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Abstract. Within the Kardar–Parisi–Zhang universality class, the space-time Airy sheet is con-
jectured to be the canonical scaling limit for last passage percolation models. In recent work [23]
of Dauvergne, Ortmann, and Virág, this object was constructed and shown to be the limit after
parabolic correction of one such model: Brownian last passage percolation. This limit object, called
the directed landscape, admits geodesic paths between any two space-time points (x, s) and (y, t)
with s < t. In this article, we examine fractal properties of the set of these paths. Our main results
concern exceptional endpoints admitting disjoint geodesics. First, we fix two distinct starting lo-
cations x1 and x2, and consider geodesics traveling (x1, 0) → (y, 1) and (x2, 0) → (y, 1). We prove
that the set of y ∈ R for which these geodesics coalesce only at time 1 has Hausdorff dimension
one-half. Second, we consider endpoints (x, 0) and (y, 1) between which there exist two geodesics
intersecting only at times 0 and 1. We prove that the set of such (x, y) ∈ R2 also has Hausdorff
dimension one-half. The proofs require several inputs of independent interest, including (i) connec-
tions to the so-called difference weight profile studied in [10]; and (ii) a tail estimate on the number
of disjoint geodesics starting and ending in small intervals. The latter result extends the analogous
estimate proved for the prelimiting model in [31].
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1. Introduction

1.1. Random growth models and Kardar–Parisi–Zhang universality. The Kardar–Parisi–
Zhang (KPZ) universality class is a broad collection of one-dimensional random growth models
sharing the asymptotic features exhibited by solutions to a stochastic PDE known as the KPZ
equation [18, 19, 27]. The models known or believed to belong to this collection, including asym-
metric exclusion processes, first and last passage percolation, and directed polymers in random
media, are characterized by the combination of local growth driven by white noise and a smoothing
effect from some notion of surface tension. The resulting growth interface h(t, x) manifests a triple

(1, 13 ,
2
3) of exponents: at time t1, the deviations of h(t, x) from its mean are of order t1/3, and fluc-

tuations of this same order are observed when x is varied on the scale of t2/3. Furthermore, once
h(t, x) is properly centered and rescaled according to these exponents, a universal limit emerges as
t→∞ [40].

For most models, the picture just described is conjectural even if representing the consensus
view. Nevertheless, recent developments have set on rigorous footing the convergence of at least
one prelimiting model, namely Brownian last passage percolation (LPP), to a well-defined scaling
limit. Depending on the level of information one seeks to retain as t → ∞, various limiting
objects can be discussed, in the same way that a standard normal random variable, a multivariate
Gaussian, and Brownian motion can all arise from a common central limit theorem. And just as
Brownian motion, the most general scaling limit in this list, possesses interesting fractal properties,
the analogous KPZ scaling limit invites inquiries into its own fractal geometry. This object was
introduced in [23] and named the directed landscape. Before we introduce precise notation, let us
describe which geometric features this paper will investigate.

The directed landscape is a random function which assigns a passage time L(x, s; y, t) between
any two space-time points (x, s) and (y, t) with s < t. It respects the usual last passage composition
rule,

L(x, s; y, t) = sup
z∈R

[L(x, s; z, r) + L(z, r; y, t)] for all r ∈ (s, t),

which allows one to define the passage time L(γ) of any particular path γ : [s, t] → R. Then
L(x, s; y, t) is equal to the largest L(γ) among paths satisfying γ(s) = x and γ(t) = y, and a path
achieving this maximum is called a geodesic. Typically geodesics are unique, and those with a shared
endpoint typically coalesce before reaching that endpoint. We are interested in the exceptional cases
violating these properties.

Our first consideration is of the following scenario. Fixing the starting locations x1, x2 and the
time interval [s, t], let D(x1,x2,s;t) ⊂ R be the set of terminal locations y ∈ R for which there exist
geodesics x1 → y and x2 → y whose only point of intersection is the endpoint itself; see Figure 1b.
These exceptional endpoints form a random Cantor-like set for which we have the following result.

Theorem 1. The Hausdorff dimension of D(x1,x2,s;t) is almost surely 1
2 .

There is an analogous bivariate scenario. Fixing now only the interval [s, t], let Ds,t ⊂ R2 be
the set of (x, y) for which there exist two geodesics x→ y that intersect only at the endpoints; see
Figure 1d. Interestingly, this second exceptional set can be related to the first by associating to L
certain random measures with fractal supports. In developing this connection, we also obtain the
following.

Theorem 2. The Hausdorff dimension of Ds,t is almost surely 1
2 .

We will restate and in fact expand upon these two results in Theorems 1.9 and 1.10, after having
properly defined the relevant objects. We first define the model of Brownian LPP, and then turn
our attention to its scaling limit, the directed landscape.
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(a) y /∈ D(x1,x2,s;t) (b) y ∈ D(x1,x2,s;t)

(c) (x, y) /∈ Ds,t (d) (x, y) ∈ Ds,t

Figure 1. Exceptionality of the sets D(x1,x2,s;t) and Ds,t. Time is visualized in the
vertical direction, and space in the horizontal direction. The curves shown are graphs
of geodesics as functions of the vertical coordinate. For fixed x1, x2, y, s, t, we will
almost surely witness the scenario in (a), in which the coalescence of two geodesics
sharing a terminal location y happens before the terminal time t. Similarly, for fixed
x, y, s, t, we will almost surely witness the scenario in (c), in which there is a unique
geodesic associated to the pair of space-time points (x, s) and (y, t).

1.2. Prelimiting model: Brownian last passage percolation. Let B(·, k) : R → R, k ∈
Z, denote independent two-sided Brownian motions supported on a common probability space
equipped with probability measure P. To each pair of real numbers x ≤ y together with any pair
of integers i ≤ j, we associate a passage time

M(x, i; y, j) := sup

{ j∑
k=i

[B(zk+1, k)−B(zk, k)]

∣∣∣∣ x = zi ≤ zi+1 ≤ · · · ≤ zj ≤ zj+1 = y

}
. (1.1)
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That is, M(x, i; y, j) is the largest number that can be obtained by partitioning the interval [x, y]
into j−i+1 ordered subintervals [zi, zi+1], [zi+1, zi+2], . . . , [zj , zj+1] and then summing the Brownian

increments incurred by traversing the subinterval [zk, zk+1] using the kth Brownian motion. This
model was first studied in [25] as the limit of a queueing problem, and we refer to M as Brownian
LPP.

1.2.1. Unscaled coordinates: staircases and a variational formula on functions. By compactness and
the continuity of the Brownian motions, there is at least one partition that achieves the supremum
in (1.1). As another perspective, the candidate partitions are in bijection with right-continuous,
non-decreasing functions ϕ : [x, y)→ vi, jw, where vi, jw denotes the integer interval {i, i+1, . . . , j}.
Namely, ϕ(z) = k precisely when z ∈ [zk, zk+1). Therefore, we can express M formally as

M(x, i; y, j) := sup
ϕ

ˆ y

x
dB(z, ϕ(z)). (1.2)

Each ϕ can be associated to a “staircase” path in R2 starting at (x, i), ending at (y, j), and consisting
of alternating horizontal and vertical line segments; see Figure 2a.

1.2.2. Scaled coordinates: standardized passage times, zigzags, and polymers. For any (x, i; y, j),
the distribution of M(x, i; y, j) can be inferred from that of M(0, 0;n, n) by Brownian rescaling,
namely

M(x, i; y, j)
dist
= M(0, 0; y − x, j − i) dist

=

√
y − x
j − i

M(0, 0; j − i, j − i). (1.3)

It is thus natural to study the quantity M(0, 0;n, n), which has the remarkable property of agreeing
in distribution with the largest eigenvalue of an (n+1)× (n+1) matrix sampled from the Gaussian
unitary ensemble (GUE) with entry variance n [9, 26, 38]. Therefore, the mean of M(0, 0;n, n) is

asymptotic to 2n as n → ∞, and its fluctuations about this mean are of order n1/3, in agreement
with KPZ scaling. More precisely, if we define

Wn :=
M(0, 0;n, n)− 2n

n1/3
, (1.4)

then Wn converges in law as n→∞ to the GUE Tracy–Widom distribution [4, Theorem 3.1.4].
In order to recover a scaling limit for the joint process (M(0, 0;n + y, n))y≥−n, one must also

know on which scale to vary y to induce fluctuations of order n1/3 relative to M(0, 0;n, n). An
equivalent question is, by how much does a staircase achieving M(0, 0;n, n) in (1.2) deviate from

the straight line connecting (0, 0) and (n, n)? KPZ considerations put forward the answer of n2/3,
leading us to introduce the scaled coordinates

(x, s)n := (sn+ 2n2/3x, bsnc), x, s ∈ R, (1.5)

so that x and s can be regarded as unit-order. Generalizing (1.4), we define the standardized
passage time

Wn(x, s; y, t) :=
M((x, s)n; (y, t)n)− 2(t− s)n− 2n2/3(y − x)

n1/3
. (1.6)

Remark 1.1. The definition (1.6) makes sense whenever bsnc ≤ btnc and sn+2n2/3x ≤ tn+2n2/3y.
When s < t, these requirements will be satisfied for all n sufficiently large. Therefore, for any

u ∈ R4
↑ := {(x, s; y, t) ∈ R4 : s < t},

the quantity Wn(u) is well-defined for all n larger than some n0 = n0(u). Henceforth, whenever we
consider Wn(u) or any other object that depends on both u and n, it will be implicitly assumed
that n ≥ n0(u). For any compact K ⊂ R4

↑, the choice of n0 can made uniformly over u ∈ K.
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The scale prescribed by definitions (1.5) and (1.6) has reshaped the original geometry of Brownian

LPP via the linear transformation Rn mapping (2n2/3, 0) = (1, 0)n 7→ (1, 0) and (n, n) = (0, 1)n 7→
(0, 1). The images under Rn of the staircases from before are now “zigzags” consisting of horizontal
and oblique segments, as seen in Figures 2b and 2c. Given a staircase function ϕ, let us write
Rn(ϕ) for the planar path determined by the associated zigzag. To be completely precise, we make
the following definitions.

Definition 1.2. For the right-continuous, non-decreasing ϕ : [x, y) → vi, jw defined by ϕ(z) = k
for z ∈ [zk, zk+1), the zigzag Rn(ϕ) ⊂ R2 is the image under Rn of the following staircase:

j⋃
k=i

([zk, zk+1]× {k})︸ ︷︷ ︸
horizontal segments

∪
j−1⋃
k=i

({zk+1} × [k, k + 1])︸ ︷︷ ︸
vertical segments

.

The reader might find this definition more transparent by simply examining Figure 2c.

Definition 1.3. For u = (x, s; y, t) ∈ R4
↑, if ϕ achieves the supremum in (1.2) for M((x, s)n; (y, t)n),

then we will say Rn(ϕ) is an n-polymer between the endpoints (x, s) and (y, t). Let Pn,u denote
the set of such polymers.

For fixed u, there is almost surely a unique n-polymer in Pn,u [30, Lemma 4.6(1)], although there
may be random exceptional u ∈ R4

↑ admitting more than one.

1.2.3. Spatial deviations and geodesics. After the application ofRn, the order n2/3 spatial deviations
mentioned before are observed as order 1 deviations of polymers from the vertical axis connecting
(0, 0) and (0, 1). These fluctuations will be recorded as follows. Given u = (x, s; y, t) ∈ R4

↑ and

a candidate ϕ in (1.2) for M((x, s)n; (y, t)n), i.e., a right-continuous, non-decreasing ϕ : [sn +

2n2/3x, tn+ 2n2/3y)→ vbsnc, btncw, we consider the function Γ
(ϕ)
n,u : [s, t]→ R given by

Γ(ϕ)
n,u(r) :=

Ln,u(r)− ϕ(Ln,u(r))

2n2/3
, r ∈ [s, t), Γ(ϕ)

n,u(t) := lim
r↗t

Γ(ϕ)
n,u(r), (1.7)

where

Ln,u(r) := rn+
t− r
t− s

2n2/3x+
r − s
t− s

2n2/3y, r ∈ [s, t]. (1.8)

That is, in unscaled coordinates, the vertical separation between the point (Ln,u(r), Ln,u(r)) and

the staircase associated to ϕ is exactly Γ
(ϕ)
n,u(r) · 2n2/3; see Figures 2d and 2e.

Definition 1.4. For u = (x, s; y, t) ∈ R4
↑, if ϕ achieves the supremum in (1.2) for M((x, s)n; (y, t)n),

then Γ
(ϕ)
n,u will be called an n-geodesic between (x, s) and (y, t). Let Gn,u denote the set of such

geodesics.

Henceforth, the variables x and y are to be thought of as spatial coordinates, despite their
initial role as time coordinates in Brownian motions. Instead, s and t are now the temporal

coordinates, reflecting our desire to think of Γ
(ϕ)
n,u as an upward moving path in R2 starting at (x, s)

and terminating at (y, t), as illustrated in Figures 2e and 2f. To be completely precise, though, we

note that Γ
(ϕ)
n,u(s) and Γ

(ϕ)
n,u(t) are not necessarily exactly equal to x and y, respectively. For instance,

the equality with x will only be approximate if sn /∈ Z, or if sn ∈ Z but ϕ(sn + 2n2/3x) > sn.

When Γ
(ϕ)
n,u is an n-geodesic, the latter scenario happens with probability zero.

Note that Γ
(ϕ)
n,u ∈ Gn,u if and only if Rn(ϕ) ∈ Pn,u, and so n-geodesics and n-polymers are

two slightly different ways of obtaining scaled versions of the maximizers in (1.2). The difference
between the two objects is highlighted in Figure 2, and we will later discuss how they nonetheless
give rise to the same limiting object.
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(a) Unscaled staircase given by ϕ (b) Scaled (c) Rn(ϕ)

(d) Unscaled staircase given by ϕ (e) Γ
(ϕ)
n,u (f) R̃n,u(ϕ)

Figure 2. In this example, x < 0 < y, 0 < s < t < 1, and we assume sn, tn ∈ Z
for clarity. The unscaled staircase in (a) and (d) between (x, s)n and (y, t)n is the
graph of ϕ. The horizontal segments are of the form [zk, zk+1]× {k} and connected
via the vertical segments {zk+1} × [k, k + 1]. When deviations from the diagonal
connecting (0, 0) and (n, n) are measured as a function of the vertical coordinate and

scaled by 2n2/3, the result is the zigzag in (b), equivalently realized by applying the
scaling map Rn to the picture in (a). We will view the zigzag as a closed planar path

Rn(ϕ) ⊂ R2, depicted in (c). Its horizontal segments have length 1
2n
−2/3(zk+1−zk),

while its oblique segments have slope −2n−1/3 and extend over vertical distances
that are multiples of n−1. Alternatively, when the deviations in (d) are regarded as
a function of the horizontal coordinate and reparameterized via (1.7), the resulting

Γ
(ϕ)
n,u is shown in (e) as a function of the time variable on the vertical axis. The

associated planar path R̃n,u(ϕ) ⊂ R2 is shown in (f). Its oblique segments have

slope (12n
1/3 + y−x

t−s )−1 and traverse a horizontal distance of 1
2n
−2/3(zk+1−zk), while

the horizontal segments have lengths that are multiples of 1
2n
−2/3.
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1.3. Limiting model: the directed landscape. Section 1.2.2 saw the appearance of our first
canonical object in the KPZ universality class, namely the Tracy–Widom law. It has been proven
to arise also in Poissonian LPP [6, 8]; the asymmetric simple exclusion process (ASEP) [42]; the
totally asymmetric simple exclusion process (TASEP) [34,24,15]; the positive temperature version
of Brownian LPP [11, 12] introduced by O’Connell and Yor [37]; the continuum random polymer
[3,12] introduced by Alberts, Khanin, and Quastel [2,1]; and the fully discrete log-gamma polymer
[13] introduced by Seppäläinen [41]. Apart from its universality, the function of the Tracy–Widom
law in our current setting is to describe the limiting behavior of any one-point distribution. In-
deed, upon knowing that Wn = Wn(0, 0; 0, 1) converges in distribution to a GUE Tracy–Widom
random variable, one can infer—from (1.3) and a Taylor expansion of the square root factor—that

Wn(x, s; y, t) obeys the same convergence but where the limit has been scaled by (t − s)1/3 and
then shifted by −(y − x)2/(t− s).

1.3.1. Airy2 process and the space-time Airy sheet. In the same way, any limiting multi -point
distributions (in a single spatial coordinate) can be deduced from the limiting behavior of the
one-parameter process y 7→ Wn(0, 0; y, 1). For this object and its counterparts in other one-
dimensional growth models within the KPZ universality class, the distributional limit is a paraboli-
cally shifted Airy process, our second canonical object. In the setting of Brownian LPP, this means
y 7→ Wn(0, 0; y, 1) + y2 converges in law as n → ∞ to a stationary process y 7→ A2(y) known
as Airy2, introduced in [39]. While this statement remains for most models a conjecture, it has
been proved in the sense of finite-dimensional distributions for Poissonian LPP [39,16] and TASEP
[14,17,7], and as a functional limit theorem for geometric LPP [35].

Given those developments, it is only natural that more recent work has been toward understand-
ing the full four-parameter process (x, s; y, t) 7→ Wn(x, s; y, t). In this case, the relevant limiting
object (again after a parabolic correction) was conjectured in [21] to be the so-called space-time
Airy sheet, whose rigorous construction was left open. One view is that the one-parameter process
y 7→ Wn(0, 0; y, t) is Markovian in t and evolves forward from a Dirac delta mass at t = 0. If
this evolution has a large-n limit, then the noise driving said evolution is the Airy sheet. This
perspective was advanced in [36], where the authors allow very general initial conditions—the pre-
limiting model being TASEP—and derive determinantal formulas for the transition probabilities
of the limiting Markov process.

Very recently in [23], the Airy sheet was constructed directly from a last passage model on
the Airy line ensemble, whose top curve is itself the distributional limit of y 7→ Wn(0, 0; y, 1).
Featured in the paper’s analysis is an extension of the Robinson–Schensted–Knuth correspondence
that allows the original Brownian LPP to be mapped to a last passage problem involving Brownian
motions conditioned to not intersect. It is this collection of non-intersecting Brownian motions
that converges in a suitable scaling limit to the Airy line ensemble, hence the prospect—ultimately
realized—that Brownian LPP has as its limit a last passage problem on this ensemble respecting
said convergence. (A separate work [22] makes progress toward showing the same statement for
other classical LPP models.) We will now define the resulting object.

Definition 1.5. The directed landscape is a random continuous function L : R4
↑ → R almost surely

satisfying

L(x, s; y, t) = sup
z∈R

[L(x, s; z, r) + L(z, r; y, t)] for all (x, s; y, t) ∈ R4
↑, r ∈ (s, t), (1.9)

and having the property that for any disjoint intervals (si, ti), i = 1, . . . , n, the following processes
on R2 are i.i.d.:

(x, y) 7→ (ti − si)−1/3L(x(ti − si)2/3, si; y(ti − si)2/3, ti), i = 1, . . . , n. (1.10)

The property (1.9) means L can be thought of as an “anti-metric” in that it satisfies the reverse
triangle inequality. It was shown in [23, Lemma 10.3] that L exists and has a unique law determined
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entirely by the law of the two-parameter process (x, y) 7→ L(x, 0; y, 1). The space-time Airy sheet

is obtained by the parabolic correction A(x, s; y, t) := L(x, s; y, t) + (x−y)2
t−s , which then has the

property that y 7→ A(x, 0; y, 1) is an Airy2 process for any fixed x ∈ R. It also satisfies space-time
stationarity,

A(x, s; y, t)
dist
= A(x+ z, s+ r; y + z, t+ r) for any z, r ∈ R.

The following convergence result justifies the consideration of L as a canonical object in the KPZ
universality class.

Theorem A. [23, Theorem 1.5] There exists a coupling of Brownian LPP and L on some probability
space (Ω,F ,P) so that

Wn(x, s; y, t) = L(x, s; y, t) + on(x, s; y, t),

where on is a random function admitting, for every compact K ⊂ R4
↑, a deterministic constant

a > 1 such that E(asupK |on|
3/4

)→ 1.

Remark 1.6. We may assume without loss of generality that F is complete. That is, if A0 ∈ F
satisfies P(A0) = 0, and A ⊂ A0, then A ∈ F . Equivalently, if A1 ∈ F satisfies P(A1) = 1,
and A ⊃ A1, then A ∈ F . This assumption will be a technical convenience when we check the
measurability of certain events.

1.3.2. Geodesics. In the fully continuous setting of the directed landscape, the analogues of the
polymers from Definition 1.3 are fractal, upward moving paths in R2 like the one seen in Figure 3.
Given a realization of L, each continuous γ : [s, t]→ R has a length L(γ) given by

L(γ) := inf
k∈N

inf
s=t0<t1<···<tk=t

k∑
i=1

L(γ(ti−1), ti−1; γ(ti), ti). (1.11)

This definition is in analogy with that of Euclidean length, except that infima replace suprema
because of the anti-metric nature of L. If γ(s) = x and γ(t) = y, then the coordinate pairs
(x, s) and (y, t) are referred to as the endpoints of γ. By taking k = 1 in (1.11), it is clear that
L(γ) ≤ L(x, s; y, t). The limiting version of (1.2) is now

L(u) = sup
γ:[s,t]→R

γ(s)=x, γ(t)=y

L(γ), u = (x, s; y, t) ∈ R4
↑,

where the supremum is taken over continuous functions.

Definition 1.7. Let u = (x, s; y, t) ∈ R4
↑ and suppose γ : [s, t] → R is a continuous function such

that γ(s) = x and γ(t) = y. If L(γ) = L(u), then we say γ is a geodesic between (x, s) and (y, t).
Let us write Gu to denote the set of all geodesics from (x, s) to (y, t).

The collection of all geodesics was termed the polymer fixed point in [21] and is thought to also
be universal to the KPZ class. For instance, the authors of [21] suggest the polymer fixed point
might also be realized as the zero-temperature limit of the continuum directed random polymer
[1], and so their use of “polymer” serves as a nod to positive-temperature models. This usage is
consistent with the convention of reserving “polymer” to refer to a positive-temperature object (a
sample from a measure on paths) while keeping to “geodesic” for a zero-temperature object (a
single path of maximal energy). As this paper deals only with zero-temperature models, we have
deviated from that convention in order to clearly distinguish between Definitions 1.3 and 1.4.

The existence of geodesics is a consequence of (1.9), since one can consider γ defined by γ(r) = zr,
where zr is a suitably chosen maximizer in (1.9). (For instance, see Lemma 3.3.) Typically the
maximizer zr is unique for each r ∈ (s, t), in which case Gu is a singleton; that is, for fixed u ∈ R4

↑,

we have |Gu| = 1 with probability one [23, Theorem 12.1]. It is also a fact that geodesics are
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Figure 3. Example geodesics in L. Time is visualized in the vertical direction.
Shown above is a geodesic γ between (x, s) and (y, t) that passes through (z∗, r),
meaning z∗ achieves the supremum in (1.9). For generic z1 6= z∗, geodesics γ1 and
γ will typically coincide for some random length of time, and then remain disjoint
after said time. Similarly, geodesics γ2 and γ will typically coincide for all times
after their first intersection.

typically Hölder-2/3− continuous in time [23, Theorem 1.7]. Nevertheless, as in the prelimit, there
may exist random exceptional points for which these statements are not true.

Remark 1.8. Admittedly, it is an abuse of notation to write L(γ) given that L was defined to
be a continuous function on R4

↑. Nevertheless, this notational convenience should not lead to any
confusion, as we will adhere to the following conventions:

• u always denotes an element of R4
↑.

• x, y, z, w, p, q are spatial coordinates (typically x, z, p are associated to initial endpoints of
geodesics, and y, w, q to terminal endpoints).
• r, s, t are temporal coordinates (s ≤ r ≤ t).
• ϕ, φ are maximizers achieving Mn(x, i, y, j) in (1.2), where (x, i; y, j) will be apparent from

context (in particular, ϕ and φ are right-continuous, non-decreasing Z-valued functions).
• γ denotes a continuous function of time, an object in the limiting model.
• Γ denotes the corresponding prelimiting object (generally a discontinuous function).
• aj ↗ a means aj ≤ aj+1 for all j, and aj converges to a as j →∞; similarly for aj ↘ a.

The following result from [23] confirms that the directed landscape retains the limiting informa-
tion of not only the passage times in Brownian LPP, but also of the maximizing paths comprising
the polymer fixed point. Recall that for u = (x, s; y, t) and sufficiently large n, Gn,u denotes the

set of n-geodesics Γ
(ϕ)
n,u : [s, t]→ R defined in (1.7), where ϕ is a maximizer in (1.2).

Theorem B. [23, Theorems 1.8 and 13.5] In the coupling of Theorem A, there exists an event P of
probability 1 such that the following holds for any u ∈ R4

↑. On the almost sure event P∩{|Gu| = 1},
if γu is the unique element of Gu, and Γ

(ϕn)
n,u ∈ Pn,u for each n, then

lim
n→∞

‖Γ(ϕn)
n,u − γu‖∞ = 0,

where ‖ · ‖∞ denotes the sup-norm on [s, t].
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Figure 4. An LPP simulation by Junou Cui, Zoe Edelson, and Bijan Fard. With
n = 500, the unscaled difference M(n2/3, 0; y, n)−M(−n2/3, 0; y, n) is plotted on the
vertical axis against the unscaled location y on the horizontal axis. Once rescaled,
this corresponds to the picture in Figure 5 with x1 = −1

2 , x2 = 1
2 , s = 0, t = 1, and

y varying between −1
2 and 1

2 .

The event P is that L is proper, a notion defined in [23, Section 13] and recalled in Section 2.2.
We will assume throughout the paper that this event occurs.

1.4. Main results on the Hausdorff dimensions of exceptional sets. The present study is
motivated by the view that the fractal properties of the polymer fixed point have much to say
about the probabilistic structure of the directed landscape. This perspective is very much aligned,
for instance, with the interest in coalescence of geodesics for both first and last passage percolation
models (the literature is vast; see [5, Chapters 4 and 5] for one starting point). Somewhat similar
to the Busemann functions employed in those settings, a novel object called the difference weight
profile was studied in [10]. Given x1 < x2 and s < t, this is the random map y 7→ Z(x1,x2,s;t)(y) :=
L(x2, s; y, t) − L(x1, s; y, t), an almost-surely continuous, non-decreasing function on the real line;
see Figure 5. A striking feature, which is suggested by simulation of the prelimit (see Figure 4), is
that Z(x1,x2,s;t) is locally constant almost everywhere in the sense of Lebesgue. Indeed, the following
theorem was shown in [10]. Recall that y ∈ R is a point of local variation for a function f : R→ R
if there exists no open interval containing y on which f is constant.

Theorem C. [10, Theorem 1.1] For any fixed x1 < x2 and s < t, the set of local variation for
Z(x1,x2,s;t) almost surely has Hausdorff dimension one-half.

The proof of the upper bound for this result proceeded, at least heuristically, by examining
points of coalescence between geodesics emanating from (x1, s) and (x2, s), and terminating at a
common point (y, t). It was suggested that the set of local variation for Z(x1,x2,s;t) is a subset of
those y for which the coalescence point is (y, t) itself. In other words, the supposed superset is
the set D(x1,x2,s;t) of locations y for which there exist two geodesics to (y, t), one originating from
(x1, s) and the other from (x2, s), that are disjoint except at the terminal point (y, t). That is,

D(x1,x2,s;t) :=
{
y ∈ R : ∃ γ1 ∈ G(x1,s;y,t), γ2 ∈ G(x2,s;y,t), γ1(r) < γ2(r) for all r ∈ (s, t)

}
, (1.12)
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Figure 5. Determining the value of Z(x1,x2,s;t)(y). Assuming geodesics exist, one
can (using Lemma 2.2) always find γ1 ∈ G(x1,s;y,t) and γ2 ∈ G(x2,s;y,t) such that
γ1(r) = γ2(r) for all r above some r∗ ∈ (s, t], and γ1(r) < γ2(r) for all r be-
low r∗. If γ1(r∗) = γ2(r∗) = z, then L(γ1) = L(x1, s; z, r∗) + L(z, r∗; y, t) while
L(γ2) = L(x2, s; z, r∗) + L(z, r∗; y, t). Therefore, Z(x1,x2,s;t)(y) = L(γ2) − L(γ1) =
L(x2, s; z, r∗)− L(x1, s; z, r∗).

where the inequality γ1(r) < γ2(r) comes from the ordering of x1 < x2. (By planarity, γ1(r) > γ2(r)
only occurs if γ1(r

′) = γ2(r
′) for some r′ < r.) See Figure 1b for an illustration. Our first main

result shows that the heuristic from [10] turns out to be correct, and that the exceptional set
D(x1,x2,s;t) also has Hausdorff dimension one-half.

Theorem 1.9. For any fixed x1 < x2 and s < t, the following statements hold almost surely:

(a) the set of local variation for Z(x1,x2,s;t) is contained in D(x1,x2,s;t); and

(b) the Hausdorff dimension of D(x1,x2,s;t) is equal to 1
2 .

Since Z(x1,x2,s;t) is non-decreasing by [10, Theorem 1.1(1)]—a consequence of planarity—another
perspective is that Z(x1,x2,s;t) is the distribution function of a random measure µ(x1,x2,s;t) on the
real line, in the sense that

µ(x1,x2,s;t)([y1, y2]) = Z(x1,x2,s;t)(y2)−Z(x1,x2,s;t)(y1)

= L(x2, s; y2, t) + L(x1, s; y1, t)− L(x1, s; y2, t)− L(x2, s; y1, t).
(1.13)

In this language, the result of [10] is that the support of µ(x1,x2,s;t) is a random Cantor-like set of
Hausdorff dimension one-half, and Theorem 1.9(a) says this set is contained in D(x1,x2,s;t).

A slightly more general perspective is that the final expression in (1.13) defines a measure µs,t
on R2, namely

µs,t([x1, x2]× [y1, y2]) = µ(x1,x2,s;t)([y1, y2]). (1.14)

In other words, by jointly varying the initial location x and the terminal location y, one obtains a
measure-theoretic encoding of L on the time horizon [s, t]. Then one can ask if the statements from
before regarding µ(x1,x2,s;t) have analogues for µs,t. Indeed, by modifications to the proof in [10],
one can show—as we do in Theorem 4.3—that the support of µs,t also has Hausdorff dimension
one-half. Furthermore, in place of D(x1,x2,s;t), the related exceptional set is

Ds,t :=
{

(x, y) ∈ R2 : ∃ γ1 ∈ G(x,s;y,t), γ2 ∈ G(x,s;y,t), γ1(r) < γ2(r) for all r ∈ (s, t)
}
.
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In words, Ds,t is the set of all pairs (x, y) admitting two geodesics between (x, s) and (y, t) which
coincide only at the endpoints; see Figure 1d. We can now state our second main result.

Theorem 1.10. For any fixed s < t, the following statements hold almost surely:

(a) the support of µs,t is contained in Ds,t; and
(b) the Hausdorff dimension of Ds,t is equal to 1

2 .

Interestingly, a measure similar to µs,t was studied in [32] in the context of planar LPP and
positive-temperature directed polymers. Moreover, that measure is also related via its support to
exceptional disjointness of geodesics [33]. In fact, Theorem 1.10(a) bears a striking resemblance to
[33, Theorem 3.1], except that the latter result obtains equality of the two relevant sets. It would
be interesting to know if the same is true here. That is, does the support of µs,t constitute all of
Ds,t?

On a technical note, we mention that (1.13) and (1.14) prescribe well-defined measures given the
almost sure event P; see Definition 2.3(v). Off of P, one can simply take µ(x1,x2,s;t) and µs,t to be
the zero measure. Let us henceforth write Supp(·) for the support of a measure.

Remark 1.11. It might seem natural to also consider the case when only the terminal location y
is fixed, while the starting location(s) is allowed to vary. This perspective, however, is an ineffective
way of studying the fractal geometry of the directed landscape. Indeed, for any fixed y ∈ R, it is
almost surely the case that y /∈ D(x1,x2,s;t) for every x1 ≤ x2; this is shown in Section 5.4. Moreover,
for the random exceptional y belonging to some D(x1,x2,s;t), one trivially has y ∈ D(x′1,x

′
2,s;t)

for all

x′1 ≤ x1 and x′2 ≥ x2, due to Lemma 2.6. From these observations, it is clear that a more refined
description of the exceptional endpoints is obtained only by either fixing x1 < x2 and varying y, or
imposing x1 = x2 = x and varying (x, y).

1.5. Comments on the proofs, and key inputs. Theorems 1.9(b) and 1.10(b) will be proved by
realizing 1

2 as both a lower and an upper bound on the dimension of each set. These two directions
will be pursued separately in Sections 4 and 5, respectively.

Given that Supp(µ(x1,x2,s;t)) and Supp(µs,t) each have Hausdorff dimension one-half, the lower
bounds trivially follow from Theorems 1.9(a) and 1.10(a). Consequently, the work of Section 4
is to prove the claimed containments. Nevertheless, in recognition of the fact that the results
appearing in [10] are only for µ(x1,x2,s;t), we do separately check the required statements for µs,t.
On this matter, the lower bound argument carried out in [10]—which used the local Gaussianity
of weight profiles [29], which in turn is a consequence of the Brownian Gibbs property [20, 28]
enjoyed by the parabolic Airy line ensemble and its prelimit—could be replicated here, but we
instead present in Section 4.2 a short proof that the Hausdorff dimension of Supp(µs,t) is at least
that of Supp(µ(x1,x2,s;t)). This indirect lower bound provides sufficient information to conclude
Theorem 1.10(b) from 1.10(a), and (a) and (b) together provide anyway the matching upper bound
for Supp(µs,t).

Returning to the more central issue of proving the containments claimed in Theorems 1.9(a) and
1.10(a), we can summarize the argument for 1.9(a) in the following broad strokes (the argument
for 1.9(b) is similar):

• If y /∈ D(x1,x2,s;t), then the leftmost geodesic γL making the journey (x1, s) → (y, t) must

have non-trivial intersection with the rightmost geodesic γR traveling (x2, s) → (y, t). An
example is shown in Figure 8a.
• We prove in Lemma 4.4 the general fact that if yLj ↗ y, then there is a corresponding

sequence of geodesics γLj traveling (x1, s)→ (yj , t) that converge uniformly to γL; similarly

for yRj ↘ y and γR. Therefore, by choosing yL < y < yR sufficiently close, we can find γ̃L

and γ̃R approximating γL and γR to any desired precision.
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• The critical observation, stated as Theorem 1.17, is that if the endpoints of two geodesics
belong to a common compact set, then the geodesics cannot approximate each other arbi-
trarily well without intersecting. Therefore, yL and yR can be chosen so that γ̃L intersects
γL, and γ̃R intersects γR.
• By forcing this intersection to occur at a suitably chosen location based on the non-trivial

intersection of γL and γR (see Figure 8b), we deduce that γ̃L and γ̃R do themselves intersect.
• The proof is then completed by appealing to the observation—originally made in [10] and

stated locally as Lemma 4.5—that Z(x1,x2,s;t) is constant on [yL, yR] whenever there are

intersecting geodesics γ̃L and γ̃R making the respective journeys (x1, s) → (yL, t) and
(x2, s)→ (yR, t). The reason for this constancy is outlined in Figure 7.

Meanwhile, our method for the upper bound in Theorem 1.9(b) is inspired by the approach of
[10], and the method for 1.10(b) is again similar. The central idea is captured in Figure 9 and is
briefly described as follows:

• Let us restrict our attention to a bounded interval [−R,R]. Suppose y ∈ D(x1,x2,s;t)∩[−R,R],
and let y − ε < y1 < y < y2 < y + ε. Because y ∈ D(x1,x2,s;t), planarity guarantees
that any geodesic γ1 traveling (x1, s) → (y1, t) is disjoint from any geodesic γ2 traveling
(x2, s)→ (y2, t), as shown in Figure 9b. Moreover, this holds for arbitrarily small ε > 0.
• By varying the initial location of γ1 rightward from x1 toward x2, there must be some

random point x ∈ (x1, x2] at which γ1 first intersects γ2. By choosing xL ∈ (x − ε, x) and
xR ∈ (x, x+ε), it can be shown that there exist disjoint geodesics traveling (xL, s)→ (y1, t)
and (xR, s) → (y2, t). This is done in [10, Proposition 3.5] and recalled as Lemma 5.3; the
resulting geodesics are displayed in Figure 9c.
• We have now identified two small intervals I = (x− ε, x+ ε), J = (y − ε, y + ε) that admit

two disjoint geodesics starting in I × {s} and ending in J × {t}. A required input is that
as ε → 0, the likelihood of this event for given x and y is, to leading order, bounded from
above by ε3/2. This fact is stated as Corollary 1.16.
• Now we cover [x1, x2] and [−R,R] each by order ε−1 many intervals I, J of radius ε. The

expected number of pairs of these intervals with the above property is at most ε−2 · ε3/2 =
ε−1/2. Therefore, the box-counting dimension of D(x1,x2,s;t) ∩ [−R,R], which always serves

as an upper bound for the Hausdorff dimension, is at most 1
2 .

We anticipate that the arguments just described work quite generally and could potentially
be modified to address related questions about the fractal structure of prelimiting models. Nev-
ertheless, our present approach requires a small amount of information derived from integrable
properties of Brownian LPP, and unfortunately certain technical aspects of this information sig-
nificantly complicate the possible pursuance of Theorems 1.9 and 1.10, or versions thereof, in the
prelimiting setting. (Specifically, the ε3/2 asymptotic mentioned above does not hold on very small
scales depending on n; see Theorem 3.5.) We have thus elected to pursue a more transparent
argument by studying the limiting model; in this way, the present work harnesses the preprint [23]
with a strong reliance on Theorem B in particular. Considering the putative universality of the
directed landscape and the polymer fixed point, we anyway expect this to be a more fruitful line
of research.

With that said, the present paper does marry arguments for the limiting model with inputs
previously known or verified only in the prelimiting one. As such, there are a number of important
facts requiring extension to the limiting setting. Therefore, in Sections 1.5.1 and 1.5.2 below, we
state several other new results concerning the directed landscape and the polymer fixed point. These
inputs, which are proved in Section 3, may be of independent interest as tools in or inspiration
for future works. Section 2 contains several more input facts; these are straightforward statements
about geodesics that will not be highlighted here.
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1.5.1. Convergence of polymers. Owing to the novelty of the construction in [23], our first set of
inputs work to build one bridge (of certainly many more) from the directed landscape to previously
studied objects. In particular, we focus on Theorem B, which addresses the convergence of n-
geodesics in Brownian LPP to their continuous counterparts in the directed landscape. While these
particular prelimiting objects, defined via (1.7), enable the treatment of geodesics as functions, they
are somewhat less natural from the view of geodesics as planar paths. For this latter perspective,
it is desirable to simply consider the polymers from Definition 1.3, i.e., the piecewise linear paths
obtained by applying the scaling map Rn to the Brownian LPP staircase paths (recall Figure 2).
Indeed, the map Rn is intrinsic to the coupling of Brownian LPP and the directed landscape in the
first place.

On a practical level, many estimates for Brownian LPP are stated for n-polymers rather than
n-geodesics; for instance, see [28–31]. In order to leverage these results to prove statements in the
limiting setting, it will be useful to know that n-polymers share the same limit as n-geodesics. For
example, the upcoming Theorem 1.15 asks for probabilistic control on disjointness for geodesics.
Unfortunately, disjointness of n-polymers—for which we have the corresponding information—is
not equivalent to disjointness of n-geodesics. This is because the time parameterization (1.8) used
in (1.7) depends on the spatial coordinates x and y, meaning that distinct u1 = (x1, s; y1, t),

u2 = (x2, s; y, t) can admit n-geodesics Γ
(ϕ)
(n,u1)

, Γ
(φ)
(n,u2)

that intersect,

ϕ(Ln,u1(r)) = φ(Ln,u2(r)) for some r ∈ [s, t],

even if the corresponding n-polymers Rn(ϕ), Rn(φ) do not:

ϕ(z) 6= φ(z) for all z ∈ [sn+ 2n2/3x1, tn+ 2n2/3y1) ∩ [sn+ 2n2/3x2, tn+ 2n2/3y2).

In this and other circumstances, the next theorem and corollary can help translate between the
two prelimiting objects.

Let u = (x, s; y, t) ∈ R4
↑ and ϕ : [sn+2n2/3x, tn+2n2/3y)→ vbsnc, btncw be the right-continuous,

non-decreasing function defined by ϕ(z) = k if and only if z ∈ [zk, zk+1). Recall the definitions of

Γ
(ϕ)
n,u and Ln,u from (1.7) and (1.8). For each k ∈ vbsnc, btncw, let rk be the unique value in [s, t]

such that Ln,u(rk) = zk.

Definition 1.12. Denote by R̃n,u(ϕ) ⊂ R2 the planar path determined by the graph of Γ
(ϕ)
n,u; that

is,

R̃n,u(ϕ) := {(z, r) : r ∈ [s, t], z = Γ(ϕ)
n,u(r)}︸ ︷︷ ︸

oblique segments

∪
btnc⋃

k=bsnc+1

{
(z, rk) : z ∈ [Γn,u(rk),Γn,u(rk−)]

}
︸ ︷︷ ︸

horizontal segments

,

where Γn,u(rk−) := limr↗rk Γn,u(r) if rk > s, and Γn,u(s−) := Γn,u(s). See Figure 2f.

The theorem below says that the two planar paths Rn(ϕ) and R̃n,u(ϕ) are asymptotically equal
if ϕ is a maximizer in (1.2). In particular, n-polymers share the same limit as n-geodesics, but
use the language of sets rather than of functions. Recall that the Hausdorff distance between two
nonempty subsets X ,Y of a metric space with metric τ is

distH(X ,Y) := max
{

sup
x∈X

inf
y∈Y

τ(x, y), sup
y∈Y

inf
x∈X

τ(x, y)
}
.

In stating the next result, we return to the setting of Theorem B. Recall that {Γ(ϕn)
n,u }n≥1 was

assumed to be a sequence of n-geodesics, known to converge uniformly to γu. Since R̃n,u(ϕn) is the

graph of Γ
(ϕn)
n,u , some definition chasing will show that R̃n,u(ϕn) converges to the graph of γu. It is

by this logic, carried out in Section 3.1, that (1.16) will follow from (1.15).
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Theorem 1.13. In the coupling of Theorem A, the following holds for any u ∈ R4
↑. On the almost

sure event P ∩ {|Gu| = 1}, if γu is the unique element of Gu, and Rn(ϕn) ∈ Pn,u for each n, then

lim sup
n→∞

distH(Rn(ϕn), R̃n,u(ϕn))

n−1/3
<∞. (1.15)

In particular, upon defining Graph(γu) := {(γu(r), r) : r ∈ [s, t]}, we have

lim
n→∞

distH(Rn(ϕn),Graph(γu)) = 0. (1.16)

From this result, we will obtain the following essential ingredient to the proof of Theorem 1.15.
While the statement below does not immediately follow from Theorem 1.13, it will be an easy
consequence of the argument we give for (1.16). A short proof is included in Section 3.1.

Corollary 1.14. Let u1 = (x1, s; y1, t) and u2 = (x2, s; y2, t) with x1 < x2 and y1 < y2. For each
n, choose any Rn(ϕn) ∈ Pn,u1 and Rn(φn) ∈ Pn,u2. On the event P ∩ {|Gu1 | = 1} ∩ {|Gu2 | = 1},
if the unique geodesics γ1 ∈ Gu1 and γ2 ∈ Gu2 are disjoint, then Rn(ϕn) ∩ Rn(φn) = ∅ for all n
sufficiently large.

1.5.2. Estimates for disjoint collections of geodesics. We will say that two paths γ1, γ2 : [s, t]→ R
are disjoint if γ1(r) 6= γ2(r) for all r ∈ [s, t]. While the geodesics on which we will ultimately focus,
namely those defining D(x1,x2,s;t) and Ds,t, are not strictly speaking disjoint—they coincide at the
endpoint(s)—our arguments will exploit their influence on the disjointness of other nearby geodesics.
Therefore, our second series of inputs concerns the rarity of certain events involving disjointness.
Theorem 1.15 and Corollary 1.16, in particular, are very much in the aim of translating known
results about the prelimiting model into ones about the limiting model.

For subsets A,B,C ⊂ R and times s < t, let MaxDisjtGeoCs,t(A,B) denote the maximum size of
a collection of disjoint geodesics whose endpoints lie in (A ∩ C) × {s} and (B ∩ C) × {t}. When
C is countable (by which we mean having a cardinality that is either finite or countably infinite)
the measurability of this random variable is proved in Proposition 3.2. The following tail bound is
analogous to, and indeed proved from, [31, Theorem 1.1].

Theorem 1.15. There exists a positive constant G such that the following holds for all countable
C ⊂ R. For any ε > 0, integer k ≥ 2, and u = (x, s; y, t) ∈ R4

↑ satisfying

ε

(t− s)2/3
≤ G−4k2 , |x− y|

(t− s)2/3
≤
( ε

(t− s)2/3
)−1/2(

log
(t− s)2/3

ε

)−2/3
G−k, (1.17)

we have

P
(

MaxDisjtGeoCs,t([x− ε, x+ ε], [y − ε, y + ε]) ≥ k
)

≤ Gk3 exp
{
Gk
(

log
(t− s)2/3

ε

)5/6}( ε

(t− s)2/3
)(k2−1)/2

.
(1.18)

The restriction that C be countable arises from the possibility that one of the mutually disjoint
geodesics is associated to an exceptional u ∈ R4

↑ for which |Gu| ≥ 2. In this scenario, Corollary 1.14
no longer guarantees that the concerned collection of geodesics can be realized from a disjoint
collection of polymers in the prelimit, thereby rendering the estimate from [31] inapplicable. When
C is countable, however, this hurdle can be avoided by simply assuming the almost sure event in
which all geodesics whose spatial endpoints lie in C are unique.

Notwithstanding these technical impediments, we anticipate that Theorem 1.15 is true with
C = R. Indeed, the k = 2 case admits a simple argument that will allow us to bootstrap to the
following statement.
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Corollary 1.16. Let G be the constant from Theorem 1.15. For any ε > 0 and u = (x, s; y, t) ∈ R4
↑

satisfying

ε

(t− s)2/3
≤ G−16, |x− y|

(t− s)2/3
≤
( ε

(t− s)2/3
)−1/2(

log
(t− s)2/3

ε

)−2/3
G−2, (1.19)

we have

P
(

MaxDisjtGeoRs,t((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2
)

≤ G8 exp
{
G2
(

log
(t− s)2/3

ε

)5/6}( ε

(t− s)2/3
)3/2

.
(1.20)

Our arguments for the upper bounds in Theorems 1.9(b) and 1.10(b) will use Corollary 1.16
directly. Meanwhile, Theorems 1.9(b) and 1.10(b) will require the following application of Corol-
lary 1.16 regarding geodesics that not only start and end nearby one another, but also remain close
at all intermediate times.

Theorem 1.17. On the event P, for any compact K ⊂ R4
↑, there is a random ε > 0 such that

the following is true. If u1 = (x, s; y, t), u2 = (z, s;w, t) ∈ K admit geodesics γ1 ∈ Gu1, γ2 ∈ Gu2
satisfying |γ1(r)− γ2(r)| < ε for all r ∈ [s, t], then γ1 and γ2 are not disjoint.

1.6. Acknowledgments. Bálint Virág gave a seminar at the Rényi Institute in January 2019
after which he showed simulations of the measure µs,t from (1.14) and indicated that the Hausdorff
dimension of its support equals one-half. The third author attended this talk and would like to
thank Bálint Virág for beneficial discussions in person and by email regarding the fractal geometry
of various exceptional sets embedded in the directed landscape and relations between the measure
µs,t and the Airy sheet. The authors also thank Riddhipratim Basu, Timo Seppäläinen, and
Benedek Valkó for helpful discussions.

2. Preliminary facts concerning geodesics

In this section, we establish some basic facts about paths and geodesics in the directed landscape.

2.1. New geodesics from old. We begin with the following lemma concerning subpaths and
subgeodesics.

Lemma 2.1. For any continuous path γ : [s, t]→ R and any partition s = t0 < t1 < · · · < tk = t,
the following statements hold.

(a) We have the concatenation identity

L(γ) =
k∑
i=1

L(γ
∣∣
[ti−1,ti]

). (2.1)

(b) If γ is a geodesic, then γ
∣∣
[ti−1,ti]

is a geodesic for each i = 1, . . . , k, and

L(γ) =

k∑
i=1

L(γ(ti−1), ti−1; γ(ti), ti). (2.2)

Proof. First we prove (a). By induction, it suffices to prove the claim in the case k = 2 with
s < r < t. Since any pairing of a partition of [s, r] with a partition of [r, t] induces a partition of
[s, t], it is clear that L(γ) ≤ L(γ

∣∣
[s,r]

) + L(γ
∣∣
[r,t]

). On the other hand, for any partition of [s, t] not
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arising in this way (i.e., a sequence s = t0 < t1 < · · · < tk = t such that tj−1 < r < tj for some j),
we have

k∑
i=1

L(γ(ti−1), ti−1; γ(ti), ti)
(1.9)
≥

j−1∑
i=1

L(γ(ti−1), ti−1; γ(ti), ti) + L(γ(tj−1), tj−1; γ(r), r)

+ L(γ(r), r; γ(tj), tj) +
k∑

i=j+1

L(γ(ti−1), ti−1; γ(ti), ti)

(1.11)
≥ L(γ

∣∣
[s,r]

) + L(γ
∣∣
[r,t]

).

Hence L(γ) ≥ L(γ
∣∣
[s,r]

) + L(γ
∣∣
[r,t]

), which completes the proof of (a).

For (b), we can again appeal to induction and reduce to the case k = 2. If γ is a geodesic, then

L(γ
∣∣
[s,r]

) + L(γ
∣∣
[r,t]

)
(2.1)
= L(γ) = L(γ(s), s; γ(t), t)

(1.9)
≥ L(γ(s), s; γ(r), r) + L(γ(r), r; γ(t), t).

Since we always have

L(γ
∣∣
[s,r]

) ≤ L(γ(s), s; γ(r), r) and L(γ
∣∣
[r,t]

) ≤ L(γ(r), r; γ(t), t),

the only possibility is that each of the two inequalities in the above display is achieved with equality.
That is, γ

∣∣
[s,r]

and γ
∣∣
[r,t]

are geodesics, in which case (2.2) follows from (2.1). �

For the arguments to come, it will be useful to have the following notation for concatenating
paths. If γ1 : [s, r′] → R and γ2 : [r′, t] → R satisfy γ1(r

′) = γ2(r
′), then γ1 ⊕ γ2 : [s, t] → R will

denote the function defined by

(γ1 ⊕ γ2)(r) :=

{
γ1(r) if r ∈ [s, r′],

γ2(r) if r ∈ (r′, t].

The following lemma says that if two geodesics intersect twice, then exchanging their segments
between these intersections results in another geodesic.

Lemma 2.2. Suppose γ1 : [s1, t1] → R and γ2 : [s2, t2] → R are geodesics. If γ1(r
′) = γ2(r

′) and
γ1(r

′′) = γ2(r
′′) for some r′ < r′′ belonging to [s1, t1] ∩ [s2, t2], then each of the following paths is a

geodesic:

(i) γ1
∣∣
[s1,r′]

⊕ γ2
∣∣
[r′,r′′]

⊕ γ1
∣∣
[r′′,t1]

,

(ii) γ1
∣∣
[s1,r′]

⊕ γ2
∣∣
[r′,r′′]

,

(iii) γ2
∣∣
[r′,r′′]

⊕ γ1
∣∣
[r′′,t1]

.

Proof. First notice that (ii) and (iii) follow from (i) by Lemma 2.1(b), and so we just prove (i). Let
us write γ = γ1

∣∣
[s1,r′]

⊕ γ2
∣∣
[r′,r′′]

⊕ γ1
∣∣
[r′′,t1]

. We have

L(γ1)
(2.2)
= L(x, s1; γ1(r

′), r′) + L(γ1(r
′), r′; γ1(r

′′), r′′) + L(γ1(r
′′), r′′; γ1(t), t)

= L(x, s1; γ1(r
′), r′) + L(γ2(r

′), r′; γ2(r
′′), r′′) + L(γ1(r

′′), r′′; γ1(t), t)

Lemma 2.1(b)
= L(γ1

∣∣
[s1,r′]

) + L(γ2
∣∣
[r′,r′′]

) + L(γ1
∣∣
[r′′,t1]

)
(2.1)
= L(γ).

Since γ1 is a geodesic with the same endpoints as γ, it follows from L(γ1) = L(γ) that γ is a
geodesic. �
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2.2. Typical and atypical properties. In subsequent proofs, it will be important to know what
is entailed in the almost sure event P from Theorem B.

Definition 2.3. [23, Section 13] The function L : R4
↑ → R is said to be a proper landscape, and we

say P occurs, if the following conditions hold:

(i) L is continuous;
(ii) for every R > 0, there is a constant c such that∣∣∣L(x, s; y, t) +

(x− y)2

t− s

∣∣∣ ≤ c for all (x, s; y, t) ∈ R4
↑ ∩ [−R,R]4;

(iii) for every (x, s; y, t) ∈ R4
↑ and r ∈ (s, t), the supremum in (1.9) is achieved by some z ∈ R;

(iv) for every compact set K ⊂ R4
↑, the values of z ∈ R achieving the supremum in (1.9) are

uniformly bounded among (x, s; y, t) ∈ K and r ∈ (s, t); and
(v) for every x1 ≤ x2, y1 ≤ y2, and s < t, we have

L(x2, s; y2, t) + L(x1, s; y1, t)− L(x1, s; y2, t)− L(x2, s; y1, t) ≥ 0.

While conditions (i)–(iv) are various quantifications of tightness, property (v) can be regarded as
a deterministic fact about planar geodesic spaces, discussed in [23, Lemma 9.1] and [10, Theorem
1.1(1)]. In particular, the measures µ(x1,x2,s;t) and µs,t given by (1.13) and (1.14) are well-defined
because of (v).

Remark 2.4. Regarding the above definition, we make the following observations so that they can
be referred to later in the paper. When P occurs:

(a) (i) ⇒ L is bounded on any compact subset of R4
↑;

(b) (ii) ⇒ L(x, s; y, t) → −∞ as t ↘ s, and for ε > 0, this divergence is uniform over x, y, s ∈
[−R,R] such that |x− y| ≥ ε; and

(c) (iv) ⇒ for any compact K ⊂ R4
↑, there is a random constant R > 0 such that

u = (x, s; y, t) ∈ K, γ ∈ Gu ⇒ |γ(r)| ≤ R for all r ∈ [s, t].

This is because Lemma 2.1(b) implies that for any γ ∈ G(x,s;y,t), the value z = γ(r) is a
maximizer in (1.9) for every r ∈ (s, t). See also Lemma 3.3.

Definition 2.5. For u = (x, s; y, t) ∈ R4
↑, we say that γL is the leftmost geodesic in Gu if

γL(r) ≤ γ(r) for all γ ∈ Gu, r ∈ [s, t].

Similarly, γR is the rightmost geodesic in Gu if

γ(r) ≤ γR(r) for all γ ∈ Gu, r ∈ [s, t].

Typically geodesics are unique, in which case the leftmost and rightmost geodesics are the same.
It will be useful to record this and two other types of almost sure events concerning geodesics:

(1) (Existence) By [23, Lemma 13.2], the following event is a superset of P and thus occurs
with probability one:

E := {Gu contains a leftmost and a rightmost geodesic for every u ∈ R4
↑}. (2.3)

(2) (Uniqueness) For any fixed u ∈ R4
↑, the measurability of the event {|Gu| = 1} is argued in

[23, Section 13]. Moreover, [23, Theorem 12.1] gives P(|Gu| = 1) = 1.

(3) (Ordering) Finally, consider the event

O :=
⋂
s<t

⋂
x1<x2

⋂
y1<y2

{∀ γ1 ∈ G(x1,s;y1,t), γ2 ∈ G(x2,s;y2,t), we have γ1(r) ≤ γ2(r) ∀ r ∈ [s, t]}. (2.4)
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That is, whenever x1 < x2 and y1 < y2, the geodesics from (x1, s) to (y1, t) do not “cross”
those from (x2, s) to (y2, t). We will soon check in Lemma 2.7 that O is an almost sure
event. One can also allow x1 = x2 = x if the times s < t and the value of x are fixed:

O(x,s;t) :=
⋂

y1<y2

{∀ γ1 ∈ G(x,s;y1,t), γ2 ∈ G(x,s;y2,t), we have γ1(r) ≤ γ2(r) ∀ r ∈ [s, t]}. (2.5)

Before proving almost sure ordering of geodesics, we show that even if violations occur, we can
still find geodesics that observe the correct ordering.

Lemma 2.6. The following statements hold for any x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, and s < t such that
G(x,s;y,t) is nonempty.

(a) For any γ1 ∈ G(x1,s;y1,t), there is γ ∈ G(x,s;y,t) such that γ1(r) ≤ γ(r) for all r ∈ [s, t].
(b) For any γ2 ∈ G(x2,s;y2,t), there is γ ∈ G(x,s;y,t) such that γ(r) ≤ γ2(r) for all r ∈ [s, t].
(c) For any γ1 ∈ G(x1,s;y1,t), γ2 ∈ G(x2,s;y2,t) satisfying γ1(r) ≤ γ2(r) for all r ∈ [s, t], there is

γ ∈ G(x,s;y,t) such that γ1(r) ≤ γ(r) ≤ γ2(r) for all r ∈ [s, t].

Proof. The statements (a) and (b) are symmetric, and so we just prove (a). Take any γ1 ∈ G(x1,s;y1,t)

and γ̃ ∈ G(x,s;y,t). If

γ1(r) 6= γ̃(r) for all r ∈ [s, t], (2.6)

then we must have γ1(s) = x1 < x = γ̃(s), and so (2.6) and the continuity of geodesics force
γ1(r) ≤ γ̃(r) for all r ∈ [s, t], as desired. If, on the other hand, γ1(r) = γ̃(r) for some r ∈ [s, t], then
upon defining the times

r′ := inf{r ≥ s : γ1(r) = γ̃(r)}, r′′ := sup{r ≤ t : γ1(r) = γ̃(r)},

we have

s ≤ r′ ≤ r′′ ≤ t. (2.7)

Furthermore, continuity implies

γ1(r
′) = γ̃(r′), γ1(r

′′) = γ̃(r′′),

as well as

γ1(r) < γ̃(r) for all r ∈ [s, r′) ∪ (r′′, t].

The first of the previous two displays allows us to define the path γ := γ̃
∣∣
[s,r′]
⊕ γ1

∣∣
[r′,r′′]

⊕ γ̃
∣∣
[r′′,t]

,

where if any of the inequalities in (2.7) is an equality, we simply omit the corresponding segment.
The second display implies that γ1(r) ≤ γ(r) for all r ∈ [s, t]. Finally, Lemma 2.2 ensures γ ∈
G(x,s;y,t), thus completing the proof of (a).

For (c), we can apply (a) and (b) in succession upon noting that in the above proof, γ(r) ∈
{γ̃(r), γ1(r)} for all r ∈ [s, t]. Therefore, if γ̃ is taken to be the element of G(x,s;y,t) resulting from
(b), then γ as defined above will necessarily satisfy

γ(r) ≤ γ̃(r) ∨ γ1(r) ≤ γ2(r) for all r ∈ [s, t],

in addition to γ(r) ≥ γ1(r). �

Lemma 2.7. We have P(O) = 1 and, for any x ∈ R and s < t, P(O(x,s;t)) = 1.

Proof. Let us define the events

UQ :=
⋂

r′,r′′∈Q
r′<r′′

⋂
p,q∈Q

{|G(p,r′;q,r′′)| = 1}, UQ
(x,s;t)

:= {|G(x,s;q,t)| = 1 for every q ∈ Q}, x ∈ R, s < t.
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Since Q is countable and P(|Gu| = 1) = 1 for any u ∈ R4
↑, we have P(UQ) = P(UQ

(x,s;t)) = 1.

Therefore, if we can show that O ⊃ UQ and O(x,s;t) ⊃ UQ
(x,s;t), then O and O(x,s;t) are necessarily

measurable by Remark 1.6, and also P(O) = P(O(x,s;t)) = 1. Let us first prove UQ
(x,s;t) ⊂ O(x,s;t), as

the argument for UQ ⊂ O will require only slight modifications.

Assume UQ
(x,s;t) occurs. Consider any two values y1 < y2 and any geodesics γ1 ∈ G(x,s;y1,t) and

γ2 ∈ G(x,s;y2,t). Take any q ∈ Q ∩ (y1, y2) and consider the unique γ ∈ G(x,s;q,t). Given this
uniqueness, we can apply Lemma 2.6(a) with y = y1 and y′ = q, to conclude

γ1(r) ≤ γ(r) for all r ∈ [s, t].

Analogously, by Lemma 2.6(b) with y = q and y′ = y2, we must also have

γ(r) ≤ γ2(r) for all r ∈ [s, t].

Together, these two displays yield γ1(r) ≤ γ2(r) for all r ∈ [s, t].
Now assume the occurrence of UQ. Consider any x1 < x2, y1 < y2, s < t, and any geodesics

γ1 ∈ G(x1,s;y1,t) and γ2 ∈ G(x2,s;y2,t). Since γ1(s) = x1 < x2 = γ2(s), continuity guarantees that
γ1(r) < γ2(r) for all r ∈ [s, s + ε], for some ε > 0. By symmetric reasoning, we may assume
γ1(r) < γ2(r) for all r ∈ [t−ε, t]. Now pick any rational times r′ ∈ Q∩ [s, s+ε], r′′ ∈ Q∩ [t−ε, t], as
well as rational spatial coordinates p ∈ (γ1(r

′), γ2(r
′)), q ∈ (γ1(r

′′), γ2(r
′′)). By assumption, there

is a unique γ ∈ G(p,r′;q,r′′). Moreover, Lemma 2.1(b) ensures that γ1
∣∣
[r′,r′′]

and γ2
∣∣
[r′,r′′]

are again

geodesics. Therefore, the same argument as above (using Lemma 2.6) yields

γ1(r) ≤ γ(r) ≤ γ2(r) for all r ∈ [r′, r′′].

But of course, we also know

γ1(r) < γ2(r) for all r ∈ [s, r′] ⊂ [s, s+ ε] and all r ∈ [r′′, t] ⊂ [t− ε, t].
Hence γ1(r) ≤ γ2(r) at every r ∈ [s, t], as desired. �

While Lemmas 2.6 and 2.7 give us control over violations of geodesic ordering, the final result of
this section considers violations of geodesic uniqueness. It is not required elsewhere in the paper,
but rather included as an incidental result. Given x ∈ R and s < t, let us consider the set

M(x,s;t) := {y ∈ R : |G(x,s;y,t)| ≥ 2}. (2.8)

Lemma 2.8. For any x ∈ R and s < t, the set M(x,s;t) is almost surely countable.

Proof. By Lemma 2.7, we may assume O(x,s;t) occurs. Suppose y ∈ R is such that G(x,s;y,t) contains
two distinct elements γy and γ̃y. Without loss of generality, γy(ry) < γ̃y(ry) for some ry ∈ (s, t),
where we may assume by continuity that ry ∈ Q. Moreover, we can choose qy ∈ Q such that

γy(ry) < qy < γ̃y(ry).

Now, if y1 < y2 and both |G(x,s;y1,t)| and |G(x,s;y2,t)| are at least 2, then it must be that (qy1 , ry1) 6=
(qy2 , ry2). Indeed, we would otherwise have

γy2(ry2) < qy2 = qy1 < γ̃y1(ry1) = γ̃y1(ry2),

which is exactly the scenario ruled out by O(x,s;t). In summary, each y for which |G(x,s;y,t)| ≥ 2
can be associated uniquely to some element of the countable set Q × Q. The claim of the lemma
is thus evident. �

3. Proofs of input results

In Section 3.1, we prove Theorem 1.13 and Corollary 1.14. We then use Corollary 1.14 in
Section 3.2 to deduce Theorem 1.15 from the corresponding result in [31]. Corollary 1.16 will
follow from a brief topological argument. Finally, Section 3.3 gives the proof of Theorem 1.17.
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3.1. Convergence of polymers. Throughout this section, we fix u = (x, s; y, t) ∈ R4
↑ and assume

the setting of Theorem B. That is, Gu consists of a single element γu, the event P occurs, and for
each n, we have chosen

ϕn : [sn+ 2n2/3x, tn+ 2n2/3y)→ vbsnc, btncw

such that Γ
(ϕn)
n,u ∈ Gn,u (equivalently, Rn(ϕn) ∈ Pn,u). By Theorem B, we have the following

uniform convergence of functions on [s, t]:

lim
n→∞

‖Γ(ϕn)
n,u − γu‖∞ = 0. (3.1)

We preface the proof of Theorem 1.13 with the following simple observations about the geometry
of n-polymers and n-geodesics. The reader may find Figure 2 to be a useful reference.

Lemma 3.1. Assume the setting of Theorem B. Then for any ε > 0, there is N such that for all
n ≥ N , we have the following:

(a) Every horizontal segment in R̃n,u(ϕn) has length at most ε.
(b) Every oblique segment in Rn(ϕn) has horizontal width at most ε.

(c) Every oblique segment in Rn(ϕn) has vertical height at most 2εn−1/3.

Proof. Fix ε > 0. Notice that if R̃n,u(ϕn) has a horizontal segment at height r, then Γ
(ϕn)
n,u (·)

has a jump discontinuity at time r, where the size of the jump is exactly equal to the length of
the horizontal segment. Therefore, to satisfy (a), it suffices to choose N large enough that for all

n ≥ N , every discontinuity of Γ
(ϕn)
n,u is no larger than ε. Such an N exists by (3.1) and the (uniform)

continuity of γu.
Now (b) follows from (a) because every oblique segment in Rn(ϕn) corresponds to a horizontal

segment in R̃n,u(ϕn) of the same width. Finally, (c) follows from (b) because the slope of any

oblique segment in Rn(ϕn) is −2n−1/3. �

Proof of Theorem 1.13. First we prove (1.15). Fix any ε > 0. Observe that the horizontal segments
in Rn(ϕn), minus their rightmost points, consist entirely of points (z, r) of the form

(z, r) = Rn(z′, ϕn(z′)), z′ ∈ [sn+ 2n2/3x, tn+ 2n2/3y). (3.2)

Similarly, the oblique segments in R̃n,u(ϕn), minus their uppermost points, consist entirely of points
(z̃, r̃) of the form

z̃ = Γ(ϕn)
n,u (r̃), Ln,u(r̃) = z′ ∈ [sn+ 2n2/3x, tn+ 2n2/3y). (3.3)

Therefore, these two categories of points are in bijection (z, r) ↔ (z̃, r̃) through the unscaled
coordinate z′. If we can show that

lim sup
n→∞

sup
z′
‖(z, r)− (z̃, r̃)‖ = 0, (3.4)

then we claim (1.15) holds. Indeed, Lemma 3.1(a) shows that for n ≥ N , every point in R̃n,u(ϕn)
is within distance ε of some (z̃, r̃) of the form (3.3). Meanwhile, Lemma 3.1(b,c) shows that every

point in Rn(ϕn) is within distance ε+ 2εn−1/3 of some (z, r) of the form (3.2). Consequently, (3.4)
leads to

lim sup
n→∞

distH(Rn(ϕn), R̃n,u(ϕn)) ≤ lim sup
n→∞

[
2ε+ 2εn−1/3 + sup

z′
‖(z, r)− (z̃, r̃)‖

]
= 2ε.

As ε is arbitrary, (1.15) follows. We now proceed to establish (3.4).
Because of (3.1), there exist random L (depending only on γu) and N large enough that

|Γ(ϕn)
n,u (r)| ≤ L for all r ∈ [s, t], n ≥ N. (3.5)
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Fix any z′ ∈ [sn+ 2n2/3x, tn+ 2n2/3y), and consider (z, r) and (z̃, r̃) as defined through (3.2) and
(3.3). In particular,

z =
z′ − ϕ(z′)

2n2/3
=
Ln,u(r̃)− ϕn(Ln,u(r̃))

2n2/3
= Γ(ϕn)

n,u (r̃) = z̃,

and so

‖(z, r)− (z̃, r̃)‖ = |r − r̃|. (3.6)

Now observe that

Ln,u(r̃) = z′ = 2n2/3Γ(ϕn)
n,u (r̃) + rn ⇒ r = r̃ + 2n−1/3

( t− r̃
t− s

x+
r̃ − s
t− s

y − Γ(ϕn)
n,u (r̃)

)
,

from which we can deduce, by (3.5), the uniform bound

|r − r̃| ≤ 2n−1/3(|x|+ |y|+ L). (3.7)

Together, (3.6) and (3.7) imply (3.4), and so (1.15) has been proved.
Now we turn our attention to showing (1.16), which is clearly implied by following statement:

lim
n→∞

sup
(z,r)∈Rn(ϕn)

|z − γu(r)| = 0. (3.8)

So let us just establish (3.8). If we denote, for each r ∈ [s, t], the leftmost and rightmost points of
(R× {r}) ∩Rn(ϕn) by

an(r) := inf{z ∈ R : (z, r) ∈ Rn(ϕn)}, bn(r) := sup{z ∈ R : (z, r) ∈ Rn(ϕn)},
then (3.8) is equivalent to

an(r)→ γu(r) and bn(r)→ γu(r) uniformly in r ∈ [s, t]. (3.9)

To argue (3.9), let us consider the analogous quantities for R̃n,u(ϕn), namely

ãn(r) := inf{z ∈ R : (z, r) ∈ R̃n,u(ϕn)}, b̃n(r) := sup{z ∈ R : (z, r) ∈ R̃n,u(ϕn)},
and observe (perhaps with the aid of Figure 2e) that

ãn(r) = Γ(ϕn)
n,u (r), b̃n(r) =

{
limr′↗r Γ

(ϕn)
n,u (r′) if r ∈ (s, t],

ãn(s) if r = s.

By (3.1), we then have

ãn(r)→ γu(r) and b̃n(r)→ γu(r) uniformly in r ∈ [s, t]. (3.10)

Now let ε > 0 and choose δ ∈ (0, ε] sufficiently small that

|γu(r′)− γu(r)| ≤ ε whenever r, r′ ∈ [s, t], |r − r′| ≤ δ.
By (3.10) and (1.15), we can select N such that for all n ≥ N , we have

|ãn(r)− γu(r)| ≤ ε and |b̃n(r)− γu(r)| ≤ ε for all r ∈ [s, t],

as well as

distH(Rn(ϕn), R̃n,u(ϕn)) ≤ δ.
Since (an(r), r) ∈ Rn(ϕ), it follows from the above display that

inf
(z̃,r̃)∈R̃n,u(ϕn)

‖(an(r), r)− (z̃, r̃)‖ ≤ δ for all r ∈ [s, t], n ≥ N,

which can be trivially rewritten as

inf
(z̃,r̃)∈R̃n,u(ϕn)
r̃∈[r−δ,r+δ]

‖(an(r), r)− (z̃, r̃)‖ ≤ δ for all r ∈ [s, t], n ≥ N.
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On the other hand, for any (z̃, r̃) ∈ R̃n,u(ϕn) with |r̃ − r| ≤ δ, we have

|z̃ − γu(r)| ≤ |z̃ − γu(r̃)|+ |γu(r̃)− γu(r)|

≤ |ãn(r̃)− γu(r̃)|+ |b̃n(r̃)− γu(r̃)|+ |γu(r̃)− γu(r)| ≤ 3ε.

Together, the two previous displays imply

|an(r)− γu(r)| ≤ δ + 3ε ≤ 4ε for all r ∈ [s, t], n ≥ N,
and an analogous argument shows

|bn(r)− γu(r)| ≤ δ + 3ε ≤ 4ε for all r ∈ [s, t], n ≥ N.

As ε is arbitrary, we conclude that (3.9) holds. �

Given the convergence (1.16) from Theorem 1.13 (or equivalently, (3.8)), it is a simple matter to
verify Corollary 1.14.

Proof of Corollary 1.14. Recall the notation from the statement of the corollary. It is trivial that

inf{|z1 − z2| : (z1, r) ∈ Rn(ϕn), (z2, r) ∈ Rn(φn), r ∈ [s, t]}
≥ inf

r∈[s,t]
|γu1(r)− γu2(r)| − sup

(z1,r1)∈Rn(ϕn)
|z1 − γu1(r)| − sup

(z2,r2)∈Rn(φn)
|z2 − γu2(r2)|.

Under the hypotheses of the corollary, we have

inf
r∈[s,t]

|γu1(r)− γu2(r)| > 0,

while (3.8) gives

lim
n→∞

sup
(z1,r1)∈Rn(ϕn)

|z1 − γu1(r1)| = lim
n→∞

sup
(z2,r2)∈Rn(φn)

|z2 − γu2(r2)| = 0.

Therefore, for all n sufficiently large, we have

inf{|z1 − z2| : (z1, r) ∈ Rn(ϕn), (z2, r) ∈ Rn(φn), r ∈ [s, t]} > 0,

meaning that Rn(ϕn) and Rn(φn) are disjoint. �

3.2. Tail estimates for the size of a disjoint collection of geodesics. Before proving Theo-
rem 1.15, we need to know that the relevant random variable is measurable.

Proposition 3.2. For any times s < t and subsets A,B,C ⊂ R with C countable, the quantity
MaxDisjtGeoCs,t(A,B) is a measurable random variable almost surely taking values in {1, 2, . . . } ∪
{∞}.

Since the proof of Proposition 3.2 will need to consider certain events involving geodesics, it will
be useful to have the following description of a geodesic.

Lemma 3.3. [23, proof of Lemma 13.2] On the almost sure event P of Theorem B, the following
is true for every u ∈ R4

↑. If Gu consists of a single element γu, then for every r ∈ (s, t), there is a
unique zr ∈ R satisfying

L(x, s; zr, r) + L(zr, r; y, t) = sup
z∈R

[L(x, s; z, r) + L(z, r; y, t)],

and γu(r) = zr.

We use the above characterization of γu to prove the next lemma, which constitutes the bulk
of the work toward Proposition 3.2. Let NonInts,t(x1, x2; y1, y2) denote the event that every γ1 ∈
G(x1,s;y1;t) is disjoint from every γ2 ∈ G(x2,s;y2,t).

Lemma 3.4. For any x1, x2, y1, y2 ∈ R and s < t, the event NonInts,t(x1, x2; y1, y2) is measurable.
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Proof. Recall that almost surely, both G(x1,s;y1;t) and G(x2,s;y2,t) are singletons, and P occurs.
Because we have assumed in Remark 1.6 that F is complete, it suffices to show that the intersection
of NonInts,t(x1, x2; y1, y2) with these three almost sure events is measurable. So let us assume
henceforth that γ1 ∈ G(x1,s;y1;t) and γ2 ∈ G(x2,s;y2;t) are unique, and that P occurs; thus γ1 and γ2
are as described in Lemma 3.3. In this case,

NonInts,t(x1, x2; y1, y2) = {γ1, γ2 disjoint},

and so it suffices to show the measurability of Ω \ {γ1, γ2 disjoint}.
Observe that by compactness and continuity,

Ω \ {γ1, γ2 disjoint} =

∞⋂
m=1

⋃
r∈Q
{|γ1(r)− γ2(r)| ≤ 1/m}, (3.11)

where {|γ1(r) − γ2(r)| ≤ 1/m} is equivalent to the following event, which we call Gr,m: For some
positive integer R and every j = 1, 2, . . . , there exist rationals aj , bj ∈ [−R,R] satisfying

|aj − bj | ≤ 1/m, (3.12a)

L(x1, s; aj , r) + L(aj , r; y1, t) > sup
z∈R

[L(x1, s; z, r) + L(z, r; y1, t)]− 1/j, (3.12b)

L(x2, s; bj , r) + L(bj , r; y2, t) > sup
z∈R

[L(x2, s; z, r) + L(z, r; y2, t)]− 1/j. (3.12c)

Indeed, if this statement holds for the integer R, then by passing to a subsequence, we may assume
aj → a and bj → b as j → ∞. The condition (3.12a) guarantees |a− b| ≤ 1/m, while (3.12b) and
(3.12c) imply through the continuity of L that

L(x1, s; a, r) + L(a, r; y1, t) = sup
z∈R

[L(x1, s; z, r) + L(z, r; y1, t)],

L(x2, s; b, r) + L(b, r; y2, t) = sup
z∈R

[L(x2, s; z, r) + L(z, r; y2, t)].

Therefore, by Lemma 3.3 we have γ1(r) = a and γ2(r) = b, and so |γ1(r)−γ2(r)| ≤ 1/m. Conversely,
if |γ1(r)−γ2(r)| ≤ 1/m, then let us assume γ1(r) ≤ γ2(r) without loss of generality. From Lemma 3.3
(or alternatively (2.2)), we know

L(x1, s; γ1(r), r) + L(γ1(r), r; y1, t) = sup
z∈R

[L(x1, s; z, r) + L(z, r; y1, t)],

L(x2, s; γ2(r), r) + L(γ2(r), r; y2, t) = sup
z∈R

[L(x2, s; z, r) + L(z, r; y2, t)].

By continuity of L, one can choose a sequence of rationals aj ↘ γ1(r) and bj ↗ γ2(r) such that
(3.12) is true for each j. Finally, choosing R sufficiently large that γ1(r), γ2(r), a1, b1 ∈ [−R,R], we
see that Gr,m has occurred.

We have now argued that on the almost sure event {|G(x1,s;y1;t)| = 1} ∩ {|G(x2,s;y2;t)| = 1} ∩ P,
we have {|γ1(r)−γ2(r)| ≤ 1/m} = Gr,m. As Gr,m involves checking only countably many conditions
on L, it is measurable. Therefore, (3.11) shows that Ω \ {γ1, γ2 disjoint} is measurable. �

Proof of Proposition 3.2. We wish to show that for any k ∈ {1, 2, . . . }, the disjointness event
{MaxDisjtGeoCs,t(A,B) ≥ k} belongs to the σ-algebra F . First note that the countability of C
implies

⋂
p,q∈C{|G(p,s;q,t)| = 1} occurs with probability one. Therefore, by Remark 1.6, it suffices

to show that

{MaxDisjtGeoCs,t(A,B) ≥ k} ∩
⋂
p,q∈C

{|G(p,s;q,t)| = 1} ∩ P ∈ F ,
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On the almost sure event
⋂
p,q∈C{|G(p,s;q,t)| = 1}∩P, the set under consideration can be expressed

as

{MaxDisjtGeoCs,t(A,B) ≥ k} =
⋃

p1,...,pk∈A∩C
q1,...,qk∈B∩C

⋂
1≤i<j≤k

NonInts,t(pi, pj ; qi, qj).

As the union and the intersection in this display take place over countable index sets, Lemma 3.4
completes the proof. �

Recall the definition of an n-polymer from Section 1.2. For intervals I, J ⊂ R, denote by
MaxDisjtPolyn(I, J) the maximum size of a collection of disjoint n-polymers having endpoints of
the form (x, 0) and (y, 1) with x ∈ I and y ∈ J . The following result of [31] will naturally translate
into Theorem 1.15, since we know from Section 3.1 that n-polymers converge to (the graph of)
geodesics.

Theorem 3.5. [31, Theorem 1.1] There exists a positive constant G such that the following holds.
For any δ > 0, integers k and n, and z, w ∈ R satisfying

k ≥ 2, δ ≤ G−4k2 , n ≥ Gk2(1 + |z − w|36)δ−G, |z − w| ≤ δ−1/2(log δ−1)−2/3G−k, (3.13)

we have

P
(

MaxDisjtPolyn([z − δ, z + δ], [w − δ, w + δ]) ≥ k
)
≤ Gk3 exp

{
Gk(log δ−1)5/6

}
δ(k

2−1)/2.

Proof of Theorem 1.15. Let C ⊂ R be countable. Fix k, ε > 0, and u = (x, s; y, t) ∈ R4
↑ satisfying

(1.17). Then (3.13) is satisfied with δ = ε/(t − s)2/3, z = x/(t − s)2/3, w = y/(t − s)2/3, and n
sufficiently large, meaning we will ultimately be able to invoke Theorem 3.5. By the scaling in
(1.10), we have

P
(

MaxDisjtGeoCs,t([x− ε, x+ ε], [y − ε, y + ε]) ≥ k
)

= P
(

MaxDisjtGeo
(t−s)−2/3C
0,1 ([z − δ, z + δ], [w − δ, w + δ]) ≥ k

)
.

(3.14)

Now assume of the coupling of Theorem A, and suppose as in Theorem B the almost sure occurrence
of P and of the event {|Gu| = 1} for every u = (z, 0;w, 1) with z, w ∈ (t− s)−2/3C. If

MaxDisjtGeo
(t−s)−2/3C
0,1 ([z − δ, z + δ], [w − δ, w + δ]) ≥ k,

then there are ui = (zi, 0;wi, 1), i = 1, . . . , k, such that

zi ∈ [z − δ, z + δ] ∩ (t− s)−2/3C, wi ∈ [w − δ, w + δ] ∩ (t− s)−2/3C,
admitting disjoint and unique geodesics γu1 , . . . , γuk : [0, 1] → R. By Corollary 1.14, if we select

some Rn(ϕ
(i)
n ) ∈ Pn,ui for each n, then the polymers Rn(ϕ

(1)
n ), . . . , Rn(ϕ

(k)
n ) must be disjoint for all

n sufficiently large. We have thus argued that on the almost sure event

P ∩
⋂

z,w∈(t−s)−2/3C

{|G(z,0;w,1)| = 1},

we have {
MaxDisjtGeo

(t−s)−2/3C
0,1 ([z − δ, z + δ], [w − δ, w + δ]) ≥ k

}
⊂
∞⋃
N=1

∞⋂
n=N

{MaxDisjtPolyn([z − δ, z + δ], [w − δ, w + δ]) ≥ k}.

Hence

P
(

MaxDisjtGeoCs,t([x− ε, x+ ε], [y − ε, y + ε]) ≥ k
)
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(3.14)
= P

(
MaxDisjtGeo

(t−s)−2/3C
0,1 ([z − δ, z + δ], [w − δ, w + δ]) ≥ k

)
≤ P

( ∞⋃
N=1

∞⋂
n=N

{MaxDisjtPolyn([z − δ, z + δ], [w − δ, w + δ]) ≥ k}
)

= lim
N→∞

P
( ∞⋂
n=N

{MaxDisjtPolyn([z − δ, z + δ], [w − δ, w + δ]) ≥ k}
)

≤ lim inf
n→∞

P
(

MaxDisjtPolyn([z − δ, z + δ], [w − δ, w + δ]) ≥ k
)

≤ Gk
3

exp
{
Gk(log δ−1)5/6

}
δ(k

2−1)/2,

where we have used Theorem 3.5 to obtain the final inequality. �

We now prove that in the case k = 2, one can take C = R.

Proof of Corollary 1.16. Assume the occurrence of the geodesic existence/ordering events E and O
from (2.3) and (2.4). We will argue that on E ∩O, we have the following equality of events for any
u = (x, s; y, t) ∈ R4

↑ and ε > 0:

{MaxDisjtGeoRs,t((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2}

= {MaxDisjtGeoQs,t((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2}.

Since the first event is clearly implied by the second, we need only prove the reverse containment.
Once this is done, we will have shown (i) that the first event is measurable, as the second is
measurable by Proposition 3.2; and (ii) that whenever ε > 0 satisfies (1.19), the first event adheres

to the estimate (1.20), since the second event is contained in {MaxDisjtGeoQs,t([x − ε, x + ε], [y −
ε, y + ε]) ≥ 2}, which in turn adheres to (1.18).

So suppose MaxDisjtGeoRs,t((x − ε, x + ε), (y − ε, y + ε)) ≥ 2. That is, there are x1 < x2 in
(x− ε, x+ ε) and y1 < y2 in (y − ε, y + ε) admitting geodesics γ1 ∈ G(x1,s;y1,t) and γ2 ∈ G(x2,s;y2,t)

that satisfy

γ1(r) < γ2(r) for all r ∈ [s, t]. (3.15)

Then select any rationals

p1 ∈ Q ∩ (x− ε, x1), p2 ∈ Q ∩ (x2, x+ ε),

q1 ∈ Q ∩ (y − ε, y1), q2 ∈ Q ∩ (y2, y + ε),

and any γ̃1 ∈ G(p1,s;q1,t) and γ̃2 ∈ G(p2,s;q2,t). By geodesic ordering, we have

γ̃1(r) ≤ γ1(r) and γ2(r) ≤ γ̃2(r) for all r ∈ [s, t].

In light of (3.15), this implies that γ̃1 and γ̃2 are disjoint, meaning

MaxDisjtGeoQs,t((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2.

�

3.3. Geodesics in a common compact set cannot be arbitrarily close. The proof of a final
input remains.

Proof of Theorem 1.17. Let K be a given compact subset of R4
↑. For each ε > 0, define the event

Bε :=

{
∃u1 = (x1, s;w1, t), u2 = (x2, s;w2, t) ∈ K

γ1 ∈ Gu1 , γ2 ∈ Gu2
: 0 < γ2(r)− γ1(r) < ε ∀ r ∈ [s, t]

}
. (3.16)
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We wish to show P
(
P ∩

⋂
ε>0 Bε

)
= 0. Recall the random number R > 0 from Remark 2.4(c). By

possibly replacing R with a larger deterministic number, we may assume that K ⊂ [−R,R]4. If we
can show that for any integer m, the event {R ≤ m} ∩

⋂
ε>0 Bε is contained in a probability zero

event, then measurability will be implied by Remark 1.6, and

P
(
P ∩

⋂
ε>0

Bε
)

= P
(
P ∩

∞⋃
m=1

(
{R ≤ m} ∩

⋂
ε>0

Bε
))
≤
∞∑
m=1

P
(
{R ≤ m} ∩

⋂
ε>0

Bε
)

= 0.

So let us assume R ≤ m. By compactness of K, there is a deterministic number δ > 0 such that
whenever u = (x, s; y, t) ∈ K, we have t−s ≥ 6δ. Therefore, if γ1 and γ2 are as in (3.16), then there is
some r ∈ [−m,m]∩3δZ satisfying [r, r+3δ] ⊂ [s, t]. Furthermore, there are x, y, z, w ∈ [−m,m]∩εZ
such that

γ1(r), γ2(r) ∈ (x− ε, x+ ε), γ1(r + δ), γ2(r + δ) ∈ (y − ε, y + ε),

γ1(r + 2δ), γ2(r + 2δ) ∈ (z − ε, z + ε), γ1(r + 3δ), γ2(r + 3δ) ∈ (w − ε, w + ε).

Since subpaths of geodesics are again geodesics by Lemma 2.1(b), the disjointness between γ1 and
γ2 now implies

MaxDisjtGeoRr,r+δ((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2,

MaxDisjtGeoRr+δ,r+2δ((y − ε, y + ε), (z − ε, z + ε)) ≥ 2,

MaxDisjtGeoRr+2δ,r+3δ((z − ε, z + ε), (w − ε, w + ε)) ≥ 2.

See Figure 6 for an illustration. Notice that the three random variables appearing above are i.i.d.,
since the time intervals (r, r + δ), (r + δ, r + 2δ), and (r + 2δ, r + 3δ) are disjoint. Consequently, if
we define Bε,x,y,z,w,r to be the intersection of the three events in the above display, then

P(Bε,x,y,z,w,r) = P
(

MaxDisjtGeoRr,r+δ((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2
)3
, (3.17)

and our discussion has shown

{R ≤ m} ∩
⋂
ε>0

Bε ⊂
∞⋂
k=1

⋃
r∈[−m,m]∩3δZ

⋃
x,y,z,w∈[−m,m]∩k−1Z

Bk−1,x,y,z,w,r. (3.18)

Now recall the constant G from Theorem 1.15. Since we will soon take ε↘ 0, we may assume ε is
sufficiently small that

ε

δ2/3
≤ G−16, 2m

δ2/3
<
ε−1/2

δ−1/3

(
log

δ2/3

ε

)−2/3
G−2, G8 exp

{
G2
(

log
δ2/3

2ε

)5/6}(2ε)3/2

δ
≤ ε11/8.

We can then apply Theorem 1.16 to obtain

P
(

MaxDisjtGeoRr,r+δ((x− ε, x+ ε), (y − ε, y + ε)) ≥ 2
)
≤ ε11/8. (3.19)

Putting together (3.17)–(3.19) now yields the desired result:

P
(
{R ≤ m} ∩

⋂
ε>0

Bε
)
≤ P

( ∞⋂
k=1

⋃
r∈[−m,m]∩3δZ

⋃
x,y,z,w∈[−m,m]∩k−1Z

Bk−1,x,y,z,w,r

)
≤ lim sup

k→∞
P
( ⋃
r∈[−m,m]∩3δZ

⋃
x,y,z,w∈[−m,m]∩k−1Z

Bk−1,x,y,z,w,r

)
≤ lim sup

k→∞

∑
r∈[−m,m]∩3δZ

∑
x,y,z,w∈[−m,m]∩k−1Z

k−33/8

≤ lim sup
k→∞

(2m(3δ)−1 + 2)(2mk + 1)4k−33/8 = 0. �
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Figure 6. Scenario implied by Bε. Because s, t ∈ [−m,m] satisfy t − s ≥ 6δ,
there is some r ∈ [−m,m] ∩ 3δZ for which [r, r + 3δ] is a subinterval of [s, t]. This
subinterval is divided into three further subintervals, each of which admits the two
disjoint subgeodesics arising from γ1 and γ2. (Here, three is the minimum number
needed for our analysis to ensure probability 0, but it could be replaced by any
larger integer.) The points x, y, z, w ∈ [−m,m] ∩ εZ are chosen so that intervals of
radius ε about these points contain both γ1 and γ2 at the associated times.

4. Proofs of Theorems 1.9(a) and 1.10(a)

In this section, we fix x1 < x2, s < t, and prove Theorems 1.9(a) and 1.10(a), which are restated
together here.

Proposition 4.1. For any x1 < x2 and s < t, we almost surely have

Supp(µ(x1,x2,s;t)) ⊂ D(x1,x2,s;t) and Supp(µs,t) ⊂ Ds,t.

In conjunction with the next two inputs, the above containments imply the dimension lower
bounds in Theorems 1.9(b) and 1.10(b).

Theorem 4.2. [10, Theorem 1.1] For any x1 < x2 and s < t, the Hausdorff dimension of
Supp(µ(x1,x2,s;t)) is equal to 1

2 almost surely.

Theorem 4.3. For any s < t, the Hausdorff dimension of Supp(µs,t) is equal to 1
2 almost surely.

For completeness, we note that Theorem 4.2 was proved in [10] for the case x1 = −1, x2 = 1,
s = 0, and t = 1. Of course, by rescaling via (1.10), one infers the result for general x1 < x2 and
s < t.

In the next section, we prove Proposition 4.1. In Section 4.2, we establish the lower bound for
Theorem 4.3. The upper bound will be implied by Propositions 4.1 and 5.1.

4.1. Proof of Proposition 4.1: containment of supports by the exceptional sets. We begin
with the following property sequences of geodesics whose endpoints are monotonically converging.
Recall Definition 2.5 of leftmost and rightmost geodesics, whose existence is given by the almost
sure event E from (2.3). Recall also that E is implied by P, the event from Definition 2.3.
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Lemma 4.4. On the event P, the following statements hold for any u = (x, s; y, t) ∈ R4
↑. Let γL

and γR be the leftmost and rightmost geodesics in Gu.

(a) If xj ↗ x and yj ↗ y, then there is a sequence of γj ∈ G(xj ,s;yj ,t) so that γj ↗ γL uniformly.

(b) If xj ↘ x and yj ↘ y, then there is a sequence of γj ∈ G(xj ,s;yj ,t) so that γj ↗ γR uniformly.

Proof. The statements (a) and (b) are symmetric to one another, and so we will prove only (a).
Take any sequences xj ↗ x and yj ↗ y. By the assumed occurrence of E ⊃ P, there exists a

leftmost geodesic γL ∈ G(x,s;y,t), and G(xj ,s;yj ,t) is nonempty for every j. By successive applications

of Lemma 2.6, we may assume that γj(r) ≤ γj+1(r) ≤ γL(r) for all r ∈ [s, t]. Therefore, γj(r) must
converge as j →∞ to some value we call γ(r), which is at most γL(r). We claim that γ ∈ G(x,s;y,t),

and so γ is necessarily equal to γL.
First we show that γ : [s, t]→ R is continuous. In particular, the convergence γj ↗ γ is uniform

by Dini’s theorem. Suppose toward a contradiction that γ is discontinuous at some r ∈ [s, t]. We
will assume γ is right-discontinuous at r (in particular, r < t); the case of left-discontinuity is
handled in a symmetric fashion. That is, there exists some ε > 0 such that for every δ > 0, we have

sup
r′∈(r,r+δ]∩[s,t]

|γ(r′)− γ(r)| ≥ 4ε.

In particular, there is a sequence r` ↘ r such that

|γ(r`)− γ(r)| ≥ 3ε for every `.

From the pointwise convergence γj → γ, we can select indices j` ↗∞ such that

|γj`(r`)− γ(r`)| ≤ ε and |γj`(r)− γ(r)| ≤ ε for every `.

These choices yield

|γj`(r`)− γj`(r)| ≥ ε for every `.

In light of Remark 2.4(b) and the fact that r` ↘ r, this last display implies

lim
`→∞

L(γj`(r), r; γj`(r`), r`) = −∞. (4.1)

On the other hand, Remark 2.4(a) guarantees

lim sup
`→∞

|L(γj`(r`), r`; yj` , t)| <∞, (4.2a)

as well as

lim sup
`→∞

|L(γj`(r), r; yj` , t)| <∞. (4.2b)

Given that each γj` is a geodesic, we have

L(γj`(r), r; yj` , t) = L(γj`(r), r; γj`(r`), r`) + L(γj`(r`), r`; yj` , t),

and so (4.1) is in contradiction with (4.2). Consequently, γ must be continuous on all of [s, t].
To complete the proof, we need to show L(γ) = L(x, s; y, t). For any partition s = t0 < t1 <

· · · < tk = t, we have

k∑
i=1

L(γ(ti−1), ti−1; γ(ti), ti) =
k∑
i=1

lim
j→∞

L(γj(ti−1), ti−1; γj(ti), ti)

= lim
j→∞

L(xj , s; yj , t) = L(x, s; y, t),

where the first and last equalities hold by continuity of L, and the middle equality is valid because
each γj is a geodesic. Taking an infimum over all partitions, we conclude that L(γ) = L(x, s; y, t).

�
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Figure 7. Proof sketch of Lemma 4.5. In the above diagram, γL ∈ G(x1,s;yL,t)

and γR ∈ G(x2,s;yR,t). It is assumed that these two geodesics intersect so that

NonInts,t(x1, x2, y
L, yR) does not occur, and (z, r∗) is their lowest point of intersec-

tion. If y ∈ (yL, yR), then a combination of Lemmas 2.2 and 2.6(c) yields geodesics
γ1 ∈ G(x1,s;y,t) and γ2 ∈ G(x2,s;y,t) which agree at all points above and including

(z, r∗), and then follow γL and γR respectively below time r∗. As this can be done
for every y ∈ (yL, yR), we conclude that Z(x1,x2,s;t) is constant on this interval (recall
from Figure 5 how the value of Z(x1,x2,s;t)(y) can be determined), the precise constant
being L(x2, s; z, r∗)−L(x1, s; z, r∗). From definitions (1.13) and (1.14), this implies
µ(x1,x2,s;t)([y1, y2]) = µs,t([x1, x2] × [y1, y2]) = 0, meaning y /∈ Supp(µ(x1,x2,s;t)) and
(x, y) /∈ Supp(µs,t) for any x ∈ (x1, x2).

We will need one more fact from [10] which is stated as the next lemma. It links the disjointness
of geodesics to the measures µ(x1,x2,s;t) and µs,t. Although originally proved for Brownian LPP,
it needs no revision in its extension to the directed landscape. Nevertheless, given the conceptual
importance, we recall the ideas of the proof in Figure 7. Since only part (a) was explicitly stated
in [10], we also point out in Figure 7 the equivalence of part (b).

Lemma 4.5. [10, Lemma 3.4] The following statements hold on the event P.

(a) If NonInts,t(x1, x2; y
L, yR) does not occur for some yL < y < yR, then y /∈ Supp(µ(x1,x2,s;t)).

(b) If NonInts,t(x
L, xR; yL, yR) does not occur for some xL < x < xR and yL < y < yR, then

(x, y) /∈ Supp(µs,t).

Proof of Proposition 4.1. We first prove that Supp(µ(x1,x2,s;t)) ⊂ D(x1,x2,s;t) by establishing the
reverse containment for their complements. As usual, we assume for simplicity the occurrence of
P. Consider any y ∈ R \ D(x1,x2,s;t). Let γL and γR be the leftmost and rightmost geodesics in
G(x1,s;y,t) and G(x2,s;y,t), respectively. As y /∈ D(x1,x2,s;t), there must be some r∗ ∈ (s, t) such that

γL(r∗) = γR(r∗).
Next take any sequences yLj ↗ y and yRj ↘ y, along with geodesics γLj ∈ G(x1,s;yLj ,t)

and γRj ∈
G(x2,s;yRj ,t)

guaranteed by Lemma 4.4; see Figure 8a. That is, γLj ↗ γL and γRj ↘ γR, uniformly as

j →∞. So for any ε > 0, we have the following for all j sufficiently large:

‖γLj − γL‖∞ < ε and ‖γRj − γR‖∞ < ε.
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In particular, we can choose some j for which

|γLj (r)− γL(r)| < ε and |γRj (r)− γR(r)| < ε for all r ∈ [r∗, t].

Given Theorem 1.17—applied to a random compact set K ⊂ R4
↑ which accommodates the value of

r∗ relative to t—we can take ε to be so small that the above display implies

γLj (rL) = γL(rL) and γRj (rR) = γR(rR) for some rL, rR ∈ [r∗, t]. (4.3)

We now claim that

γLj (r′) = γL(r′) for some r′ ∈ (s, t) ⇒ γLj (r) = γL(r) for all r ∈ [s, r′]. (4.4)

If this implication were false, then we would have γLj (r) < γL(r) for some r ∈ (s, r′), since we already

know γLj (r) ≤ γL(r) and γLj (s) = x1 = γL(s). But Lemma 2.2(iii) shows that γLj
∣∣
[s,r′]
⊕ γL

∣∣
[r′,t]

belongs to G(x1,s;y,t), which contradicts the choice of γL as the leftmost geodesic. Therefore, our

claim (4.4) is true; by the same logic, (4.4) holds also for γRj and γR. Hence (4.3) together with

the assumption γL(r∗) = γR(r∗) implies

γLj (r∗) = γL(r∗) = γR(r∗) = γRj (r∗),

as shown in Figure 8b. In particular, NonInts,t(x1, x2, y
L
j , y

R
j ) has not occurred, and so y /∈

Supp(µ(x1,x2,s;t)) by Lemma 4.5(a).
The argument to show Supp(µs,t) ⊂ Ds,t will be similar, again establishing the contrapositive.

Consider any (x, y) ∈ R2 \ Ds,t. Let γL and γR be the leftmost and rightmost geodesics between
(x, s) and (y, t). As before, there must be some r∗ ∈ (s, t) such that γL(r∗) = γR(r∗). Using
Lemma 4.4 once more, we take sequences xLj ↗ x, xRj ↘ x, yLj ↗ y, yRj ↘ y, and consider

geodesics γLj ∈ G(xLj ,s;y
L
j ,t)

and γRj ∈ G(xRj ,s;y
R
j ,t)

such that γLj ↗ γL uniformly and γRj ↘ γR

uniformly. An illustration is provided in Figure 8c.
The same argument leading to (4.4)—but now using Lemma 2.2(i)—tells us that if γLj intersects

γL at two distinct times, then the two geodesics must agree at all intermediate times. That is,

γLj (r′) = γL(r′), γLj (r′′) = γL(r′′), s < r′ < r′′ < t ⇒ γLj (r) = γL(r) for all r ∈ [r′, r′′], (4.5)

and similarly for γRj and γR. Meanwhile, by invoking Theorem 1.17 twice—once for each of the

two intervals [s, r∗] and [r∗, t]—we can conclude that for all j sufficiently large,

γLj (r′) = γL(r′) and γLj (r′′) = γL(r′′) for some r′ ∈ [s, r∗], r
′′ ∈ [r∗, t],

and similarly for γRj and γR. By (4.5), it follows that γLj (r∗) = γL(r∗) = γR(r∗) = γRj (r∗); see

Figure 8d. Now Lemma 4.5(b) gives the desired conclusion: (x, y) /∈ Supp(µs,t). �

4.2. The lower bound in Theorem 4.3. Recall that for d ∈ [0,∞), the d-dimensional Hausdorff
content of a metric space X is

Hd(X ) := inf

{∑
i

diam(Ui)
d : {Ui} is a countable cover of X

}
. (4.6)

The Hausdorff dimension of X is

dH(X ) := inf{d ≥ 0 : Hd(X ) = 0}. (4.7)

We now prove that dH(Supp(µs,t)) ≥ 1
2 almost surely.
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(a) γLj and γRj may be initially disjoint
(b)

j sufficiently large
⇒ intersections above r∗
⇒ intersection at time r∗

(c) γLj and γRj may be initially disjoint
(d)

j sufficiently large
⇒ intersections above/below r∗
⇒ intersection at time r∗

Figure 8. Geodesics considered in the proof of Proposition 4.1. Diagrams (a) and
(b) illustrate the argument for Supp(µ(x1,x2,s;t)) ⊂ D(x1,x2,s;t), while (c) and (d)
illustrate the argument for Supp(µs,t) ⊂ Ds,t. In each case, there is assumed to be
some time r∗ ∈ (s, t) at which γL and γR intersect; the point of intersection is marked
with an open circle. If γLj intersects γL in (a), then the two geodesics coincide at all

lower times; similarly for γRj with γR. When j → ∞, both pairs must experience

intersections above time r∗, thereby forcing an intersection between γLj and γRj at

time r∗, where γL and γR agree. A slightly different argument is needed for the
scenario in (c). If γLj intersects γL at two distinct times, then the two geodesics

coincide at all intermediate times; similarly for γRj with γR. For both pairs, sending
j →∞ forces at least one intersection before time r∗ and one after time r∗. Hence
a common intersection eventually appears at r∗.
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Proof of the lower bound in Theorem 4.3. By Theorem 4.2, it suffices to show that for any x1 < x2
and s < t, we have almost surely have

dH(Supp(µ(x1,x2,s;t))) ≤ dH(Supp(µs,t)). (4.8)

To this end, we first prove that

y ∈ Supp(µ(x1,x2,s;t)) ⇒ ([x1, x2]× {y}) ∩ Supp(µs,t) 6= ∅. (4.9)

Indeed, let us check the contrapositive.
If (x, y) /∈ Supp(µs,t), then there exists an open ball Br(x, y) ⊂ R2 of radius r > 0 and centered

at (x, y), such that µs,t(Br(x, y)) = 0. For each x, define

rx := sup{r > 0 : µs,t(Br(x, y)) = 0} ∨ 0.

The map x 7→ rx is continuous, in fact with Lipschitz constant 1, as seen from the following chain
of implications (if r ≤ 0, then Br(·, ·) is taken to be the empty set):

µs,t(Brx−ε(x, y)) = 0 < µs,t(Brx+ε(x, y)) ∀ ε > 0

⇒ µs,t(Brx−δ−ε(x
′, y)) = 0 < µs,t(Brx+δ+ε(x

′, y)) ∀ x′ ∈ [x− δ, x+ δ], δ > 0, ε > 0

⇒ rx′ ∈ [rx − δ − ε, rx + δ + ε] ∀ x′ ∈ [x− δ, x+ δ], δ > 0, ε > 0

⇒ rx′ ∈ [rx − δ, rx + δ] ∀ x′ ∈ [x− δ, x+ δ], δ > 0.

Now, if ([x1, x2] × {y}) ∩ Supp(µs,t) = ∅, then rx > 0 for every x ∈ [x1, x2]. By the continuity
just observed, there is then some r > 0 such that rx ≥ r for all x ∈ [x1, x2]. Consequently,
µs,t([x1, x2]× (y − r, y + r)) = 0, which means y /∈ Supp(µ(x1,x2,s;t)). We have now proved (4.9).

Now suppose {Ui} is a countable cover of Supp(µs,t). For each i, let

Ũi := {y ∈ R : ([x1, x2]× {y}) ∩ Ui 6= ∅}.

By (4.9), {Ũi} is a cover of Supp(µ(x1,x2,s;t)). Furthermore, it is trivial that diam(Ũi) ≤ diam(Ui).
From the definitions (4.6) and (4.7) of Hausdorff content and Hausdorff dimension, the inequality
(4.8) immediately follows. �

5. Proofs of Theorems 1.9(b) and 1.10(b)

Recall from the previous section that Proposition 4.1 and Theorems 4.2 and 4.3 (or rather, just
the lower bounds from these theorems) combine to give the following almost sure statements:

dH(D(x1,x2,s;t)) ≥
1

2
and dH(Ds,t) ≥

1

2
.

In this section, we prove the matching upper bounds.

Proposition 5.1. For any x1 < x2 and s < t, we almost surely have

dH(D(x1,x2,s;t)) ≤
1

2
and dH(Ds,t) ≤

1

2
.

For Sections 5.1–5.3, let us fix x1 < x2 and s < t.

5.1. Step 1: Reduce to bounded sets. Suppose we can show the following for any R > 0.

Claim 5.2. We almost surely have

dH(D(x1,x2,s;t) ∩ [−R,R]) ≤ 1

2
and dH(Ds,t ∩ [−R,R]2) ≤ 1

2
. (5.1)

Proposition 5.1 then immediately follows by taking a countable sequence Rj ↗∞ and using the
fact that if X ⊂ Rm satisfies dH(X ∩ [−R,R]m) ≤ d for every R, then dH(X ) ≤ d. So let us fix
the value of R and aim simply to prove Claim 5.2. We will assume R is at least large enough that
x1, x2 ∈ [−R,R].
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5.2. Step 2: Relate the exceptional sets to pairs of disjoint geodesics. Recall the events
E and O(x,s;t) from (2.3) and (2.5), guaranteeing geodesic existence and geodesic ordering. We
next quote a useful lemma from [10] concerning the event NonInts,t(x1, x2; y1, y2) that every γ1 ∈
G(x1,s;y1;t) is disjoint from every γ2 ∈ G(x2,s;y2,t). It was originally stated for Brownian LPP, but
the proof carries over without modification given that we have established Lemma 2.2.

Lemma 5.3. [10, Proposition 3.5] Let ε ∈ (0, x2−x1). On the event E, if NonInts,t(x1, x2; y, y+ε)
occurs, then there exists an interval I ⊂ [x1, x2] of length ε for which

MaxDisjtGeoRs,t(I, [y, y + ε]) ≥ 2.

For brevity, let us henceforth write

Wε
(z,s;w,t) := {MaxDisjtGeoRs,t((z − ε, z + ε), (w − ε, w + ε)) ≥ 2},

Vε(s;w,t) :=
⋃

z∈ ε
2
Z∩[−R,R]

Wε
(z,s;w,t).

(5.2)

Claim 5.4. We have the following containments.

(a) On the event E,{
Ds,t ∩

(
[z, z + ε)× [w,w + ε)

)
6= ∅

}
⊂ Wε

(z,s;w,t) ∀ z, w ∈ R, ε > 0, (5.3)

(b) On the event E ∩ O(x1,s;t) ∩ O(x2,s;t),

{D(x1,x2,s;t) ∩ [w,w + ε) 6= ∅} ⊂ Vε(s;w,t) ∀ w ∈ [−R,R], ε ∈ (0, x2 − x1). (5.4)

Proof. First we prove (5.3), which is illustrated in Figure 9a. Suppose (x, y) ∈ Ds,t ∩
(
[z, z + ε)×

[w,w + ε)
)
. That is, there are γ∗1 , γ

∗
2 ∈ G(x,s;y,t) such that γ1(r) < γ2(r) for all r ∈ (s, t). Take any

x1 ∈ (x− ε, z), y1 ∈ (y − ε, w), and set x2 = x1 + ε, y2 = y1 + ε. We then have

z − ε < x1 < z < x2 < z + ε and w − ε < y1 < y < y2 < w + ε.

By Lemma 2.6 and the assumed occurrence of E , there are γ1 ∈ G(x1,s;y1,t) and γ2 ∈ G(x2,s;y2,t) such
that

γ1(r) ≤ γ∗1(r) < γ∗2(r) ≤ γ2(r) for all r ∈ (s, t). (5.5)

Of course, we also know γ1(s) = x1 < x2 = γ2(s) and γ1(t) = y1 < y2 = γ2(t), and so γ1 and γ2 are
disjoint. By our choice of endpoints, Wε

(z,s;w,t) has occurred.

Next we argue (5.4), which requires just one additional step. Supposing y ∈ D(x1,x2,s;t)∩[w,w+ε),
we have γ∗1 ∈ G(x1,s;y,t) and γ∗2 ∈ G(x2,s;y,t) such that γ∗1(r) < γ∗2(r) for all r ∈ [s, t). As before, we
choose y1 ∈ (y−ε, w) and set y2 = y1+ε, but now we consider any γ1 ∈ G(x1,s;y1,t), γ2 ∈ G(x2,s;y2,t).
By the assumed occurrence of O(x1,s;t) ∩ O(x2,s;t), we necessarily have the disjointness condition
(5.5), as portrayed in Figure 9b. Therefore, so long as ε ∈ (0, x2 − x1), Lemma 5.3 gives the
existence of some interval I ⊂ [x1, x2] of length ε such that

MaxDisjtGeoRs,t(I, (w − ε, w + ε)) ≥ MaxDisjtGeoRs,t(I, [y1, y1 + ε]) ≥ 2.

This scenario is depicted in Figure 9c. Finally, notice that I is contained in some interval of the
form (z − ε, z + ε) with z ∈ (ε/2)Z ∩ [−R,R]. Hence Vε(s;w,t) has occurred, thus proving (5.4). �
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(a) (x, y) ∈ Ds,t ∩
(
[z, z + ε)× [w,w + ε)

)

(b) y ∈ D(x1,x2,s;t) ∩ [w,w + ε) (c) Implied scenario Vε
(s;w,t)

Figure 9. Geodesics considered in the proof of Claim 5.4. In (a) and (b), the
disjointness of the solid geodesics implies the disjointness of the dashed geodesics.
The case of (a) is simpler, since the occurrence ofWε

(z,s;w,t) is immediate. Meanwhile,

deducing from (b) the occurrence of Vε(s;w,t) requires Lemma 5.3: the disjointness of

γ1 and γ2 in (b) implies the existence of γ1 and γ2 in (c).

5.3. Step 3: Use tail estimate to deduce dimension upper bound. Suppose we can show
the following for any d > 1

2 .

Claim 5.5. We almost surely have Hd(D(x1,x2,s;t) ∩ [−R,R]) = 0 = Hd(Ds,t ∩ [−R,R]2).

Claim 5.2 immediately follows by taking a countable sequence dj ↘ 1
2 . Therefore, let us fix

d > 1
2 and complete the proof of Proposition 5.1 by verifying Claim 5.5. Let η := (2d− 1)/6 > 0.



36 ERIK BATES, SHIRSHENDU GANGULY, AND ALAN HAMMOND

Proof of Claim 5.5. Let G be the constant from Theorem 1.15, and choose ε′ ∈ (0, 1] sufficiently
small that the following inequalities hold for all ε ∈ (0, ε′]:

ε

(t− s)2/3
≤ G−16, 2R

(t− s)2/3
≤
( ε

(t− s)2/3
)−1/2(

log
(t− s)2/3

ε

)−2/3
G−2, (5.6a)

G8 exp
{
G2
(

log
(t− s)2/3

ε

)5/6}( ε

(t− s)2/3
)3/2

≤ ε3/2−η, (5.6b)

εη ≤ 1

2(2R+ 1)2
. (5.6c)

The assumption (5.6a) allows us to apply Theorem 1.16 whenever the relevant spatial coordinates
belong to [−R,R], and (5.6b) makes the resulting estimate easier to write:

P(Wε
(z,s;w,t)) ≤ ε

3/2−η for all z, w ∈ [−R,R], ε ∈ (0, ε′]. (5.7)

Now take any summable sequence δj ↘ 0. Because d − 1/2 − 2η = η > 0, we can subsequently
choose a sequence εj ↘ 0 such that

lim
j→∞

ε
d−1/2−2η
j δ−1j = 0. (5.8)

For convenience, let us always choose εj so that R/εj ∈ Z. As soon as εj ≤ ε′, the estimate (5.7)
leads to

E
[ ∑
z,w∈εjZ∩[−R,R]

1W
εj
(z,s;w,t)

]
≤
(2R

εj
+ 1
)2
ε
3/2−η
j ≤ (2R+ 1)2ε

−1/2−η
j

(5.6c)
≤ ε

−1/2−2η
j . (5.9a)

Similarly, when εj ≤ ε′ ∧ (x2 − x1), we have

E
[ ∑
w∈εjZ∩[−R,R]

1V
εj
(s;w,t)

]
≤ E

[ ∑
w∈εjZ∩[−R,R]

z∈(εj/2)Z∩[−R,R]

1W
εj
(z,s;w,t)

]
≤

(2R

εj
+ 1
)( 2R

εj/2
+ 1
)
ε
3/2−η
j

≤ 2(2R+ 1)2ε
−1/2−η
j (5.9b)

(5.6c)
≤ ε

−1/2−2η
j .

Applying Markov’s inequality to (5.9) results in

P
( ∑
z,w∈εjZ∩[−R,R]

1W
εj
(z,s;w,t)

≥ ε−1/2−2ηj δ−1j

)
≤ δj , (5.10a)

P
( ∑
w∈εjZ∩[−R,R]

1V
εj
(s;w,t)

≥ ε−1/2−2ηj δ−1j

)
≤ δj . (5.10b)

Our final step will be to use these inequalities to deduce that the d-dimensional Hausdorff content
of Ds,t ∩ [−R,R]2 and of D(x1,x2,s;t) ∩ [−R,R] is zero.

Let us first consider Ds,t. If the event appearing in (5.10a) does not occur, then Claim 5.4

implies that Ds,t ∩
(
[z, z+ εj)× [w,w+ εj)

)
is nonempty for at most ε

−1/2−2η
j δ−1j values of (z, w) ∈

(εjZ∩ [−R,R])2. In this case, Ds,t∩ [−R,R]2 can be covered by ε
−1/2−2η
j δ−1j rectangles of diameter

less than 2εj , meaning that

Hd(Ds,t ∩ [−R,R]2) ≤ 2dε
d−1/2−2η
j δ−1j .
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Since
∑

j δj < ∞, it follows from (5.10a) and Borel–Cantelli that with probability one, the above

display is true for all large j. Because of (5.8), this implies Hd(Ds,t∩ [−R,R]2) = 0 with probability
one. The case of D(x1,x2,s;t) is argued in exactly the same fashion from (5.10b). �

5.4. Almost sure statement regarding fixed initial locations. This final section verifies a
claim made in Remark 1.11 which is not needed elsewhere in the paper. Before stating the result,
we note that the definition (1.12) of D(x1,x2,s;t) makes sense for x1 = x2, even though we have only
considered x1 < x2 up to this point. More precisely, y ∈ D(x,x,s;t) if and only if (x, y) ∈ Ds,t.

Theorem 5.6. For any fixed y ∈ R and s < t, it is almost surely the case that y /∈ D(x1,x2,s;t) for
every x1 ≤ x2.

Proof. Let us write Ds,t :=
⋃
x1≤x2 D(x1,x2,s;t). We wish to prove that for fixed y ∈ R, we have

P(y ∈ Ds,t) = 0. It clearly suffices to show that for any R > 0, we have

P
(
y ∈

⋃
−R≤x1≤x2≤R

D(x1,x2,s;t)

)
= 0. (5.11)

So let us fix R > 0 and define the events Wε
(z,s;w,t) and Vε(s;w,t) as in (5.2). If y ∈ D(x1,x2,s;t) for

some x1 ≤ x2 in [−R,R], then Claim 5.4, specifically part (a) if x1 = x2 and part (b) if x1 < x2,
shows that Vε(s;y,t) occurs for every ε > 0. That is,{

y ∈
⋃

−R≤x1≤x2≤R
D(x1,x2,s;t)

}
⊂
⋂
ε>0

Vε(s;y,t). (5.12)

Now let G be the constant from Theorem 1.15, and choose ε′ ∈ (0, 1] sufficiently small that the
(5.6) holds for all ε ∈ (0, ε′], say with η = 1

6 . As in the proof of Claim 5.5, we can appeal to
Theorem 1.16 and obtain

P(Vε(s;y,t)) ≤
∑

z∈ ε
2
Z∩[−R,R]

P(Wε
(z,s;y,t))

(5.7)
≤
( 2R

ε/2
+ 2
)
ε4/3 for all z ∈ [−R,R], ε ∈ (0, ε′].

By allowing ε to tend to zero, we see that P(
⋂
ε>0 Vε(s;y,t)) = 0. Hence (5.11) follows from (5.12). �
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