2} \left(2 \cdot 32 - 18\right)^{-1/2} \exp \{- \frac{R^2}{32 - 183}\} + 4 \sqrt{2} \pi^{-1/2} \cdot 2 \frac{1}{32 - 183^{1/2}} \delta^{1/2} \exp \{- \frac{R^2}{1652}\} \leq 3 \exp \{- \frac{1}{1152} R^2 \delta^{-1}\}.$$

This completes the proof of Lemma 12.3. \[\square\]

Proof of Proposition 12.1. Recall that, if Fav occurs, then, under \mathbb{P}_F, the conditional distribution of the jump ensemble $J : [1, k] \times [l, \tau] \to \mathbb{R}$ is obtained by conditioning the Wiener candidate $W : [1, k] \times [l, \tau] \to \mathbb{R}$ on success in the test conditions $T_{12}(W) = 1$. Recall also that, under \mathbb{P}_F, W is the marginal on $[1, k] \times [l, \tau] \times \mathbb{R}$ of a bridge ensemble with law $B^{[\tau^{-1}/2]}_{k, \mathbb{Z}_n(\tau)}$. For our present purpose, it will be a convenient notational abuse to allow W to denote this bridge ensemble of which it is in reality a marginal. In this way, W is in this argument defined on $[1, k] \times [-2T, 2T]$. We
have then that
\[P \left(\omega_{k,\varedot} \left(J, \phi \right) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \cdot 1_{Fav} \]
\[\leq P \left(\omega_{k,\varedot} \left(W, \phi \right) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \cdot P \left(T_{12}(W) = 1 \right)^{-1} \cdot 1_{Fav} \]
\[\leq \varepsilon^{-36(k+2k^2n)} \cdot \cdot P \left(\omega_{k,\varedot} \left(W, \phi \right) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \cdot 1_{Fav} \]

where the second inequality is due to Proposition 9.3.

Recall that, when Fav occurs, \(L_n(i, x) \in -2\sqrt{T^2} + [-T^2, T^2] \) for \((i, x) \in \{1, k\} \times \{-2T, 2T\} \). Thus, for any \(r > 0 \),
\[P \left(\omega_{k,\varedot} \left(W, \phi \right) > r \right) \cdot 1_{Fav} \leq k \cdot \sup_{(x,y)\in[0,2T^2]^2} B_{[-2T,2T]}^{[-2T,2T]} (\omega_{1;0,1}(W, \phi) > r) . \]

For any \(x, y \in \mathbb{R} \), Brownian bridges \(B \) and \(B' \) under the laws \(B_{[-2T,2T]}^{[-2T,2T]} \) and \(B_{[1;0,1]}^{[-2T,2T]} \) may be coupled by affine shift; when they are, the processes’ moduli of continuity satisfy \(\omega(B', \delta) \leq \omega(B, \delta) + \delta(4T)^{-1} |y - x| \). This right-hand side is at most \(\omega(B, \delta) + \delta T/2 \) when \(x, y \in [0, 2T^2] \). Choose \(\delta = \phi \) and note that
\[\frac{\delta T}{2} \leq C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \]
holds since \(\phi \leq e^{-1} \wedge C_2 D_k^{-2} (\log \varepsilon^{-1})^{-2/3} \). Hence,
\[P \left(\omega_{k,\varedot} \left(W, \phi \right) > C_1 \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \cdot 1_{Fav} \]
\[\leq k \cdot B_{[0,1]}^{[-2T,2T]} \left(\omega_{1,\varedot} \left(B, \phi \right) > C_1/2 \cdot \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \right) \]
\[\leq 3k \cdot C_2 \phi^{4608} , \]

where we take \(\delta = \frac{\phi}{17} \) and \(R = \frac{1}{4} \cdot T^{-1/2} C_1 \cdot \phi^{1/2} \left(\log \phi^{-1} \right)^{1/2} \) in Lemma 12.3 to obtain the final inequality. The hypothesis of the lemma that \(R_k^2 \geq 1152 \phi \log \delta^{-1} \) is satisfied because \(C_2 \log \phi^{-1} \geq 4608 \left(\log(4T) + \log \phi^{-1} \right) \) holds due to \(\phi^{-1} \geq 4T \) and \(C_2 \geq 2 \cdot 4608 \).

Applying this bound to (52) alongside \(T = D_k \left(\log \varepsilon^{-1} \right)^{1/3} \) proves Proposition 12.1.

Proof of Theorem 4.3(2). We begin by reducing to the assertion made for an interval centred at \(y = 0 \).

Proposition 12.4. For \(\bar{\varphi} \in (0, \infty)^3 \) and \(C, c > 0 \), let
\[L_n : [1, n] \times [-z_n, \infty) \to \mathbb{R} , \ n \in \mathbb{N} , \]
be a \(\bar{\varphi} \)-regular sequence of Brownian Gibbs line ensembles with constant parameters \(c, C \) defined under the law \(\mathbb{P} \). Let \(D_k \) be given by the maximum of the value in (22) and \(32c_k^{-1}(k^2 - 1) \). Let \(\varepsilon > 0 \) satisfy the bound (52). For \(n, k \in \mathbb{N} \) satisfying \(k \geq 2 \) and \(n \geq k \vee (c/3)^{-2\varphi_2^{-1}} \vee 6^{2/3} \), the bound
\[\mathbb{P} \left(\exists x \in \mathbb{R} , |x| \leq \frac{1}{4} D_k \left(\log \varepsilon^{-1} \right)^{1/3} : \text{Close}(k; L_n, x, \varepsilon) \right) \]
\[\leq \varepsilon^{k^2-3} \cdot 10^{14} 2^{6k^2} D_k^{18} \exp \left\{ 4963k^{7/2} D_k^{5/2} \left(\log \varepsilon^{-1} \right)^{5/6} \right\} . \]
Proof of Theorem 4.3 (2). Proposition 12.4 implies the result via the parabolic invariance Lemma 5.11 with the value of C decreasing by a factor of two, resulting in the replacement of factors of \(D_k \) by \(2^{1/3} D_k \).

Proof of Proposition 12.4. It suffices to prove

\[
P(\exists x \in \mathbb{R}, |x| \leq \frac{1}{4} D_k \left(\log \epsilon^{-1} \right)^{1/3} : \mathcal{L}_n(1, x) \leq \mathcal{L}_n(k, x) + \epsilon/2) \leq \epsilon^{k^2 - 3} \cdot 10^{44} k^{18} D_k^{18} \exp \left\{ 4963k^{7/2} D_k^{5/2} (\log \epsilon^{-1})^{5/6} \right\} ;
\]

indeed, the result then follows by replacing \(\epsilon/2 \) by \(\epsilon \), this replacement leading to an additional factor of \(2^{k^2 - 3} \) on the right-hand side, and applying \(k^{18} \leq 2^{5k^2} \) when \(k \geq 2 \).

Note that

\[
\exists x \in [-T/4, T/4] : \text{Close}(\mathcal{L}_n, x, \epsilon/2) \bigcap \left\{ \omega_k, [-T/4, T/4] (\mathcal{L}_n, \phi) \leq \epsilon/2 \right\}
\]

Set

\[
\epsilon/2 = C_1 \phi^{1/2} (\log \phi^{-1})^{1/2}.
\]

Note that \(\phi < \epsilon^{-1} \) implies that \(\phi \leq \frac{1}{4} \epsilon^2 C_1^{-2} \). We also claim that

\[
\phi \geq \frac{1}{4} \epsilon^2 C_1^{-2} \left(\log (16C_1^{-4} \epsilon^{-4}) \right)^{-1}.
\]

To verify this, note first that \(\log \phi^{-1} \leq \phi^{-1/2} \) when \(\phi \leq \epsilon^{-1} \). Squaring (54), applying this last bound and squaring again, we find that \(\phi^{-1} \leq 16C_1^{-4} \epsilon^{-4} \). Returning to the square of (54) with this bound, we obtain (55).

Thus, by Theorem 11.1 and Corollary 12.2

\[
P(\exists x \in [-T/4, T/4] : \text{Close}(\mathcal{L}_n, x, \epsilon/2)) \leq \frac{C_1^2}{2^{304}} \cdot \epsilon^{-36(k+2)^2 k D_k^3} \cdot 3k \cdot 8 \exp \left\{ 3973k^{7/2} D_k^2 (\log \epsilon^{-1})^{2/3} \right\} + \epsilon^{k^2 - 1}
\]

\[
+ (T/2 + 1) \phi^{-1} \cdot 10^6 \exp \left\{ 4962k^{7/2} D_k^{5/2} (\log \epsilon^{-1})^{5/6} \right\} \epsilon^{k^2 - 1}.
\]

Choose \(C_1 > 0 \) so that \(\frac{C_1^2}{2^{304}} - 36(k+2)^2 k D_k^3 = k^2 - 3 \). Using \(\phi \leq \frac{1}{4} \epsilon^2 C_1^{-2} \), as well as \(k \geq 2, \epsilon < \epsilon^{-1} \) and \(D_k \geq 1 \). The term in line (56) is then bounded above by

\[
\epsilon^{k^2 - 3} \cdot 2^k \cdot 3k \cdot 8 \exp \left\{ 3973k^{7/2} D_k^2 (\log \epsilon^{-1})^{2/3} \right\} \leq \epsilon^{k^2 - 3} \cdot \exp \left\{ 3974k^{7/2} D_k^2 (\log \epsilon^{-1})^{2/3} \right\}.
\]

Using (55), the term is line (57) is found to be at most

\[
(T + 1) \cdot 4 \epsilon^{-2} C_1^2 (\log (16C_1^{-4} \epsilon^{-4})) \cdot 10^6 \exp \left\{ 4962k^{7/2} D_k^{5/2} (\log \epsilon^{-1})^{5/6} \right\} \epsilon^{k^2 - 1}
\]

\[
\leq \epsilon^{k^2 - 3} \cdot 2D_k (\log \epsilon^{-1})^{1/3} \cdot 4C_1 \cdot 16C_1^{-4} \cdot 4 \log (\epsilon^{-1}) \cdot 10^6 \exp \left\{ 4962k^{7/2} D_k^{5/2} (\log \epsilon^{-1})^{5/6} \right\}
\]

\[
\leq \epsilon^{k^2 - 3} \cdot 512 \cdot 10^6 \cdot (663552)^6 k^{18} \cdot 4963k^{7/2} D_k^{5/2} (\log \epsilon^{-1})^{5/6} ,
\]
where in the first displayed inequality we used $T \geq 1$; and also the bound $\log(ar) \leq a\log r$, which is valid when $a \geq 1$ and $r \geq 2$, was applied in the case that $a = 16C_1^3$ and $r = \varepsilon^{-4}$. In the second inequality, we used that our choice of C_1 satisfies $C_1^2 \leq 2304 \cdot 2 \cdot 36 \cdot 4k^3D^3_k$. We also used $(\log \varepsilon^{-1})^{4/3} \leq \exp\left\{ (\log \varepsilon^{-1})^{5/6} \right\}$ if $\varepsilon < \varepsilon^{-8}$, and $D_k \geq 1$.

Using these bounds alongside the inequality (56), we find that, since $\varepsilon < 1$,

$$
\mathbb{P}\left(\exists x \in [-T/4, T/4] : \text{Close}(\mathcal{L}_n, x, \varepsilon/2) \right) \leq \varepsilon^{k^2 - 3} \cdot 10^{44}k^{18}D_k^{18}\exp\left\{ 4963k^{7/2}D_k^{5/2}(\log \varepsilon^{-1})^{5/6} \right\}.
$$

This completes the proof of (55) and thus of Proposition 12.3. □

13. BROWNIAN BRIDGE REGULARITY OF THE ENSEMBLE \mathcal{L}_n

In this section, we will prove our result Theorem 14.5 concerning Brownian regularity of standard bridges derived from curves in elements of regular Brownian Gibbs ensemble sequences. Throughout the section, the value of D_k be specified to satisfy the general condition (29) and as well a new constraint, equalling

$$
D_k = \max \left\{ \varepsilon_k^{-1/3} \left(2^{-9/2} - 2^{-5} \right)^{-1/3}, 36(k^2 - 1), 16\varepsilon_k^{-1} \right\}.
$$

As we prepare for the proof, we first mention that the parabolic invariance Lemma 5.11 in essence allows us to reduce immediately to the case where $K = 0$ (see the actual proof later in the section for a precise explanation of this application). As we develop the tools that we will use, we will make this choice.

Proposition 13.1. Let $d \in (1, T/2)$. For any $i \in [1, k]$ and $A \subseteq C_{0,0}(\mathbb{R})$ any measurable collection of standard bridges on $[0, d]$,

$$
\mathbb{P}_{\mathcal{F}}\left(J^{[0,d]}(i, \cdot) \in A \right) 1_{\text{Fav}} \leq 2101d^{1/2}D_k^{1/2}\log \varepsilon^{-1} \cdot \exp\left\{ 54dD_k^2(\log \varepsilon^{-1})^{5/6} \right\} \cdot B_{1,0,0}^{[0,d]}(B \in A) + \varepsilon D_k^{1/2}.
$$

The next result follows since $\varepsilon < \varepsilon^{-1}$ and $D_k \geq 1$.

Corollary 13.2. If the set A in the proposition satisfies $B_{1,0,0}^{[0,d]}(B \in A) \geq \varepsilon D_k^{1/2}$, then

$$
\mathbb{P}_{\mathcal{F}}\left(J^{[0,d]}(i, \cdot) \in A \right) 1_{\text{Fav}} \leq 2102d^{1/2}D_k^{1/2}\log \varepsilon^{-1} \cdot \exp\left\{ 54dD_k^2(\log \varepsilon^{-1})^{5/6} \right\} \cdot B_{1,0,0}^{[0,d]}(B \in A).
$$

Remark. Throughout this section, we set the inter-pole distance parameter d_{ip} equal to d. This assignment reflects our aim in proving Theorem 14.5 of understanding the behaviour of the process $\mathcal{L}_n^{[K,K+d]}(k, \cdot)$ on an interval of length d.

Proof of Proposition 13.1. Elements of the pole set P are separated from each other by gaps whose distance exceeds $d_{ip} = d$; thus, there is at most one element of $P \cap [0, d]$. If this element exists, we label it p. When $\text{Fav} \subseteq \{-T/2, T/2\} \subseteq [1, \varepsilon]$ occurs and p exists, this element is neither the greatest nor the least member of P; in this case, we write p^- and p^+ for the elements of P that precede and follow p in the increasing order.

On the event that $P \cap [0, d] \neq \emptyset$, set

$$
\sigma_1^2 = \frac{-p^- \cdot p}{p - p^-} \quad \text{and} \quad \sigma_2^2 = \frac{(d - p)(p^+ - d)}{p^+ - p}.
$$
For later use, we further define on the same event

\[\sigma_3^2 = \frac{p(p - p)}{d} \quad \text{and} \quad \sigma_4^2 = (1 - p d^{-1})^2 \sigma_1^2 + p^2 d^{-2} \sigma_2^2. \] (60)

Recall from Section 9.4 that \(\text{Tent} : [0, t] \to \mathbb{R} \) is the \(\mathcal{F} \)-measurable \(\text{tent} \) map, which piecewise linearly interpolates the pole tops indexed by poles in \(P \subset [0, t] \).

The next lemma provides a Gaussian upper bound on the density of the location of \(J(i, x) \) relative to the tent map in the event that this curve drops below the tent map at a given location \(x \).

Lemma 13.3. Let \(i \in [1, k] \).

1. For \(x \in \{0, d\} \), write \(h_{1,x}^F : \mathbb{R} \to [0, \infty) \) for the \(\mathcal{F} \)-measurable random variable that, when \(\mathcal{F} \text{av} \) occurs, equals the density under the law \(\mathbb{P}_\mathcal{F} \) of

\[(J(i, x) - \text{Tent}(x)) \mathbf{1}_{J(i,x) - \text{Tent}(x) < 0}; \]

(and equals zero when \(\neg \mathcal{F} \text{av} \) occurs).

Then, for any \(s \in (-\infty, 0) \),

\[h_{1,x}^F(s) \cdot \mathbf{1}_{\mathcal{F} \text{av} \cap \{P \cap [0, d] \neq \emptyset\}} \leq g_{0, \sigma^2}(s), \]

where \(\sigma \) equals \(\sigma_1 \) or \(\sigma_2 \) according to whether \(x \) equals 0 or \(d \).

2. Write \(h_{2,0,d}^F : \mathbb{R}^2 \to [0, \infty) \) for the \(\mathcal{F} \)-measurable random variable that, when \(\mathcal{F} \text{av} \) occurs, equals the density under the law \(\mathbb{P}_\mathcal{F} \) of the pair

\[(J(i, 0) - \text{Tent}(0), J(i, d) - \text{Tent}(d)). \]

(and equals \((0, 0)\) when \(\neg \mathcal{F} \text{av} \) occurs).

Then, for any \((s, t) \in (-\infty, 0)^2 \),

\[h_{2,0,d}^F(s, t) \cdot \mathbf{1}_{\mathcal{F} \text{av} \cap \{P \cap [0, d] \neq \emptyset\}} \leq g_{0, \sigma_1^2}(s) g_{0, \sigma_2^2}(t). \]

Proof. The first statement follows by the reasoning that proves the second and its proof is omitted. Recall that, when \(P \) intersects \([0, d]\), \(p \) is the unique element of intersection, and \(p^- \) and \(p^+ \) the adjacent elements of \(P \). Let \(\mathcal{F}[i; p^-, p, p^+] \) denote the \(\sigma \)-algebra generated by \(\mathcal{F} \) and the random variables \(J(i, x) \) for \(x \in \{p^-, p, p^+\} \). (These random variables provide extra information only when \(P \) intersects \([0, d]\).) The density \(h_{2,0,d}^F(s, t) \) has a counterpart under the augmented \(\sigma \)-algebra, and indeed it is sufficient to argue that

\[h_{2,0,d}^F[i; p^-, p, p^+] (s, d) \cdot \mathbf{1}_{\mathcal{F} \text{av} \cap \{P \cap [0, d] \neq \emptyset\}} \leq g_{0, \sigma_1^2}(s) g_{0, \sigma_2^2}(t), \]

since then Lemma 13.3(2) will arise by averaging.

Under the law \(\mathbb{P}_{\mathcal{F}[i; p^-, p, p^+]} \), the processes \(J(i, \cdot) \) on \([p^-, p]\) and \([p, p^+]\) are conditionally independent. Supposing that the data in \(\mathcal{F}[i; p^-, p, p^+] \) causes \(\mathcal{F} \text{av} \cap \{P \cap [0, d] \neq \emptyset\} \) to occur, it is thus enough to argue that

- the conditional density of \(J(i, 0) - \text{Tent}(0) \) at \(s \leq 0 \) is at most \(g_{0, \sigma_1^2}(s) \);
- and the conditional density of \(J(i, d) - \text{Tent}(d) \) at \(t \leq 0 \) is at most \(g_{0, \sigma_2^2}(t) \).
These statements are quite straightforward to verify. Indeed, the conditional law under $\mathcal{F}[i; p^-, p, p^+]$ of $J(i, 0)$ is normal with mean $\frac{p}{p-p} J(i, p^-) + \frac{p}{p-p} J(i, p)$ and variance σ^2_{\cdot}. Note that $J(i, p^-) \geq \text{Tent}(p^-)$ and $J(i, p) \geq \text{Tent}(p)$ since $p^-, p \in P$, and that Tent is affine on the interval between consecutive pole set elements p^- and p; thus, we see that this mean is at least Tent(0). The first bullet point statement follows, and the second is proved in the same fashion. This proves Lemma 13.3(2).

For $H, H' \subseteq \mathbb{R}$, write

$$ G_{0, d}^{H, H'} = \left\{ J(i, 0) - \text{Tent}(0) \in H, J(i, d) - \text{Tent}(d) \in H' \right\}, $$

and abbreviate $G_{0, d} = G_{0, d}^{H, H'}$ when the choice

$$ H = (-\sigma_1 D_k (\log \varepsilon^{-1})^{1/2}, \infty) \quad \text{and} \quad H' = (-\sigma_2 D_k (\log \varepsilon^{-1})^{1/2}, \infty) $$

is made. By Lemma 13.3(1),

$$ \mathbb{P}_F(G_{0, d}^c) \cdot 1_{\text{Fav} \cap \{ P \cap [0, d] \neq \emptyset \}} \leq 2 \left(2\pi \right)^{-1/2} D_k^{-1} (\log \varepsilon^{-1})^{-1/2} \exp \left\{ - \frac{1}{2} D_k^2 \log \varepsilon^{-1} \right\} \leq \varepsilon D_k^{1/2}, \quad (61) $$

the latter bound since $D_k \geq 1$ and $\varepsilon < e^{-1}$.

Note that

$$ \mathbb{P}_F(J^{[0, d]} \in A) 1_{\text{Fav}} \leq \mathbb{P}_F(J^{[0, d]} \in A, G_{0, d}) 1_{\text{Fav} \cap \{ P \cap [0, d] \neq \emptyset \}} + \mathbb{P}_F(J^{[0, d]} \in A) 1_{\text{Fav} \cap \{ P \cap [0, d] = \emptyset \}} + \mathbb{P}_F(G_{0, d}^c) 1_{\text{Fav} \cap \{ P \cap [0, d] \neq \emptyset \}}. \quad (62) $$

It is the first term on the right-hand side that is the most subtle to analyse. In order to do so, we introduce another augmentation of the σ-algebra \mathcal{F}. Let $\mathcal{F}_i^{[0, d]c}$ denote the σ-algebra generated by \mathcal{F} and the curve $J(i, \cdot)$ on $[i, 0] \cup [d, i]$. (If either of these intervals is badly specified because the endpoints are out of order, we may treat the interval as the empty-set. However, the occurrence of Fav will avoid this formal difficulty.)

Using this new device, the first term on the right-hand side of (62) equals

$$ \mathbb{E}_F \left[\mathbb{P}_{\mathcal{F}_i^{[0, d]c}} (J^{[0, d]}(i, \cdot) \in A) 1_{\text{G}_{0, d}} \right] \cdot 1_{\text{Fav} \cap \{ P \cap [0, d] \neq \emptyset \}}; $$

in adopting this point of view, we are led to ask: ‘what is the conditional distribution of $J^{[0, d]}$ under $\mathbb{P}_{\mathcal{F}_i^{[0, d]c}}$?’ For an instance of \mathcal{F}-measurable data that dictates the occurrence of $\text{Fav} \cap \{ P \cap [0, d] \neq \emptyset \}$, the process $J(i, \cdot)$ on $[0, d]$ under $\mathbb{P}_{\mathcal{F}_i^{[0, d]c}}$ is distributed as Brownian bridge B on $[0, d]$ under the law $\mathcal{B}^{[0, d]}_1; J(i, 0), J(i, d)$ conditionally on $B(p) \geq \mathcal{L}_n(k + 1, p)$. Thus,

$$ \mathbb{P}_{\mathcal{F}_i^{[0, d]c}} (J^{[0, d]}(i, \cdot) \in A) \cdot 1_{\text{Fav} \cap \{ P \cap [0, d] \neq \emptyset \}} \\
= \mathcal{B}^{[0, d]}_1; J(i, 0), J(i, d) \left(B^{[0, d]} \in A \mid B(p) \geq \mathcal{L}_n(k + 1, p) \right) \\
\leq \mathcal{B}^{[0, d]}_1; 1, J(i, 0), J(i, d) \left(B(p) \geq \mathcal{L}_n(k + 1, p) \right)^{-1}. $$

Note that $B(p)$ under $\mathcal{B}^{[0, d]}_1; J(i, 0), J(i, d)$ is normally distributed with mean $(1 - p d^{-1}) J(i, 0) + p d^{-1} J(i, d)$ and variance σ^2_3, where recall that $\sigma^2_3 = p(d - p)d^{-1}$. The tent map is affine on $[0, p]$ and $[p, d]$, with
a slope in each section of absolute value at most $4T$: thus,

$$\text{Tent}(0) \geq \mathcal{L}_n(k+1,p) - 4Tp \quad \text{and} \quad \text{Tent}(d) \geq \mathcal{L}_n(k+1,p) - 4T(d-p).$$

If we set $x_1 = J(i,0) - \text{Tent}(0)$ and $x_2 = J(i,d) - \text{Tent}(d)$, we see then that this mean is at least

$$\mathcal{L}_n(k+1,p) - 8\sigma^2_3 T + (1 - pd^{-1})x_1 + pd^{-1}x_2.$$

Set $H_1 = (-\sigma_1 D_k \left(\log \varepsilon^{-1}\right)^{1/2}, 0]$ and $I_1 = (-\sigma_2 D_k \left(\log \varepsilon^{-1}\right)^{1/2}, 0]$ as well as $H_2 = I_2 = [0, \infty)$. Note then that

$$\mathbb{E}[B^0_{1;J(i,0),J(i,d)}(B(p) \geq \mathcal{L}_n(k+1,p))^{-1} \mathbf{1}_{\mathcal{F}_0,d}] \mathbf{1}_{\mathcal{F}_{\text{av}} \cap \{P \cap [0,d] \neq \emptyset\}}$$

$$= \sum \mathbb{E}[B^0_{1;J(i,0),J(i,d)}(B(p) \geq \mathcal{L}_n(k+1,p))^{-1} \mathbf{1}_{\mathcal{F}_0,d}] \mathbf{1}_{\mathcal{F}_{\text{av}} \cap \{P \cap [0,d] \neq \emptyset\}},$$

where the sum is performed over $(u, v) \in \{1, 2\}^2$, and the (u, v)-indexed summand, which we call A_{uv}, is specified by setting $H = H_u$ and $I = I_v$.

Using the notation and the statement of Lemma 13.3, we may note that

$$A_{11} \leq \int_{H_{1} \times I_{1}} h^F_{2,0,d}(x_1, x_2) \nu_{0,\sigma_1^2} \left(8\sigma_3^2 T - (1 - pd^{-1})x_1 - pd^{-1}x_2, \infty\right)^{-1} \, dx_1 \, dx_2$$

$$\leq \int_{H_{1} \times I_{1}} g_{0,\sigma_1^2}(x_1) \cdot g_{0,\sigma_2^2}(x_2) \cdot \nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - (1 - pd^{-1})x_1 - pd^{-1}x_2, \infty\right)^{-1} \, dx_1 \, dx_2. \quad (63)$$

The integrand here has three factors, two small allies and one large opponent. The third term is unmanageably large in isolation and we will depend on a cancellation of first order kinetic costs between the third term and the first two. See Figure 8.

Let N_1 and N_2 denote independent normal random variables of zero mean and respective variance σ_1^2 and σ_2^2. Set $N = (1 - pd^{-1})N_1 + pd^{-1}N_2$. Let V equal N in the event that

$$N_1 \in \left(-\sigma_1 D_k \left(\log \varepsilon^{-1}\right)^{1/2}, 0\right) \quad \text{and} \quad N_2 \in \left(-\sigma_2 D_k \left(\log \varepsilon^{-1}\right)^{1/2}, 0\right);$$

in the other case, we may take $V = \infty$. Writing E for the expectation associated to these random variables, the expression in the line [63] equals

$$\mathbb{E} \left[\nu_{0,\sigma_1^2} \left(8\sigma_3^2 T - V, \infty\right)^{-1} \cdot \mathbf{1}_{(N_1,N_2) \in H_{1} \times I_{1}} \right] = \mathbb{E} \left[\nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - V, \infty\right)^{-1} \cdot \mathbf{1}_{V < \infty} \right].$$

Further set W equal to N if

$$N \in \left(-\sigma_1 (1 - pd^{-1}) + \sigma_2 pd^{-1} D_k \left(\log \varepsilon^{-1}\right)^{1/2}, 0\right);$$

take $W = \infty$ otherwise. Note then that when V is finite, W equals V. Thus,

$$\mathbb{E} \left[\nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - V, \infty\right)^{-1} \cdot \mathbf{1}_{V < \infty} \right] \leq \mathbb{E} \left[\nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - W, \infty\right)^{-1} \cdot \mathbf{1}_{W < \infty} \right]$$

$$\leq \int_{\mathbb{R}} g_{0,\sigma_3^2}(x) \nu_{0,\sigma_3^2} \left(8T \sigma_3^2 - x, \infty\right)^{-1} \left[-\sigma_2 (1 - pd^{-1}) + \sigma_2 pd^{-1} D_k \left(\log \varepsilon^{-1}\right)^{1/2}, 0 \right] \, dx, \quad (64)$$

where σ_3^2 equals the variance of N. We pause to collect some bounds satisfied by the four σ_2 from [59] and [60] that we are using.

Lemma 13.4. We have that

$$1) \quad \sigma_3^2/8 \leq \sigma_1^2 \leq \sigma_3^2,$$
This figure discusses a key aspect of the proof of Proposition 13.1: the form of the integrand in (63). Three vertical solid poles support the dashed tent map. The Gaussian factors $g_{0,\sigma_1^2}(x_1)$ and $g_{0,\sigma_2^2}(x_2)$ arise from Lemma 13.3; the reason for their presence is illustrated by the dotted and dashed jump ensemble curves on $[p^-,p]$ and $[p,p^+]$, which must pay these kinetic costs to reach $|x_1|$ and $|x_2|$ below tent at 0 and d. The pole at p rises distance $8\sigma_2^2 T + (1 - pd^{-1})|x_1| + pd^{-1}|x_2|$ above its intersection with the line segment joining $(0, x_1)$ and (d, x_2) (where, in identifying these points, the vertical coordinate is measured relative to the tent map). The remaining factor in the integrand is the reciprocal of the probability that Brownian bridge between these two points vaults over the pole at p. The factor is at least as large as $\exp\{O(x_1^2 + x_2^2)\}$ (if d is of unit order and p is close to $d/2$, say), a quantity that is intolerably, polynomially-in-ε^{-1}, high when $|x_1| \vee |x_2| = \Theta((\log \varepsilon)^{-1/2})$. However, the factor’s dominant term is cancelled by the earlier two Gaussian factors. The picture illustrates this: the thick solid Brownian bridge that vaults over the pole at p has the same first order kinetic costs associated to fluctuation during $[0, p]$ and $[p, d]$ as the dotted and dashed motions attached to the first two Gaussian factors.

\[
(2) \quad \sigma_1 (1 - pd^{-1}) + \sigma_2 pd^{-1} \leq \sigma_3 \left((1 - pd^{-1})^{1/2} + (pd^{-1})^{1/2} \right).
\]
Proof (1). If \(p \leq d/2 \), then \(\frac{p}{p-d} \geq 1/2 \) and thus \(\sigma_3^2 \geq p/2 \) so that \(\sigma_4^2 \geq p/8 \). If \(p \geq d/2 \), then
\[\sigma_4^2 \geq (d-p)/8. \]
Thus, \(\sigma_4^2 \geq \sigma_3^2/3 \). Since \(\sigma_3^2 \leq p \) and \(\sigma_2^2 \leq d-p \), we have that \(\sigma_4^2 \leq \sigma_3^2 \).

\((2)\). This follows from \(0 \in [p^-, p] \) and \(d \in [p, p^+] \). \(\square \)

Setting
\[
I = \left[0, \sigma_3 \left((1-pd^{-1})^{1/2} + (pd^{-1})^{1/2}\right) D_k(\log \varepsilon^{-1})^{1/2} \right],
\]
and using the notation \(-I = \{-x : x \in I\}\), the quantity in \((64)\) is seen by means of Lemma \(13.4(2)\) to be at most
\[
\int_{\mathbb{R}} g_{0,\sigma_3^2}(x) \nu_{0,\sigma_3^2} \left(8T\sigma_3^2 - x, \infty\right)^{-1} 1_{-I}(x) \, dx = \int_{I} g_{0,\sigma_3^2}(x) \nu_{0,\sigma_3^2} \left(8T\sigma_3^2 + x, \infty\right)^{-1} \, dx
\]
\[
\leq \int_{I} g_{0,\sigma_3^2}(x) \nu_{0,\sigma_3^2} \left(8T\sigma_3^2 + \sigma_3 + x, \infty\right)^{-1} \, dx
\]

The addition of the \(+\sigma_3\) term in the last expression enables us to apply the Gaussian tail lower bound Lemma \(5.3\) with \(t = (8T\sigma_3^2 + \sigma_3 + x)\sigma_3^{-1} \) safe in the knowledge that \(t \geq 1 \); the last integral is thus seen to be at most
\[
\int_{I} g_{0,\sigma_3^2}(x) g_{0,\sigma_3^2}(x + 8T\sigma_3^2 + \sigma_3)^{-1/2}(x + 8T\sigma_3^2 + \sigma_3)\sigma_3^{-1} \, dx
\]
\[
\leq \int I \cdot \int_{I} g_{0,\sigma_3^2}(x) g_{0,\sigma_3^2}(x + 9d^{1/2}T\sigma_3)^{-1/2}(x + 9d^{1/2}T\sigma_3)\sigma_3^{-1} \, dx
\]
\[
\leq \int_{I} \exp \left\{9d^{1/2}T\sigma_3^{-1} + 9d^{2}T^2/2\right\} \cdot 2(x + 9d^{1/2}T\sigma_3)\sigma_3^{-1} \, dx
\]
\[
\leq \sqrt{2\sigma_3} D_k(\log \varepsilon^{-1})^{1/2} \exp \left\{9d^{1/2}T\sqrt{2} D_k(\log \varepsilon^{-1})^{1/2} + 41dT^2\right\}
\times 2(\sqrt{2\sigma_3} D_k(\log \varepsilon^{-1})^{1/2} + 9d^{1/2}T\sigma_3)\sigma_4^{-1}
\leq 4 D_k(\log \varepsilon^{-1})^{1/2} \exp \left\{13d^{1/2}T D_k(\log \varepsilon^{-1})^{1/2} + 41dT^2\right\} \cdot (3d^{1/2}D_k(\log \varepsilon^{-1})^{1/2} + 18d^{1/2}T)
\leq 84d^{1/2}D_k^2 \log \varepsilon^{-1} \exp \left\{54dD_k^2(\log \varepsilon^{-1})^{5/6}\right\}.
\]

The first displayed inequality depended on \(\sigma_3 \leq d^{1/2} \) and \(d \land T \geq 1 \) while the third made use of \(g_{0,\sigma_3^2}(x) g_{0,\sigma_3^2}(x)^{-1} \leq \sigma_3\sigma_4^{-1} \), which is a consequence of \(\sigma_4 \leq \sigma_3 \). The fifth used \(\sigma_3 \leq d^{1/2} \) and \(\sigma_4 \geq 8^{-1/2}\sigma_3 \). That \(T = D_k(\log \varepsilon^{-1})^{1/3}, d \geq 1 \) and \(\varepsilon < e^{-1} \) were applied to obtain the final inequality.

We find then that
\[
A_{11} \leq 84d^{1/2}D_k^2 \log \varepsilon^{-1} \exp \left\{54dD_k^2(\log \varepsilon^{-1})^{5/6}\right\}.
\]
Note that
\[
A_{12} = \mathbb{E}_F \left[B_{1;1,J(i,0),J(i,d)}^{[0,d]} \left(B(p) \geq \mathcal{L}_n(k+1,p) \right)^{-1} 1_{\mathcal{G}_{0,d}^{H_2,t_2}} \right] 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} \neq \emptyset \}} \\
\leq \mathbb{E}_F \left[B_{1;1,J(i,0),\text{Tent}(d)}^{[0,d]} \left(B(p) \geq \mathcal{L}_n(k+1,p) \right)^{-1} 1_{\mathcal{G}_{0,d}^{H_1,\{0,\infty\}}} \right] 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} \neq \emptyset \}} \\
\leq \int_{H_1} h_{1;0}^F(x) \nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - (1-pd^{-1})x, \infty \right)^{-1} dx \\
\leq \int_{H_1} g_{0,\sigma_2^2}(x) \nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - (1-pd^{-1})x, \infty \right)^{-1} dx \\
\leq Z[2, I_1]^{-1} \int_{H_1 \times I_1} g_{0,\sigma_2^2}(x_1) g_{0,\sigma_2^2}(x_2) \nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - (1-pd^{-1})x_1 - pd^{-1}x_2, \infty \right)^{-1} dx.
\]

Lemma [13.3(1)] was used in the penultimate inequality. In the final line, the quantity \(Z[2, I_1] \) denotes \(\int_{H_1} g_{0,\sigma_2^2}(x) \) dx, which is the probability that \(N_2 \) assumes a value in \(I_1; \) \(D_k \geq 1 \) and \(\varepsilon < e^{-1} \) imply that
\[
Z[2, I_1] \geq \frac{1}{2} - (2\pi)^{-1/2} D_k^{-1} \left(\log e^{-1} \right)^{-1/2} \exp \left\{ - \frac{1}{2} D_k^2 \log e^{-1} \right\} \geq \frac{1}{4}.
\]
Thus, \(A_{12} \) is at most four times the upper bound on \(A_{11} \) appearing in [63]. Thus, \(A_{12} \) satisfies the bound [65] when the right-hand side is quadrupled. By a similar analysis, \(A_{21} \) may be shown to satisfy the same bound.

Finally, note that
\[
A_{22} = \mathbb{E}_F \left[B_{1;1,J(i,0),J(i,d)}^{[0,d]} \left(B(p) \geq \mathcal{L}_n(k+1,p) \right)^{-1} 1_{\mathcal{G}_{0,d}^{H_2,t_2}} \right] 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} \neq \emptyset \}} \\
\leq \mathbb{E}_F \left[B_{1;1,\text{Tent}(0),\text{Tent}(d)}^{[0,d]} \left(B(p) \geq \mathcal{L}_n(k+1,p) \right)^{-1} 1_{\mathcal{G}_{0,d}^{[0,\infty],[0,\infty]}} \right] 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} \neq \emptyset \}} \\
\leq \nu_{0,\sigma_3^2} \left(8\sigma_3^2 T, \infty \right)^{-1};
\]
were \(\sigma_3 \) known to be bounded away from zero, we would find this last quantity to be bounded and thus that it would easily satisfy the bound [65]. Lacking this knowledge, we instead bound the quantity above by
\[
Z[1, H_1]^{-1} Z[2, I_1]^{-1} \int_{H_1 \times I_1} g_{0,\sigma_2^2}(x_1) g_{0,\sigma_2^2}(x_2) \nu_{0,\sigma_3^2} \left(8\sigma_3^2 T - (1-pd^{-1})x_1 - pd^{-1}x_2, \infty \right)^{-1} dx,
\]
where \(Z[1, H_1] = \int_{H_1} g_{0,\sigma_2^2}(x) \) dx \(\geq 1/4 \). Thus, \(A_{22} \) is at most a multiple of sixteen of the expression in [63] and thus also of the right-hand side of [65].

We find then that
\[
\mathbb{P}_F \left(J^{[0,d]} \in A, \mathcal{G}_{0,d} \right) 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} \neq \emptyset \}} \\
\leq (1 + 4 + 4 + 16) \cdot 84d^{1/2} D_k^2 \log e^{-1} \cdot \exp \left\{ 54dD_k^2 (\log e^{-1})^{5/6} \right\} \cdot B_{1;1,0}^{[0,d]} \left(B \in A \right).
\]
The second term on [62]’s right-hand side equals
\[
\mathbb{P}_F \left(J^{[0,d]} \in A \right) 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} = \emptyset \}} = B_{1;1,0}^{[0,d]} \left(B \in A \right) 1_{\text{Fav} \cap \{ P \cap \{ 0,d \} = \emptyset \}}.
\]
Applying the last two estimates along with (61) to (62),
\[\mathbb{P}_F \left(J^{[0,d]} \in A \right) \mathbf{1}_{\text{Fav}} \leq 2101d^{1/2}D_k^2 \log \varepsilon^{-1} \cdot \exp \left\{ 54dD_k^2 (\log \varepsilon^{-1})^{5/6} \right\} \cdot B_{1,1,0,0}^{[0,d]}(B \in A) + \varepsilon D_k^2/2. \]

This completes the proof of Proposition 13.1. \(\square \)

Proposition 13.5. Suppose that \(\varepsilon \in (0, e^{-2^{3/2}D_k^{-1}}) \). For any \(i \in [1, k] \) and any measurable standard bridge collection \(A \subseteq C_{0,0}([0, d], \mathbb{R}) \) that satisfies \(B_{1,1,0,0}^{[0,d]}(B \in A) \geq \varepsilon D_k^2/2 \),
\[\mathbb{P}\left(L_n^{[0,d]}(i, \cdot) \in A \right) \leq 2103d^{1/2} \exp \left\{ 4028d k^{7/2}D_k^2 (\log \varepsilon^{-1})^{5/6} \right\} \cdot B_{1,1,0,0}^{[0,d]}(B \in A). \]

Proof. Note that
\[\mathbb{P}_F \left(L_n^{[0,d]}(i, \cdot) \in A \right) \mathbf{1}_{\text{Fav}} = \mathbb{P}_F \left(J^{[0,d]}(i, \cdot) \in A \ \bigg| \ T_3(J) = 1 \right) \mathbf{1}_{\text{Fav}} \]
\[\leq \frac{\mathbb{P}_F (J^{[0,d]}(i, \cdot) \in A)}{\mathbb{P}_F (T_3(J) = 1)} \mathbf{1}_{\text{Fav}}. \]

Recall that the inter-pole distance parameter \(d_{ip} \) has been set equal to \(d \). Applying Proposition 9.2 and Corollary 13.2, we find that, provided that \(B_{1,1,0,0}^{[0,d]}(B \in A) \geq \varepsilon D_k^2/2 \), the last quantity is at most
\[\exp \left\{ 3973k^{7/2}D_k^2 (\log \varepsilon^{-1})^{2/3} \right\} \cdot 2102d^{1/2}D_k^2 \log \varepsilon^{-1} \cdot \exp \left\{ 54dD_k^2 (\log \varepsilon^{-1})^{5/6} \right\} \cdot B_{1,1,0,0}^{[0,d]}(B \in A). \]

By Lemma 9.1 we have \(\mathbb{P}(\text{Fav}) \leq \varepsilon D_k^2/2 \) provided that \(D_k \geq 16c_k^{-1} \). Using this bound, we find that
\[\mathbb{P}\left(L_n^{[0,d]}(i, \cdot) \in A \right) \leq \mathbb{P}\left(L_n^{[0,d]}(i, \cdot) \in A, \text{Fav} \right) + \mathbb{P}(\text{Fav}^c) \]
\[\leq \mathbb{E} \left[\mathbb{P}_F \left(L_n^{[0,d]}(i, \cdot) \in A \right) \mathbf{1}_{\text{Fav}} \right] + \varepsilon D_k^2/2 \]
\[\leq 2102d^{1/2}D_k^2 \log \varepsilon^{-1} \cdot \exp \left\{ 4027d k^{7/2}D_k^2 (\log \varepsilon^{-1})^{5/6} \right\} \cdot B_{1,1,0,0}^{[0,d]}(B \in A) + \varepsilon D_k^2/2, \]

where in the latter inequality, we applied the bound just derived, alongside \(D_k \geq 1 \) and \(\varepsilon < e^{-1}. \)
Noting that \(\varepsilon < e^{-2^{3/2}D_k^{-1}} \) implies that \(D_k \log \varepsilon^{-1} \leq \exp \left\{ D_k^2 (\log \varepsilon^{-1})^{5/6} \right\} \) (since \(D_k^4 (\log \varepsilon^{-1})^{5/3}/2 \) lies in the interval between the two quantities), we obtain Proposition 13.5. \(\square \)

Proof of Theorem 4.5. By Lemma 5.11 it is enough to prove the theorem with \(K \) taken equal to zero and the appearance of \(d_0 \) replaced by \(2^{15/15}d_0 \), because the constant \(D_k \) as specified in 15.8 regarded as a function of the regular sequence parameter \(c > 0 \) satisfies \(D_k(c/2) \leq 2^{1/3}D_k(c) \). Write \(\mu = B_{1,0,0}^{[0,d]} \), and \(\xi \) for the distribution of \(L_n^{[0,d]}(k, \cdot) \) under \(\mathbb{P} \); abbreviate \(f = f_{n,k} \). For \(m \in \mathbb{N} \), set \(A_m \subseteq C_{0,0}([0, d], \mathbb{R}) \) equal to \(f^{-1}(m, m+1) \). On \(A_m, f \geq m \), and thus \(\xi(A_m) > m \cdot \mu(A_m) \). We seek to specify \(\varepsilon > 0 \) so that
\[2103d^{1/2} \exp \left\{ 4028dk^{7/2}D_k^2 (\log \varepsilon^{-1})^{5/6} \right\} = m; \]
such a choice would entail that
\[\varepsilon = \exp \left\{ - \left(4028 D_k^{-2} d^{-1} k^{-7/2} \log \left(m/2103 \cdot d^{-1/2} \right) \right)^{6/5} \right\}. \]
Since we demand of \(\varepsilon > 0 \) that it satisfy the upper bound (35), we specify \(\varepsilon = \varepsilon_m > 0 \) in this way only if \(m \geq \tau_k \) where \(\tau_k = 2103d^{1/2} \exp \{ 4028d^{7/2} D_k^2 (\log q_k)^{5/6} \} \), where \(q_k \) denotes the right-hand of (35).

When \(m \) satisfies this bound, Proposition [13.5] implies that \(\mu(A_m) < \varepsilon^{D_k^2/2} \). We find then that

\[
\int_{C_{0,0}(0,d),\mathbb{R}}} \exp \left\{ \frac{2}{15} d_0 D_k^{-2/5} k^{-21/5} \left(\log f \right)^{6/5} \right\} d\mu \\
\leq \sum_{m=0}^{\infty} \mu(A_m) \exp \left\{ \frac{2}{15} d_0 D_k^{-2/5} d^{-6/5} k^{-21/5} \left(\log (m+1) \right)^{6/5} \right\} \\
\leq \exp \left\{ \frac{2}{15} d_0 D_k^{-2/5} d^{-6/5} k^{-21/5} \left(\log (\tau_k+1) \right)^{6/5} \right\} \\
+ \sum_{m \geq \tau_k} \exp \left\{ - \frac{1}{2} D_k^2 \left(\frac{1}{4028} d^{-1} D_k^{-2} k^{-7/2} \log \left(m/2103 \cdot d^{-1/2} \right) \right)^{6/5} \\
+ \frac{2}{15} d_0 D_k^{-2/5} d^{-6/5} k^{-21/5} \left(\log (m+1) \right)^{6/5} \right\}.
\]

When \(d_0 \) equals 46481, the last sum is finite and independent of \(n \in \mathbb{N} \). \(\square \)

Proof of Corollary 2.2 We need only prove both parts when \(K = 0 \) because the stationarity of the Airy line ensemble implies that, for each \(k \in \mathbb{N} \), the law of \([0,d] \to \mathbb{R} : x \to \mathcal{L}_{[K,K+d]}(k,x+K) \) is independent of \(K \in \mathbb{R} \).

(1). We will use the following fact.

Lemma 13.6. Let \(\mu \) denote a probability measure on a measurable space \((X,\Sigma) \). Suppose that \(h : X \to [0,\infty) \) is measurable and \(\|h\| = \int_X h \, d\mu \in (0,\infty) \). Write \(s : [0,1] \to [0,\infty] \),

\[s(a) = \sup \left\{ \inf \{ h(x) : x \in A \} : A \in \Sigma, \mu(A) = a \right\}, \]

where the supremum equals zero if it is taken over the empty-set. Then \(s(a) \leq 2a^{-1}\|h\| \) for all \(a \in (0,1] \).

Proof. Let \(a \in (0,1] \). If \(s(a) > 0 \), then a set \(A \in \Sigma \) with \(\mu(A) = a \) exists and there is a such a set for which \(\inf_{x \in A} h(x) \geq s(a)/2 \). Thus, \(\int_A h \, d\mu \geq as(a)/2 \), so that \(s(a) \leq 2a^{-1}\|h\| \). \(\square \)

To prove Corollary 2.2(1), let \(f_k : C_{0,0}(0,d) \to [0,\infty) \) denote the Radon-Nikodym derivative of the law of \(\mathcal{L}_{[0,d]}(k,\cdot) \) with respect to the law \(\mathcal{B}_{1,0,0}^{[0,d]} \). Set \(h = h_k : C_{0,0}(0,d),\mathbb{R} \to [0,\infty) \),

\[h_k = \exp \{ a_k (\log f_k)^{6/5} \}, \]

so that Theorem 2.1 asserts that \(\int h_k \, d\mathcal{B}_{1,0,0}^{[0,d]} < \infty \).

Consider a measurable set \(A \subseteq C_{0,0}(0,d),\mathbb{R} \) and write \(a = \mathcal{B}_{1,0,0}^{[0,1]}(A) \). It is straightforward to find in the collection of measurable sets \(D \subseteq A \) for which \(\mathcal{B}_{1,0,0}^{[0,1]}(D) = a/2 \) an element \(D_1 \) that attains the maximal value of \(\inf_{x \in D} h(x) \). Let \(A_1 = A \setminus D_1 \) and note that the supremum of \(h \) on \(A_1 \) is at most its infimum on \(D_1 \) and thus at most \(s(a/2) \leq 4a^{-1}\|h\| \). This procedure may now be applied with \(A_1 \) playing the role of \(A \), and then iterated. The outcome is a partition of \(A \) into subsets \(A_j \subseteq C_{0,0}(0,d),\mathbb{R} \), \(j \in \mathbb{N} \), with \(\mathcal{B}_{1,0,0}^{[0,d]}(A_j) = 2^{-j} a \) and \(\sup_{x \in A_j} h(x) \leq 2^{j+1} a^{-1}\|h\| \).
Noting that \(f_k = \exp \{ \phi_k^{-5/6} (\log h_k)^{5/6} \} \), we find that
\[
\mathbb{P} \left(\mathcal{L}^{[0,d]}(k, \cdot) \in A \right) \leq \sum_{j=1}^{\infty} \int_{A_j} f_k \, dB_{i_0,0} \leq a \sum_{j=1}^{\infty} 2^{-j} \exp \left\{ \phi_k^{-5/6} \left(\log(2^{j+1}a^{-1}||h_k||) \right)^{5/6} \right\}.
\]

Denoting the right-hand summand by \(b_j \), the condition that \(b_{j+1}/b_j \leq 3/4 \) is implied by the bound
\[
(j + 1) \log 2 \geq \gamma^6 \alpha_k^{-5} - \log (||h_k||a^{-1}),
\]
where \(\gamma = \frac{5}{6} \cdot \log 2 \cdot (\log(3/2))^{-1} \). If the right-hand side of (66) is negative, then the sum of \(b \)-terms is dominated by \(b_1 \), and we have
\[
\mathbb{P} \left(\mathcal{L}^{[0,d]}(k, \cdot) \in A \right) \leq 2a \exp \left\{ \phi_k^{-5/6} \left(\log(4a^{-1}||h_k||) \right)^{5/6} \right\}.
\]
If this right-hand side is positive, then using the bound that \(\alpha_k \leq 1 \) for \(k \in \mathbb{N} \), we find
\[
\mathbb{P} \left(\mathcal{L}^{[0,d]}(k, \cdot) \in A \right) \leq a \cdot \frac{4}{\log 2} \gamma^6 \alpha_k^{-5} \exp \left\{ \phi_k^{-5} (2\gamma)^5 \right\}.
\]
Since \(\alpha_k \leq 1 \) for \(k \in \mathbb{N} \), the bound in Corollary 2.21(1) is valid in both cases and thus for all \(a \in (0,1) \).

(2). For \(s > 0 \), take \(A \subset C_{0,0}([0,d]) \) equal to the collection of standard bridges \(f \) on \([0,d]\) such that \(\sup_{x \in [0,d]} |f(x)| > sd^{1/2} \). By Lemma 5.9, \(B_{1,0,0}(A) \in e^{-2s^2} \cdot [1,2] \). We may thus apply the first part of the corollary with \(a \) having the value \(re^{-2s^2} \) for \(r \) lying somewhere in the interval \([1,2] \). We find that
\[
\mathbb{P} \left(\mathcal{L}^{[0,d]}(k, \cdot) \in A \right) \leq re^{-2s^2} \cdot 49 e^{18s} \alpha_k^{-5} \exp \left\{ \alpha_k^{-5/6} \left(2s^2 - \log r + \log (4h_k \vee 1) \right)^{5/6} \right\}.
\]
The right-hand factor is at most \(\exp \left\{ \alpha_k^{-5/6} (4s^2)^{5/6} \right\} \) since \(2s^2 \geq \max \{ \log 2, \log (4h_k \vee 1) \} \).

14. Scaled Brownian LPP line ensembles form regular sequences

The aim of this section is to prove Proposition 3.5.

Recall the Brownian LPP ensemble \(L_n \), its equality in law with Dyson’s Brownian motion (in Proposition 2.5), as well as the relation (5) that specifies the scaled counterpart \(\mathcal{L}_n^{sc} \) of this ensemble.

Lemma 14.1. There exist constants \(C, c > 0 \) such that

1. For \(s \in [0, 2^{1/2}n^{1/3}] \),
\[
\mathbb{P} \left(\mathcal{L}_n^{sc}(1,0) \leq -s \right) \leq C \exp \left\{ -cs^{3/2} \right\},
\]

2. And, for \(s \geq 0 \),
\[
\mathbb{P} \left(\mathcal{L}_n^{sc}(1,0) \geq s \right) \leq C \exp \left\{ -cs^{3/2} \right\}.
\]

Proof. (1). By Proposition 2.5 and Brownian scaling, \(L_n(1,n) \) is equal in law to \(2nL_n(1, (4n)^{-1}) \) and thus by Proposition 2.6 to the GUE top eigenvalue multiple \(2n \lambda_n(1, (4n)^{-1}) \). By (5), we see that
\[
\mathbb{P} \left(\mathcal{L}_n^{sc}(1,0) \leq -s \right) = \mathbb{P} \left(L_n(1,n) \leq 2n - 2^{1/2}n^{1/3}s \right) = \mathbb{P} \left(\lambda_n(1, (4n)^{-1}) \leq 1 - 2^{-1/2}n^{-2/3}s \right).
\]
By (6), this quantity is at most $C' \exp \{-2^{3/2} s^{3/2} c'\}$ when $s \in [2^{1/2}, 2^{1/2} n^{1/3}]$. We set $C = C'$ and $c = 2^{3/2} c'$. Lemma 14.1(1) follows by an increase if necessary in the value of C in order to accomodate $s \in [0, 2^{1/2})$.

(2) We obtain this result with $C = \hat{C}$ and $c = 2^{-3/2} \hat{c}$ by applying Aubrun’s bound (7), using (6) as in the first proof. \hfill \Box

Proof of Proposition 3.5 We must show that the sequence $\{L_n^{sc} : n \in \mathbb{N}\}$ satisfies RS (1), (2) and (3).

Condition RS(1) is satisfied since the left endpoint of L_n^{sc} equals $-n^{1/3}/2$.

Writing $X \overset{(d)}{=} Y$ to denote that the random variables X and Y are equal in law, note that

$$L_n(1, n + 2n^{2/3} x) \overset{(d)}{=} \left(1 + 2n^{-1/3} x\right)^{1/2} L_n(1, n) \overset{(d)}{=} \left(1 + 2n^{-1/3} x\right)^{1/2} \left(2n + 2^{1/2} n^{1/3} L_n^{sc}(1, 0)\right).$$

Introducing the variable $\phi = n^{-1/3} x$, the latter expression may be written

$$\left(1 + \phi - \phi^2/2 + O(\phi^3)\right) \left(2n + 2^{1/2} n^{1/3} L_n^{sc}(1, 0)\right) = 2n + 2^{2/3} n - x^2 n^{1/3} + n \cdot O(\phi^3) + 2^{1/2} n^{1/3} L_n^{sc}(1, 0) \left(1 + O(\phi)\right),$$

where the big-O notation implies a bounded factor associated to the term in question on any given compact interval of ϕ-values that contains zero.

In light of (5), we see that, if $|x| \leq c_0 n^{1/3}$ for a small constant $c_0 > 0$, then $L_n^{sc}(1, x)$ is equal in law to a random variable that satisfies

$$-2^{-1/2} x^2 + n^{2/3} O(\phi^3) + L_n^{sc}(1, 0) \left(1 + O(\phi)\right).$$

When $|x| \leq n^{1/9}$, we have that $|\phi| \leq n^{-2/9}$, in which case the displayed random variable is $-2^{-1/2} x^2 + L_n^{sc}(1, 0) \left(1 + O(n^{-2/9})\right) + O(1)$. We obtain the one-point upper tail RS(3) with $\varphi_2 = 1/9$ from Lemma 14.1(2), and one-point lower tail RS(2) with $\varphi_3 = 1/3$ from Lemma 14.1(1). \hfill \Box

15. THE LOWER TAIL OF THE LOWER CURVES: deriving Proposition 4.1

Recall that $Q : \mathbb{R} \to \mathbb{R}$ denotes the parabola $Q(x) = 2^{-1/2} x^2$ in the regular sequence definition.

Set $r_0 = 5(3 - 2^{2/5})^{-1}$, $r_1 = 2^{3/2}$, and $r_k = \max\{5^3, r_0 r_{k-1}\}$ for $k \geq 2$.

Proposition 15.1. Suppose that $L_n : [1, n] \times [-z_n, \infty) \to \mathbb{R}$, $n \in \mathbb{N}$, is a φ-regular sequence of Brownian Gibbs line ensembles for some $\varphi \in (0, \infty)^2$ and constant parameters (c, C). For $k \in \mathbb{N}$, let $E_k = 20^{k-1} 2^{3(k-1)/2} E_1$ and $c_k = \left((3 - 2^{3/2})^{3/2} 10^{-3/2}\right)^{k-1} c_1$ where $E_1 = 10 C$ and $c_1 = 2^{-5/2} c \land 1/8$. Set $\delta = \varphi_1/2 \land \varphi_2/2 \land \varphi_3$. Whenever $(n, k) \in \mathbb{N}^2$ satisfies $n \geq k \lor (c/3)^{2(\varphi_1 \land \varphi_2)^{-1}} \lor 6^{2/6}$, $t \in \left[5 \lor (3 - 2^{3/2})^{-1/2} r_{k-1}^{-1/2}, n^{\delta}\right]$, $r \in [r_k, 2 n^{\delta}]$ and $y \in c/2 \cdot [-n^{\delta}, n^{\delta}]$, we have

$$\mathbb{P}\left(\inf_{x \in [y-t, y+t]} (L_n(k, x) + Q(x)) \leq -r\right) \leq t^k \cdot E_k \exp\{-c_k r^{3/2}\}.$$
Proof of Proposition 4.1. Choosing \(t = 5 \vee (3 - 2^{3/2})^{-1/2} r_{k-1}^{1/2} \) in Proposition 15.1, we see that
\[
\mathbb{P}\left(\mathcal{L}_n(k, y) + Q(y) \leq -r \right) \leq \left(5 \vee (3 - 2^{3/2})^{-1/2} r_{k-1}^{1/2} \right)^k \cdot C_k \exp \left\{ -c_k r^{3/2} \right\}.
\]
for \(r \in [r_k, 2n^\delta] \) and \(y \in c/2 \cdot [-n^\delta, n^\delta] \). Recalling (38), it is easily verified that, for \(k \geq 2 \),
\[
C_k \leq \max \left\{ \left(5 \vee (3 - 2^{3/2})^{-1/2} r_{k-1}^{1/2} \right)^k \cdot E_k \exp \left\{ c_k r^{3/2} \right\} \right\};
\]
thus, we find that
\[
\mathbb{P}\left(\mathcal{L}_n(k, y) + Q(y) \leq -r \right) \leq C_k \exp \left\{ -c_k r^{3/2} \right\}
\]
for \(r \in [0, 2n^\delta] \) and \(y \in c/2 \cdot [-n^\delta, n^\delta] \). \(\square \)

Proof of Proposition 15.1. Lemma 5.11 promptly permits us to reduce to verifying this assertion when \(y \) equals zero, except for the detail that we must prove the version of the \(y = 0 \) statement in which appearances of the quantity \(c \) are replaced by \(2c \). In an abuse of notation adopted to cope with this detail, we take \(c_1 \) equal to \(2^{-3/2} c \land 1/8 \) henceforth in this proof.

We will prove the \(y = 0 \) assertion by induction on \(k \in \mathbb{N} \). Explicitly, our inductive hypothesis states that if
\[
(n, k, t, r) \in \mathbb{N}^2 \times \left[5 \vee (3 - 2^{3/2})^{-1/2} r_{k-1}^{1/2}, n^\delta \right] \times [r_k, 2n^\delta]
\]
satisfies \(n \geq k \vee (2c/3)^{-2(\varphi_1 \land \varphi_2)^{-1}} \vee 6^{2/\delta} \), then
\[
\mathbb{P}\left(\inf_{x \in [-t, t]} \left(\mathcal{L}_n(k, x) + Q(x) \right) \leq -r \right) \leq t^k \cdot E_k \exp \left\{ -c_k r^{3/2} \right\}.
\]
We explain first why this hypothesis is valid in the base case \(k = 1 \). Note that \(n^\delta \cdot [-1, 1] \subseteq cn^{\varphi_2} \cdot [-1, 1] \) because \(\delta \leq \varphi_2/2 \) and \(n \geq c^{-2\varphi_2^{-1}} \). Thus we may apply the one-point lower bound RS(2) with \(k = 1 \) at points in the set \([-t, t] \cap \mathbb{Z} \cup \{-t\} \cup \{t\} \), because all such points have absolute value at most \(n^\delta \); then a union bound yields
\[
\mathbb{P}\left(\inf_{x \in [-t, t] \cap \mathbb{Z} \cup \{-t\} \cup \{t\}} \left(\mathcal{L}_n(1, x) + Q(x) \right) \leq -r/2 \right) \leq (2t + 3) \cdot C \exp \left\{ -c(r/2)^{3/2} \right\}.
\]
when \(1 \leq r/2 \leq n^{\varphi_3} \) (which upper bound is ensured by \(r \leq 2n^\delta \)). In a temporary notation, write \(\mathbb{P}^* \) for the law \(\mathbb{P} \) conditioned on the occurrence of the event in the last display. Our first claim regarding \(\mathbb{P}^* \) is that, when \(r \geq 2^{3/2} \),
\[
\mathbb{P}^*\left(\inf_{x \in [0,1]} \left(\mathcal{L}_n(1, x) + Q(x) \right) \leq -r \right) \leq \exp \left\{ -r^2/8 \right\}.
\]
To verify this, note that, by the monotonicity Lemmas 5.3 and 5.4, the conditional distribution of \(\mathcal{L}_n(1, \cdot) : [0, 1] \to \mathbb{R} \) under \(\mathbb{P}^* \) stochastically dominates \(B_{1;r/2,-Q(1)-r/2}^{[0,1]} \). Since \(Q(1) = 2^{-1/2} \), Lemma 5.9 implies that, for \(s > 0 \),
\[
B_{1;r/2,-Q(1)-r/2}^{[0,1]} \left(\inf_{x \in [0,1]} B(x) \leq -s - r/2 - 2^{-1/2} \right) \leq \exp \left\{ -2s^2 \right\}.
\]
Taking \(s = r/4 \) and using \(r \geq 2^{3/2} \), we learn that
\[
\mathbb{P}^*\left(\inf_{x \in [0,1]} \mathcal{L}_n(1, x) \leq -r \right) \leq \exp \left\{ -r^2/8 \right\}.
\]
Since \(Q \) is non-negative, we obtain (70).
The argument just given shows that the claim \((74) \) is equally true if in the definition of \(\mathbb{P}^* \) we further condition on more information concerning the curve \(\mathcal{L}_n(1, \cdot) \) outside \([-1, 1]\). Since \(\delta = \varphi_1 \wedge \varphi_2/2 \wedge \varphi_3 \), this quantity is bounded above by \(\theta = \varphi_1 \wedge \varphi_2 \) appearing in the parabolic invariance Lemma \(5.11 \) and thus the claim is also valid if we replace the interval \([0, 1]\) by any other of the form \([m, m+1]\) with \([m, m+1] \subset [-n^\delta, n^\delta]\). Finally, the intervals \([t, t]\) and \([-t, [-t]]\) may also be accomodated, because the bound obtained using Lemma \(5.9 \) is valid when an interval of less than unit length is used instead. Our conclusion then is that

\[
\mathbb{P}^* \left(\inf_{x \in [-t, t]} (\mathcal{L}_n(1, x) + Q(x)) \leq -r \right) \leq (2t + 3) \exp \left\{ -r^2/8 \right\}.
\]

when \(r \geq 2^{3/2} \). Combining with \((69) \), we find that

\[
\mathbb{P} \left(\inf_{x \in [-t, t]} (\mathcal{L}_n(1, x) + Q(x)) \leq -r/2 \right) \leq (2t + 3) \cdot C \exp \left\{ -c(r/2)^{3/2} \right\} + (2t + 3) \exp \left\{ -r^2/8 \right\}.
\]

when \(r \in [2^{3/2}, 2n^\delta] \). Since \(t \geq 1 \) and \(r \geq 1 \), the right-hand side is at most \(10tC \exp \left\{ -1/8 \wedge c2^{-3/2} \cdot r^{-3/2} \right\} \). Thus, we confirm the inductive hypothesis at \(k = 1 \) with the choice \(E_1 = 10C \) and \(c_1 = 2^{-3/2}c \wedge 1/8 \).

We now verify the inductive hypothesis at general index \(k > 1 \), assuming the validity of this assertion for index \(k - 1 \). Our proof follows the same approach as that by which Lemmas 7.2 and 7.3 are proved in [CH].

We begin with a fact about the basic parabola \(-Q\). Consider any real interval of length \(t \), and the affine function whose values at the interval’s endpoints coincide with the parabola’s. Then the difference between the value of the parabola and the value of the affine function at the interval’s midpoint will be independent of the interval in question and equal to \(Lt^2 \), where here we introduce the quantity \(L = 2^{-5/2} \). It is moreover the case that the maximal value of this difference evaluated at any point in the interval is achieved at the interval’s midpoint.

In the first instance, we will verify the inductive hypothesis under the additional assumption that the parameter \(t \) is at most \(3n^{\delta/2} \). Suppose then that \(t \) satisfies

\[
t \in [5 \vee (3 - 2^{3/2})^{-1/2}, 3n^{\delta/2}] \tag{71}
\]

Define the event

\[
\text{Low}^{[t,2t]}_k = \left\{ \sup_{x \in [t,2t]} (\mathcal{L}_n(k, x) + Q(x)) \leq -\frac{1}{2}L t^2 - t^{1/2} \right\}
\]

and its counterpart \(\text{Low}^{[-2t,-t]}_k \) associated to the interval \([-2t, -t]\).

We will establish a key part of the proof of the inductive step, namely the bound

\[
\mathbb{P} (\text{Low}^{[t,2t]}_k) \vee \mathbb{P} (\text{Low}^{[-2t,-t]}_k) \leq 3C \exp \left\{ -c \cdot 2^{-27/4} t^3 \right\} \tag{72}
\]

We will prove this upper bound for \(\mathbb{P} (\text{Low}^{[t,2t]}_k) \); the other proof is identical. The argument is illustrated by Figure \(9 \).

For \(s \geq -z_n \), define

\[
G_{k-1}(s) = \left\{ \mathcal{L}_n(k - 1, s) + Q(s) \leq \frac{1}{2}L t^2 \right\}
\]

We set

\[
A^{[t,2t]}_k = G_{k-1}(s) \cap G_{k-1}(2t) \cap \text{Low}^{[t,2t]}_k.
\]
Figure 9. Illustrating the proof of (72). In the labels in the sketch, we write \(a = \frac{1}{2}Lt^2 \) and \(b = t^{1/2} \). The central concave curve is \(-Q\); the other two are obtained by vertical translation by \(a \) and \(-a - b\). The highest of the four parallel dashed sloping line segments has a point of tangency with \(-Q\) at \(3t/2 \). When \(\text{Low}_{k}^{[t,2t]} \) occurs, the curve \(\mathcal{L}_n(k, \cdot) : [t, 2t] \to \mathbb{R} \) lies below the lowest of the three parabolas. In this location, it can offer no support to the \((k - 1)^{st}\) curve. Indeed, in the typical circumstance that \(G_k^{-1}(s) \) occurs for \(s \in \{t, 2t\} \), the curve \(\mathcal{L}_n(k - 1, \cdot) \) at \(t \) and \(2t \) lies below the endpoints of the highest parabola. This curve on \([t, 2t]\) only rises stochastically if instead it begins and ends at this parabola’s endpoints and the lower indexed curves disappear. Brownian bridge with such endpoints easily bypasses \(\mathcal{L}_n(k, \cdot) \) because it may avoid this curve by remaining above the third highest of the sloping dashed line segments, as the dashed-dotted curve illustrates. Thus, \(\mathcal{L}_n(k - 1, \cdot) \) tends to adopt a linear, rather than a parabolic, route during \([t, 2t]\), giving it a uniformly positive probability to lie below the point marked by a square at the midpoint time \(3t/2 \). However, this point is very low judged in parabolically curved coordinates, so this eventuality is known to be rare by the one-point lower tail for the \((k - 1)^{st}\) curve. Thus, \(\text{Low}_{k}^{[t,2t]} \) is unlikely.

The monotonicity Lemmas 5.3 and 5.4 imply that, under \(\mathbb{P} \) given \(A_k^{[t,2t]} \), the conditional distribution of \(\mathcal{L}_n(k - 1, \cdot) : [t, 2t] \to \mathbb{R} \) is stochastically dominated by \(B^{[t,2t]}_{[u,v]}(\cdot \mid \text{NoTouch}_f) \), where

\[
u = -Q(2t) + \frac{1}{2}Lt^2, \quad v = -Q(2t) + \frac{1}{2}Lt^2
\]
and $f : [t, 2t] \to \mathbb{R}$ equals $f(x) = -Q(x) - \frac{1}{4}Lt^2 - t^{1/2}$.

Consider now the affine function ℓ whose graph contains the points (t, u) and $(2t, v)$. Suppose the graph of ℓ is translated downwards until it makes contact with the graph of f. Our parabolic fact implies that first contact will occur at x-coordinate $3t/2$, when the distance of translation equals $t^{1/2}$.

In this light, we find that Lemma 5.9 has the consequence that

$$B_{[t,2t]}^{[t,2t]}(\text{NoTouch}) \geq 1 - e^{-2}.$$

The location $-Q(3t/2) - \frac{1}{4}Lt^2$ is the midpoint of the interval $[\ell(3t/2), -Q(3t/2)]$. Thus,

$$B_{[t,2t]}^{[t,2t]}(B(3t/2) \geq -Q(3t/2) - \frac{1}{4}Lt^2) = B_{[t,2t]}^{[t,2t]}(B(3t/2) \geq \ell(3t/2) + \frac{1}{4}Lt^2)$$

$$= \nu_{0,1} \left(\frac{1}{2}Lt^2, \infty \right) = \nu_{0,1} \left(\frac{1}{2}Lt^3/2, \infty \right) \leq (2\pi)^{-1/2} (2L^{-1}t^{-3/2})^{1/2} \exp \left\{ -8L^2t^3 \right\} \leq \exp \left\{ -2^{-8}t^3 \right\},$$

where the last inequality depended on the certainly valid $t \geq 2\pi^{-2/3}$.

The quantity $L/4$ equals $2^{-9/2}$. We find then that, for such values of t,

$$\mathbb{P} \left(L_n \left(k - 1, 3t/2 \right) \geq -Q(3t/2) - 2^{-9/2}t^2 \mid A_k^{[t,2t]} \right) \leq B_{[t,2t]}^{[t,2t]}(B(3t/2) \geq -Q(3t/2) - 2^{-9/2}t^2) \leq (1 - e^{-2})^{-1} \exp \left\{ -2^{-8}t^3 \right\}. $$

If $a \in (0, 1)$ and two events E and F satisfy $\mathbb{P}(E|F) \leq a$, then $\mathbb{P}(F) \leq (1 - a)^{-1}\mathbb{P}(E^c)$. Expressing the last derived inequality in these terms, we infer that

$$\mathbb{P}(A_k^{[t,2t]}) \leq 2 \mathbb{P} \left(L_n \left(k - 1, 3t/2 \right) \geq -Q(3t/2) - 2^{-9/2}t^2 \right),$$

since $a = (1 - e^{-2})^{-1} \exp \left\{ -2^{-8}t^3 \right\}$ is at most one-half provided that $t^3 \geq 2^8 \log \left(2e^2(e^2 - 1)^{-1} \right)$ (which is valid since $t \geq 5$). Using the one-point lower bound $\mathbb{P}(2)$, we learn that, since $|3t/2| \leq cn^{1/2}$ and $2^{-9/2}t^2 \in [1, n^{5/3}]$,

$$\mathbb{P}(A_k^{[t,2t]}) \leq 2 \exp \left\{ -c \cdot 2^{-27/4}t^3 \right\}. $$

(These bounds on t are ensured by our choice of this parameter, with $t \leq 2c/3 \cdot n^{5/3}$ following from $t \leq n^\delta$, $\delta \leq \varphi_2/2$ and $n \geq (2c/3)^{-2\varphi_2^{-1}}$.) Hence,

$$\mathbb{P} \left(\text{Low}_k^{[t,2t]} \right) \leq \mathbb{P}(A_k^{[t,2t]}) + \mathbb{P}(-G_1(t)) + \mathbb{P}(-G_1(2t)) \leq 2C \exp \left\{ -c \cdot 2^{-27/4}t^3 \right\} + \exp \left\{ -c \cdot 2^{-21/4}t^3 \right\} \leq 3C \exp \left\{ -c \cdot 2^{-27/4}t^3 \right\}.$$

This completes the derivation of (72).

We now present a further argument that leads from the bound (72) to the end of the inductive step. To do so, we now introduce the event

$$\text{Up}_{k-1}^{[t,2t]}(s) = \left\{ \inf_{x \in [-2t,2t]} L_n(k-1,x) \geq -Q(2t) - s \right\} \quad \text{where } s \geq 0.$$

Since $Q(2t) = \sup_{x \in [-2t,2t]} Q(x)$, we may apply the inductive hypothesis (68) at index $k - 1$ to bound above the failure probability of this event. The parameter t appearing in the hypothesis will not be its presently assigned value, which is associated to this stage k, but rather twice that value. We also take r equal to s. These choices are permissible if we insist that
s \in \left[\frac{2^{3/2}}{r_{k-1}}, 2n^6\right]$, because the other requirement, that $t \in 1/2 \cdot \left[5 \vee (3 - 2^{3/2})^{-1/2} r_{k-1}, n^6\right]$, is due to assumption and $n \geq 6^{2/\delta}$. For such s, the inductive hypothesis tells us that

$$
P \left(- \overline{U}_{k-1}^{[2t,2t]}(s) \right) \leq (2t)^{k-1} \cdot E_{k-1} \exp \left\{ - c_{k-1} s^{3/2} \right\}.
$$

(73)

Our plan for completing the inductive step is to consider the event

$$
E = \text{NoLow}_k^{[2t,2t]} \cap \text{NoLow}_k^{[t,2t]} \cap \overline{U}_{k-1}^{[2t,2t]}(s),
$$

where for now the parameter $s \geq 0$ remains unspecified. From what we have already learnt, and as we will record shortly in (74), we know that E is unlikely if s is high. We now seek to argue that under $P(\cdot | E)$, $\mathcal{L}_n(k, \cdot)$ is unlikely to drop low anywhere in $[-t, t]$.

![Figure 10](image)

Figure 10. The study of the conditional law $P(\cdot | E)$ leads to the derivation of (75). As in Figure 9 we write $a = \frac{1}{2} L t^2$ and $b = t^{1/2}$. The sketch depicts an occurrence of E. The conditional distribution of $\mathcal{L}_n(k, \cdot)$ on $[\sigma_1, \sigma_2]$ is stochastically decreased by using endpoint values $-4t^2$, marked with crosses, and by removing curves of higher index. The Brownian bridge dashed curve on $[\sigma_1, \sigma_2]$ is unlikely to drop by a further $u = t^2$ units; thus, nor is $\mathcal{L}_n(k, \cdot)$, because the curve $\mathcal{L}_n(k - 1, \cdot)$ is at a comfortable distance upwards, staying above the coordinate $-Q(2t) - s = -3t^2$ that is indicated with a bold dotted line.
To argue that this is so, define random variables \(\sigma_1 \in [-2t, -t] \) and \(\sigma_2 \in [t, 2t] \) so that

\[
\sigma_1 = \inf \left\{ x \in [-2t, -t] : \mathcal{L}_n(k, x) + Q(x) \geq -2^{-7/2}t^2 - t^{1/2} \right\}
\]

and

\[
\sigma_2 = \sup \left\{ x \in [t, 2t] : \mathcal{L}_n(k, x) + Q(x) \geq -2^{-7/2}t^2 - t^{1/2} \right\};
\]

it is immaterial how these random variables are specified when the infinums are taken over the empty-set, because this circumstance does not arise when \(\text{NoLow}_k^{[-2t, -t]} \cap \text{NoLow}_k^{[t, 2t]} \) takes place, and we will now use the random variables only in a situation where this event occurs. Note that \([1, k] \times (\sigma_1, \sigma_2)\) is a stopping domain.

Consider the law \(P(\cdot | E) \) (and consult Figure 11 for a visual explanation of the argument concerning this law). By the strong Gibbs and monotonicity Lemmas 5.2, 5.3 and 5.4, the resulting conditional distribution of \(\mathcal{L}_n(k-1, \cdot) : [\sigma_1, \sigma_2] \to \mathbb{R} \) stochastically dominates

\[
\mathcal{B}_{1;\sigma_1,\sigma_2}^{[v_1, v_2]}(\cdot | \text{NoTouch}_g),
\]

where \(v_1 = -Q(\sigma_1) - 2^{-7/2}t^2 - t^{1/2}, \ v_2 = -Q(\sigma_2) - 2^{-7/2}t^2 - t^{1/2} \) and the function \(g \) is identically equal to \(-Q(2t) - s \). Note that, since \(|\sigma_1| \lor |\sigma_2| \leq 2t \) and \(t \geq 1 \),

\[
v_1 \land v_2 \geq -(3^{3/2} + 2^{-3/2})t^2 \geq -4t^2.
\]

We now specify the parameter \(s \) to be equal to \((3 - 2^{3/2})t^2\), so that \(g \) equals the constant function \(-3t^2\).

(In order that \(s \) lie in the interval \([2^{3/2}, 2n^{\delta}]\), as we have demanded, it is sufficient that \(t \in [5, 3n^{\delta/2}] \), a requirement that we have imposed in (71).

This choice of \(s \) yields

\[
P(E^c) \leq 2 \cdot 3C \exp \left\{ -c \cdot 2^{-27/4}t^3 \right\} + (2t)^{k-1} \cdot E_{k-1} \exp \left\{ -c_{k-1}(3 - 2^{3/2})3/2t^3 \right\} \tag{74}
\]

by means of (72) and (73).

We have seen that, under \(P(\cdot | E) \), the conditional distribution of the \((k - 1)^{st} \mathcal{L}_n\)-curve on \([\sigma_1, \sigma_2]\) stochastically dominates \(\mathcal{B}_{1;\sigma_1,\sigma_2}^{[v_1, v_2]}(\cdot | \text{NoTouch}_{-3t^2}) \).

Note that, since \(\sigma_2 - \sigma_1 \leq 4t \),

\[
\mathcal{B}_{1;\sigma_1,\sigma_2}^{[v_1, v_2]}(\text{NoTouch}_{-3t^2}) \geq \mathcal{B}_{1;0,0}^{[0,4t]}(\text{NoTouch}_{t^2}) = \exp \left\{ -\frac{1}{2}t^3 \right\} \geq 1/2,
\]

where the equality is due to Lemma 5.9 and the last inequality to \(t \geq (2 \log 2)^{1/3} \).

By Lemmas 5.2 and 5.4, it follows that, for \(u \geq 0 \),

\[
P \left(\inf_{x \in [\sigma_1, \sigma_2]} \mathcal{L}_n(k, x) \leq -4t^2 - u \bigg| E \right) \\
\leq 2 \mathcal{B}_{1;\sigma_1,\sigma_2}^{[v_1, v_2]} \left(\inf_{x \in [\sigma_1, \sigma_2]} B(x) \leq -4t^2 - u \bigg| \text{NoTouch}_{-3t^2} \right) \\
\leq 2 \mathcal{B}_{1;\sigma_1,\sigma_2}^{[v_1, v_2]} \left(\inf_{x \in [\sigma_1, \sigma_2]} B(x) \leq -4t^2 - u \right) \leq 2 \exp \left\{ -\frac{1}{2}u^2t^{-1} \right\}
\]
where the final inequality depended on $\sigma_2 - \sigma_1 \leq 4t$ and Lemma \ref{lem8}. Since $[-t, t] \subseteq [\sigma_1, \sigma_2]$, we find that
\[
\mathbb{P}\left(\inf_{x \in [-t, t]} \mathcal{L}_n(k, x) \leq -4t^2 - u \right) \leq 2 \exp\left\{ -\frac{1}{2} u^{-1} \right\} \mathbb{P}(E) + \mathbb{P}(E^c).
\]
We now set $u = t^2$. Using \eqref{w1}, we see that
\begin{equation}
\mathbb{P}\left(\inf_{x \in [-t, t]} \mathcal{L}_n(k, x) \leq -5t^2 \right) \leq 2 \exp\left\{ -\frac{1}{2} t^3 \right\} + 6C \exp\left\{ -c \cdot 2^{-27/4} t^3 \right\} + (2t)^{k-1} \cdot E_{k-1} \exp\left\{ -c_{k-1}(3 - 2^{3/2})^{3/2} t^3 \right\}.
\end{equation}
Now setting $h = 5t^2$ and using $[-1, 1] \subseteq [-t, t]$, we find that
\[
\mathbb{P}\left(\inf_{x \in [-1, 1]} \mathcal{L}_n(k, x) \leq -h \right) \leq 5(2t)^{k-1} \cdot E_{k-1} \exp\left\{ -c_{k-1}(3 - 2^{3/2})^{3/2} 5^{-3/2} \cdot 2^{-3/2} \cdot h^{3/2} \right\}.
\]
Note that this choice permits h to take any value in $[5^3 \lor 5(3 - 2^{3/2})^{-1} r_{k-1}, 45n^\delta]$ by specifying t suitably within its permitted range \eqref{w1}. Note that the lower bound on h here equals r_k.

Since $Q(x) \leq 2^{-1/2}$ for $x \in [-1, 1]$, and $h \geq 2^{1/2}$, we find that
\[
\mathbb{P}\left(\inf_{x \in [-1, 1]} \left(\mathcal{L}_n(k, x) + Q(x) \right) \leq -h \right) \leq 5(2t)^{k-1} \cdot E_{k-1} \exp\left\{ -c_{k-1}(3 - 2^{3/2})^{3/2} 5^{-3/2} \cdot 2^{-3/2} \cdot h^{3/2} \right\}.
\]
By Lemma \ref{lem5.11}, this inequality is equally valid when the interval $[-1, 1]$ over which the infimum is taken is replaced by any interval of length two that lies in $[-n^\delta, n^\delta]$ (since $n^\delta \leq c/2 \cdot n^{\varphi_2}$). By taking a union bound of the resulting inequalities, we learn that, if $t \leq n^\delta$ and $h \in \left[r_k, 45n^\delta\right]$, \[
\mathbb{P}\left(\inf_{x \in [-t, t]} \left(\mathcal{L}_n(k, x) + Q(x) \right) \leq -h \right) \leq (2t+1) \cdot 5(2t)^{k-1} \cdot E_{k-1} \exp\left\{ -c_{k-1}(3 - 2^{3/2})^{3/2} 5^{-3/2} \cdot 2^{-3/2} \cdot h^{3/2} \right\}.
\]
Setting $h = r$, and noting that $t \geq 1$, we verify the inductive hypothesis \eqref{w1} at index k if we note that $E_k = 20 \cdot 2^{k-1} E_{k-1}$ and $c_k = c_{k-1}(3 - 2^{3/2})^{3/2} 10^{-3/2}$. The inductive step completed, we have obtained Proposition \ref{prop5.1}.

\begin{thebibliography}{99}
\bibitem[CH]{CH} Ivan Corwin and Alan Hammond. KPZ line ensemble. \textit{Probab. Theory Related Fields, to appear.}
\end{thebibliography}

A. Hammond, Department of Mathematics and Statistics, U.C. Berkeley, 791 Evans Hall, Berkeley, CA, 94720-3840, U.S.A.

E-mail address: alanmh@berkeley.edu