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Remerciements

“ L’univers (que d’autres appellent la Bibliothèque) se compose d’un

nombre indéfini, et peut-être infini, de galeries hexagonales [ . . . ]

Chacun des murs de chaque hexagone porte cinq étagères ; chaque

étagère comprend trente-deux livres, tous de même format ; chaque

livre a quatre cent dix pages ; chaque page, quarante lignes, et chaque

ligne, environ quatre-vingts caractères noirs. [ . . . ] un bibliothécaire

de génie [ . . . ] déduisit que la Bibliothèque est totale, et que ses

étagères consignent toutes les combinaisons possibles des vingt et

quelques symboles orthographiques (nombre, quoique très vaste, non

infini), c’est-à-dire tout ce qu’il est possible d’exprimer, dans toutes

les langues.”

Jorge Luis Borges – La Bibliothèque de Babel 1

En nous promenant au hasard des couloirs de la Bibliothèque, Borges nous

rappelle qu’après tout, un texte n’est jamais formé que par un agencement de

lettres placées les unes après les autres. Il en est de même pour cette thèse, dont

un exemplaire se trouve d’ailleurs déjà dans une des étagères d’une des galeries

hexagonales. Mais si on pousse la réflexion, ce qui distingue nos livres – ceux

qui constituent notre littérature – des innombrables volumes de la Bibliothèque

composés de permutations aléatoires de symboles, c’est le travail qui fut déployé

pour choisir minutieusement l’ordre de chacun de leurs symboles, afin de leur

donner un sens cohérent et intelligible. L’énergie qui a façonné ce texte, si

elle est certes pour partie le fruit des tours et détours de la pensée de son

auteur, ne serait rien sans toutes les relations que ce dernier a eues avec son

entourage. Entre toutes ces lignes, transpire une véritable aventure humaine,

dont l’aboutissement doit au moins tout autant à celui qui l’a vécue, qu’à celles

et ceux qu’il a croisés, de près ou de loin, ici ou ailleurs, en chair et en os ou

au travers de livres, ...

1Traduit de l’espagnol par Ibarra.
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fut un plaisir de pouvoir échanger avec lui sur bien d’autres sujets entre deux

équations, sur une table asiatique, dans un jardin au pied de la forêt, ou en

l’accompagnant en conférence.
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5

par leurs cours passionnants et inspirants, qui resteront toujours gravés dans
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au sein du Corps Scientifique. Ce fut l’occasion de rencontrer, à tous niveaux,
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Conventions and Notations

Conventions

In this text, a manifold is always taken to be real, Hausdorff, second-countable,

smooth and without boundary. Vector bundles are also always considered to

be smooth. Unless stated otherwise, a vector bundle means a complex vector

bundle. Hilbert spaces are always considered to be separable, and their inner

product are taken to be linear in the first argument.

Notations

In the following list:

• M and N are two manifolds

• E →M is a (real or complex) vector bundle over M

• V is a (real or complex) vector space

• f : M → N is a map

• H is a (separable) Hilbert space

Here is a list of notations that will be commonly used throughout the text:

• {?}: the set containing one point

• B(V ): set of bases of V

• 〉X1, . . . , Xn〈: vector subspace generated by X1, . . . , Xn ∈ V

• GL(V ): group of invertible linear transformations of V

• V ∗: dual vector space of V

• V ′: topological dual of a topological vector space V

11



12 Conventions and Notations

• |V |α: vector space of α−densities of a real vector space V

• T (M): tangent bundle of M

• N(Z): normal bundle of a submanifold Z ⊂M

• |TM |α: vector bundle of α−densities on M

• |E|α: vector bundle of α−densities of a real vector bundle E over M

• Λk(M): vector bundle of differential k−forms on M

• E∗: dual vector bundle of E

• E∨: functional bundle of a complex vector bundle E

• E|Z : restriction of E to a submanifold Z ⊂M (i.e. the pullback of E on

Z)

• C0(M): continuous functions on M

• C∞(M): smooth functions on M

• C0
c (M): compactly supported continuous functions on M

• C∞c (M): compactly supported smooth functions on M

• Γ0(M,E): continuous sections of E

• Γ∞(M,E): smooth sections of E

• Γ0
c(M,E): compactly supported continuous sections of E

• Γ∞c (M,E): compactly supported smooth sections of E

• D(M): topological vector space of compactly supported smooth functions

on M

• E(M): topological vector space of smooth functions on M

• D(M,E): topological vector space of compactly supported smooth sec-

tions of E

• E(M,E): topological vector space of smooth sections of E

• D′(M,E): generalized sections of E

• E ′(M,E): compactly supported generalized sections of E

• Diff(M): group of diffeomorphisms of M

• ∂αf : partial derivative of f corresponding to the multi-index α
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• f∗x : TxM → Tf(x)M : differential at x ∈M of a smooth map f : M → N

• f|U : restriction of a map f : M → N to a subset U ⊂M

• supp(u): support of a generalized section or a section u of E

• u|U : restriction of a generalized section u to a open subset U ⊂M

• 〈u, ρ〉: evaluation of a generalized section u on a section ρ

• 〈ξ,X〉: evaluation of a linear form ξ ∈ V ∗ on a vector X ∈ V

• G×χ V : associated vector bundle over M corresponding to a character χ

of a Lie group B on a vector space V and a B−principal bundle G→M

• L(H): the space of continuous linear operators on H

• U(H): the space of unitary linear operators on H

• L2(H): the space of Hilbert-Schmidt operators on H

• L1(H): the space of trace-class operators on H
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Introduction

From the very beginning, mathematics and physics have been deeply entan-

gled, and many examples in the history of science show that both fields have

benefited from the developments of each other. Without opening the question

of “Who has influenced who?”, which is usually difficult to settle, let us point

out, for instance, how physical problems have been a constant inspiration for

the theory of differential equations. On the other hand, the mathematical de-

velopment of non-Euclidean geometries has been crucial to provide a proper

setting for Einstein’s theory of general relativity. Another example of the in-

terplay between mathematics and physics is given by quantum mechanics and

noncommutative geometry, which we suggest to explore a bit deeper.

Quantization and noncommutativity

In classical physics, we consider that the observables of a physical system (that

is, the physical quantities that can be measured, such as the energy or the

position of a particle) correspond to the real valued functions on that system.

The possible measurement outcomes of an experiment are then given by all the

possible values of those functions. However it has been observed that this set-

ting fails to describe the physics at microscopic scales. For instance, the energy

spectrum of an atom might take only discrete values, a behaviour which cannot

be reproduced by continuous functions on continuous spaces. Heisenberg has

been one of the first to realize that the cure to this problem was to describe

observables by noncommutative objects, such as matrices, instead of real val-

ued functions. The possible measurement outcomes of an experiment are then

described by the spectrum of those objects, which can now be discrete. More

generally, the framework of quantum mechanics is the one of linear operators

on Hilbert spaces. To a physical system is associated a Hilbert space, and to

each observable on that system, a linear operator on that Hilbert space. Suc-

cessive measurements then correspond to the composition of the corresponding

operators. The observables are thus described by an algebra which is not com-

mutative anymore (unlike the algebra of functions). As we will see later on, the

15



16 Introduction

idea of describing a system by a noncommutative algebra has lead to a change

of paradigm in several fields, including geometry.

Naturally associated to this mathematical description of the microscopic world

is the question of understanding how to pass from the quantum world to the

classical one. Although this is a very subtle and still unsettled question, it has

been suggested that, as some scale in a quantum system growths – like the

number of particles, or the action of the system –, that system should tend

to some classical one. However, since we obviously are more familiar with the

classical world than the quantum one, a more practical approach is to work

the other way around, and to build a quantum system starting from a classical

one, in such a way that the latter is a limit of the former. This is known as

quantization, and has lead to many different quantization programmes, which

try to make the above idea precise.

For instance, let us consider the free particle on the real line. As a classical

system, it is described by the phase space R2 = {(q, p)} endowed with the sym-

plectic form ω := dq ∧ dp. The set of observables corresponds to the (smooth)

functions on R2, which carries an additional structure given by the Poisson

bracket {·, ·} corresponding to ω. The celebrated Weyl quantization gives a

way to associate a quantum system to that classical one. It was introduced

by Weyl [Wey27] and has been extensively studied since then, to finally evolve

into its modern formulation. Let us consider the Hilbert space L2(R) of square-

integrable functions on R, and fix some real number θ 6= 0. To any observable

f ∈ S(R2) (S(R2) denotes the Schwartz space, i.e. the space of rapidly de-

creasing smooth functions), we associate a bounded linear operator on L2(R)

defined, for all ϕ ∈ L2(R), by

(Ωθ(f)ϕ)(q0) =
1

2πθ

∫
R2

e
i
θ (q0−q)p f

(
q0 + q

2
, p

)
ϕ(q) dq dp. (1)

That way, we get a so-called quantization map:

Ωθ : S(R2)→ L
(
L2(R)

)
which associates to a classical observable (a function), a quantum observable,

that is, a bounded operator on a Hilbert space. The function f is called the

symbol of the Weyl operator Ωθ(f). An important point is that the composition

of Ωθ(f1) and Ωθ(f2) is again a Weyl operator, which means that the quantized

observables form an algebra. Indeed, we have that

Ωθ(f1) ◦ Ωθ(f2) =: Ωθ(f1 ?θ f2), (2)

where the function f1 ?θ f2 is given by an integral formula

(f1 ?θ f2)(x) =
1

2πθ

∫
R2×R2

e
2i
θ (ω(x,y)+ω(y,z)+ω(z,x)) f1(y) f2(z) dy dz, (3)
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which is known as the Weyl product. Since the composition of operators is as-

sociative but not commutative, ?θ gives a noncommutative associative product

on S(R2). Furthermore, if we Taylor expand (3) with respect to θ, we obtain

f1 ?θ f2 = f1f2 +
θ

2i
{f1, f2}

+

+∞∑
k=2

1

k!

(
θ

2i

)k 2∑
i1...ik=1
j1...jk=1

ωi1j1 . . . ωikjk ∂i1...ikf1 ∂j1...jkf2,
(4)

where ωij are the components of the inverse matrix of ω. This suggests to

see the product ?θ as a deformation of the usual product of functions in the

direction of the Poisson bracket, in the sense that

f1 ?θ f2
θ→0−−−→ f1f2 and

1

iθ
(f1 ?θ f2 − f2 ?θ f1)

θ→0−−−→ {f1, f2}.

Together with the fact that it might seem unnatural that the objects used in

classical physics – functions – and in quantum physics – operators – are so

radically different in nature, this has been a motivation for the development

of deformation quantization initiated by Bayen, Flato, Fronsdal, Lichnerowicz

and Sternheimer [BFF+78a, BFF+78b]. Quoting them, they “suggest that

quantization be understood as a deformation of the structure of the algebra

of classical observables, rather than as a radical change in the nature of the

observables”. In that spirit and in analogy with (4), a deformation quantization

of a Poisson manifold (M, {·, ·}) is (roughly) defined to be a map

? : C∞(M)× C∞(M)→ C∞(M)JθK,

where C∞(M)JθK denotes the formal series in θ with coefficients in C∞(M),

such that

f1 ? f2 = f1f2 +

∞∑
k=1

θk ck(f1, f2), (5)

with the ck being bidifferential operators satisfying c1(f1, f2) − c1(f2, f1) =

{f1, f2} and an additional condition corresponding to formal associativity. Let

us emphasize that (5) is only a formal expression: there is no requirement on

the convergence of the series with respect to θ. Such a ? is called a formal

star-product on (M, {·, ·}).

The subject of deformation quantization has by far exceeded the realm of

physics and quantum mechanics. From a mathematical point of view, the

natural question to know whether there exists formal star-products on a given

Poisson manifold has been gradually answered. The first existence theorems

concerned symplectic manifolds and were given by De Wilde and Lecomte

[DWL83], Gutt [Gut83], Omori, Maeda and Yoshioka [OMY91] and Fedosov

[Fed94]. It has culminated with the work of Kontsevich [Kon03], from which the
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existence and a complete classification for arbitrary Poisson manifolds follows.

It is interesting to mention that, after bringing many important contributions

to mathematics, deformation quantization is now again increasingly used in

contemporary physics, for instance in formulating quantum field theories. See

[Wal16] for a recent review.

Non-formal star-products

The idea of describing a system by a noncommutative algebra has also lead to

the development of noncommutative geometry, whose origin lies in the corre-

spondence between geometrical spaces and commutative algebras. More pre-

cisely, the commutative version of the theorem of Gelfand and Naimark [GN43]

establishes an equivalence between the category of locally compact Hausdorff

spaces and the category of commutative C∗−algebras. In analogy with the

way quantum mechanics generalizes the notion of a physical system as being

described by noncommutative operators, the latter correspondence suggests to

interpret a noncommutative C∗−algebra as the data defining a noncommuta-

tive topological space. This kind of move can be done as soon as we have some

duality between a category of geometrical spaces, and a category of commu-

tative algebraic objects. For instance, Connes [Con95] has realized that many

concepts of differential geometry – such as the notion of a Riemannian metric

– can be expressed in an algebraic way, without referring to the underlying

space. This allows to make sense of these notions also in the noncommutative

setting, which leads to noncommutative differential geometry.

However, these constructions usually involve operator algebras, hence topolog-

ical algebras. In the setting of deformation quantization, it implies that formal

star-products are not the end of the story since, being only formal series in the

parameter of deformation, they do not carry a satisfactory topological struc-

ture. This has lead to search for non-formal star-products, where f1 ?θ f2 is an

actual function, at least for small real values of the parameter θ. Let us notice

that, contrary to the case of formal star-products, the non-formal setting is still

under heavy development and far from being well understood. A systematic

study was initiated by Rieffel [Rie89]. He has suggested a definition of what

should be a continuous non-formal deformation of an algebra of functions, by

defining the notion of strict deformation quantization. However, as Rieffel no-

tices in [Rie90], the requirements of his definition are very tight, leading to

very few known examples. As a consequence, several different – sometimes

competing – definitions have arisen since then (see for instance [Lan93]), and

there seems to be no consensus yet on which one should be taken as a general

framework. Despite of this, applications of non-formal deformation quantiza-

tion have already flourished in other fields. For instance, let us mention the



19

work of Lechner and co-workers on constructing quantum field theories by using

Rieffel’s techniques [BLS11].

The present work takes part in this ongoing exploration into the world of non-

formal star-products, and we will now introduce the specific questions that

are addressed here. Let us recall that the Weyl product provides an example

of a non-formal star-product since f1 ?θ f2, given by (3), is indeed a genuine

function. Guided by this formula2, if M is a manifold, we might search for a

star-product on M of the form

(f1 ?θ f2)(x) =

∫
M×M

Kθ(x, y, z) f1(y) f2(z) dM (y) dM (z), (6)

for some function Kθ(x, y, z) which is called the three-point kernel of the star

product, and some measure dM on M .3 In order for the star-product to be

associative, the function Kθ(x, y, z) must satisfy some specific relations that

make it difficult to be built out of the box. Also, if we consider some symmetries

of M , we would like ?θ to be compatible with those symmetries. More precisely,

suppose that a Lie group G acts on M . We require the star-product to be

G−equivariant in the sense that, for all g ∈ G,

(gf1) ?θ (gf2) = g(f1 ?θ f2), (7)

where (gf)(x) := f
(
g−1 · x

)
. Notice that the Weyl product is indeed equivari-

ant under the group of transformations of R2 that leave the symplectic form

ω invariant. In [Wei94], Weinstein gives some heuristic arguments to suggest

an interesting ansatz for the function Kθ(x, y, z), which takes the form of a

fixed point formula. Let us first present it in the case of the Weyl product. To

this aim, we need to exhibit an additional structure on R2, which turns out

to be central in the construction. To each point x ∈ R2, we can associate a

transformation of R2: the central symmetry around x, given by

sx(y) = 2x− y.

Then, for each triple of points (x, y, z) ∈ R3×2, the transformation sz ◦ sy ◦ sx
admits a unique fixed point p, which is given by p = x−y+z. Corresponding to

that fixed point, there is a so-called double triangle, the triangle which admits

x, y and z as the midpoints of its edges. The situation is pictured in Figure 1.

2and also by the fact that, by the Schwartz kernel theorem, any continuous bilinear

functional on smooth compactly supported functions has a kernel.
3It is interesting to mention that, illustrating the various exploratory paths followed in

non-formal deformation quantization, other approaches to non-formal star-products do not

rely on an integral formula as in (6). For instance, motivated by the infinite dimensional

case, Schötz and Waldmann [SW] rather use purely topological techniques to construct de-

formations of some locally convex vector spaces.
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Figure 1: Double triangle defined by x, y and z in R2.

The key observation is now that the Weyl product can be written as

(f1 ?θ f2)(x) =
1

2πθ

∫
R2×R2

e
i
θS(x,y,z) f1(y) f2(z) dy dz,

where S(x, y, z) is equal to the area of the double triangle defined by x, y and z.

This situation can be generalized in the following way. We define a symmetric

space to be a connected manifold M such that for each x ∈ M , there is an

involutive diffeomorphism sx : M → M , called the symmetry at x, which

admits x as an isolated fixed point. We also require that sx depends smoothly

on x, and that, for all x, y ∈M , sx ◦sy ◦sx = ssx(y). This definition generalizes

in some sense the notion of central symmetry in R2. A symplectic symmetric

space is a symmetric space endowed with a symplectic form which is invariant

under all symmetries. On a symmetric space, there is a natural connection

invariant under all symmetries, so the notions of geodesic and double triangle

make sense, as is represented in Figure 2.

Figure 2: Double triangle defined by x, y and z in M .

Notice, however, that, contrary to the case of R2, the fixed points of sx and of

sz ◦sy ◦sx need not be unique. Within this context, the conjecture of Weinstein

is that the three-point kernel Kθ(x, y, z) should take the form

Kθ(x, y, z) =
∑

p(x,y,z)∈Fix(szsysx)

aθ(p, x, y, z) e
i
θSp(x,y,z),

where the sum is taken over the fixed points of sz◦sy◦sx, the “phase” Sp(x, y, z)

is equal to the symplectic area of any double triangle determined by the fixed



21

point p(x, y, z), and aθ(p, x, y, z) is some “amplitude” function. Notice that it

is indeed the case for the Weyl product, the fixed point of sz ◦ sy ◦ sx being

unique in that case.

Regarding the explicit construction of equivariant star-products, one of the

results of the work of Bieliavsky and Gayral in [BG15] is to provide a non-formal

star-product ?θ on the elementary normal j−groups – which correspond to the

Iwasawa factors AN of the groups SU(1, n). They are symplectic symmetric

spaces, and the star-product is equivariant for the full group of automorphisms

of M – that is, the group of transformations that intertwine the symmetries

and leave the symplectic form invariant. Also, the expression of ?θ is of the

form (6) and, being entirely explicit, it allows to see that Weinstein’s conjecture

about the fixed points – which in this case are unique – and the phase of the

kernel is indeed verified. However, it does not make transparent why it holds.

One of the motivations behind this thesis is to get a better grasp on when and

why Weinstein’s conjecture holds. More specifically, although the exact form of

the phase and the amplitude won’t be investigated in general, we would like to

understand the appearance of the fixed points in the expression of the kernel of

the star-product. As a main tool towards that objective, we will need to prove

a fixed point formula for the distributional trace of a family of operators. Let

us therefore leave for a moment the world of quantization and star-products,

in order to introduce this notion.

The distributional trace

In group representation theory, the character of a finite-dimensional represen-

tation π of a group G is the function on G given by the trace of the operators,

that is, for g ∈ G, by χπ(g) := Tr (π(g)). The study of characters of a group

turns out to be a very powerful tool as they carry a lot of information about the

structure of that group. For instance, character theory is essential in the classi-

fication of finite simple groups, as well as in the classification of representations

of groups. We would naturally like to have such a tool for infinite-dimensional

representations, but it is not readily available. Indeed, if U is a unitary irre-

ducible infinite-dimensional representation of a Lie group G on some Hilbert

space H, for g ∈ G, the operator U(g) is in general not trace-class4. However,

if ρ is a smooth compactly supported function on G, dg the Haar measure on

G and ϕ ∈ H, we can consider

U(ρ)(ϕ) :=

∫
G

ρ(g)U(g)(ϕ) dg,

4For instance, the operator corresponding to the neutral element of the group is the

identity operator.
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which, in the good cases, gives a well-defined trace-class operator. This leads

to the notion of a “distributional trace”, defined as the linear mapping

ρ 7→ Tr
(
U(ρ)

)
.

In the case of semisimple Lie groups for instance, this distributional trace

has been extensively studied by Harish-Chandra (see, for instance, [HC54,

HC55, HC66]), leading to some results that generalize theorems about finite-

dimensional representations.

Although the previous construction shows the interest to consider a distribu-

tional trace and already has a lot of applications, the notion of distributional

trace still makes sense far beyond the world of group theory and Hilbert spaces.

More generally, it can be considered as soon as we have a (nice) family of op-

erators – not necessarily on a Hilbert space – indexed by some manifold M

– which is not necessarily a group. Without caring too much about the de-

tails (see Chapter 1 for precise definitions and statements), here is how it goes.

Let M and Q be two manifolds, let dx and dq be two measures on M and Q

respectively, and let

τ : M ×Q→ Q ; (x, q) 7→ τx(q),

r : M ×Q→ C ; (x, q) 7→ rx(q)
(8)

be smooth maps5. For each x ∈ M , we can consider the endomorphism Ω̃(x)

of C∞(Q) defined, for all ϕ ∈ C∞(Q) and q ∈ Q, by

(Ω̃(x)ϕ)(q) = rx(q)ϕ
(
τx(q)

)
. (9)

Then, for all f ∈ C∞0 (M), we define the endomorphism Ω(f) of C∞(Q) by

Ω(f)ϕ =

∫
M

f(x) Ω̃(x)ϕ dx. (10)

If Ω(f) admits a smooth kernel, that is, a smooth function kf (q, q′) such that

(Ω(f)ϕ)(q) =

∫
Q

kf (q, q′)ϕ(q′) dq′, (11)

we can consider its smooth trace tr
(
Ω(f)

)
:=
∫
Q
kf (q, q) dq. The distributional

trace of the family Ω̃ is then defined as

tr Ω : C∞0 (M)→ C ; f 7→ tr
(
Ω(f)

)
. (12)

A natural question is then to know whether tr Ω gives a genuine distribution

– that is, whether it is continuous –, and, moreover, whether there exists a

function tr Ω(x) such that tr Ω(f) =
∫
M
f(x) tr Ω(x) dx. We will see that this

question is of particular relevance for the computation of the kernel of a star-

product.

5τ might be, for instance, the action of a Lie group M on a manifold Q.
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Goals of the thesis

• The goal of the first chapter is, given a family of operators as in (9), to

show that the map (12) defines a distribution. Moreover, under some

conditions on the fixed points of τ , that distribution is smooth, and its

kernel is given by a fixed point formula:

tr Ω(f) =

∫
M

f(x)

 ∑
p=τx(p)

rx(p)

|det(id− (τx)∗p)|

 dx, (13)

where the sum is taken over the fixed points of τx. We will actually prove

such a result in the more general context where Ω̃(x) is acting on sections

of a vector bundle over Q, and we won’t need to fix a measure on M and

on Q.

Fixed point formulas appear in many places in the mathematical liter-

ature. Among them, a very much celebrated result is the Atiyah-Bott-

Lefschetz fixed point formula that Atiyah and Bott have proved in [AB67].

In [AB68, Section 5], they apply this formula to express the distributional

trace of some group representations as a fixed point formula, leading to

something similar to (13). We could be tempted to use the same ap-

proach to handle our situation, but the Atiyah-Bott-Lefschetz fixed point

formula only covers the case of transformations of a compact manifold

Q, and their arguments would be difficult to extend to the non-compact

case. We will therefore follow a different approach, based on the work

of Guillemin and Sternberg [GS90]. Besides its interest on its own, this

result will also be a crucial ingredient in order to solve the next question.

• The aim of the second chapter is, in the spirit of Weinstein’s conjecture,

to understand when a fixed point formula for the kernel of a star-product

on a symmetric space can actually hold, and to prove it, at least in a

particular framework. To this end, we define a setting where an equiv-

ariant quantization map à la Weyl can be constructed (we will give more

details on this below). We then identify some hypotheses under which

we can show that this quantization map allows to define a non-formal,

equivariant, associative star-product. Then, our main result is to prove,

in this setting, an explicit expression for the kernel of the star product, as

a fixed point formula. Finally, as an example, we show that for elemen-

tary normal j-groups, all our hypotheses are satisfied, which sheds a new

light on the appearance of the fixed points in the star-product of [BG15].

The relevance of the result about distributional traces to address our second

question lies in the following observation. The computation of the kernel of

the star-product boils down to the computation of the trace of some operator.

We will show that this operator is of the form Ω(f) as in (10), and that its
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trace coincides with its smooth trace. Therefore, applying (13) will provide an

expression of the kernel as a sum over the fixed points.

Structure of the thesis

The thesis is divided into two chapters, each of them corresponding to one of the

objectives previously stated. We give here a brief overview of their structure,

and refer to each of them for precise definitions and statements.

Chapter 1

This chapter is dedicated to the study of the distributional trace of a family of

operators, in order to express it as a fixed point formula.

In Section 1.2, we first investigate the subject of integration on manifolds. We

recall the notion of densities, that are objects that can be naturally integrated

on any manifold, without any further choice (such as an orientation). Densities

are here defined for any real vector bundle, not only the tangent bundle.

Section 1.3 introduces the notion of distributions on manifolds and, more gen-

erally, generalized sections of vector bundles. Standing as generalizations of

functions, they are the objects we need to define a distributional trace in the

same way as in equation (12). Generalized sections are also very useful to study

linear operators on functional spaces.

This is what we explore in Section 1.4, where general operators are introduced.

They provide a more general setting to handle linear operators between func-

tional spaces than operators on Hilbert or Banach spaces, but they still admit

those as particular cases. We discuss the Schwartz kernel theorem which (very

roughly) asserts that, like in (11), any general operator admits a kernel, al-

though it might be a generalized section instead of a function. The kernel of an

operator will be a key tool for us since a critical step of our construction will

be to express the distributional trace as a sequence of operations on the kernel

of the operators. Also, the study of the regularity of the kernel of an operator

reveals a lot of its properties. For instance, a particular class of operators is

formed by those whose kernel is a smooth function. In this case, we define

the smooth trace as the integral along the diagonal, and discuss the delicate

question of its link with the usual trace of bounded linear operators on Hilbert

spaces.

In Section 1.5, we introduce the operations we need to manipulate the kernel

of operators. We recall how the usual notions of pullback and pushforward

of a function by a smooth map f can be extended to generalized sections.

However, this extension is not completely general since we have to restrict the
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kind of map f we consider if we want the definition to work for any generalized

section6. For instance, the pullback is only defined if f is a submersion.

In Section 1.6, we introduce a particularly important class of generalized sec-

tions – called δ−sections. They correspond to the integration over a subman-

ifold, and are described by their so-called symbol, a smooth section on the

submanifold. We show that the pullback of a δ−section can be defined for

more general maps than submersions. We also explicitly describe, in terms of

its symbol, the transformation of a δ−section under the pullback and pushfor-

ward operations. This is a powerful feature of δ−sections since their symbol,

being an actual section, is by far easier to manipulate than the corresponding

generalized section.

δ−sections turn out to be crucial in our construction because the kernels of the

general operators that we deal with – namely, pullback of sections of vector

bundles, that have a form similar to (9) – are precisely given by δ−sections, as

we show in Section 1.7. We also define a notion of trace for those operators,

and express it as a fixed point formula.

Finally, in Section 1.8, we introduce the notion of a family of geometric mor-

phisms as a data similar to (8), to which we can associate a family of pullback

operators as in (9). We then construct the corresponding distributional trace

as in (12). We show that it is a distribution which, under some conditions, is

smooth. Moreover, it is shown that its kernel is given by a fixed point formula

similar to (13).

Chapter 2

The second chapter comes back to the world of quantization, and aims to

understand the appearance of fixed points in the construction of non-formal

star-products on symmetric spaces.

In Section 2.1, we recall some elementary facts about symmetric spaces, which

are the kind of spaces we are interested in. In particular, we present three

different points of view, each of them shedding another light on this notion.

Section 2.2 is dedicated to the construction of an equivariant quantization map.

It is based on the work of [BG15], adapted to a more general context. We first

specify the kind of spaces we are working with and the additional structure

that we ask for. This leads to the definition of a nearly-quantum symmetric

space, and its local version. In particular, it underlies a symmetric space M

and a group G acting on M . Then, we identify a Hilbert space Hχ naturally as-

sociated to a nearly-quantum symmetric space, and we give several equivalent

6We will see however that we can consider more general maps f if some compatibility

between f and the generalized section is satisfied.
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realizations of that Hilbert space. In the same spirit as (1) in the Weyl quanti-

zation, we construct a first quantization map Ω : L1(M)→ L(Hχ), which gives

bounded operators on Hχ. It is G-equivariant in the sense that, for all g ∈ G,

Ω(gf) = U(g)Ω(f)U(g)−1 for some unitary representation U of G.7

However, this quantization map, although very natural, turns out to be not

very convenient. We thus turn to the construction of a slightly modified quan-

tization map Ωm, depending on a functional parameter m. A major difference

with Ω is that the associated operators do not give bounded operators on Hχ,

but are rather defined as linear operators acting on smooth sections. We are

then able to realize those operators as the pullback operators associated to a

family of geometric morphism, as defined in the previous chapter.

In Section 2.3, we recall several notions about trace-class and Hilbert-Schmidt

operators. We also briefly discuss when our quantization map gives genuine

Hilbert-Schmidt operators.

Now we have built a quantization map Ωm(f), we would like to use it to define

a star-product by the formula

Ωm(f1 ?m f2) := Ωm(f1) ◦ Ωm(f2).

This “dequantization procedure” is the subject of Section 2.4, where we look

for an inverse of the quantization map. In order to do so, we require that the

quantization map gives Hilbert-Schmidt operators. This allows the definition

of a symbol map σm which is the inverse of the quantization map if the latter

extends to a unitary operator between L2(M) and the Hilbert space L2(Hχ)

of Hilbert-Schmidt operators on Hχ. We are then able to define a deformed

associative product ?m on L2(M). The latter is G-equivariant because the

quantization map is.

The second part of the section leads to the main result of the chapter, which is

to give an explicit expression of the kernel of the previously constructed star-

product. That kernel is given by computing the trace of an operator, which we

compute using the results of the previous chapter. We rely on the fact that the

operator is associated to a family of geometric morphisms (τ, r) like in (8), so

we can compute its trace using the results proved in Chapter 1, which leads to

a fixed-point formula of the kind

(f1 ?m f2)(x) =

∫
M2

f1(y)f2(z)

 ∑
p=τ(x,y,z)(p)

r(x,y,z)(p)

|det(id− (τ(x,y,z))∗p)|

 dy dz,

where the sum is taken over the fixed points of τ(x,y,z). Notice that we have

an explicit expression of τ and r in terms of the data of the nearly-quantum

symmetric space.

7See (7) for the definition of gf .
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Finally, in Section 2.5, we apply the previous results to the particular case of

elementary normal j-groups. After reviewing their definition and structure, we

associate to each of them a nearly-quantum symmetric space. We then show

that all the hypotheses needed in our previous construction are satisfied. This

leads to an explicit expression of the star-product in terms of the fixed points,

which coincides with the star-product constructed in [BG15].
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Chapter 1

A fixed-point formula for

the distributional trace

1.1 Introduction

In this chapter, we are going to study the distributional trace of a family of

operators, in order to express it as a fixed point formula. Let us begin with an

introductory example, which illustrates what is going on.

Example 1.1.1. Let M := R2 and Q := R and consider the smooth maps

τ : M ×Q→ Q ;
(
(a, l), q

)
7→ τ(a,l)(q) := 2a− q,

r : M ×Q→ C ;
(
(a, l), q

)
7→ r(a,l)(q) := e2i(a+q)l.

(1.1)

This datum gives a family {Ω(x)}x∈M of linear operators Ω(x) : C∞(Q) →
C∞(Q) given, for every (a, l) ∈M , ϕ ∈ C∞(Q) and q ∈ Q, by

(Ω(a, l)ϕ)(q) = r(a,l)(q) . ϕ
(
τ(a,l)(q)

)
(1.2)

= e2i(a+q)lϕ(2a− q).

Then, for every ρ ∈ C∞c (M), we can form the linear operator Ω(ρ) : C∞(Q)→
C∞(Q) defined, for every (a, l) ∈M , ϕ ∈ C∞(Q) and q ∈ Q, by

(Ω(ρ)ϕ)(q) =

∫
R2

ρ(a, l) (Ω(a, l)ϕ)(q) da dl (1.3)

=

∫
R2

ρ(a, l) e2i(a+q)lϕ(2a− q) da dl

=

∫
R

(
1

2

∫
R
ei(q

′+3q)lρ

(
q + q′

2
, l

)
dl

)
ϕ(q′) dq′,

29
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where we have made the change of variable q′ = 2a−q. If we define kρ(q, q
′) :=

1
2

∫
R e

i(q′+3q)lρ
(
q+q′

2 , l
)
dl, this operator can be written as

(Ω(ρ)ϕ)(q) =

∫
R
kρ(q, q

′) ϕ(q′) dq′, (1.4)

The function kρ(q, q
′) is called the kernel of the operator Ω(ρ). Inspired by the

finite-dimensional situation, we can think of kρ(q, q
′) as the matrix coefficients

of the operator Ω(ρ). Following that analogy, its trace would be the sum of the

diagonal elements, that is, the integral over the diagonal (we denote it by tr

instead of Tr to emphasize that those two notions do not coincide in general,

as we discuss in Subsection 1.4.4):

tr (Ω(ρ)) :=

∫
R
kρ(q, q) dq =

∫
R2

e4ial

2
ρ (a, l) da dl.

The linear map

tr Ω : C∞c (M)→ C ; ρ 7→ tr (Ω(ρ)) (1.5)

turns out to be continuous for some topology on C∞c (M) and is therefore called

a distribution on M . This is the definition of the distributional trace of the

family of operators {Ωx}x∈M . In this case, it has the functional form

tr (Ω(ρ)) =

∫
R2

tr Ω(a, l) . ρ (a, l) da dl, (1.6)

for the function, tr Ω(a, l) := e4ial/2. The striking point is that this function is

smooth, and given by a fixed point formula:

tr Ω(a, l) =
∑

p= τ(a,l)(p)

r(a,l)(p)∣∣det(id− (τ(a,l))∗p)
∣∣ , (1.7)

where the sum is taken over the fixed points of τ(a,l) : Q→ Q (in this example,

we only have one such fixed point). ♦

The goal of this chapter is to show that this situation is not restricted to this

particular example, and is even valid in the more general context of operators

between sections of vector bundles.

As we already mentioned in the introduction, formula (1.7) is very similar to

the Atiyah-Bott-Lefschetz fixed point formula [AB67, AB68]. However, their

result only concerns compact manifolds Q and, in the next chapter, we will have

to consider transformations of non-compact manifolds Q – this was already the

case in Example 1.1.1. The arguments of Atiyah and Bott being difficult to

extend to the non-compact case, we will follow a different approach, based

on the work of Guillemin and Sternberg [GS90, Chapter 6]. Although their

fixed point formula is also restricted to transformations of a compact manifold,
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we identify some conditions that allow to extend it to the non-compact case.

We give here a detailed exposition of the construction which, in our opinion,

renders the appearance of the fixed points in the computation of traces very

transparent.

Before getting to the heart of the matter, let us summarize how the construction

of the introductory example will be generalized in this chapter, and how we will

prove the fixed point formula. This is just a sketchy description, full details

and precise definitions and hypotheses will be given later on. Given a manifold

M and a vector bundle E → Q over a manifold Q, suppose that we have a

locally transitive1 smooth map:

τ : M ×Q→ Q ;
(
x, q
)
7→ τx(q)

and, for each x ∈M and q ∈ Q, a linear map

rx(q) : Eτx(q) → Eq

such that the dependence on x and q is smooth. We call this datum a family

of geometric morphisms of E indexed by M . Then, we can consider the family

of operators {Ω(x)}x∈M acting on smooth sections of E by pullback, that is,

for ϕ ∈ Γ∞(Q,E) and q ∈ Q:

(Ω(x)ϕ)(q) = rx(q)ϕ
(
τx(q)

)
.

We will see that the kernel of those operators are given by δ−sections. The

latter are a special class of distributions – more generally, generalized sections

–, which are described by their so-called symbol, which is a genuine section of a

vector bundle. Their main advantage is that several operations on δ-sections –

such as the pullback and the pushforward – can be described in terms of their

symbol, which is a lot easier to manipulate (this will be the subject of Section

1.6). We will be able to make sense of the “trace” of Ω(x) as a sequence of

operations on the corresponding δ−section. By tracking how its symbol changes

under those operations, we will show that the trace, when well-defined, is given

by a fixed point formula:

“ tr (Ω(x)) ” =
∑

p= τx(p)

Tr (rx(p))∣∣det(idp − (τx)∗p)
∣∣ ,

where the sum is taken over the fixed points of τx : Q→ Q, idp is the identity

map on Tp(Q) and Tr (rx(p)) is the (algebraic) trace of the homomorphism rx(p)

of the finite-dimensional vector space Ep. Next, for every compactly supported

density ρ on M , we will form the operators Ω(ρ) defined, for ϕ ∈ Γ∞(Q,E)

1A smooth map τ : M×Q→ Q is locally transitive if and only if, for every (x, q) ∈M×Q,

the linear map Tx(M)→ Tτx(q)(Q) ; X 7→ τ∗(x,q) (X, 0) is surjective.
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and q ∈ Q, by:2

(Ω(ρ)ϕ)(q) =

∫
M

ρ(x)⊗ (Ω(x)ϕ)(q) =

∫
M

ρ(x)⊗
(
rx(q)ϕ

(
τx(q)

) )
.

We will show that, because of the local transitivity of τ , these operators have a

smooth kernel, i.e. there exists a smooth section kρ of some vector bundle over

Q×Q such that (Ω(ρ)ϕ)(q) =
∫
Q
kρ(q, q

′)ϕ(q′).3 If we suppose that, for each

ρ, Tr (kρ) is integrable along the diagonal, Ω(ρ) has a well-defined smooth trace

tr (Ω(ρ)) :=
∫
Q

Tr (kρ(q, q)). This smooth trace can be expressed as a sequence

of pullback and pushforward operations on some δ−section. Using the results

of Section 1.6, this will allow us to show that the linear map ρ 7→ tr (Ω(ρ)) is a

distribution on M , which in addition is smooth. That is, there exists a smooth

function tr Ω on M such that

tr (Ω(ρ)) =

∫
M

tr Ω(x) ρ(x).

Finally, we will identify that function with tr (Ω(x)), which will lead us to the

fixed point formula

tr (Ω(ρ)) =

∫
M

 ∑
p= τx(p)

Tr (rx(p))∣∣det(id− (τx)∗p)
∣∣
 ρ(x).

1.2 Intrinsic integration on manifolds

On Rn, the Lebesgue measure provides a canonical way to integrate func-

tions. On a generic n dimensional manifold, one can consider the measures

such that, in each coordinate charts, their pushforward by the chart is equiv-

alent to the Lebesgue measure by a smooth non-vanishing function. We call

them Lebesguian measures on the manifold. However, there are many such

Lebesguian measures, and no canonical one in general. This implies that there

is no canonical way to integrate functions on a manifold. The workaround is

usually to work with differential n−forms, that are objects that can be in-

tegrated in a natural way without the need to fix a measure. However, this

requires the choice – and the existence – of an orientation on the manifold. This

can be avoided by introducing α−densities. Like n−forms, they are scalar func-

tions on the space of bases of a vector space but which are transformed under

a change of basis by the absolute value of the determinant taken to the power

2The tensor product inside the integral gives a density on M valued in Eq , which is an

object that can be naturally integrated to give an element of Eq .
3In order to explain what the integrand means, let us say, for the moment that kρ(q, q′) is

a homomorphism from Eq′ to the densities on Q valued in Eq , so the integral is an element

of Eq . This will be made more precise later on.
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α. When that power is equal to one and the vector space is the tangent space

at a point, we can make sense of the integral of a density in a way similar

to the integration of differential forms. Furthermore, 1/2−densities allow to

define an intrinsic Hilbert space of square-integrable sections associated to the

manifold. We will first define and study α−densities on real vector spaces, and

then extend the notion to manifolds and real vector bundles.

1.2.1 Densities on real vector spaces

Let V be a real vector space of dimension n. We denote by B(V ) the set of

bases of V . GL(n) acts on the right on B(V ) by matrix multiplication. For

e = (e1, . . . , en) ∈ B(V ) and A ∈ GL(n), this action is defined by

e 7→ e ·A := (e1, . . . , en) ·A. (1.8)

Definition 1.2.1. Let V be a real vector space and α ∈ R. An α−density on

V – or a density of order α on V – is a map

λ : B(V )→ C

such that, for all e ∈ B(V ) and A ∈ GL(n), we have:

λ(e ·A) = |detA|αλ(e). (1.9)

The set of all α−densities on V forms a complex vector space, which will be

denoted by |V |α. An α−density λ on V is said to be positive if, for every

e ∈ B(V ), λ(e) ∈ R and λ(e) > 0. A 1−density on V is simply called a density

on V and the space of densities on V is denoted by |V |.

Remark 1.2.2. Since GL(n) acts transitively on B(V ), the transformation law

(1.9) implies that an α−density is completely determined by its value on one

basis. Hence, |V |α is a one-dimensional complex vector space. C

Remark 1.2.3. For every ω ∈ Λn(V ), we can define an α−density |ω|α on V by

the formula |ω|α(e) := |ω(e1, . . . , en)|α for all e = (e1, . . . , en) ∈ B(V ). It is a

positive density if ω is not zero. C

Lemma 1.2.4. Let α ∈ R and A, B and C real vector spaces. Suppose we

have a short exact sequence

0→ A
β−→ B

γ−→ C → 0.

Then, there is a canonical isomorphism

|B|α ' |A|α ⊗ |C|α.
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Remark 1.2.5. Before going into the proof, let us make a comment on how

this lemma should be understood. At first sight, it might look trivial because

the space of densities on a vector space is 1−dimensional, so the two sides are

clearly isomorphic. However, it is not canonical without additional data. The

statement is that, in this situation, there is a natural isomorphism associated

to the maps β and γ. The proof is a basic exercise in linear algebra. We detail

it here in order to explicitly show the construction of the isomorphism, which

we will need several times throughout this text. C

Proof. Let α ∈ R, λ1 ∈ |A|α and λ2 ∈ |C|α. To define an α−density λ on B, it

is sufficient to define it on a basis of B. Let us choose a basis (a1, . . . , am) of

A and denote ei = β(ai). Then, because β is injective, (e1, . . . , em) is a tuple

of linearly independent vectors, which can be extended to a basis of B

e = (e1, . . . , em, em+1, . . . , en).

Then, because the sequence is exact, (γ(em+1), . . . , γ(en)) forms a basis of C.

This allows to define

λ(e) := λ1(e1, . . . , em) λ2(γ(em+1), . . . , γ(en)).

Let us see that, as a density, λ does not depend on the choice of (a1, . . . , am)

and (em+1, . . . , en). Another choice would lead to a basis f = (f1, . . . , fn) of B

that would be related to e by a transformation A ∈ GL(n) of the form

f = e ·
(
A1 A12

0 A2

)
,

where A1 ∈ GL(m), A2 ∈ GL(n −m) and A12 ∈ Mat(m,n −m). Notice that

detA = detA1 detA2. We would have

(γ(fm+1), . . . , γ(fn)) = (γ(em+1), . . . , γ(en)) ·A2

and, therefore:

λ1(f1, . . . , fm) λ2(γ(fm+1), . . . , γ(fn))

= λ1((e1, . . . , em) ·A1) λ2((γ(em+1), . . . , γ(en)) ·A2)

= |detA1|α |detA2|α λ1(e1, . . . , em) λ2(γ(em+1), . . . , γ(en))

= |detA|α λ(e) =: λ(f),

which shows that the definition does not depend on the choice of basis. This

construction gives a non-zero bilinear map |A|α × |C|α → |B|α which induces

an isomorphism |A|α ⊗ |C|α → |B|α.

In several occasions, we will need to decompose a density with respect to a vec-

tor subspace decomposition, which is possible as a consequence of the previous

lemma.
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Corollary 1.2.6. Let α ∈ R, W a real vector space and U, V ⊂ W vector

subspaces such that W = U ⊕ V . Then there are canonical isomorphisms

|W |α ' |U |α ⊗ |W/U |α,
|W |α ' |U |α ⊗ |V |α.

Proof. We apply the previous lemma to the short exact sequences

0→ U
ιU−→W

πW/U−−−−→W/U → 0,

0→ U
ιU−→W

πV−−→ V → 0,

where ιU denotes the inclusion of U in W , πW/U is the natural projection and

πV is the projection corresponding to the direct sum W = U ⊕ V .

An isomorphism between real vector spaces allows to select a particular iso-

morphism between their spaces of α−densities. Again, the proof only deals

with basic algebra, but since we will need the explicit form of the isomorphism

several times, we detail it here.

Lemma 1.2.7 (Pushforward of densities by isomorphisms). Let V and W be

real vector spaces, j : V → W an isomorphism and α ∈ R. Then, j induces a

canonical isomorphism

|j| : |V |α → |W |α.

Proof. Let λ ∈ |V |α. For any basis e = (e1, . . . , en) of W , we denote by j−1(e)

the basis of V given by (j−1(e1), . . . , j−1(en)). We define |j|(λ) : B(W ) → C
by the formula

|j|(λ)(e) := λ(j−1(e)),

for any e ∈ B(W ). By linearity of j, for all A ∈ GL(n) and e ∈ B(V ), we have

j−1(e · A) = j−1(e) · A, which implies that |j|(λ) is an α−density on W . |j|
is an isomorphism since it is a non-zero linear map between one dimensional

complex vector spaces.

Remark 1.2.8 (Multiplication and conjugation of densities). Let V be a real

vector space and α, β ∈ R.

The product of λ ∈ |V |α and µ ∈ |V |β is defined by

λ.µ : B(V )→ C ; e 7→ λ(e).µ(e).

It is readily verified that it is a density of order α + β on V . This induces a

linear map

|V |α ⊗ |V |β ∼−→ |V |α+β

which is an isomorphism since it is a non-zero linear map between one dimen-

sional complex vector spaces.

The complex conjugation of λ ∈ |V |α is defined by

λ̄ : B(V )→ C ; e 7→ λ(e).
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It is also a density of order α on V . C

1.2.2 Densities on manifolds

Let A → M be a real vector bundle of rank n over a manifold M and α ∈ R.

We will define a complex line bundle over M whose fiber at x is |Ax|α. The

construction is as follows. Let B(A) → M be the frame bundle of A. It

is a GL(n)−principal bundle for the action (1.8) whose fiber at x is B(Ax).

Consider the representation of GL(n) on C given by the multiplication by the

character

δα : GL(n)→ C ; a 7→ |det a|−α.

Definition 1.2.9. Let A→M be a real vector bundle of rank n over a manifold

M and α ∈ R. The complex vector bundle |A|α over M is defined as the

associated vector bundle4

|A|α := B(A)×δα C.

Proposition 1.2.10. Let A → M be a real vector bundle of rank n over a

manifold M and α ∈ R. Then, |A|α is a trivial line bundle over M , whose fiber

at x ∈M is |Ax|α.

Proof. By construction, |A| is a complex line bundle. Let x ∈ M . To any

[(p, z)] ∈ (|A|α)x, we can associate the α−density λ ∈ |Ax|α on Ax defined by

λ(p) := z. It is well defined since any other representative of the equivalence

class would be of the form (p ·a, |det a|αz) and would give the same α−density.

This way, we get a non-zero linear map (|A|α)x → |Ax|α between one dimen-

sional vector spaces, hence an isomorphism. To see that |A| is a trivial line

bundle, notice that its transition functions are all positive by definition of the

character δα. Using a partition of unity associated to a trivialization of |A|α,

we can thus construct a smooth positive section of |A|α. It is a nonvanishing

smooth section, and |A|α is therefore trivial.

Definition 1.2.11. Let A → M be a real vector bundle of rank n over a

manifold M and α ∈ R. A section ρ of the vector bundle |A|α is called positive

if ρ(x) is positive for all x ∈M . From the previous Proposition, there exists a

smooth positive section of |A|α.

Lemma 1.2.12. Let M be a manifold, α ∈ R. If we have an exact sequence

of real vector bundles over M

0→ A→ B → C → 0,

4Recall that B(A) ×δα C :=
B(A)×C
∼ , where (p, z) ∼ (p · a, δα(a−1)z) for all p ∈ B(A),

z ∈ C and a ∈ GL(n).
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then, we have a canonical isomorphism of complex vector bundles over M

|B|α ' |A|α ⊗ |C|α.

In particular, the result holds if B = A⊕ C.

Proof. This is an immediate consequence of Lemma 1.2.4 and 1.2.6.

A particularly important case of this construction is when it is applied to the

tangent bundle TM .

Definition 1.2.13. Let M be a manifold and α ∈ R. The complex vector

bundle |TM |α is called the α−density bundle of M . A section of |TM |α is

called an α−density on M . A positive α−density is a section ρ of |TM |α such

that ρ(x) is positive for all x ∈M . An α−density is smooth (resp. continuous)

if the section is smooth (resp. continuous). In the case α = 1, we drop the α

from the terminology and simply talk about densities.

Remark 1.2.14. By Proposition 1.2.10, |TM |α is a trivial line bundle, i.e. there

exists a non-vanishing smooth α−density, but not a canonical one. However,

some specific contexts allow to choose a preferred non-vanishing smooth den-

sity:

• If the manifold is orientable, a non-vanishing smooth volume form ν ∈
Γ∞(M,Λn(M)) gives a non-vanishing smooth density |ν|α by the formula

|ν|α(x)((e1, . . . , en)) := |ν(x)(e1, . . . , en)|α

for all x ∈M and (e1, . . . , en) ∈ B(TxM).

• On a symplectic manifold (M,ω) of dimension 2n, ω∧n is a non-vanishing

smooth volume form, so |ω∧n|α is a non-vanishing smooth α−density.

• Let U ⊂ Rn an open set with coordinates (x1, . . . , xn). We denote by

|dx1 . . . dxn|α the smooth α−density corresponding to the Lebesgue vol-

ume form dx1∧· · ·∧dxn. For any smooth α−density ρ on U , there exists

a unique complex valued function fρ on U such that ρ = fρ |dx1 . . . dxn|α.

C

Definition 1.2.15. Let Φ : N → M be a smooth map between two manifolds

of dimension n and α ∈ R. The pullback by Φ of an α−density ρ on M is the

α−density Φ∗ρ on N defined, for y ∈ N and e ∈ B(TyN), by

(Φ∗ρ)(y)(e) := ρ(Φ(y))(Φ∗y (e)).

Remark 1.2.16. If Φ is a local diffeomorphism and ρ is smooth, then Φ∗ρ is

also smooth. When N = M , this gives a right action of the group Diff(M) on

Γ∞(M, |TM |α). C
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In the special case of open subsets of Rn, the transformation can be computed

more explicitly. In particular, this allows to describe how α−densities transform

under smooth maps in local coordinates.

Proposition 1.2.17. Let U and V be two open subsets of Rn, Φ : U → V a

smooth map, α ∈ R and f : V → C a function. Denote by x1, . . . , xn (resp.

y1, . . . , yn) the coordinates on U (resp. on V ). Then,

Φ∗
(
f . |dy1 . . . dyn|α

)
= (f ◦ Φ) |JacΦ|α |dx1 . . . dxn|α. (1.10)

Proof. This readily follows from Definition 1.2.15 and from the expression of

the pullback of the Lebesgue volume form dy1 ∧ · · · ∧ dyn.

1.2.3 Integration of densities

Because of equation (1.10), it is possible to define the integral of a 1−density

in a coordinate independent way, in very much the same way as for differential

forms. We recall here how the construction works.

First, let U ∈ Rn be an open subset and ρ a compactly supported continuous

density on U . By Remark 1.2.14, there is a unique continuous function fρ such

that ρ = fρ|dx1 . . . dxn| and we define∫
U

ρ :=

∫
U

fρ(x1, . . . , xn) dx1 . . . dxn.

Next, we turn to the case of a manifold M . Let (U, φ) be a coordinate chart

on M and ρ a compactly supported continuous density on M with support in

U . We define ∫
M

ρ :=

∫
φ(U)

(φ−1)∗ρ. (1.11)

To verify that this expression does not depend on the chart, let (V, ψ) be

another coordinate chart such that ρ is supported in V . Without loss of gener-

ality, we can suppose that U = V . Denote by |dx1 . . . dxn| and |dy1 . . . dyn| the

Lebesgue measures on φ(U) and ψ(U) respectively. We have (ψ−1)∗ρ(y) =

f(y)|dy1 . . . dyn| for some continuous function f on U and, by Proposition

1.2.17:

(φ−1)∗ρ(x) = ((φ−1 ◦ ψ)∗(ψ−1)∗ρ)(x)

= f
(
(φ−1 ◦ ψ)(x)

)
|Jacφ−1◦ψ| |dx1 . . . dxn|.

Therefore:∫
φ(U)

(φ−1)∗ρ =

∫
φ(U)

f
(
(φ−1 ◦ ψ)(x)

)
|Jacφ−1◦ψ| |dx1 . . . dxn|

=

∫
ψ(U)

f(y) |dy1 . . . dyn| =
∫
ψ(U)

(ψ−1)∗ρ.
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To extend this to densities with arbitrary support, let us take {Ui} a locally

finite open cover of M by relatively compact subsets and {κi} a smooth parti-

tion of unity subordinate to {Ui}. Then, for each i, κiρ is a continuous density

compactly supported in the domain of a single coordinate chart, whose integral

is defined by (1.11).

Definition 1.2.18. Let M be a manifold and {Ui} a locally finite open cover

of M by relatively compact subsets and {κi} a smooth partition of unity subor-

dinate to {Ui}. A continuous density ρ on M is integrable if and only if the

following series converges
∞∑
i=1

∫
M

κi |ρ| . (1.12)

In this case,
∑∞
i=1

∫
M
κiρ converges and we define∫

M

ρ :=

∞∑
i=1

∫
M

κiρ.

Lemma 1.2.19. The previous definition does not depend on the choice of the

open cover and the partition of unity.

Proof. Let {Vi} be another locally finite open cover of M by relatively compact

subsets and {κ̃i} a smooth partition of unity subordinate to {Vi}. Let N ∈ N.

For each 1 ≤ j ≤ N , the support of κ̃j |ρ| is compact and meets only a finite

number of Ui’s, so there is a mj such that κ̃j |ρ| =
∑mj
i=1 κiκ̃j |ρ|. Let m :=

maxj(mj), we have:

N∑
j=1

∫
M

κ̃j |ρ| =
N∑
j=1

∫
M

m∑
i=1

κiκ̃j |ρ| =
N∑
j=1

m∑
i=1

∫
M

κiκ̃j |ρ|

=

m∑
i=1

∫
M

N∑
j=1

κiκ̃j |ρ| ≤
m∑
i=1

∫
M

κi |ρ| ≤
∞∑
i=1

∫
M

κi |ρ| .

Therefore, the sum
∑∞
j=1

∫
M
κ̃j |ρ| is also convergent. The value of

∫
M
ρ does

not depend on the various choices neither since

∞∑
i=1

∫
M

κi |ρ| =
∞∑
i=1

∫
M

∞∑
j=1

κ̃jκi |ρ| =
∞∑
i=1

∞∑
j=1

∫
M

κ̃jκi |ρ|

=

∞∑
j=1

∞∑
i=1

∫
M

κ̃jκi |ρ| =
∞∑
j=1

∫
M

∞∑
i=1

κ̃jκi |ρ| =
∞∑
j=1

∫
M

κ̃j |ρ| .

The commutation of the sum and the integral signs are justified because there

are only a finite number of non-vanishing terms in the sum. The fact that the

series is absolutely convergent allows to rearrange its terms.
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In particular, if ρ is a compactly supported continuous density, then it is in-

tegrable. Indeed, its support, being compact, meets only a finite number of

Ui’s, which implies that there are only a finite number of non-vanishing terms

in (1.12). Therefore, we get a C−linear functional on the space of compactly

supported continuous densities on M∫
M

: Γ0
c(M, |TM |)→ C ; ρ 7→

∫
M

ρ (1.13)

which has the following properties, which we borrow from [Lee13, Chapter 16].

Proposition 1.2.20 (Properties of integration of densities). Let M and N be

manifolds, and µ, ν compactly supported continuous densities on M . Then

(a) For all a, b ∈ C,
∫
M

(aµ+ bν) = a
∫
M
µ+ b

∫
M
ν;

(b) If µ is positive, then
∫
M
µ > 0;

(c) For all diffeomorphism Φ : N →M ,
∫
M
µ =

∫
N

Φ∗µ.

Remark 1.2.21. Let V be a complex vector space and denote by E the trivial

vector bundle M × V over the manifold M . The previous construction can be

extended to V−valued densities, that is, sections of the vector bundle E⊗|TM |.
The integral is computed componentwise after a choice of basis of V and this

value does not depend on that choice because of the linearity of the integral. C

Remark 1.2.22. The construction we have presented here does not involve any

choice from the start, making it clear that integration of densities is an intrinsic

and canonical process. However, there is a more measure theoretical approach

– which is the one followed by Dieudonné in [Die13] – that we now briefly

describe. C

Definition 1.2.23. Let M be a manifold. A measure on M is a linear func-

tional on C0
c (M) with the following property: for every compact subset K ⊂M ,

there exists aK ≥ 0 such that, for all f ∈ C0
c (M) supported in K,

|u(f)| ≤ aK . sup
x∈K
|f(x)|.

A measure µ on M is a Lebesguian measure if, for every coordinate chart (U, φ)

on M , the pushworward measure φ∗µ is smoothly equivalent to the Lebesgue

measure on U . That is, there exists a non-vanishing smooth function f on U

such that φ∗µ = f.dxU , where dxU is the Lebesgue measure on U .

If we fix a smooth non-vanishing density ρ on M , then the map (1.13) induces

a Lebesguian measure µρ on M by the rule

f ∈ C0
c (M) 7→

∫
M

fρ. (1.14)
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Since any continuous density λ on M is of the form λ = g.ρ for some continuous

function g, we can define that λ is integrable if g is, in which case we set∫
M
λ :=

∫
M
g dµρ. This definition turns out to be independent on the choice of

ρ and is equivalent to our construction.

Remark 1.2.24. Notice that in fact, every Lebesguian measure is of the form

(1.14) for some non-vanishing smooth density ρ (see [Die13, 23.4.2]). The

density is positive if the measure is. C

1.2.4 The intrinsic Hilbert space

Let us close this section by discussing half-densities and introducing a Hilbert

space intrinsically associated to a manifold. Recall that, according to Remark

1.2.8, the complex conjugate of a half-density is still a half-density and that

the product of two half-densities gives a one density, which can be integrated

(at least if it has a compact support). This manipulation allows to define a

Hermitian product on compactly supported smooth densities.

Γ∞c (M, |TM |1/2)× Γ∞c (M, |TM |1/2)→ C ; (ρ, µ) 7→
∫
M

ρ.µ̄ .

This leads to the following definition.

Definition 1.2.25. Let (E, 〈·, ·〉E) be a Hermitian vector bundle over a man-

ifold M . On Γ∞c (M,E ⊗ |TM |1/2), an inner product 〈·, ·〉 is defined, for

r ⊗ ρ, s⊗ µ ∈ Γ∞c (M,E ⊗ |TM |1/2), by

〈r ⊗ ρ, s⊗ µ〉 :=

∫
M

〈r, s〉E ρ.µ̄. (1.15)

The intrinsic Hilbert space of square-integrable sections of E is the completion

of this pre-Hilbert space and it is denoted L2(M,E, 〈·, ·〉E), or L2(M,E) when

there is no possible confusion about the Hermitian structure on E. When E =

M×C, it is called the intrinsic Hilbert space of M and it is denoted by L2(M).

The norm on L2(M) is denoted by || · ||L2 .

Remark 1.2.26. Through the action given in Remark 1.2.16 and because of

Proposition 1.2.20(c), the group Diff(M) acts on L2(M) by unitary transfor-

mations. C

Although the previous construction is completely intrinsic, it is sometimes use-

ful to work with a particular positive density – like in the Riemannian or sym-

plectic framework –, for which we can also consider square-integrable functions.

The following result shows that both constructions are naturally equivalent.

Proposition 1.2.27. Let M be a manifold, µ a positive Lebesguian measure

on M , ρµ the corresponding positive density (see Remark 1.2.24) and L2(M,µ)
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the Hilbert space of square-integrable functions on M with respect to µ. Then,

the linear operator

U : L2(M,µ)→ L2(M) ; f 7→ f.(ρµ)1/2

is unitary.

Proof. Since (ρµ)1/2 is a positive section of the bundle |TM |1/2, any ρ ∈
Γ∞c (M, |TM |1/2) ⊂ L2(M) is of the form f(ρµ)1/2 for some f ∈ C∞c (M). Since

||f(ρµ)1/2||L2 =
∫
M
|f |2 ρµ < +∞, f ∈ L2(M,µ). This shows that U has a

dense image. Next, for f, g ∈ L2(M,µ), we have 〈f, g〉L2(M,µ) =
∫
M
fḡ ρµ =∫

M
(f(ρµ)1/2).g(ρµ)1/2 =

〈
f(ρµ)1/2, g(ρµ)1/2

〉
L2(M)

, which shows that U is uni-

tary.

1.3 Distributions on manifolds and generalized

sections of vector bundles

Appearing in many areas of mathematics, physics and other fields of science,

the δ−function on R associates to a function f on R the number f(0). It is

a basic example of what is called a distribution on R, which is some kind of

generalization of functions. This notion can be extended to vector bundles, in

which case we call them generalized sections. For our purpose, generalized sec-

tions will turn out to be useful in mainly two ways. First, they allow to extend

some linear operators on sections to a broader class of sections (or even to gen-

eralized sections). For instance, the Fourier transform of eix is not a function,

but it makes sense as a distribution. Second, generalized sections are a very

powerful tool to describe those linear operators thanks to the Schwartz kernel

theorem. It allows to study linear operators on functional spaces by looking at

and manipulating their so-called kernel, which is a generalized section.

Generalized sections are defined as continuous linear functionals on some topo-

logical vector spaces of sections of a vector bundle. We will first consider the

local theory of functions on open subsets of Rn in order to motivate the defi-

nitions. Then, we will extend the discussion to manifolds and vector bundles.

The topological spaces we will define will be locally convex vector spaces. A

short reminder on the related notions can be found in Appendix A and we refer

to [Trè06] for the details. After these definitions, we will discuss the localization

and support of generalized sections.

1.3.1 Local theory

In this subsection, let U ⊂ Rn be an open subset. The following family of

seminorms will be central for all the subsequent definitions.
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Definition 1.3.1. Let U ⊂ Rn be an open subset. To each compact set K ⊂ U
and r ∈ N, we associate a seminorm || · ||K,r on C∞(U) by

|| · ||K,r : C∞(U)→ R+ ; f 7→ ||f ||K,r := sup
{
|∂αf(x)|

∣∣ x ∈ K, |α| ≤ r} .
We now introduce several vector spaces of functions on U and endow them with

a specific topology to turn them into locally convex vector spaces. The proofs

of the stated properties can be found in [Rud91].

Smooth functions

The space of smooth functions on U

E(U) := C∞(U)

is endowed with the locally convex topology given by the family of seminorms{
|| · ||K,r

∣∣ K ⊂ U compact, r ∈ N
}
.

Using a countable exhaustion of U by compact sets and the restriction property

of families of seminorms, we can show that it is a Fréchet space.

Smooth functions supported in a fixed compact set

Let K ⊂ U be a compact set. The space of smooth functions on U supported

in K

EK(U) :=
{
f ∈ C∞(U)

∣∣ supp(f) ⊂ K
}

is endowed with the locally convex topology given by the family of seminorms{
|| · ||K,r

∣∣ r ∈ N
}
.

It is a Fréchet space. This topology is the same as the topology induced by the

inclusion EK(U) ↪→ E(U).

Smooth functions of compact support

Let us denote the space of compactly supported smooth functions on U by

D(U) :=
{
f ∈ C∞(U)

∣∣ supp(f) is compact
}
.

D(U) is not complete for the topology induced by D(U) ↪→ E(U) since a se-

quence of compactly supported functions may converge to a non compactly
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supported function. Let K1 ⊂ K2 ⊂ · · · ⊂ U be a countable exhaustion of U

by compact sets.5 We then have

D(U) =

∞⋃
k=1

EKk(U)

and we endow D(U) with the inductive limit topology. Proposition A.17 shows

that for a sequence to converge in that topology, there must exist a compact

set such that every function of the sequence is supported in that compact set.

D(U) is a complete space in the sense that any Cauchy sequence does converge

in D(U). However, it is not a Fréchet space since it is not metrizable by

Proposition A.18. It is worth noticing that the topology of EK(U) coincides

with the subspace topology corresponding to the inclusion EK(U) ↪→ D(U).

Distributions

Definition 1.3.2. Let U ⊂ Rn be an open subset. A distribution on U is a

continuous linear map

u : D(U)→ C.

The space of all distributions on U is denoted by D′(U). For u ∈ D′(U) and

ϕ ∈ D(U), we will use the following pairing notation

〈u, ϕ〉 := u(ϕ).

Example 1.3.3. Any smooth function f on U induces a distribution on U by

the following definition:

uf : D(U)→ C ; ϕ 7→
∫
U

f(x)ϕ(x) dx, (1.16)

where dx denotes the Lebesgue measure on U . This gives an inclusion E(U) ↪→
D′(U) which justifies the fact that distributions are considered as generalized

functions. ♦

1.3.2 Global theory

We will now extend the previous discussion to the case of a vector bundle over

a manifold. As a first step, we will consider various spaces of sections and

use local charts to define topologies that turn them into locally convex vector

spaces. Then, since we want to think about generalized sections precisely as a

generalization of sections, we will have to make sense of formula (1.16) in the

5That is, for all n = 1, 2, . . . ,+∞, Kn is a compact subset of M and Kn is contained in

the interior of Kn+1, and M = ∪+∞n=1Kn.
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context of sections of vector bundles. This will lead us to use the dual vector

bundle to define the product of sections inside the integral, and to use densities

over the manifold to be able to carry out the integration process.

Let E → M be a complex vector bundle of rank p over a manifold M . As in

the local case, we begin by introducing a family of seminorms on the space of

smooth sections.

Definition 1.3.4. Let E → M be a complex vector bundle of rank p over a

manifold M . Let U := {Ui, κi, τi}i∈I be a total trivialization6 of E. Then, for

each i ∈ I, we have an isomorphism of vector spaces

Φi : Γ∞
(
Ui, E|Ui

)
→ C∞

(
κi(Ui)

)p
.

To each i ∈ I, 1 ≤ l ≤ p, K ⊂ κi(Ui) compact and r ∈ N, we associate a

seminorm on Γ∞(M,E) defined by:

|| · ||i,l,K,r : Γ∞(M,E)→ R+ ; s 7→ ||Φi(s|Ui )
l||K,r .

We can now consider several spaces of sections of E and endow them with a

structure of locally convex vector space.

Smooth sections

The space of smooth sections of E is denoted by

E(M,E) := Γ∞(M,E)

when it is endowed with the topology induced by the family of seminorms{
|| · ||i,l,K,r

∣∣ i ∈ I, 1 ≤ l ≤ p,K ⊂ κi(Ui) compact, r ∈ N
}
.

It is a Fréchet space and the topology is independent on the choice of trivial-

ization.

Smooth sections supported in a fixed compact set

Let K ⊂ M be a compact subset. We denote the space of smooth sections of

E supported on K by

EK(M,E) :=
{
s ∈ Γ∞(M,E)

∣∣ supp(s) ⊂ K
}

when it is endowed with the topology induced by the inclusion EK(M,E) ↪→
E(M,E). It is a Fréchet space.

6Recall that it means that {Ui, κi}i∈I is an atlas of M , and that for each i ∈ I, τi :

E|Ui
→ Ui × Cp is a local trivialization of E →M .
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Smooth sections of compact support

The space of compactly supported sections of E is denoted by

D(M,E) :=
{
s ∈ Γ∞(M,E)

∣∣ supp(s) is compact in M
}

when it is endowed with the following topology, whose definition depends on

whether M is compact or not.

• If M is compact, then D(M,E) = E(M,E) and we use the previously

defined topology, which turns D(M,E) into a Fréchet space.

• In the noncompact case, let K1 ⊂ K2 ⊂ · · · ⊂M be a countable exhaus-

tion of M by compact sets.7 Then:

D(M,E) =

∞⋃
k=1

EKk(M,E).

We endow D(M,E) with the inductive limit topology as in the local case.

D(M,E) is complete but not Fréchet.

The inclusion D(M,E) ↪→ E(M,E) is continuous and dense.

Remark 1.3.5. Although D(M,E) and E(M,E) coincides respectively with

Γ∞c (M,E) and Γ∞(M,E) as vector spaces, we will usually use the notations

D and E only when their topology is involved. C

Generalized sections

We are now ready to define the space D′(M,E) of “generalized sections” of

E. As in the local case, we would like to have a natural inclusion E(M,E) ↪→
D′(M,E), by generalizing formula (1.16). Making sense of the product inside

the integral as well as of the integration itself requires to define generalized

sections as linear functionals on sections not of E but of the so-called functional

bundle.

Definition 1.3.6. Let E → M be a vector bundle over a manifold M . The

functional bundle of a vector bundle E → M over a manifold M is the vector

bundle over M

E∨ := E∗ ⊗ |TM |.

Definition 1.3.7. Let E →M be a vector bundle over a manifold M . A gener-

alized section of E – or a distribution on E – is a continuous linear functional

on D(M,E∨). We denote by D′(M,E) the space of generalized section of E –

which is the continuous dual of D(M,E∨) –, endowed with the strong topology.

The evaluation of u ∈ D′(M,E) on any ρ ∈ D(M,E∨) is denoted by 〈u, ρ〉.
7That is, for all n = 1, 2, . . . ,+∞, Kn is a compact subset of M and Kn is contained in

the interior of Kn+1, and M = ∪+∞n=1Kn.
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Example 1.3.8. As was previously advertised, any smooth section of the vector

bundle E → M naturally gives a generalized section of E. Indeed, at each

x ∈M , we have
(
E∗ ⊗ |TM |

)
x
' Hom (Ex, |TxM |), so there is a pairing

(·, ·) : E(M,E)×D(M,E∨)→ D(M, |TM |). (1.17)

This gives a continuous inclusion

E(M,E) ↪→ D′(M,E) ; s 7→
[
s0 ∈ D(M,E∨) 7→ 〈s, s0〉 :=

∫
M

(s, s0)

]
. (1.18)

♦

There is an important subset of D′(M,E) which is formed by the generalized

sections that can be defined not only on compactly supported smooth sections

but on all smooth sections.

Definition 1.3.9. Let E → M be a vector bundle over a manifold M . A

generalized section of E of compact support is a continuous linear functional

on E(M,E∨). We denote by E ′(M,E) the space of generalized section of E of

compact support – which is the continuous dual of E(M,E∨) –, endowed with

the strong topology. The evaluation of u ∈ E ′(M,E) on any ρ ∈ E(M,E∨) is

denoted by 〈u, ρ〉.

Remark 1.3.10. To verify that a linear functional on D(M,E∨) or E(M,E∨)

is continuous, it is sufficient to check whether it is sequentially continuous.

Indeed, E is a Fréchet space and D is also a Fréchet space if M is compact,

and an inductive limit of Fréchet spaces if M is not compact. The claim then

follows from Proposition A.19. C

Remark 1.3.11. We should emphasize that we choose here to work with the

strong topology on the continuous duals D′(M,E) and E ′(M,E), which is dif-

ferent from the weak∗ topology chosen by Hörmander in [Hör03]. This choice

will be of importance when we will state the Schwartz kernel theorem in Section

1.4.2. However, for some applications, it does not matter which topology we

consider, as is shown in the next two lemmas. C

Lemma 1.3.12. Let E →M be a vector bundle over a manifold M . Then, in

D′(M,E) and in E ′(M,E), every sequence that converges in the weak∗ topology8

also converges in the strong topology.

Proof. From [Trè06, pp. 357-358], we know that D(M,E) and E(M,E) are

Montel spaces and that, in the dual of a Montel space, every weakly convergent

sequence is strongly convergent.

Lemma 1.3.13. Let E →M be a vector bundle over a manifold M , and V a

locally convex vector space. Suppose that V is a Fréchet space, or an inductive

8Recall that the weak∗ convergence of linear functionals is the pointwise convergence.
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limit of Fréchet spaces. Then a linear map P : V → D′(M,E) is continuous if

it is sequentially continuous for the weak∗ topology on D′(M,E). Also, a linear

map Q : V → E ′(M,E) is continuous if it is sequentially continuous for the

weak∗ topology on E ′(M,E).

Proof. Let P : V → D′(M,E) and Q : V → E ′(M,E). Proposition A.19

implies that P and Q are continuous if they are sequentially continuous, and

Lemma 1.3.12 allows to conclude.

The following result implies that every Cauchy sequence in the space of gener-

alized sections converges to a generalized section.

Theorem 1.3.14. Let E →M be a vector bundle over a manifold and {ui}i∈N
a sequence in D′(M,E) such that

u(ϕ) := lim
i→∞

ui(ϕ) (1.19)

exists for every ϕ ∈ D(M,E). Then u ∈ D′(M,E).

Proof. Let ϕj → 0 in D(M,E). Then, there exists a compact K ⊂M such that

supp(ϕj) ⊂ K for every j. Since ui is continuous on D(M,E), it is continuous

on EK(M,E). The latter being a Fréchet space, let us denote by {pk}k∈N a

countable family of seminorms on EK(M,E). Because of (1.19), the principle of

uniform boundedness implies that {ui} is equicontinuous, that is, there exists

C > 0 and k ∈ N such that |ui(ϕj)| < C . pk(ϕj) for all j. Passing to the limit

in i, we get that this inequality holds for u, so u(ϕj)→ 0, which shows that u

is continuous on D(M,E) by Remark 1.3.10.

Definition 1.3.15. Let M be a manifold. A generalized section of the trivial

bundle M × C is called a generalized function or a distribution on M . It is

given by a continuous linear functional on the space of compactly supported

densities.

Example 1.3.16. A well-known example is given by the δ−function on Rn.

Any compactly supported density on Rn is given by ρ(x) = f(x) |dx1 . . . dxn|
where f ∈ D(Rn) and |dx1 . . . dxn| is the standard density corresponding to

the standard coordinates x = (x1, . . . , xn). Then, the δ−function is defined by

〈δ, ρ〉 := f(0). For a generic point a ∈ Rn, we similarly define 〈δa, ρ〉 := f(a).

Notice however that on a generic manifold, there is no canonical way of defining

a δ−function at a point since there is no canonical positive density on that

manifold. We will come back to that point later. ♦

Definition 1.3.17. Let M be a manifold. A generalized section of the density

bundle is called a generalized density. If E →M is a vector bundle over M , a

generalized density of E is a generalized section of E∗ ⊗ |TM |.
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Remark 1.3.18. Let us give a more precise description of a generalized density.

Since the density bundle of a manifold M is a complex line bundle, |TM |∗ ⊗
|TM | is canonically isomorphic to the trivial line bundle. Therefore, the space

of generalized densities is canonically isomorphic to the space of continuous

linear functionals on D(M,C). C

Remark 1.3.19. We should warn about a possible confusion between generalized

functions and generalized densities, since some authors define distributions as

linear functionals on compactly supported functions. Recall that since the

density bundle is trivial, both notions are completely equivalent as soon as

we fix a non-vanishing density on the manifold. On Rn, this is usually done

using the Lebesgue density. This is why the δ−function is usually defined on

functions rather than on densities. C

1.3.3 Localization and support

In this subsection, let M be a manifold, and E → M be a vector bundle over

M . We will see that generalized sections can be restricted to arbitrary open

subsets of M . This allows to define two notions of support for a generalized

section, one that describes the points where it is not vanishing (similarly to the

support of a section), and another that describes its singularities.

Let U ⊂ M be an open subset. Then, U is itself a manifold and we can

consider generalized sections of E|U . Since we have the natural identification

E∨|U ' (E|U )∨, there is a natural inclusion

D(U, (E|U )∨) ↪→ D(M,E∨) ; ρ 7→ ρ̂ (1.20)

given by extending a compactly supported section on U by zero outside of U .

This allows to restrict to U a generalized section on M in the following manner.

Definition 1.3.20. Let E → M be a vector bundle over a manifold M and

U ⊂ M an open subset. The restriction to U of generalized sections of E is

defined by

D′(M,E)→ D′(U,E|U ) ; u 7→ u|U ,

where
〈
u|U , ρ

〉
:= 〈u, ρ̂〉 for all ρ ∈ D(U, (E|U )∨).

The following theorem shows that a generalized section is completely deter-

mined by its local restrictions.

Theorem 1.3.21. Let E → M be a vector bundle over a manifold M and

u ∈ D′(M,E). If for every x ∈ M , there exists an open neighbourhood U of x

such that u|U = 0, then u = 0.
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Proof. Let ρ ∈ D(M,E∨). For every x ∈ supp(ρ), let Ux be an open neighbour-

hood of x such that u|Ux = 0. Since supp(ρ) is compact, it can be covered by a

finite number U1, . . . Uk of such Ux’s. Let U0 := M\supp(ρ) and let ψ0, . . . , ψk
be a partition of unity subordinate to U0, . . . , Uk. Then, for all i = 1, . . . , k,

supp(ψiρ) ⊂ Ui and u(ψiρ) = u|Ui(ψiρ) = 0. Finally, since u is linear and

ρ =
∑k
i=1 ψiρ, it implies that u(ρ) = 0.

Corollary 1.3.22. Let E → M be a vector bundle over a manifold M and

{Ui}i∈I an open cover of M . If u, v ∈ D′(M,E) are such that u|Ui = v|Ui for

every i ∈ I, then u = v.

Remark 1.3.23. The previous results will be very useful to us in the sequel

since they allow to study generalized sections in local coordinates. Also, they

imply that to show that two generalized sections are equal, it is sufficient to

show that they agree on sections of arbitrary small supports. C

Definition 1.3.24. Let E →M be a vector bundle over a manifold M and u

a generalized section of E. We define

Mu :=
{
x ∈M | ∃ Uopen neighbourhood of x such that u|U = 0

}
.

It is the largest open subset of M on which the restriction of u is zero. The

support of u is defined as

supp(u) := M\Mu.

Remark 1.3.25. The generalized sections of compact support as defined in 1.3.9

are exactly those such that supp(u) is compact in M . C

Remark 1.3.26. More generally, the domain of definition of a generalized section

u can be extended to any smooth section s such that supp(u) ∩ supp(s) is

compact. Indeed, choose φ a compactly supported smooth function that equals

1 on a neighbourhood of supp(u) ∩ supp(s). Then, we can define 〈u, s〉 by

〈u, φ.s〉, which does not depend on the choice of φ since 〈u, φ.s〉 only depends

on (φ.s)|supp(u)∩supp(s) = s|supp(u)∩supp(s). C

When a generalized function is represented by a smooth section under the

inclusion (1.18), it is called regular, and singular otherwise. Thanks to the

localization property of generalized sections, we can be more precise in the

description of the singularities of a generalized section by describing the points

around which it cannot be represented by a smooth section.

Definition 1.3.27. Let E →M be a vector bundle over a manifold M and u

a generalized section of E. The singular support of u is denoted sing(u) and

is defined as follows. A point x ∈ M does not lie in sing(u) if there exists an

open neighbourhood U of x and a smooth section s of E on U such that u|U = s

under the inclusion (1.18).
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1.4 General operators and kernels

When studying linear operators between functions on manifolds – or more

generally, between sections of vector bundles –, one often works with a specific

functional space, that is, a specific subspace of sections and a corresponding

topology. It might be for example L2(M) or some Sobolev space on M . In

many cases, the functional space contains the space of compactly supported

smooth sections and the inclusion is continuous and dense. On the other hand,

in very much the same way as smooth sections are included in the space of

generalized sections, those functional spaces are often continuously included

in the space of generalized sections. Because the inclusions are continuous,

any continuous linear operator between such functional spaces therefore gives

a continuous linear operator from compactly supported sections to generalized

sections. This is the motivation to introduce general operators as we will do

now.

1.4.1 Definitions

Definition 1.4.1. Let M and N be two manifolds and E → M and F → N

two vector bundles. A general operator P from F to E is a continuous linear

map

P : D(N,F )→ D′(M,E).

We denote by Lb
(
D(N,F )→ D′(M,E)

)
the vector space of the general oper-

ators, endowed with the strong topology.

Remark 1.4.2. To check whether a linear operator P : D(N,F ) → D′(M,E)

is continuous might seem to be complicated for two reasons. First, D′(M,E)

is endowed with its strong topology, which is more complicated to deal with

than the weak∗ one. Second, if N is not compact, D(N,F ) is not metrizable,

so sequential continuity of P does not imply that it is continuous. However,

we can forget about these difficulties since Lemma 1.3.13 implies that we only

need to check whether P maps convergent sequences to weakly convergent

sequences. C

The following example illustrates the discussion at the beginning of this section,

which led us to the definition of a general operator.

Example 1.4.3. Let M be a manifold. Any continuous linear operator

L : L2(M)→ L2(M)

gives rise to a general operator

PL : D(M, |TM |1/2)→ D′(M, |TM |1/2).
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Indeed, we have the continuous inclusion D(M, |TM |1/2) ↪→ L2(M). On the

other hand, since |TM | ' |TM |1/2⊗|TM |1/2, (|TM |1/2)∗⊗|TM | ' |TM |1/2, so

D′(M, |TM |1/2) is the continuous dual of D(M, |TM |1/2). To any ρ ∈ L2(M),

we can therefore associate the generalized section given by

D(M, |TM |1/2)→ C ; µ 7→
∫
M

ρµ.

This gives an inclusion L2(M) ↪→ D′(M, |TM |1/2) which is continuous. Indeed,

let ρn → 0 in L2(M). Then, for each µ ∈ D(M, |TM |1/2), using the Cauchy-

Schwartz inequality, we get that | 〈ρn, µ〉 | = |
∫
M
ρnµ| ≤ ||ρn||L2 .||µ||L2 → 0.

By Lemma 1.3.13, the inclusion is continuous. Putting everything together, we

can define the linear operator

PL : D(M, |TM |1/2) ↪→ L2(M)
L−→ L2(M) ↪→ D′(M, |TM |1/2),

which is continuous because all the inclusions and L are continuous. ♦

Other examples of general operators, that will be central in our discussion,

are given by the pullback of functions on a manifold and sections of a vector

bundle.

Example 1.4.4. Let h : M → N be a smooth map between manifolds and

consider the pullback

h∗ : E(N)→ E(M) ; f 7→ f ◦ h,

which is a continuous linear map. Because of the continuous inclusionsD(N) ↪→
E(N) and E(M) ↪→ D′(M), it gives a general operator by the rule

Ph : D(N)→ D′(M) ; f 7→
[
ρ 7→

∫
M

(h∗f) ρ =

∫
M

(f ◦ h) ρ

]
. (1.21)

Notice that if h is proper, then h∗ maps compactly supported functions to

compactly supported functions. ♦

The following notion of a geometric morphism allows to naturally generalize

the pullback operation to sections of vector bundles.

Definition 1.4.5. Let M and N be two manifolds, and E → M and F → N

two vector bundles over those manifolds. A geometric morphism from E to F

is a pair h = (h, r) where h : M → N is a smooth map and r is a smooth

section of Hom(h∗F,E).9 In particular, for every x ∈ M , it gives a linear

operator

r(x) : Fh(x) → Ex.

9Recall that the pullback bundle h∗F is a vector bundle over M whose fiber at a point

x ∈ M is Fh(x), and that Hom(h∗F,E) is a vector bundle over M whose fiber at a point

x ∈M is Hom(Fh(x), Ex).
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Remark 1.4.6. Notice that this is not the same notion as a morphism of vector

bundles since here, the linear maps r(x) are going the other way around, to get

back from the fibers of F to those of E. This is because we want to define the

pullback of a section. C

Remark 1.4.7. Let F → N be a vector bundle and h : M → N a smooth

map. Then, there is an obvious natural geometric morphism from h∗F to F ,

whose corresponding section of Hom(h∗F, h∗F ) is the identity section. We will

usually still denote this geometric morphism by h. C

Example 1.4.8. Let M and N be two manifolds, E →M and F → N two vector

bundles over those manifolds, and h = (h, r) a geometric morphism from E to

F . We define the pullback by h as the operator

h∗ : Γ∞(N,F )→ Γ∞(M,E) ; s 7→ h∗s,

where, for every x ∈M ,

(h∗s)(x) := r(x)
(
s(h(x))

)
∈ Ex.

As in the previous example, this defines a general operator

Ph : D(N,F )→ D′(M,E) ; s 7→
[
ρ ∈ D(M,E∨) 7→

∫
M

(h∗s, ρ)

]
, (1.22)

where (·, ·) denotes the pairing (1.17). Again, if h is proper, then h∗ maps

compactly supported sections to compactly supported sections. ♦

1.4.2 The Schwartz kernel theorem

There is a deep link between general operators and generalized sections, which

is suggested by the following example.

Example 1.4.9. Let U ⊂ Rm and V ⊂ Rn be two open subsets, and k ∈ C∞(U×
V ). Then, we can associate to k a continuous linear operator Pk : D(V )→ E(U)

defined, for every ϕ ∈ D(V ) and x ∈ U , by the formula

Pk(ϕ)(x) :=

∫
V

k(x, y)ϕ(y) dy.

Since E(U) ↪→ D′(U), Pk induces a general operator Pk : D(V )→ D′(U) given,

for every ϕ ∈ D(V ) and ψ ∈ D(U), by

〈Pk(ϕ), ψ〉 =

∫
U×V

k(x, y)ψ(x)ϕ(y) dx dy

= 〈k,pr∗U (ψ)⊗ pr∗V (ϕ)〉 , 10
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where in the last line, k is seen as an element of D′(U × V ) and pr∗U (ψ) ⊗
pr∗V (ϕ) ∈ D(U ×V ). Since 〈k, pr∗U (ψ)⊗ pr∗V (ϕ)〉 only depends on k as a gener-

alized function on U × V and not as a smooth function, this suggests a way to

associate a general operator to any generalized function on U ×V by the same

formula. This construction can be extended to a general manifold, although

care must be taken to introduce densities at the right places. ♦

The so-called Schwartz kernel theorem asserts that the previous construction

is in fact completely general, in the sense that any general operator can be

represented in a unique way by a generalized section – the kernel of the oper-

ator. It also states that this association is a topological isomorphism11. As we

shall see, there are several variants of the kernel theorem, the first versions of

which are due to Schwartz [Sch57]. A proof in the setting of general operators

between vector bundles can be found in [Tar12, Section 1.5].

Definition 1.4.10. Let E → M and F → N be two complex vector bundles

over the manifolds M and N . The external tensor product is the vector bundle

over M ×N defined by

E � F := pr∗M (E)⊗ pr∗N (F ).

Notice that its fiber over a point (x, y) ∈M ×N is given by

(E � F )(x,y) = Ex ⊗ Fy.

Theorem 1.4.11 (Schwartz kernel theorem). Let M and N be two manifolds

and E → M and F → N two complex vector bundles. There is a topological

isomorphism

D′(M ×N,E � F∨)
∼−→ Lb

(
D(N,F )→ D′(M,E)

)
that associates to a generalized section k ∈ D′ (M ×N,E � F∨) the general

operator Pk given by

Pk : D(N,F )→ D′(M,E) ; ϕ 7→ [ψ 7→ 〈k, pr∗Mψ ⊗ pr∗Nϕ〉] . (1.23)

The generalized section k is called the kernel of the operator PK .

To better see how this isomorphism works, let us explain what is meant by

formula (1.23). There is an isomorphism

(E � F∨)∨ ' E∨ � F. (1.24)

10prU and prV denote the projection of U × V onto U and V respectively.
11The fact that the isomorphism is topological is true only if we consider the strong topology

on both spaces.
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Indeed, we have:

(E � F∨)∨ ' (pr∗M (E)⊗ pr∗N (F ∗)⊗ pr∗N (|TN |))∗ ⊗ |T (M ×N)|
' pr∗M (E∗)⊗ pr∗N (F )⊗ pr∗N (|TN |∗)
⊗ pr∗M (|TM |)⊗ pr∗N (|TN |)

' pr∗M (E∗)⊗ pr∗M (|TM |)⊗ pr∗N (F ) ' E∨ � F.

Since for ϕ ∈ D(N,F ) and ψ ∈ D(M,E∨), pr∗Mψ⊗pr∗Nϕ is a section of E∨�F ,

this isomorphism allows to evaluate k ∈ D′ (M ×N,E � F∨) on this section.

Example 1.4.12. In the case of operators between functions on manifolds, a

kernel is a generalized section k ∈ D′(M × N, pr∗N (|TN |)). The isomorphism

(1.24) corresponds to

(pr∗N (|TN |))∨ = (pr∗N (|TN |))∗ ⊗ |T (M ×N)|
' (pr∗N (|TN |))∗ ⊗ pr∗N (|TN |)⊗ pr∗M (|TM |)
' pr∗M (|TM |).

The operator Pk : D(N) → D′(M) associated to k is therefore defined, for

ϕ ∈ D(N) and ψ ∈ D(M, |TM |), by

Pk(ϕ)(ψ) := 〈k, pr∗Nϕ . pr∗N µ̄0 ⊗ (pr∗Nµ0 ⊗ pr∗Mψ)〉 , (1.25)

where µ0 is any non-vanishing density on N , µ̄0 the corresponding dual density,

and (pr∗Nµ0 ⊗ pr∗Mψ) is seen as a density on M ×N . ♦

Example 1.4.13. In the case of general operators between vector bundles, let us

give the expression of the operator Pk : D(N)→ D′(M) associated to a kernel

k ∈ D′(M ×N,E � F∨). Let ϕ ∈ D(N,F ) and ψ ∈ D(M,E∗ ⊗ |TM |). Since

|TM | is a trivial complex line bundle, ψ can be written as ψ = ψ1 ⊗ ψ2 with

ψ1 ∈ D(M,E∗) and ψ2 ∈ E(M, |TM |). Then, we have

Pk(ϕ)(ψ) := 〈k, pr∗Nϕ⊗ pr∗Mψ1 ⊗ pr∗N µ̄0 ⊗ (pr∗Nµ0 ⊗ pr∗Mψ2)〉 , (1.26)

where µ0 is any non-vanishing density on N , µ̄0 the corresponding dual density,

and (pr∗Nµ0 ⊗ pr∗Mψ2) is seen as a density on M ×N . ♦

Remark 1.4.14. We have seen in Example 1.4.3 that a continuous linear op-

erator on L2(M) naturally gives a general operator. A related but in some

sense opposite question is to know whether a general operator can be con-

tinuously extended to a functional space larger than D(M,E). Similarly, we

can ask whether its range consists in a functional space smaller than the whole

D′(N,F ), while still being continuous for the topology on that functional space.

We will see that these questions can sometimes be answered solely from proper-

ties of the kernel of the operator – such as regularity or integrability – showing

the power of the Schwartz kernel theorem. An extreme situation corresponds

to smoothing operators, that we now introduce. C



56 Chapter 1. Distributional trace and fixed-points

1.4.3 Smoothing operators

Definition 1.4.15. Let M and N be two manifolds and E →M and F → N

two vector bundles. A general operator P from F to E is smooth if its kernel

is an element of E(M ×N,E � F∨).

Definition 1.4.16. Let M and N be two manifolds and E →M and F → N

two vector bundles. A smoothing operator P from F to E is a general operator

P : D(N,F )→ D′(M,E) such that

• the range of P is contained in E(M,E);

• P extends to a continuous linear map E ′(N,F )→ E(M,E).

We denote by Lb
(
E ′(N,F ) → E(M,E)

)
the vector space of the smoothing

operators, endowed with the strong topology.

This variant of the Schwartz kernel theorem – they follow from the same theo-

rem proved in [Tar12, Section 1.5] – characterizes those smoothing operators.

Theorem 1.4.17. Let M and N be two manifolds and E → M and F → N

two vector bundles. There is a topological isomorphism

Lb
(
E ′(N,F )→ E(M,E)

) ∼−→ E(M ×N,E � F∨)

given by sending a smoothing operator to its kernel. In particular, a general

operator P : D(N,F ) → D′(M,E) is smooth if and only if it is a smoothing

operator.

Remark 1.4.18. On a compact manifold M , E = D, which implies that smooth-

ing operators can be composed together. The kernel of the composition is given

by the convolution of the kernels. On a non-compact manifold, this is not true

anymore. C

Let E →M be a vector bundle over a manifold M . We will now define a notion

of trace for smooth operators from E to E. Let k ∈ E(M ×M,E �E∨) be the

kernel of a smooth operator from E to E. Then, for all x ∈M , k(x, x) ∈ Ex ⊗
E∗x ⊗ |TxM | = Hom(Ex, Ex)⊗ |TxM |. Taking the trace of the homomorphism

thus gives a density at x. Therefore, [x 7→ Tr
(
k(x, x)

)
] is a smooth density on

M , that can be integrated if it is integrable.

Definition 1.4.19. Let E → M be a vector bundle over a manifold M and

Pk a smooth operator from E to E with kernel k ∈ E(M ×M,E � E∨). We

say that Pk is smooth-traceable if [x 7→ Tr
(
k(x, x)

)
] is integrable. Then, the

smooth trace of Pk is defined as

tr (Pk) :=

∫
M

Tr
(
k(x, x)

)
.
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1.4.4 The smooth trace of trace-class operators

We will now see how the smooth trace is related to the usual trace of operators

on Hilbert spaces of square-integrable functions. Notice that this section aims

only at suggesting some motivation to study the smooth trace. It will not be

needed in the following part of this chapter. The reader who would appreciate

a quick recap on Hilbert-Schmidt and trace-class operators might find useful

to first refer to Section 2.3 before going on.

Let M be a manifold, µ a measure on M , and A : L2(M,µ) → L2(M,µ) a

continuous linear operator. Suppose that A is integral, that is, there exists

some measurable function K on M ×M such that for every φ ∈ L2(M,µ) and

almost every x ∈M :

(Aφ)(x) =

∫
M

K(x, y)φ(y) dµ(y).

K is called the kernel of A. It is well-known that A is Hilbert-Schmidt if

and only if its kernel belongs to L2(M ×M,µ × µ). However, the question of

determining whether A is trace-class and computing its trace, solely from its

kernel, turns out to be much more subtle.

A useful result in that direction, first due to Duflo [Duf72] and then generalized

by Brislawn [Bri91], gives some conditions to express the trace as the integral

of the kernel over the diagonal. Specializing Brislawn’s result to measures on

manifolds, we have the following theorem.

Theorem 1.4.20. Let µ be a measure on a manifold M , and let K be a trace-

class operator on L2(M,µ). If the kernel K(x, y) is continuous at (x, y) for

almost every x, then

Tr (K) =

∫
M

K(x, x)dµ(x).

It should be emphasized that in this theorem, the operator has to be known

to be trace-class. The integrability of the kernel along the diagonal is not

sufficient to ensure that the operator is trace-class, even when the kernel is

continuous and integrable. Carleman [Car16] has given an example of an oper-

ator on L2(S1) with a continuous kernel (hence integrable since the manifold

is compact) which is not trace-class. However, more can be said if we im-

pose more regularity on the kernel. Delgado and Ruzhansky [DR14] give a

simple regularity condition on the kernel of an integral operator on the square-

integrable functions on a compact manifold, that ensures that it is trace-class.

As a particular case, we have:

Theorem 1.4.21. Let M be a compact manifold endowed with a positive mea-

sure µ. Let k ∈ C∞(M × M). Then, the integral operator P on L2(M,µ)
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defined, for ϕ ∈ L2(M,µ), by

(Pϕ)(x) :=

∫
M

k(x, y)ϕ(y)dµ(y)

is trace-class and its trace is given by

Tr (P ) =

∫
M

k(x, x)dµ(x).

Theorems 1.4.20 and 1.4.21 give the relation between our smooth trace and the

usual trace of linear operators on L2(M,µ).

1.5 Operations on generalized sections

Functions on a manifold and sections of a vector bundle can be manipulated in

a variety of ways: multiplication by a function, pullback of a function, pushfor-

ward of a vector field by a diffeomorphism, etc. In this section, we would like

to extend such kind of operations to generalized sections. For instance, since

functions are particular generalized functions, we can ask whether the pullback

can be defined for every generalized function. This turns out to be possible only

with restrictions because of the singularities exhibited by generalized sections.

We thus have to limit either the set of generalized functions we consider, or

the set of maps by which we want to pullback. In this section, the question of

extending those operations will be addressed using duality, that is, using the

fact that generalized sections are linear functionals on sections. However, we

should mention that there are other ways to carry on the extension of the pull-

back and pushforward from sections to generalized sections, such as extension

by continuity – which is the approach of Hörmander [Hör03] – or more specific

definitions – like we will do in Section 1.6.

In the following discussion, M and N will denote two manifolds, and E → M

and F → N vector bundles over those manifolds.

1.5.1 Multiplication by a function

As a warm-up, let f : M → C be a smooth function. For any ρ ∈ D(M,E∨),

we can consider the section fρ given by the pointwise multiplication. It is still

a compactly supported section of E∨, which allows the following definition.

Definition 1.5.1. Let f : M → C be a smooth function over a manifold M

and u a generalized section of a vector bundle E → M . The multiplication of

u by f is the generalized section fu ∈ D′(M,E) defined, for ρ ∈ D(M,E∨), by

〈fu, ρ〉 := 〈u, fρ〉 .
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1.5.2 Pushforward of a density by a submersion

We will now define the pushforward of a density by a submersion through the

process of “integration along the fibers”. For the integrals to be finite, we will

require a properness condition relative to the support of the density.

Definition 1.5.2. Let f : X → Y be a continuous map between two topological

spaces, and E ⊂ X. We say that f|E is proper if and only if, for all K ⊂ Y

compact, f−1(K) ∩ E is compact.

Let ρ ∈ Γ∞(N, |TN |) and h : N → M a submersion such that h|supp(ρ) is

proper. To explain how the integration along the fibers works, let x ∈ h(N) ⊂
M . Since h is a submersion, Zx := h−1({x}) is an embedded submanifold of

N . For any z ∈ Zx, we have the short exact sequence

0→ TzZx
(ιZx )∗z−−−−−→ TzN

h∗z−−→ TxM → 0,

where ιZx denotes the inclusion of Zx in N . Lemma 1.2.4 gives an isomorphism

|TzN | ' |TzZx| ⊗ |TxM |. (1.27)

Therefore, when restricted to Zx, the density ρ can be seen as a density ρZx
over Zx valued in |TxM |. h|supp(ρ) being proper, Zx ∩ supp(ρ) is compact, so

ρZx is of compact support. It can thus be integrated to give an element of

|TxM |, to which we set (h∗ρ)(x). For any x ∈M outside of the range of h, we

set (h∗ρ)(x) = 0.

Proposition 1.5.3. Let h : N → M be a submersion between two manifolds.

Then, for any ρ ∈ Γ∞(N, |TN |) such that h|supp(ρ) is proper, the pushforward

h∗ρ defined as above is a smooth density on M . Furthermore, supp(h∗ρ) ⊂
h(supp(ρ)). In particular, if ρ is compactly supported, so is h∗ρ.

Proof. Let ρ ∈ Γ∞(N, |TN |). First, the claim regarding the support of h∗ρ

follows from the facts that, from the definition, (h∗ρ)(x) = 0 if x 6∈ h(supp(ρ))

and that h(supp(ρ)) is closed since h|supp(ρ) is proper12.

Next, suppose that ρ is supported in a coordinate patch

(V, ϕ = (y1, . . . , ym, z1, . . . , zk))

such that h has the local expression

h(y1, . . . , ym, z1, . . . , zk) = (y1, . . . , ym)

12To show this last claim, let {xk}k∈N be a sequence in h(supp(ρ)) converging to x. We can

choose a sequence {yk}k∈N in supp(ρ) such that h(yk) = xk. Since {x}∪{xk}k∈N is compact,

there exists a convergent subsequence {yki}. Let y be its limit, which must belong to supp(ρ)

since the latter is closed. By continuity of h, h(y) = x, which shows that x ∈ h(supp(ρ)),

hence h(supp(ρ)) is closed.
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for some local coordinates (U,ψ = (x1, . . . , xm)) on M such that h(V ) ⊂ U .

Then, ρ has the local form

ρV (y1, . . . , ym, z1, . . . , zk) |dz1 . . . dzk dy1 . . . dym|

for some smooth function ρV on V . Let x ∈ h(V ) with coordinates (x1, . . . , xm)

and Zx := h−1({x}). Since (z1, . . . , zk) are local coordinates on Zx the density

ρZx corresponding to the splitting (1.27) has the form

ρU (x1, . . . , xm, z1, . . . , zk) |dz1 . . . dzk| ⊗ |dx1 . . . dxm|.13

Integration over Zx finally leads to

(h∗ρ)(x1, . . . , xm)

=

(∫
ϕ(Zx∩V )

ρV (x1, . . . , xm, z1, . . . , zk) dz1 . . . dzk

)
|dx1 . . . dxm|.

(1.28)

As mentioned before, the integral is well-defined because h|supp(ρ) is proper.

The properness also ensures that h∗ρ is smooth with respect to x. Indeed, if

we fix an open subset W in h(V ) with compact closure, the properness allows

to choose a common compact integration domain to replace ϕ(Zx∩V ) in (1.28)

for every x in W . This implies that h∗ρ is smooth on W , hence on h(V ). h∗ρ

is also smooth outside of h(V ) since we have seen that its support is contained

in h(V ).

Finally, if ρ is not supported in such a coordinate patch, we can use a partition

of unity and the properness assumption to express locally h∗ρ as a finite sum

of smooth densities.

Remark 1.5.4. It is clear from formula (1.28) that
∫
N
ρ =

∫
M
h∗ρ. C

This construction can be readily extended to the case of vector bundles. Let

h = (h, r) be a geometric morphism from F to E, such that h : N → M is a

submersion and ρ ∈ Γ∞(N,F ∗ ⊗ |TN |) such that h|supp(ρ) is proper. For each

x ∈ M and y ∈ h−1({x}) ⊂ N , composition with the map r(y)∗ : F ∗y → E∗h(y)

allows to see ρ as a section of h∗(E∗) ⊗ |TN |. As before, this gives a density

along the fiber h−1({x}) valued in E∗x ⊗ |TxM |, which is compactly supported

because of the properness condition. Then, integration along the fiber can be

performed, in order to get a section h∗ρ of E∗ ⊗ |TM |. Using local charts as

in the proof of Proposition 1.5.3 and trivializations of the vector bundles, we

get the following result.

13To be completely explicit, let ∂yi, ∂zj and ∂xk be the vectors tangent to coordinates

yi, zj and xk respectively. Then, h∗(x,z) (∂yi) = ∂xi and, by the explicit construction of the

isomorphism (1.27) in the proof of Lemma 1.2.4, the density corresponding to |dz1 . . . dzk| ⊗
|dx1 . . . dxm| evaluated on the basis (∂z1, . . . , ∂zk, ∂y1, . . . , ∂yk) must be equal to

|dz1 . . . dzk|(∂z1, . . . , ∂zk).|dx1 . . . dxm|(h∗(x,z) (∂y1), . . . , h∗(x,z) (∂ym)) = 1.

This is precisely the density |dz1 . . . dzk dy1 . . . dym|.
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Proposition 1.5.5. Let E →M and F → N be vector bundles over manifolds

M and N , and h = (h, r) a geometric morphism from F to E such that h :

N → M is a submersion. Then, for any ρ ∈ Γ∞(N,F ∗ ⊗ |TN |) such that

h|supp(ρ) is proper, the pushforward h∗ρ defined as above is a smooth section

of E∗ ⊗ |TM |. Furthermore, supp(h∗ρ) ⊂ h(supp(ρ)). In particular, if ρ is

compactly supported, so is h∗ρ.

Remark 1.5.6. In the case of a compactly supported section, the properness

condition is always fulfilled, so the pushforward of a compactly supported sec-

tion of F ∗ ⊗ |TN | is defined for any submersion. On the other hand, the

pushforward by a proper submersion is defined for any section of F ∗ ⊗ |TN |,
without any restriction on its support. C

1.5.3 Pullback of a generalized section by a submersion

As advertised in the beginning of this section, we can now use the pushforward

of a density to define the pullback of a generalized section by duality.

Definition 1.5.7. Let E → M and F → N be vector bundles over the man-

ifolds M and N , and h = (h, r) a geometric morphism from F to E such

that h : N → M is a submersion. The pullback by h of a generalized sec-

tion u ∈ D′(M,E) is the generalized section h∗u ∈ D′(N,F ) defined, for

ρ ∈ D(N,F ∗ ⊗ |TN |), by:

〈h∗u, ρ〉 := 〈u, h∗ρ〉 .

Remark 1.5.8. This definition of the pullback extends the pullback of functions

as considered in Example 1.4.4. Indeed, let f : M → C be a smooth function

on a manifold M , h : N → M a smooth map between manifolds and ρ ∈
D(N, |TN |). Because f ◦ h is constant along the fibers of h, we have f.(h∗ρ) =

h∗((f ◦ h)ρ). Therefore:

〈h∗f, ρ〉 := 〈f, h∗ρ〉 =

∫
M

f.h∗ρ =

∫
M

h∗((f ◦ h)ρ)

=

∫
N

(f ◦ h).ρ = 〈f ◦ h, ρ〉 ,

which is indeed the usual pullback of functions. The same argument shows

that the definition also extends the pullback of sections of a vector bundle. C

Remark 1.5.9. Let us emphasize once more that there is no universal notion

of pullback for generalized sections in the sense that it depends on the kind of

generalized sections we consider, as well as on the kind of transformation by

which we pullback. For instance, the pullback in Definition 1.5.7 is valid for

any generalized section, but only for transformations that are submersions. On

the other extreme, the pullback of sections of Example 1.4.8 can be seen as a
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pullback operation that is valid for any transformation, but only for generalized

sections that are actual sections. As an intermediate case, we will be able to

define the pullback for a subset of generalized sections, but for more general

(although not all) transformations than submersions. We should also stress

that although this seems to give many different notions of pullback, they all

agree on their common cases, as is shown for instance by the previous Remark

1.5.8. C

1.5.4 Pushforward of generalized densities

We have seen how to pushforward a density – or more generally a section of

F ∗⊗|TN | – by a submersion. It is in fact a special case of the pushforward of a

generalized section of F ∗⊗|TN |, which can be defined by duality. Indeed, such a

generalized section is a linear functional on sections of (F ∗⊗|TN |)∗⊗|TN | ' F ,

which can be pullbacked by a geometric morphism.

Definition 1.5.10. Let E →M and F → N be vector bundles over the man-

ifolds M and N , u ∈ D′(N,F ∗ ⊗ |TN |) and h = (h, r) a geometric morphism

from F to E such that h|supp(u) is proper. The pushforward of u by h is the gen-

eralized section h∗u ∈ D′(M,E∗ ⊗ |TM |) defined, for ρ ∈ D(M,E∨ ⊗ |TM |) '
D(M,E), by:

〈h∗u, ρ〉 := 〈u, h∗ρ〉 . (1.29)

Remark 1.5.11. Notice that h∗ρ might not be compactly supported. However,

the condition that h|supp(u) is proper implies that supp(u)∩ supp(h∗ρ) is com-

pact, so 〈u, h∗ρ〉 is well-defined by Remark 1.3.26. If u is compactly supported,

then this condition is always verified, and h∗u is also compactly supported. C

Remark 1.5.12. In the special case where h is a proper submersion, and µ

is a smooth density on N , this definition coincides with the previous one.

Indeed, for any f ∈ D(M), we have 〈h∗µ, f〉 =
∫
M
f.(h∗µ) (where h∗µ is

defined as the pushforward of a density as in Proposition 1.5.3). Since h∗f

is constant along the fibers of h, it can be entered into the integral of (1.28),

so
∫
M
f.(h∗µ) =

∫
N
h∗f.µ, which is the definition 1.5.10 of the pushforward

of µ as a generalized section. The same argument is still valid for a smooth

section of F ∗ ⊗ |TN |. The important point to note is therefore that under

submersions, smooth densities – seen as generalized sections – pushforward to

smooth densities. C

Remark 1.5.13. Since h|supp(u) is proper, h(supp(u)) is closed, and we get from

the definition of h∗u by duality that supp(h∗u) ⊂ h(supp(u)). C

Remark 1.5.14. As would be expected, the pushforward by a composition of

geometric morphisms is the composition of the pushforwards. Indeed, let E →
M , F → N , G → L be vector bundles over manifolds M , N and L and
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u ∈ D′(L,G∗ ⊗ |TL|). Let h1 = (h1, r1) be a geometric morphism from G to

F such that h1|supp(u) is proper, and h2 = (h2, r2) a geometric morphism from

F to E such that h1|h2(supp(u)) is proper. Then, (h2 ◦ h1)|supp(u) is proper and

the definition readily gives

(h2 ◦ h1)∗(u) = h2∗ h1∗(u). (1.30)

C

The following technical lemma will be used later on. As a particular case, it

asserts that the pushforward of a generalized section by a geometric morphism

coincides with the pushforward by the restriction of that morphism to any open

subset that contains the support of the generalized section.

Lemma 1.5.15. Let E →M and F → N be vector bundles over the manifolds

M and N , u ∈ D′(N,F ∗ ⊗ |TN |) and h = (h, r) a geometric morphism from

F to E such that h|supp(u) is proper. Let U ⊂ M be an open subset and V ⊂
h−1(U) open such that supp(u) ∩ h−1(U) ⊂ V . Then, (h∗u)|U = (h|V )∗(u|V ).

Proof. First, notice that h|V : V → U is proper on supp(u|V ) = supp(u)∩V , so

(h|V )∗(u|V ) is well-defined.14 From the definitions by duality of the restriction

and the pushforward of generalized densities, we have for any ρ ∈ D(U, (E∗ ⊗
|TM |)|U ): 〈

(h∗u)|U , ρ
〉

= 〈h∗u, ρ̂〉 = 〈u, h∗ρ̂〉

=
〈
u, ̂(h|h−1(U))

∗ρ
〉

=
〈
u, ̂(h|V )∗ρ

〉
(1.31)

=
〈
u|V , (h|V )∗ρ

〉
=
〈

(h|V )∗(u|V ), ρ
〉
,

where the “̂” sign denotes the extension by zero of compactly supported

sections (see (1.20)), and (1.31) follows from the fact that ̂(h|h−1(U))
∗ρ and

̂(h|V )∗ρ coincides on supp(u) since supp(u) ∩ h−1(U) = supp(u) ∩ V .

Remark 1.5.16. As a particular case of the pushforward, let us consider the

projection π̄ : M → {?} of a manifold M onto a point. Then, the pushforward

by π̄ of a compactly supported generalized density u is a functional on C, which

we shall identify with the number 〈π̄∗u, 1〉. In the particular case of a compactly

supported continuous density u ∈ Γ0
c(M, |TM |), it is given by:

π̄∗u = 〈π̄∗u, 1〉 = 〈u, 1〉 =

∫
M

u.

This suggests to think about the pushforward by π̄ as the integration over M

of the generalized density. C

14Indeed, for any K ⊂ U compact, since h−1(U) ∩ supp(u) ⊂ V , we have h−1(K) ∩
supp(u|V ) = h−1(K) ∩ supp(u) ∩ V = h−1(K) ∩ supp(u) ∩ h−1(U) = h−1(K) ∩ supp(u),

which is compact since h|supp(u) is proper.
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We end this section by a handy application of the previous observation, which

allows to express the smooth trace of a smooth operator in terms of the pullback

and push forward operations.

Lemma 1.5.17. Let E →M be a vector bundle over a manifold M and Pk a

smooth operator from E to E with kernel k ∈ E(M ×M,E � E∨). Denote by

π̄ : M → {?} the projection onto a point, and by ∆ : M →M×M the diagonal

map. If ∆∗(k) is of compact support, then Pk is smooth-traceable and

tr (Pk) = π̄∗ Tr ∆∗(k). (1.32)

Proof. Since k is a smooth function, the pullback is just the composition. If

∆∗(k) is compactly supported, so is x 7→ (Tr ∆∗k)(x) = Tr (k(x, x)), which

is therefore an integrable density on M . Pk is thus smooth-traceable and the

identity (1.32) follows from Remark 1.5.16.

1.6 δ−sections

Introduced in Example 1.3.16, the δ−function is a distribution that associates

to a function – more precisely, to a density – its value at a point. In this section,

we are going to generalize this concept by associating to a submanifold general-

ized sections – called δ−sections – given by integration over that submanifold.

However, since there is no standard way of integrating over a submanifold –

unlike on Rn, where we have the standard Lebesgue density –, those general-

ized sections will carry an additional datum related to the direction transverse

to the submanifold.

1.6.1 Definitions

The following elementary lemma is a key ingredient in the definition of a

δ−section. It allows to decompose the restriction of a density to a submanifold

into densities on the submanifold and on the normal bundle.

Lemma 1.6.1. Let M be a manifold, Z ⊂ M an embedded or immersed sub-

manifold and ι : Z ↪→M the inclusion map. Then, canonically,

ι∗|TM | ' |NZ| ⊗ |TZ|. (1.33)

Proof. Since we have the exact sequence of vector bundles over Z

0→ |TZ| → ι∗|TM | → |NZ| → 0,

this is an immediate consequence of Lemma 1.2.12.
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Now, let E →M be a vector bundle over a manifold M , and Z ⊂M a properly

embedded submanifold.15 Denote by ι : Z ↪→ M the inclusion map. For all

ρ ∈ D(M,E∨), ρ|Z := ι∗ρ is of compact support. By Lemma 1.6.1, it can be

written as ρE ⊗ ρN ⊗ ρT for some ρE ∈ Γ∞(Z,E∗|Z), ρN ∈ Γ∞(Z, |NZ|) and

ρT ∈ Γ∞(Z, |TZ|).16 Given a section σ ∈ Γ∞
(
Z,E|Z ⊗ |NZ|∗

)
, we can form

〈σ, ρE ⊗ ρN 〉 ρT ,

which is a compactly supported density over Z. It is clear that this density

does not depend on the particular choice of ρE , ρN and ρT but only on their

tensor product ρE ⊗ ρN ⊗ ρT . We can finally integrate this density over Z to

get a number. This justifies the following definition.

Definition 1.6.2. Let E →M be a vector bundle over a manifold M , Z ⊂M a

properly embedded submanifold and σ ∈ Γ∞
(
Z,E|Z ⊗ |NZ|∗

)
. The δ−section

associated to the submanifold Z and the symbol σ is the generalized section of

E denoted by δZ,σ and defined on ρ ∈ D(M,E∨) by

〈δZ,σ, ρ〉 :=

∫
Z

〈σ, ρE ⊗ ρN 〉 ρT , (1.34)

where ρE ∈ Γ∞(Z,E∗|Z), ρN ∈ Γ∞(Z, |NZ|) and ρT ∈ Γ∞(Z, |TZ|) are such

that ρE ⊗ ρN ⊗ ρT is identified to ρ|Z through (1.33).

Remark 1.6.3. Let us give another description of the symbol of a δ−section that

will be very useful later on. For every vector bundles E and F , we have E⊗F ∗ '
Hom(F,E). Therefore, the symbol of a δ−section of the bundle E along the

submanifold Z is equivalently given by a section σ ∈ Γ∞(Z,Hom(|NZ|, E|Z)).

In this case, if ρ|Z is identified with ρE ⊗ ρN ⊗ ρT where ρE ∈ Γ∞(Z,E∗),

ρZ ∈ Γ∞(Z, |NZ|) and ρN ∈ Γ∞(Z, |TZ|), then we can form a smooth section

σ(ρN ) of E|Z given at z ∈ Z by σ(z)(ρN (z)), and pair it with ρE . The value

of δZ,σ on ρ is then given by

〈δZ,σ, ρ〉 =

∫
Z

〈ρE , σ(ρN )〉 ρZ . (1.35)

C

Remark 1.6.4. As a convention, we set the δ−section associated to the empty

submanifold to be the trivial generalized section assigning 0 to every section.

C

Remark 1.6.5. The support of a δ−section δZ,σ coincides with supp(σ) ⊂ Z. C

Example 1.6.6. The δ−function δa on Rn (Example 1.3.16) can be seen as a

δ−section of the trivial bundle. The corresponding submanifold is the point

15Notice that a properly immersed manifold is automatically properly embedded.
16We should stress that although ρE , ρN and ρT are not uniquely determined, the value

of ρE ⊗ ρN ⊗ ρT is canonical since the isomorphism (1.33) is.
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{a}. The normal bundle is the whole tangent bundle, whose densities are

generated by the Lebesgue density. Hence, the symbol of δa is |dx1 . . . dxn|∗,
the dual element of the Lebesgue density. ♦

Remark 1.6.7. On a generic manifold M , there is no canonical density and

therefore there is no canonical δ−function at a point x ∈ M . We need to

specify its symbol, which is given by a dual density at the point – which can

be specified by a choice of a basis of the tangent space at that point. C

Definition 1.6.8. Let E → M be a vector bundle over a manifold M . A

δ−density of E is a δ−section of the vector bundle E∗ ⊗ |TM |.

1.6.2 Pullback of a δ−section

The following computation of the pullback of the δ−function is a useful exer-

cise to get more familiar with the calculus of δ−sections and the splitting of

densities.

Example 1.6.9. Let M = Rm, N = Rn and h : M → N a smooth map.

Consider the smooth map

H : M ×N → Rn ; (x, y) 7→ y − h(x)

We denote by x, y and w the coordinates on M , N and Rn respectively, and

by |dx|, |dy| and |dw| the corresponding Lebesgue densities. Since H is a

submersion, we can form H∗δ, where δ is the δ−function on Rn. Let us compute

the value of H∗δ on the density u(x)v(y)|dxdy| of M ×N for some u ∈ D(M)

and v ∈ D(N). By definition of the pullback,

〈H∗δ, u(x)v(y)|dxdy|〉 = 〈δ,H∗(u(x)v(y)|dxdy|)〉 =: c,

where c ∈ C is such that H∗
(
u(x)v(y)|dxdy|

)
(0) = c.|dw|(0). Let

Z := H−1({0}) = {(x, y) ∈M ×N | y = h(x)} = graph(h).

We have to identify the density |dz| on Z such that, for each z ∈ Z, |dz|(z)⊗
|dw|(0) corresponds to |dxdy|(z) through the isomorphism (1.27). Since

|dxdy|(z)
(
(1, 0), (0, 1)

)
= 1

=
(
(gr−1)∗(|dx|)

)
(z)
(
1, 0
)
. |dw|(0)

(
H∗(x,h(x))(0, 1)

)
,

where

gr : M
∼−→ Z ⊂M ×N ; x 7→ (x, h(x)),

we have that |dz| = (gr−1)∗(|dx|). By definition of the pushforward of a smooth

density, H∗
(
u(x)v(y)|dxdy|

)
(0) is the integral over Z of (gr−1)∗(|dx|)⊗|dw|(0),
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so

c =

∫
Z

pr∗M (u) .pr∗N (v) . (gr−1)∗(|dx|) (1.36)

=

∫
M

gr∗pr∗M (u) . gr∗pr∗N (v) . |dx| =
∫
M

(v ◦ h) . u|dx|.

This is usually written more suggestively as (H∗δ)(x, y) = δ(x− h(y)), i.e.∫
N

(H∗δ)(x, y) v(y) dy =

∫
N

δ(x− h(y)) v(y) dy = v(h(x)).

Finally, equation (1.36) suggests that H∗δ is itself a δ−section along the sub-

manifold Z. This is indeed the case, as we shall see in this section. ♦

We have seen that for a generalized section, its pullback by a submersion can

always be defined. For δ−sections, this definition can be extended to more

general maps, which is what we will now carry on. Let us first recall the notion

of transversality which in some sense generalizes the notion of regular values

of a smooth map.

Definition 1.6.10. Let h : N → M be a smooth map between two manifolds,

and Z ⊂M an embedded submanifold of M . We say that h is transverse to Z

if for every y ∈ h−1(Z):

Th(y)M ' Th(y)Z + h∗y (TyN).

Remark 1.6.11. We follow here the general convention of saying that if h−1(Z)

is empty, then h is trivially transverse to Z. C

Remark 1.6.12. A submersion is transverse to any embedded submanifold. C

The following theorem follows from the Preimage Theorem for submersions.

We refer to [Lee13] for a proof.

Theorem 1.6.13. Let h : N →M be a smooth map between two manifolds that

is transverse to an embedded submanifold Z ⊂M . Then, h−1(Z) is an embed-

ded submanifold of N . Furthermore, if h−1(Z) is not empty, the codimension

of h−1(Z) in N is the same as the codimension of Z in M .

Now let us turn to the pullback of a δ−section. Let E → M and F → N

be vector bundles over manifolds M and N , Z ⊂ M be a properly embedded

submanifold and h = (h, r) be a geometric morphism from F to E such that

h : N →M is transverse to Z.

Let W := h−1(Z). It is an embedded submanifold of N by Theorem 1.6.13

and it is also properly embedded since Z is. The key point is that, since h

is transverse to Z, it induces an isomorphism between the normal bundle of
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Z and the normal bundle of W . This naturally gives a geometric morphism

from F|W ⊗|NW |∗ to E|Z⊗|NZ|∗, which allows to pullback the symbol of any

δ−section of E along Z to a symbol of a δ−section of F along W . Let us see

how this works. For any y ∈ W , the map h∗y : TyN → Th(y)(M) induces a

map

TyN → Th(y)(M)/Th(y)(Z)

which is surjective since Th(y)(M) = (h∗y )(TyN) + Th(y)(Z) by transversality

of h. Its kernel contains TyW because (h∗y )(TyW ) ⊂ Th(y)(Z). Therefore, we

get a surjective map:

h̄∗y : NyW ' TyN/TyW → Nh(y)(Z) ' Th(y)(M)/Th(y)(Z).

It is in fact an isomorphism since NyW and Nh(y)(Z) have the same dimension

because the codimensions of Z and W are equal by Theorem 1.6.13. By Lemma

1.2.7, this induces an isomorphism |h̄∗y | between densities, and we denote its

dual by

|h̄∗y |∗ : |Nh(y)(Z)|∗ ∼−→ |NyW |∗. (1.37)

We can now define a section r̃ of Hom(h∗(E|Z ⊗ |NZ|∗), F|W ⊗ |NW |∗) given

at y ∈W by

r̃(y) := r|Z(y)⊗ |h̄∗y |∗. (1.38)

The following Lemma shows that this section is smooth, so it defines a geometric

morphism h̃ = (h, r̃) from F|W ⊗ |NW |∗ to E|Z ⊗ |NZ|∗.

Lemma 1.6.14. Within the previous setting, h̃ = (h, r̃) defined by the formula

(1.38) is a geometric morphism from F|W ⊗|NW |∗ to E|Z⊗|NZ|∗. Therefore,

for any δ−section δZ,σ of E along Z with symbol σ ∈ Γ∞
(
Z,E|Z ⊗ |NZ|∗

)
,

δh−1(Z),h̃∗(σ) is a well-defined δ−section of F along the submanifold h−1(Z).

Proof. Let (y1, . . . , yn) be local coordinates on an open set V ⊂ N such that

h−1(Z)∩V is described by y1 = · · · = yk = 0, and local coordinates (x1, . . . , xm)

on an open set U ⊂ M such that h(V ) ⊂ U and Z ∩ U is given by x1 = · · · =
xk = 0. Then, |NZ|∗ is spanned by |dx1 . . . dxk|∗, |NW |∗ by |dy1 . . . dyk|∗ and

the isomorphism (1.37) maps |dx1 . . . dxk|∗ to

1

|Jackh|
|dy1 . . . dyk|∗,

where Jackh denotes the partial Jacobian of h:

Jackh = det

 ∂h1/∂y1 . . . ∂hk/∂y1

...
. . .

...

∂h1/∂yk . . . ∂hk/∂yk

 .

This shows that r̃ is indeed a smooth section. Let δZ,σ be a δ−section of E

along Z with symbol σ ∈ Γ∞
(
Z,E|Z ⊗ |NZ|∗

)
. Then, h̃∗(σ) is a well-defined
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symbol on h−1(Z). For a later use, let us give an explicit expression of it. The

symbol σ has the form s⊗ |dx1 . . . dxk|∗ for some smooth section s of E|Z , so,

for y ∈W ∩ V , we have

h̃∗(σ)(y) = (r|Z(y)⊗ |h̄∗y |∗)(σ(h(y)) ∈ Fy ⊗ |NyW |∗

=
r(y)( s(h(y)) )

|Jackh(y)|
⊗ |dy1 . . . dyk|∗.

(1.39)

That is the local expression of the δ−section δh−1(Z),h̃∗(σ) which we shorten by

writing

h̃∗(σ) =
r(s ◦ h)

|Jackh|
⊗ |dy1 . . . dyk|∗. (1.40)

Lemma 1.6.15. Within the previous setting, if we suppose in addition that

h is a submersion, then the pullback h∗(δZ,σ) coincides with the δ−section

δh−1(Z),h̃∗(σ).

Proof. Let us take some local coordinates as in the proof of Lemma 1.6.14.

Because h is a submersion, we can take them to be such that the local expression

of h is

h(y1, . . . , yn) = (y1, . . . , ym).

Let ρ ∈ D(N,F ∗ ⊗ |TN |) supported in V . It has the form

ρ = l ⊗ |dy1 . . . dyk| ⊗ |dyk+1 . . . dyn|

for some smooth section of compact support l of F ∗. The symbol σ has the

form s ⊗ |dx1 . . . dxk|∗ for some smooth section s of E|Z . By definition of

a δ−section and the formula (1.40) for the symbol of δh−1(Z),h̃∗(σ), we have

(notice that |Jackh| = 1):〈
δh−1(Z),h∗(σ), ρ

〉
:=

∫
〈l, r(s ◦ h)〉 . 〈|dy1 . . . dyk|∗, |dy1 . . . dyk|〉 .|dyk+1 . . . dyn|

=

∫
〈l, r(s ◦ h)〉 .|dyk+1 . . . dyn|.

On the other hand, the definition of the pushforward of ρ by h leads to

h∗ρ :=

(∫
r∗l . |dym+1 . . . dyn|

)
⊗ |dx1 . . . dxm| ∈ D(M,E∗ ⊗ |TM |).
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By definition of the pullback by a submersion, we thus have

〈h∗(δZ,σ), ρ〉 := 〈δZ,σ, h∗ρ〉

=

∫ 〈∫
r∗l . |dym+1 . . . dyn|, s

〉
. 〈|dx1 . . . dxk|∗, |dx1 . . . dxk|〉 .|dxk+1 . . . dxm|

=

∫ ∫
〈l, r(s ◦ h)〉 .|dym+1 . . . dyn||dyk+1 . . . dym|

=

∫ ∫
〈l, r(s ◦ h)〉 .|dyk+1 . . . dyn|.

This indeed coincides with the value of
〈
δh−1(Z),h̃∗(σ), ρ

〉
.

The two previous results suggest a way to extend the definition of the pull-

back of δ−sections to more general maps than submersions. Notice that in

the following, we will write h instead of h̃ since it should not introduce any

confusion.

Definition 1.6.16. Let E →M and F → N be vector bundles over manifolds

M and N . Let δZ,σ be a δ−section of E along a properly embedded submanifold

Z ⊂ M with symbol σ ∈ Γ∞
(
Z,E|Z ⊗ |NZ|∗

)
. Let h = (h, r) be a geometric

morphism from F to E such that h : N →M is transverse to Z. The pullback

h∗(δZ,σ) of δZ,σ by h is the δ−section δh−1(Z),h∗(σ).

Remark 1.6.17. By Remark 1.6.5 and (1.40), the support of the pullback is

supp (h∗(δZ,σ)) = h−1(supp(σ)) = h−1(supp(δZ,σ)). C

The following lemma shows that the pullback of δ−sections behaves as expected

with respect to the composition of geometric morphisms.

Lemma 1.6.18. Let E → M , F → N , G → L be vector bundles over man-

ifolds M , N and L. Let δZ,σ be a δ−section of E along a properly embedded

submanifold Z ⊂ M with symbol σ ∈ Γ∞
(
Z,E|Z ⊗ |NZ|∗

)
. Let h1 = (h1, r1)

be a geometric morphism from F to E such that h1 : N → M is transverse to

Z, and h2 = (h2, r2) a geometric morphism from G to F such that h2 : L→ N

is transverse to h−1
1 (Z). Then, (h1 ◦ h2) is transverse to Z, and

(h1 ◦ h2)∗(δZ,σ) = h2
∗ h1

∗(δZ,σ). (1.41)

Proof. Let z ∈ Z, y ∈ L such that (h1(h2(y)) = z and X ∈ Tz(M). Then,

since h1 is transverse to Z, there exists XZ ∈ Tz(Z) and Y ∈ Th2(y)(N) such

that X = XZ + (h1)∗h2(y)
(Y ). Since h2 is transverse to h−1

1 (Z), there exists

Y1 ∈ Th2(y)(h
−1
1 (Z)) and Y0 ∈ Ty(L) such that Y = Y1 +(h2)∗y (Y0). Therefore,

X = XZ + (h1)∗h2(y)

(
Y1 + (h2)∗y (Y0)

)
= XZ + (h1)∗h2(y)

(Y1) + (h1 ◦ h2)∗y (Y0),
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which shows that (h1 ◦ h2) is transversal to Z because (h1)∗h2(y)
(Y1) ∈ Tz(Z).

(h1◦h2)∗(δZ,σ) is thus a well-defined δ−section, whose symbol is (h1◦h2)∗(σ) =

h2
∗h1
∗(σ) (since these are pullbacks of a smooth section), which shows (1.41).

1.6.3 Pushforward of a δ−density

We have seen in Section 1.5.4 how to pushforward generalized densities, that is,

generalized sections of F ∗ ⊗ |TN | for F → N a vector bundle over a manifold

N . In the case of a δ−density, we can describe its pushforward in terms of

its symbol. Also, we will show that the pushforward of a δ−density by a

submersion gives a smooth section.

Proposition 1.6.19. Let E → M and F → N be vector bundles over mani-

folds M and N and h = (h, r) a geometric morphism from F to E. Let δZ,σ be

a δ−density of F (that is, a δ−section of F ∗⊗|TN |) along a properly embedded

submanifold Z ⊂ N with symbol σ. Suppose that h|supp(σ) is proper. Then,

h∗(δZ,σ) = (h|Z)∗(σ), (1.42)

where, on the right hand side, σ is considered as a (smooth) generalized section

of (F|Z)∗ ⊗ |TZ|.

Proof. First, let us make sense of formula (1.42). The symbol σ is a smooth

section of the vector bundle

(F ∗ ⊗ |TN |)|Z ⊗ |NZ|∗ ' (F|Z)∗ ⊗ |TZ| ⊗ |NZ| ⊗ |NZ|∗

' (F|Z)∗ ⊗ |TZ|,
(1.43)

so it can be seen as a smooth generalized section of (F|Z)∗ ⊗ |TZ|, which can

be pushforwarded by h|Z using formula (1.29). Because the support of δZ,σ is

supp(σ), the condition that h|supp(σ) is proper ensures that the pushforward is

well-defined.

Now let us evaluate h∗(δZ,σ) on a compactly supported section ρ of (E∗ ⊗
|TM |)∨ ' E. By definition of the pullback, we have 〈h∗(δZ,σ), ρ〉 = 〈δZ,σ, h∗ρ〉.
Under the identification (1.43), we have:

〈δZ,σ, h∗ρ〉 =

∫
Z

(σ, (h∗ρ)|Z)

where (σ, (h∗ρ)|Z) denotes the pairing (1.17) of the first component of σ with

(h∗ρ)|Z , which gives a density on Z. This last integral is
〈
σ, (h∗ρ)|Z

〉
, the

evaluation on (h∗ρ)|Z of σ seen as a generalized section. Since (h∗ρ)|Z =

(h|Z)∗ρ, it coincides with the definition of the pullback of σ.
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The following result gives conditions for the pushforward of a δ−density to be

smooth.

Proposition 1.6.20. Let E → M and F → N be vector bundles over mani-

folds M and N . Let δZ,σ be a δ−density of F . Let h = (h, r) be a geometric

morphism from F to E such that h|supp(σ) is proper. Then h∗(δZ,σ) is smooth

at every regular value of h|Z . More precisely, for every regular value x ∈M of

h|Z , there exists an open neighbourhood U ⊂ M of x such that h∗(δZ,σ)|U is

smooth. In particular, if h|Z is a submersion, then h∗(δZ,σ) is a smooth section

of E∗ ⊗ |TM |.

Proof. Let x ∈M be a regular value of h|Z and denote g := h|Z and g := h|Z .

Notice that g|supp(σ) is proper since Z, being properly embedded, is closed in

N .

First, let us show that, because g|supp(σ) is proper, there exists an open neigh-

bourhood U of x such that every point of supp(σ) ∩ g−1(U) is a regular point

of g. Indeed, if it is not the case, one can find a sequence xn → x in U and a se-

quence {yn}n∈N ⊂ supp(σ) such that g(yn) = xn and yn is a singular point of g.

Since K := {xn}n∈N∪{x} is compact and g|supp(σ) is proper, g−1(K)∩supp(σ)

is compact and there is a convergent subsequence ynk → y. By continuity,

g(y) = x, so y must be a regular point. We therefore have a sequence of singu-

lar points converging to a regular point, which contradicts the fact that being

a regular point is an open condition.

Next, since being a regular point is an open condition, there exists an open

subset Ṽ containing supp(σ) ∩ g−1(U) such that g|Ṽ is a submersion. Then, if

we define V := Ṽ ∩ g−1(U), Lemma 1.5.15 imply that

(g∗σ)|U = (g|V )∗(σ|V ).

Therefore, since g|V is a submersion, it follows from Remark 1.5.12 and Propo-

sition 1.5.5 that (g∗σ)|U is smooth. By Proposition 1.6.19, this finally implies

that (h∗(δZ,σ))|U is smooth.

We end up our considerations about the calculus of δ−sections with a result

about the commutation of pullback and pushforward. It should be interpreted

as an instance of “integration commutes with restriction”. The key point of the

proof is to work with the symbol of the δ−section, which is easier to manipulate

thanks to the previous results.

Proposition 1.6.21. Let M , N and Q be manifolds, f : M → N a smooth

map and Z ⊂ Q × N a submanifold. Consider the following commutative

diagram:

M
f−−→ N

π ↑ ↑ p
W ⊂ Q×M g−→ Q×N ⊃ Z,
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where:

• π : Q×M →M and p : Q×N → N are the projections onto the second

components;

• g := id× f and W := g−1(Z).

Let E →M and F → N be vector bundles. Suppose that:

i. g is transverse to Z;

ii. p|Z is a submersion;

iii. f is proper;

iv. f∗(F ∗ ⊗ |TN |) ' E∗ ⊗ |TM |.

Then, at the level of the vector bundles, we have the following commutative

diagram17

E∗ ⊗ |TM | f−−→ F ∗ ⊗ |TN |
π ↑ ↑ p

π∗(E)∗ ⊗ |T (Q×M)| g−→ p∗(F )∗ ⊗ |T (Q×N)|,

(1.44)

and for every δ−section δZ,σ of the vector bundle p∗(F )∗⊗|T (Q×N)| along Z

and of symbol σ, such that p|supp(σ) is proper, f∗ p∗(δZ,σ) and π∗ g
∗(δZ,σ) are

well-defined smooth sections of E∗ ⊗ |TM | and

f∗ p∗(δZ,σ) = π∗ g
∗(δZ,σ). (1.45)

Proof. Let us first notice that, because of the definition of π, p and g, for every

subset A ⊂M , we have that

g(π−1(A)) = p−1(f(A)), (1.46)

which we will use later on. Also, for every (q, x) ∈ Q×M , we have:

g∗
(
p∗(F ∗)⊗ |T (Q×N)|

)
(q,x)

' (p∗(F ∗)⊗ |T (Q×N)|)(q,f(x))

' F ∗f(x) ⊗ |TQ|q ⊗ |TN |f(x)

' f∗ (F ∗ ⊗ |TN |)x ⊗ |TQ|q
' (E∗ ⊗ |TM |)x ⊗ |TQ|q
'
(
π∗(E∗)⊗ |T (Q×M)|

)
(q,x)

,

(1.47)

which justifies the diagram (1.44). Let us now verify that both generalized

sections in (1.45) are well-defined. Since p|supp(σ) is proper and p|Z is a sub-

mersion by assumption, Proposition 1.6.20 implies that p∗(δZ,σ) is a smooth

section of F ∗ ⊗ |TN | and the pullback by f gives a smooth section f∗ p∗(δZ,σ)

of f∗(F ∗ ⊗ |TN |) ' E∗ ⊗ |TM |.
17The geometric morphisms associated to each arrows are the natural ones between a vector

bundle and its pullback bundle as mentioned in Remark 1.4.7.
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On the other hand, since g is transverse to the properly embedded submanifold

Z, W is a properly embedded submanifold by Theorem 1.6.13, and g∗(δZ,σ) is a

δ−section along W of the vector bundle g∗
(
p∗(F ∗)⊗ |T (Q×N)|

)
' π∗(E∗)⊗

|T (Q ×M)|. To show that π|g−1(supp(σ)) is proper, let K ⊂ M be a compact

subset. Then, f(K) is compact by continuity of f and p−1(f(K))∩supp(σ) also

by the properness of p|supp(σ), and it is equal to g(π−1(K))∩supp(σ) by (1.46).

Since f is proper, g is also proper, and π−1(K) ∩ g−1(supp(σ)) is compact,

which proves the claim. We have in addition that π|W is a submersion. Indeed,

let (q, x) ∈ W ⊂ Q × M and X ∈ TxM . By definition of W , (q, f(x)) ∈
Z and, since p|Z is a submersion, there exists XZ ∈ T(q,f(x))(Z) such that

p∗(q,f(x))(XZ) = f∗x(X). By writing T(q,f(x))(Z) ⊂ Tq(Q)×Tf(x)(N), XZ must

be of the form (Y, f∗x(X)) for some Y ∈ TqQ. Then, (Y,X) ∈ T(q,x)(W ) and it

is such that π∗(q,x)(Y,X) = X, which shows that π|W is a submersion. Putting

everything together, Proposition 1.6.20 implies that π∗ g
∗(δZ,σ) is a smooth

section of E∗ ⊗ |TM |.

In order to finally show that the two sections coincides, we will track how the

symbol of δZ,σ is transformed under the various operations. Let x ∈M . Since

p∗(δZ,σ) is a smooth section, f∗ p∗(δZ,σ)(x) = p∗(δZ,σ)(f(x)), which, by (1.42),

is given by integration of σ along the fibers of p|Z , that is:

f∗ p∗(δZ,σ)(x) =

∫
p−1({f(x)})∩Z

σ. (1.48)

On the other hand, by (1.42) and the definition of the pullback of a δ−section,

π∗ g
∗(δZ,σ)(x) =

∫
π−1({x})∩W

g∗σ

=

∫
g(π−1({x})∩W )

σ,

where we have used (1.47) and the change of variable formula. (1.46) finally

gives the equality with (1.48).

1.7 Pullback by a geometric morphism of vector

bundles

We will now compute the kernel of the operator corresponding to the pullback

by a geometric morphism of vector bundles. We will see that it is given by a

δ−section, and identify its symbol. After introducing a transversality condition,

we will then be able to define some “trace” for those operators.

Recall that given a smooth map h : M → N between manifolds, its graph is

defined by

graph(h) := {(x, h(x)) | x ∈M} ⊂M ×N.
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Also, we will denote by prM : M × N → M and prN : M × N → N the two

projections onto each component.

In order to keep notations simple, we first focus on the case of the pullback by

a smooth map.

Proposition 1.7.1. Let h : M → N be a smooth map between manifolds and

denote by P : D(N)→ D′(M) the general operator induced by the pullback (see

Example 1.4.4)

h∗ : E(N)→ E(M).

Then, the kernel of P is a δ−section of the vector bundle pr∗N (|TN |)→M ×N
along the submanifold Z := graph(h) with a symbol σ ∈ Γ∞(Z,pr∗N (|TN |)|Z ⊗
|NZ|∗).

Proof. According to the Schwartz kernel theorem18, the kernel of P is an

element of D′(M × N, pr∗N (|TN |)). We will first identify a δ−section k of

pr∗N (|TN |) along Z, and then verify explicitly that it is the kernel of P . No-

tice that it makes sense to define a δ−section along Z since, as the graph of a

smooth map, it is a properly embedded submanifold of M ×N .

The proof is mainly a matter of correctly identifying the splitting of a density

on M ×N as a tensor product of densities on Z and NZ, as well as on M and

N . Let z = (x, h(x)) ∈ Z. We have the two decompositions

Tz(M ×N) = Th(x)N ⊕ TxM,

Tz(M ×N) = NzZ ⊕ TzZ,

to each of which corresponds, by Lemma 1.2.6, a canonical isomorphism:

|Tz(M ×N)| ' |Th(x)N | ⊗ |TxM |, (1.49)

|Tz(M ×N)| ' |NzZ| ⊗ |TzZ|. (1.50)

The diffeomorphism

gr : M
∼−→ Z ⊂M ×N ; x 7→ (x, h(x)).

induces an isomorphism of vector spaces

gr∗x : TxM
∼−→ TzZ ; (X,h∗x(X)),

hence, by Lemma 1.2.7, an isomorphism |gr∗x | : |TxM |
∼−→ |TzZ|.

Then, for every λ1 ∈ |Th(x)N | and λ2 ∈ |TxM |, there is a unique density

in |NzZ|, that we denote by |jz|(λ1), such that the elements λ1 ⊗ λ2 and

18We should note that the kernel theorem is in fact not really needed here because we will

explicitly compute the kernel of P . However, we still refer to it since we think it gives some

more insight into the proof.
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|jz|(λ1) ⊗ |gr∗x |(λ2) have the same image under the isomorphisms (1.49) and

(1.50). This defines an isomorphism

|jz| : |Th(x)N |
∼−→ |NzZ|.

We can explicitly compute that it is induced from the isomorphism

jz : Th(x)N
∼−→ NzZ ; Y 7→ [(0, Y )] .19 (1.51)

We define the symbol of our δ−section k as the section σ of the vector bundle

Hom(|NZ|,pr∗N (|TN |)|Z) over Z given by σ(z) := |jz|−1. Before showing that

this section is smooth, let us see that k indeed gives the kernel of P .

Let ϕ ∈ D(N) and ψ ∈ D(M, |TM |). By definition of the operator Pk associ-

ated to the kernel k (see Example 1.4.12), we have:

〈Pkϕ,ψ〉 := 〈k,pr∗Nϕ . pr∗N µ̄0 ⊗ (pr∗Nµ0 ⊗ pr∗Mψ)〉 ,

where µ0 is any non-vanishing density on N , µ̄0 is the corresponding dual

density and (pr∗Nµ0 ⊗ pr∗Mψ) is considered as a section of |T (M ×N)| through

the isomorphism (1.49). When restricted to Z, this section canonically gives a

section of the bundle |NZ| ⊗ |TZ| over Z through the isomorphism (1.50). By

the compatibility between |jz| and |gr∗x |, this section is given at a point z ∈ Z
by

|jz|(pr∗Nµ0(z))⊗|gr∗x |(pr∗Mψ(z)) = σ(z)−1(pr∗Nµ0(z))⊗ ((gr−1)∗ψ)(z). (1.52)

By definition of a δ−section (equation (1.35)), we therefore have

〈k, pr∗Nϕ . pr∗N µ̄0 ⊗ (pr∗Nµ0 ⊗ pr∗Mψ)〉

:=

∫
Z

(pr∗Nϕ)(z) .
〈
(pr∗N µ̄0)(z), σ(z)(σ(z)−1(pr∗Nµ0(z)))

〉
. ((gr−1)∗ψ)(z)

=

∫
Z

(pr∗Nϕ)(z) . ((gr−1)∗ψ)(z)

=

∫
M

(gr∗pr∗Nϕ)(x) . ψ(x) =

∫
M

(ϕ ◦ h) . ψ,

19Indeed, let (e1, . . . , em) be a basis of TxM and (f1, . . . , fn) be a basis of Th(x)N and

denote µ := |de1 . . . den| ∈ |TxM | and λ := |df1, . . . , dfn| ∈ |Th(x)N | the densities that are

equal to 1 one those bases. Then b := ((e1, h∗x (e1)), . . . , (em, h∗x (em)), (0, f1), . . . , (0, fn))

is a basis of Tz(M ×N) and, by the proof of Lemma 1.2.4, the evaluation on b of the image

of |jz |(λ)⊗ |gr∗x |(µ) under the isomorphism (1.50) is

(|jz |(λ)⊗ |gr∗x |(µ))(b) := |jz |(λ)([(0, f1)], . . . , [(0, fn)])

.|gr∗x |(µ)((e1, h∗x (e1)), . . . , (em, h∗x (em))

= λ((f1, . . . , fn)).µ((e1, . . . , em)) = 1.

On the other hand, since b is related to the basis c := ((e1, 0), . . . , (em, 0), (0, f1), . . . , (0, fn))

by a matrix of determinant 1, the image of λ⊗µ under the isomorphism (1.49) evaluates as:

(λ⊗ µ)(b) = (λ⊗ µ)(c) = λ((f1, . . . , fn)).µ((e1, . . . , em)) = 1,

which proofs the claim.
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where, to get the last line from the previous one, we have performed a change of

variables using the diffeomorphism gr : M
∼−→ Z. This last expression coincides

with the value (1.21) of 〈Pϕ,ψ〉, so k is indeed the kernel of P .

Finally, let us get back to the symbol σ and show that it is smooth by giving a

local expression that will be useful later. Let (x1, . . . , xm) be local coordinates

on an open neighbourhood U ⊂ M of x and (y1, . . . , yn) local coordinates on

an open neighbourhood V ⊂ N of h(x). Denote by

(h1(x1, . . . , xm), . . . , hn(x1, . . . , xm))

the expression of h in those coordinates. Then,

(u1 := y1 − h1(x1, . . . , xm), . . . , um := ym − hm(x1, . . . , xm), x1, . . . , xm)

gives local coordinates on U × V ⊂ M × N such that Z is described by the

vanishing of the first n coordinates. |NZ| is generated by |du1 . . . dun|, and, by

equation 1.51, |jz| maps |dy1 . . . dyn| to |du1 . . . dun|. Therefore, as an element

of |TN | ⊗ |NZ|∗, the symbol is

σ(z) := |jz|−1 = |dy1 . . . dyn| ⊗ |du1 . . . dun|∗, (1.53)

which is clearly smooth.

We can now generalize this result to vector bundles. Since the delicate point of

identifying densities has already been carried on in the previous proof, there is

nothing really new. It is mainly a matter of carefully introduce tensor products

with sections and homomorphisms of E and F where they should be.

Proposition 1.7.2. Let E → M and F → N be vector bundles over two

manifolds M and N . Let h = (h, r) be a geometric morphism from E to F

and denote by P : D(N,F ) → D′(M,E) the general operator induced by the

pullback (see Example 1.4.8)

h∗ : E(N,F )→ E(M,E).

Then, the kernel of P is a δ−section of the vector bundle

Hom(pr∗NF,pr∗ME)⊗ pr∗N (|TN |)→M ×N

along the submanifold Z := graph(h) with a symbol

σ ∈ Γ∞
(
Z,Hom(pr∗NF,pr∗ME)|Z ⊗Hom

(
|NZ|,pr∗N (|TN |)|Z

))
.

The support of this δ−section k is given by

supp(k) = {(x, h(x)) | x ∈ supp(r)} ⊂ graph(h). (1.54)
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Proof. The proof follows pretty much the same line as the previous one. Ac-

cording to the Schwartz kernel theorem, the kernel of P is a generalized section

of the vector bundle over M ×N

E � F∨ ' Hom(pr∗NF,pr∗ME)⊗ pr∗N (|TN |),

which we will identify as a δ−section k along the properly embedded subman-

ifold Z of M ×N .

Its symbol must be a section of the vector bundle over Z(
Hom(pr∗NF,pr∗ME)⊗ pr∗N (|TN |)

)
|Z ⊗ |NZ|

∗

' Hom(pr∗NF,pr∗ME)|Z ⊗Hom(|NZ|,pr∗N (|TN |)|Z).

Let z = (x, h(x)) ∈ Z. As in the proof of Proposition 1.7.1, we get an isomor-

phism

|jz|−1 : |NzZ|
∼−→ |Th(x)N |.

The fiber at z of Hom(pr∗NF,pr∗ME)|Z is(
Hom(pr∗NF,pr∗ME)|Z

)
z
' Hom

(
(pr∗NF )(x,h(x)), (pr∗ME)(x,h(x))

)
' Hom(Fh(x), Ex).

From the geometric morphism h, we get such a homomorphism as the element

r(x) : Fh(x) → Ex.

All this allows us to define the symbol of our δ−section k as the section σ of

the vector bundle

Hom(pr∗NF,pr∗ME)|Z ⊗Hom
(
|NZ|,pr∗N (|TN |)|Z

)
→ Z

defined at z by

σ(z) := r(prM (z))⊗ |jz|−1. (1.55)

We have shown in the previous proposition that |jz|−1 is smooth in z and since

r is a smooth section, σ is also smooth. From (1.55), we also get that the

support of k is given by (prM )−1(supp(r)), which coincides with (1.54).

Finally, to see that k indeed coincides with the kernel of P , let us follow Exam-

ple 1.4.13 and take ϕ ∈ D(N,F ) and ψ ∈ D(M,E∗ ⊗ |TM |). ψ can be written

as ψ = ψ1 ⊗ ψ2 with ψ1 ∈ D(M,E∗) and ψ2 ∈ E(M, |TM |). The value of the

operator Pk associated to the kernel k is then given by equation (1.26):

Pk(ϕ)(ψ) := 〈k, pr∗Nϕ⊗ pr∗Mψ1 ⊗ pr∗N µ̄0 ⊗ (pr∗Nµ0 ⊗ pr∗Mψ2)〉 ,

where µ0 is any non-vanishing density on N , µ̄0 is the corresponding dual

density and (pr∗Nµ0 ⊗ pr∗Mψ2) is considered as a section of |T (M×N)| through
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the isomorphism (1.49). To evaluate k from its definition as a δ−section, we

proceed as in the previous proof, relying on equation (1.52):

〈k, pr∗Nϕ⊗ pr∗Mψ1 ⊗ pr∗N µ̄0 ⊗ (pr∗Nµ0 ⊗ pr∗Mψ2)〉

=

∫
Z

〈(pr∗Mψ1)(z), r(prM (z))(pr∗Nϕ)(z)〉

.
〈
(pr∗N µ̄0)(z), |jz|−1(|jz|(pr∗Nµ0(z)))

〉
. ((gr−1)∗ψ2)(z)

=

∫
Z

〈(pr∗Mψ1)(z), r(prM (z))(pr∗Nϕ)(z)〉 . ((gr−1)∗ψ2)(z).

Changing variables using the diffeomorphism gr : M
∼−→ Z leads to∫

M

〈(pr∗Mψ1)(gr(x)), r(prM (gr(x)))(pr∗Nϕ)(gr(x))〉 . (gr∗(gr−1)∗ψ2)(x)

=

∫
M

〈ψ1(x), r(x)(ϕ(h(x)))〉 . ψ2(x)

=

∫
M

〈ψ1(x), (h∗ϕ)(x)〉 . ψ2(x) =

∫
M

(h∗ϕ,ψ) ,

where (·, ·) denotes the pairing (1.17). This is indeed the expression (1.22) for

P .

Definition 1.7.3. Let h : M → M be a smooth map on a manifold M . A

point p ∈ M is said to be a simple fixed point if it is a fixed point of h (i.e.

h(p) = p) such that det(id− h∗p) 6= 0.20

Lemma 1.7.4. Let h : M → M be a smooth map on a manifold M . Then,

the diagonal map ∆ : M → M ×M ; x 7→ (x, x) is transverse to graph(h) if

and only if all the fixed points of h are simple. Furthermore, in this case, all

the fixed points of h are isolated.

Proof. First notice that a point p ∈ M is in ∆−1(graph(h)) if and only if

(p, p) = (p, h(p)), that is if and only if it is a fixed point of h. Let p ∈M be a

fixed point of h. We have

T(p,p)(graph(h)) '
{

(X,h∗p(X)) | X ∈ TpM
}
' TpM,

∆∗p(TpM) ' {(Y, Y ) | Y ∈ TpM} ' TpM.

To say that ∆ is transverse to graph(h) is to say that these vector spaces must

span T(p,p)(M×M). Because they both are of dimension dim(M), this is equiv-

alent to their intersection being {0}. This is in turn equivalent to the linear

map (id − h∗p) : TpM → TpM being injective, hence invertible, which is the

condition for p to be simple.

Regarding the second part, if ∆ is transverse to graph(h), Theorem 1.6.13

20Here, id : TpM → TpM denotes the identity map. Since p is a fixed point, we have

h∗p : TpM → TpM , so the condition is well-defined.
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implies that ∆−1(graph(h)), the set of fixed points of h, is an embedded sub-

manifold of M of codimension dim(M), that is, a union of isolated points.

Proposition 1.7.5. Let E → M be a vector bundle over a manifold M . Let

h = (h, r) be a geometric morphism from E to itself. Let kh be the kernel of

the general operator induced by the pullback by h (see Example 1.4.8). Let us

denote by ∆ : M →M ×M ;x 7→ (x, x) the diagonal map and by π̄ : M → {?}
the projection onto a point. Suppose that all the fixed points p ∈ M of h are

simple and that Tr (r(p)) 6= 0 for only a finite number of them.

Then, the quantity π̄∗ Tr ∆∗ kh is well-defined and

π̄∗ Tr ∆∗ kh =
∑

p=h(p)

Tr(r(p))∣∣det
(
id− h∗p

)∣∣ , (1.56)

where the sum is over the fixed points of h.

Remark 1.7.6. The sum in (1.56) always has only a finite number of nonvan-

ishing terms, even if h has an infinite number of fixed points, because of the

hypothesis that Tr(r(p)) 6= 0 for finitely many of them. Notice that this condi-

tion is trivially always verified if h has a finite number of fixed points. It is also

the case if M is compact since, all the fixed points being simple, they must be

isolated by Lemma 1.7.4, hence in finite number. C

Proof of Proposition 1.7.5. Let pri : M ×M → M be the projection onto the

ith component. By Proposition 1.7.2, kh is a δ−section of the vector bundle21

F := Hom(pr∗2E,pr∗1E)⊗ pr∗2(|TM |)→M ×M

along the submanifold graph(h). To pullback by ∆, we need to define a geo-

metric morphism that “enhances” ∆ with a vector bundle morphism from ∆∗F

to some vector bundle over M . Since pr1 ◦∆ = pr2 ◦∆ = idM , we have in fact

that

∆∗F ' Hom(E,E)⊗ |TM |.

We still denote by ∆ the associated geometric morphism. Because all the fixed

points of h are simple, Lemma 1.7.4 implies that ∆ is transverse to graph(h), so

we can pullback kp by ∆ using Definition 1.6.16. This gives a δ−section of the

bundle Hom(E,E)⊗ |TM | along the submanifold W := ∆−1(graph(h)) ⊂ M ,

which is the set of fixed points of h. At each p ∈ W , the symbol of ∆∗ kh
is an element of Hom(Ep, Ep) ⊗ |TpM | ⊗ |NpW |∗. Taking the trace of the

homomorphism gives a symbol of a δ−section of |TM | along W that we denote

Tr ∆∗ kh. Its support is exactly the set of fixed points p such that Tr (r(p)) 6= 0,

which is finite by hypothesis. Therefore, Tr ∆∗ kh is compactly supported and

we can pushforward it by π̄, to get the well defined number π̄∗ Tr ∆∗ kh.

21We denote by pri : M ×M →M the projection onto the ith component.
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To compute this number, let p ∈M be a fixed point of h in supp(Tr ∆∗ kh), that

is, such that Tr (r(p)) 6= 0. Let (x1, . . . , xm) be local coordinates on an open

neighbourhood U ⊂ M of p. Denote by (h1(x1, . . . , xm), . . . , hm(x1, . . . , xm))

the expression of h in those coordinates. Then,

(u1 := y1 − h1(x1, . . . , xm), . . . , um := ym − hm(x1, . . . , xm), x1, . . . , xm)

gives local coordinates on U × U ⊂ M × N such that Z is described by the

vanishing of the first n coordinates.22 We know from equations (1.53) and

(1.55) that the symbol of kh is r(x)⊗ |dy1 . . . dyn| ⊗ |du1 . . . dun|∗. To pullback

by ∆, we notice that

∆(x1, . . . , xm)

= (x1 − h1(x1, . . . , xm), . . . , xm − hm(x1, . . . , xm), x1, . . . , xm),

and that NpW = TpM . From the proof of Lemma 1.6.14 and equation (1.40),

we compute that the symbol of ∆∗ kh at p is

r(p)⊗ |dx1 . . . dxn|∣∣det
(
id− h∗p

)∣∣ ⊗ |dx1 . . . dxn|∗ ∈ Hom(Ep, Ep)⊗ |TpM | ⊗ |TpM |∗.

Taking the trace gives Tr(r(p)) |dx1 . . . dxn|⊗|dx1 . . . dxn|∗, a δ−section of |TM |
over the fixed points of h. π̄ being a submersion, Proposition 1.6.20 implies

that the pushforward π̄∗Tr ∆∗ kh is a smooth density given by integration over

the fiber. In this case, the fiber is the submanifold associated to the δ−section.

Integration is thus given by the sum over the fixed points p of the pairing of

|dx1 . . . dxn|∗ with Tr(r(p)) |dx1 . . . dxn|, which leads to the expected identity

(1.56). As already noticed in Remark 1.7.6, we can extend the sum to all fixed

points of h since Tr (r(p)) = 0 for the additional ones.

Remark 1.7.7. We have seen in Lemma 1.5.17 that if k is the kernel of a smooth

operator P such that ∆∗k is compactly supported, then P is smooth-traceable

and tr (P ) = π̄∗Tr ∆∗(k). The previous result suggests thus to interpret the

operation π̄∗Tr ∆∗ as a generalized trace for pullback operators. However, we

should mention that this analogy should be taken with care. Indeed, even

when the pullback by h extends to a bounded operator on the intrinsic Hilbert

space of square-integrable sections on M , it is usually not trace-class, although

π̄∗Tr ∆∗(kh) is well defined. C
22Here, (x1, . . . , xm) are understood to be defined on the first component of U × U , while

(y1, . . . , ym) denotes the same coordinates as (x1, . . . , xm), but defined on the second com-

ponent of U × U .
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1.8 Distributional trace of a family of geometric

morphisms

1.8.1 Pullback by a family of geometric morphisms

Let M and Q be two manifolds, and suppose that we have a smooth map 23

τ : M ×Q→ Q ; (x, q) 7→ τx(q).

This gives a family {Ω(x)}x∈M of continuous linear operators on E(Q) given,

for every x ∈M , by

Ω(x) : E(Q)→ E(Q) ; ϕ 7→ ϕ ◦ τx.

Then, for every compactly supported smooth density ρ ∈ D(M, |TM |), we can

form the continuous linear operator

Ω(ρ) : E(Q)→ E(Q) ; ϕ 7→
∫
M

(Ω(x)ϕ) ρ(x),

which is explicitly defined as (Ω(ρ)ϕ) (q) =
∫
M
ϕ(τx(q)) ρ(x). According to

the discussion in section 1.4, Ω(ρ) induces a general operator D(Q) → D′(Q).

The goal of this section is to show that, under some conditions, it is a smooth

operator (that is, its kernel is a smooth density kρ on Q × Q). If in addition,

it is smooth-traceable, we can define the distributional trace as the linear map

tr Ω : D(M)→ C ; ρ 7→ tr (Ω(ρ)).

We will show that it is a generalized function on M and express it by giving

an explicit formula for the smooth trace
∫
Q
kρ(q, q) in terms of the fixed points

of τx.

We will in fact work in the more general setting of a family of geometric mor-

phisms of a vector bundle E → Q over Q. To motivate the next definition,

we would like to think of a family of geometry morphisms of E parametrized

by M as the datum, for each x ∈ M , of τx = (τx, rx), where τx : Q → Q is a

smooth map and rx(q) : Eτx(q) → Eq is a linear map for each q ∈ Q. It would

be a smooth family if everything depends smoothly on x. This can be encoded

by the following definition.

Definition 1.8.1. Let M and Q be two manifolds and E → Q a vector bundle

over Q. Denote by pr2 : M × Q → Q the projection onto the second compo-

nent. A smooth family of geometric morphisms of E parametrized by M is a

geometric morphism from pr∗2(E) to E. In other words, it is a pair τ = (τ, r),

where τ : M ×Q→ Q is a smooth map and r is a smooth section of the vector

bundle Hom(τ∗E,pr∗2E) over M ×Q.
23For instance, we can think about the case where M is a Lie group, and τ is a smooth

group action of M on Q.
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Remark 1.8.2. Let us see that the definition gives what we would like. For each

x ∈M and q ∈ Q, we have

Hom(τ∗E,pr∗2E)(x,q) = Hom
(
(τ∗E)(x,q), (pr∗2E)(x,q)

)
= Hom

(
Eτx(q), Eq

)
,

so rx(q) is a linear map from Eτx(q) to Eq as expected. C

Given a smooth family of geometric morphisms τ = (τ, r), we can build a family

of operators in the same spirit as before, and use it to associate an operator

on E(Q,E) to every compactly supported density on M . For each x ∈ M , we

define a continuous linear operator Ω(x) : E(Q,E) → E(Q,E) by the rule, for

ϕ ∈ E(Q,E) and q ∈ Q:

(Ω(x)ϕ)(q) := rx(q)
(
ϕ(τx(q))

)
∈ Eq. (1.57)

Definition 1.8.3. Let M and Q be two manifolds, E → Q a vector bundle over

Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E parametrized

by M . We call the operators {Ω(x)}x∈M defined by (1.57) the family of pullback

operators associated to the geometric morphism τ .

Then, to each compactly supported smooth density ρ ∈ D(M, |TM |), we asso-

ciate the continuous linear operator

Ω(ρ) : E(Q,E)→ E(Q,E) ; ϕ 7→
∫
M

(Ω(x)ϕ)⊗ ρ(x), (1.58)

which is more explicitly defined, for ϕ ∈ E(Q,E) and q ∈ Q, by

(Ω(ρ)ϕ)(q) :=

∫
M

rx(q)
(
ϕ(τx(q))

)
⊗ ρ(x). (1.59)

The following hypothesis will turn out to be crucial for Ω(ρ) to be a smooth

operator.

Definition 1.8.4. Let M and Q be two manifolds. A smooth map τ : M×Q→
Q is locally transitive if and only if, for every (x, q) ∈M ×Q, the linear map

Tx(M)→ Tτx(q)(Q) ; X 7→ τ∗(x,q)(X, 0)

is surjective.

Proposition 1.8.5. Let M and Q be two manifolds, E → Q a vector bun-

dle over Q. Let τ = (τ, r) be a smooth family of geometric morphisms of

E parametrized by M such that τ is locally transitive. Then, for every ρ ∈
D(M, |TM |), the operator Ω(ρ) : E(Q,E) → E(Q,E) defined by (1.59) is

smooth.
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Proof. Here is the outline of the proof. We first show that the integrand of

(1.59) corresponds to the pullback by a geometric morphism, whose kernel Kρ is

thus a δ−section. Then, we express the integration over M as the pushforward

by a projection π23, and we compute that the kernel of Ω(ρ) is (π23)∗(Kρ).

Finally, we show that π23 is a submersion on the submanifold associated to the

δ−section Kρ, which implies that (π23)∗(Kρ), hence Ω(ρ), is smooth.

Let us denote by pr1 : M ×Q→M and pr2 : M ×Q→ Q the projections and

consider the geometric morphism

τρ = (τ, rρ) (1.60)

from the vector bundle pr∗2(E) ⊗ pr∗1(|TM |) over M ×Q to the vector bundle

E, where rρ ∈ Hom (τ∗(E),pr∗2(E)⊗ pr∗1(|TM |)) is defined, for (x, q) ∈M ×Q
and v ∈ Eτx(q), by

rρ,x(q)(v) := rx(q)(v)⊗ ρ(x).

Then, for every ϕ ∈ E(Q,E), the pullback by τρ,x is given at (x, q) ∈ M × Q
by:

(τρ
∗ϕ)(x, q) = rρ,x(q)

(
ϕ(τx(q))

)
= rx(q)

(
ϕ(τx(q))

)
⊗ ρ(x),

(1.61)

which coincides with the integrand of (1.59). By Proposition 1.7.2, the kernel

of the corresponding general operator is given by a δ−section, which we denote

by Kρ, of the following vector bundle over M × Q × Q. Let πi denote the

projection of M ×Q×Q onto the ith component, π12 : M ×Q×Q→M ×Q
the projection onto the first two components and π23 : M × Q × Q → Q × Q
the projection onto the last two components. The vector bundle is

π∗12

(
pr∗2(E)⊗ pr∗1(|TM |)

)
⊗ (π∗3(E))∗ ⊗ π∗3(|TQ|)

' Hom
(
π∗3(E), π∗2(E)

)
⊗ π∗1(|TM |)⊗ π∗3(|TQ|).

We would like to pushforwardKρ by π23, which would correspond to integration

over M in (1.59). First, notice that the submanifold associated to the δ−section

Kρ is Z := graph(τ) ⊂M ×Q×Q and that the corresponding symbol has the

form

σρ(x, q, τx(q)) = rx(q)⊗ ρ(x)⊗ σ(x, q), (1.62)

for some σ ∈ Γ∞(Z,Hom(|NZ|, π∗3(|TQ|)|Z).24 Therefore, since ρ has compact

support, π23 is proper on supp(σρ), hence on supp(Kρ). Then, let us write

Hom
(
π∗3(E), π∗2(E)

)
⊗ π∗1(|TM |)⊗ π∗3(|TQ|)

'
(

Hom
(
π∗2(E), π∗3(E)

)
⊗ π∗2(|TQ|)

)∗ ⊗ |T (M ×Q×Q)|.
24For a later purpose, notice that rx(q)⊗σ(x, q) is the symbol of the δ−section correspond-

ing to the kernel of the pullback by τ .
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Since the vector bundle

Hom
(
π∗2(E), π∗3(E)

)
⊗ π∗2(|TQ|)→M ×Q×Q

is the pullback by π23 of the vector bundle (pi : Q × Q → Q denotes the

projection onto the ith component)

Hom
(
p∗1(E), p∗2(E)

)
⊗ p∗1(|TQ|)→ Q×Q,

we have a natural geometric morphism π23 = (π23, r23)

Hom
(
π∗2(E), π∗3(E)

)
⊗ π∗2(|TQ|)→ Hom

(
p∗1(E), p∗2(E)

)
⊗ p∗1(|TQ|)

given by naturally identifying the fibers. We can thus pushforward Kρ by π23

to get a generalized section of the vector bundle over Q×Q(
Hom

(
p∗1(E), p∗2(E)

)
⊗ p∗1(|TQ|)

)∗ ⊗ |T (Q×Q)|
' Hom

(
p∗2(E), p∗1(E)

)
⊗ p∗2(|TQ|).

Let us see that (π23)∗(Kρ) is the kernel of Ω(ρ) : D(Q,E) → D′(Q,E) by

evaluating it on some ϕ ∈ D(Q,E) and s̄⊗ µQ ∈ D(Q,E∗ ⊗ |TQ|). We have

〈(π23)∗(Kρ), p
∗
2(ϕ)⊗ (p∗1(s̄)⊗ p∗1(µQ))〉

=
〈
Kρ, (π23)∗

(
p∗2(ϕ)⊗ p∗1(s̄)⊗ p∗1(µQ)

)〉
=
〈
Kρ, π

∗
3(ϕ)⊗ π∗2(s̄)⊗ π∗1(µ̄M )⊗

(
π∗1(µM )⊗ π∗2(µQ)

)〉
,

where µM is some non-vanishing density on M and µ̄M the corresponding dual

one. Then, by definition of Kρ as the kernel of the pullback (1.61):25

〈Kρ, ϕ⊗ (s̄⊗ µ̄M )⊗ (µM ⊗ µQ)〉

=

∫
M×Q

〈
s̄(q)⊗ µ̄M (x), rx(q)

(
ϕ(τx(q))

)
⊗ ρ(x)

〉
(µM (x)⊗ µQ(q))

=

∫
M×Q

〈
s̄(q), rx(q)

(
ϕ(τx(q))

)〉
(〈µ̄M (x), ρ(x)〉µM (x)⊗ µQ(q))

=

∫
M×Q

〈
s̄(q), rx(q)

(
ϕ(τx(q))

)〉
(ρ(x)⊗ µQ(q))

=

∫
Q

〈
s̄(q),

∫
M

rx(q)
(
ϕ(τx(q))

)
ρ(x)

〉
µQ(q)

=

∫
Q

〈s̄,Ω(ρ)(ϕ)〉 µQ,

which is indeed the operator Ω(ρ).

To see that the kernel (π23)∗(Kρ) of Ω(ρ) is smooth, let (q, q′) ∈ Q × Q and

(x, q, q′) ∈ (π23)−1({(q, q′)}). Then,

T(x,q,q′)(Z) =
{

(X,Y, τ∗(x,q)(X,Y )) | X ∈ TxM,Y ∈ TqQ
}
.

25We have dropped the pullbacks π∗i from the equations in order to simplify the notations.
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For X ∈ TxM and Y ∈ TqQ, we have

((π23)|Z)∗(x,q,q′)(X,Y, τ∗(x,q)(X,Y )) = (Y, τ∗(x,q)(X,Y ))

= (Y, τ∗(x,q)(X, 0) + τ∗(x,q)(0, Y ))).

Since the map τ∗(x,q)(·, 0) is surjective because τ is locally transitive, it implies

that (π23)|Z is a submersion. Therefore, by Proposition 1.6.20, (π23)∗(Kρ) is

smooth.

Example 1.8.6. To make things a bit more concrete, let M := R2, Q := R
and E the trivial line bundle over Q. Consider the smooth family of geometric

morphisms given by

τ : R2 × R→ R ;
(
(a, l), q

)
7→ 2a− q,

r(a,l)(q) : C→ C ; z 7→ e2i(a−q)lz.

τ is locally transitive, and we have:

(Ω(a, l)ϕ)(q) = e2i(a−q)lϕ(2a− q).

Any compactly supported smooth density on R2 is of the form ρ(a, l)|da dl| for

some ρ ∈ D(R2), so

(Ω(ρ)ϕ)(q) =

∫
R2

e2i(a−q)lϕ(2a− q) ρ(a, l) da dl

=

∫
R

(
1

2

∫
R
ei(q

′−q)lρ

(
q + q′

2
, l

)
dl

)
ϕ(q′) dq′.

The kernel of Ω(ρ) is therefore kρ(q, q
′) = 1

2

∫
R e

i(q′−q)lρ
(
q+q′

2 , l
)
dl which is

indeed smooth. ♦

Intuitively, we should think that the integration against ρ allows to “smooth

out” the singularities of the pullback by τ . The local transitivity of τ ensures

that the smoothing occurs in all directions. The next example gives some more

insight into how Ω(ρ) fails to be smooth when τ is not locally transitive.

Example 1.8.7. Let τ : R × R → R ; (x, q) 7→ q, ϕ ∈ E(R), x, q ∈ R, and

ρ|dx| ∈ D(R). Then, (Ω(x)ϕ)(q) = ϕ(q) and

(Ω(ρ)ϕ)(q) =

∫
R

(Ω(x)ϕ)(q)ρ(x) dx =

(∫
R
ρ(x) dx

)
ϕ(q),

which is not smooth (the kernel of the identity operator is a δ−section along

the diagonal). ♦

Example 1.8.8. Our last example emphasizes that Ω(ρ) is smooth even when τ

is locally transitive but not globally. Let τ : R×R→ R ; (x, q) 7→ arctan(x)−q,
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x, q ∈ R, ϕ ∈ E(R) and ρ|dx| ∈ D(R). Then, (Ω(x)ϕ)(q) = ϕ(arctan(x) − q)
and

(Ω(ρ)ϕ)(q) =

∫
R

ρ(tan(q + q′))

cos2(q + q′)
1[−π2−q,

π
2−q]

(q′) ϕ(q′)dq′,

where 1A denotes the characteristic function of a subset A. This is indeed a

smooth kernel since ρ has compact support. ♦

1.8.2 The distributional trace

Let us now turn to the distributional trace and begin with a sketchy discussion

which, although very formal and not rigorous, should help to understand what

happens. If the kernel kx of Ω(x) were a smooth function26, we would have:

(Ω(x)ϕ)(q) =

∫
Q

kx(q, q′)ϕ(q′).

Then, we would write27

(Ω(ρ)ϕ)(q) =

∫
M

Ω(x)ϕ(q) ρ(x) =

∫
M

∫
Q

kx(q, q′)ϕ(q′) ρ(x)

=

∫
Q

(∫
M

kx(q, q′) ρ(x)

)
ϕ(q′).

The smooth trace of Ω(ρ) would therefore be given by

tr (Ω(ρ)) =

∫
Q

∫
M

kx(q, q) ρ(x) =

∫
M

∫
Q

kx(q, q) ρ(x). (1.63)

Recall that we have seen in Section 1.7 that, if τx only has a finite number

of fixed points and if they are all simple, the generalized trace of the pullback

Ω(x) by τx is a well-defined number tr (Ω(x)) := π̄∗Tr ∆∗(kx) (see Proposition

1.7.5 and Remark 1.7.7). Furthermore, it is given by a fixed point formula

(1.56). Since we would like to think about the integral along the diagonal as

the trace, equation (1.63) suggests to write

tr (Ω(ρ)) =

∫
M

tr (Ω(x)) ρ(x)

=

∫
M

 ∑
p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣
 ρ(x).

This would give an explicit fixed point formula for the distributional trace

tr Ω : D(M, |TM |)→ C ; ρ 7→ tr (Ω(ρ)).

26It is obviously not the case, but it gives an insightful analogy.
27Again, this is only formal since it is not clear at all that the permutation of the integrals

is justified.
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In the case where the fixed points are not simple, we will see that tr (Ω(x)) still

makes sense, but as a generalized function on M .

Before going on, let us see that the set of all fixed points of τ is a submanifold.

It will turn to be central in the study of the smoothness of the distributional

trace.

Lemma 1.8.9. Let M and Q be two manifolds, E → Q a vector bundle over

Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E parametrized

by M such that τ is locally transitive. Then, the diagonal map

∆̃ : M ×Q→M ×Q×Q ; (x, q) 7→ (x, q, q)

is transverse to graph(τ) and

∆̃−1 (graph(τ)) = {(x, q) ∈M ×Q | τx(q) = q}

is a properly embedded submanifold of M × Q. If it is not empty, it is of

dimension M .

Proof. For ∆̃ to be transverse to graph(τ), we must have that, for all (x, q) ∈
M ×Q such that τx(q) = q,

T(x,q,q)(M ×Q×Q) = T(x,q,q)(W ) + ∆̃∗(x,q)(T(x,q)(M ×Q)). (1.64)

Let (x, q) ∈M ×Q such that τx(q) = q, X ∈ Tx(M) and Y1, Y2 ∈ Tq(Q). Since

τ is locally transitive, there is X0 ∈ Tx(M) such that τ∗(x,q)(X0, 0) = Y2 − Y1,

i.e. (X0, 0, Y2 − Y1) ∈ T(x,q,q)(W ). We compute:

(X0, 0, Y2 − Y1) + ∆̃∗(x,q)
(
(X −X0, Y1)

)
= (X0, 0, Y2 − Y1) + (X −X0, Y1, Y1) = (X,Y1, Y2),

which shows that (1.64) is verified. By Theorem 1.6.13, ∆̃−1(graph(τ)) is an

embedded submanifold ofM×Q, which, if not empty, has the same codimension

as graph(τ). The latter being dim(Q), ∆̃−1(graph(τ)) is of dimension dim(M)

if it is not empty. It is properly embedded because graph(τ) is and ∆̃ is

continuous.

Definition 1.8.10. Let M and Q be two manifolds, E → Q a vector bun-

dle over Q, and τ = (τ, r) a smooth family of geometric morphisms of E

parametrized by M such that τ is locally transitive. The fixed point bundle of

τ is the properly embedded submanifold of M ×Q given by

∆̃−1 (graph(τ)) = {(x, q) ∈M ×Q | τx(q) = q} , (1.65)

where ∆̃ : M ×Q → M ×Q×Q ; (x, q) 7→ (x, q, q) is the diagonal map. It is

either empty or of dimension dim(M).
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Lemma 1.8.11. Let M and Q be two manifolds, E → Q a vector bundle over

Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E parametrized

by M such that τ is locally transitive. Denote by prM : M × Q → M the

projection onto M and by Z the fixed point bundle. Then, for all x ∈ M , x is

a regular value of (prM )|Z if and only if all the fixed points of τx are simple.

Proof. Let x ∈M and q ∈ Q a fixed point of τx. We get from (1.65) that for all

Y ∈ Tq(Q), (0, Y ) ∈ T(x,q)(M×Q) is tangent to Z if and only if Y = (τx)∗q (Y ),

that is, if and only if (id− (τx)∗q )(Y ) = 0. Since dim(Z) = dim(M) (Z is not

empty in this case) and ((prM )|Z)∗(x,q)(X,Y ) = X for all (X,Y ) ∈ T(x,q)(Z) ⊂
Tx(M) × Tq(Q), ((prM )|Z)∗(x,q) is surjective if and only if (0, Y ) 6∈ T(x,q)(Z)

for all Y 6= 0 ∈ Tq(Q), that is, if and only if (id − (τx)∗q ) is injective – hence

invertible. We have thus shown that (x, q) is a regular point of (prM )|Z if and

only if q is a simple fixed point of τx. Since (prM )|Z
−1({x}) is the set of fixed

points of τx, the claim is proved.

We are now able to state the main results of this chapter. Their proofs will be

given later on.

Theorem 1.8.12. Let M and Q be two manifolds, E → Q a vector bundle over

Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E parametrized

by M such that τ is locally transitive. Let us denote by

• ∆̃ : M ×Q→M ×Q×Q ; (x, q) 7→ (x, q, q) the diagonal map;

• prM : M ×Q→M the projection onto M ;

• Z := ∆̃−1(graph(τ)) = {(x, q) ∈M ×Q | τx(q) = q}.

Suppose that one of the following conditions is true:

• (prM )|Z is proper;

• Q is compact.

Then, for every ρ ∈ D(M, |TM |), the operator Ω(ρ) : E(Q,E) → E(Q,E)

defined by (1.59) is smooth-traceable and the linear map

tr Ω : D(M, |TM |)→ C ; ρ 7→ tr (Ω(ρ))

is a generalized function on M which coincides with (prM )∗Tr ∆̃∗k, where k

is the kernel of τ∗ (see Proposition 1.7.2). Furthermore, the set of all x ∈ M
such that all the fixed points of τx are simple is an open subset U ⊂ M , and

the restriction (tr Ω)|U is smooth and, for all x ∈ U :

(tr Ω)|U (x) =
∑

p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣ , (1.66)

where the sum is over the fixed points of τx, which are necessarily in finite

number, and is equal to 0 if τx has no fixed point.
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Corollary 1.8.13. In the setting of Theorem 1.8.12, suppose in addition that

for every x ∈ M , the fixed points of τx are all simple. Then, tr Ω is smooth,

given by (1.66) for U = M and, for all ρ ∈ D(M, |TM |), we have:

tr (Ω(ρ)) =

∫
M

 ∑
p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣
 ρ(x), (1.67)

where the sum is over the fixed points of τx, and is equal to 0 if τx has no fixed

point.

If we know in advance that Ω(ρ) is smooth-traceable for all ρ, then we can drop

the condition that the restriction of the projection to the fixed point bundle is

proper, although the result is weaker.

Theorem 1.8.14. Let M and Q be two manifolds, E → Q a vector bundle over

Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E parametrized

by M . Suppose that

• τ is locally transitive;

• for every ρ ∈ D(M, |TM |), the operator Ω(ρ) : E(Q,E) → E(Q,E) de-

fined by (1.59) is smooth-traceable.

Then, the linear map

tr Ω : D(M, |TM |)→ C ; ρ 7→ tr (Ω(ρ))

is a generalized function on M .

Furthermore, suppose that U ⊂ M is an open subset such that for all x ∈ U ,

all the fixed points of τx are simple. Let C0 ⊂ C1 ⊂ · · · ⊂ Q be a countable

exhaustion of Q by compact sets, and for each n ∈ N, let φn ∈ D(Q) such

that 0 ≤ φn ≤ 1, supp(φn) ⊂ Cn+1 and (φn)|Cn = 1. Then, for each ρ ∈
D(U, |TM |), we have:

(tr Ω)|U (ρ) = lim
n→∞

∫
U

 ∑
p=τx(p)

φn(p) Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣
 ρ(x), (1.68)

where the sum is over the fixed points of τx, and is equal to 0 if τx has no fixed

point.

1.8.3 Examples

We now give various examples of smooth families of geometric morphisms τ =

(τ, r) of a vector bundle E → Q parametrized by M . The goal is to illustrate
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the previous results and to highlight why their hypotheses are important. If

the reader prefers to directly dive into the proofs of the previous theorems,

he should feel free to skip this part. In this subsection, we denote by Z the

fixed point bundle of τ and we always identify smooth densities on Rn with the

smooth functions through the Lebesgue density.

Let us begin with two examples where the projection (prM )|Z is proper and all

the fixed points are simple, so the distributional trace is smooth by Corollary

1.8.13. The first example illustrates the noncompact case, and the second one

the compact case, with multiple fixed points.

Example 1.8.15. Let m,n ∈ N, M := Rn × Rm, Q := Rn, r : Rn+m × Rn → C
a smooth map and f : Rn → Rn a diffeomorphism. We consider the family

of geometric morphisms of the trivial bundle over Rn parametrized by Rn+m

corresponding to r and

τ : Rn+m × Rn → Rn ; ((a, l), q) 7→ 2f(a)− q.

Notice that both Examples 1.1.1 and 1.8.6 fit into this context. For all (a, l) ∈
Rn+m, the corresponding pullback operator Ω(a, l) is given, for ϕ ∈ E(Rn) and

q ∈ Rn, by:

(Ω(x)ϕ)(q) = r(a,l)(q)ϕ (2f(a)− q) .

Then, τ is locally transitive since f is a diffeomorphism, and for every (a, l) ∈
Rn+m, τ(a,l) has a unique fixed point q = f(a). The fixed point bundle is

therefore given by

Z :=
{

((a, l), f(a)) | (a, l) ∈ Rn+m
}
,

so (prM )|Z is a diffeomorphism and is thus proper. By Lemma 1.8.11, it also

implies that all fixed points are simple, as can also be seen from the fact that,

for all (a, l) ∈ Rn+m and q ∈ Rn:

det
(
id− (τ(a,l))∗f(a)

)
= det (id− (−id)) = 2 6= 0.

By Corollary 1.8.13, the distributional trace is smooth and is given, for every

ρ ∈ D(Rn), by (1.67), that is:

tr Ω(ρ) =
1

2

∫
Rn+m

r(a,l)(f(a)) ρ(a, l) dadl.

It is also an enlightening computation to get tr Ω(ρ) directly from the kernel of

Ω(ρ) which is given, for q, q′ ∈ Rn, by

kρ(q, q
′) =

∫
Rm

1

2
|Jacq(f

−1)| ρ
(
f−1

(
q′ + q

2

)
, l

)
r(
f−1

(
q′+q

2

)
,l
)(q) dl. ♦
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Example 1.8.16. Let M := R and Q := S1 and let us consider the family of

geometric morphisms of the trivial bundle over S1 given by any smooth map

r : R× S1 → C and

τ : R× S1 → S1 ; (x, z) 7→ e2πixz−1.

For every x ∈ R, the corresponding pullback operator Ω(x) reads, for ϕ ∈ E(S1)

and z ∈ S1:

(Ω(x)ϕ)(z) = rx(z)ϕ
(
e2πixz−1

)
.

τ is locally transitive, and for every x ∈ R, τx admits two fixed points z± =

±eiπx, which are simple. We are thus in the setting of Corollary 1.8.13 which

asserts that the distributional trace tr Ω is smooth and given, for ρ ∈ D(R), by:

tr Ω(ρ) =

∫
R

1

2

(
rx
(
eiπx

)
+ rx

(
−eiπx

))
ρ(x) dx. ♦

We now turn to some more pathological behaviours that show that the distri-

butional trace may fail to be smooth, or locally-integrable, or might even not

be a generalized function. Unless otherwise stated, we will take M = Q = R
and consider the trivial bundle over Q. We denote by ∆̃ : M ×Q→M ×Q×
Q ; (x, q) 7→ (x, q, q) the diagonal map. Let us first give a general result that

helps building specific examples by defining a family of geometric morphisms

whose fixed point bundle corresponds to the graph of a given function f .

Remark 1.8.17. Let f : R→ R and g : R→ R0 be smooth maps. Then

τ : R× R→ R ; (x, q) 7→ τx(q) := g(q)−1(x− f(q)) + q (1.69)

is locally transitive and for every smooth map r : R × R → C, τ := (τ, r)

defines a smooth family of geometric morphisms of the trivial bundle over R
whose fixed point bundle corresponds to the graph of f :

Z = {(f(q), q) | q ∈ R} .

Furthermore, for every x ∈ R, the fixed points of τx – which are therefore all

q ∈ R such that x = f(q) – are simple if and only if f ′(q) 6= 0. Finally, for

every ρ ∈ D(R), the kernel of the operator Ω(ρ) (see (1.59)) is given by

kρ(q, q
′) = |g(q)| r

(
g(q)(q′ − q) + f(q), q

)
ρ
(
g(q)(q′ − q) + f(q)

)
. (1.70)

Proof. The local transitivity is ensured by the equation ∂xτx(q) = g(q) 6= 0

and the claim about the fixed point bundle follows from the fact that q ∈ R is

a fixed point of τx if and only if g(q)−1(x− f(q)) + q = q ⇔ x = f(q). Such a

fixed point is simple if and only

0 6= (1− ∂q τx(q))|x=f(q) =

(
1− 1− g′(q)

g(q)2
(x− f(q)) +

f ′(q)

g(q)

)
|x=f(q)

,



1.8. Distributional trace 93

that is, if and only if f ′(q) 6= 0. Finally, for every ρ ∈ D(R), ϕ ∈ E(R) and

q ∈ R, we have:

(Ω(ρ)ϕ)(q) =

∫
R
r(x, q)ϕ

(
g(q)(x− f(q)) + q

)
ρ(x) dx

=

∫
R
|g(q)| r (g(q)(q′ − q) + f(q), q) ρ (g(q)(q′ − q) + f(q))

ϕ(q′) dq′,

by making the change of variable q′ = g(q)−1(x− f(q)) + q.

The following example illustrates that the distributional trace might fail to be

smooth if there exists some non simple fixed points.

Example 1.8.18. Let r : R× R→ C be any smooth map and

τ : R× R→ R ; (x, q) 7→ (x− q2) + q,

which has the form of (1.69). Its fixed point bundle is therefore

Z := {(q2, q) | q ∈ R}

and, for every x > 0, τx has two simple fixed points, τ0 has one fixed point,

which is not simple, and for every x < 0, τx has no fixed point, as is illustrated

on Figure 1.1.
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Figure 1.1: Graph of ∆̃ and τ (left) and fixed point bundle of τ (right).

Since (prM )|Z , the restriction to Z of the projection of R × R on the first

component, is proper, we are in the setting of Theorem 1.8.12 and tr Ω is thus

a generalized function, which is smooth on R0. Since for all x > 0, the fixed

points of τx are q = ±
√
x, (1.66) leads to

tr Ω(x) =

{
r(x,
√
x)+r(x,−

√
x)

2
√
x

x > 0

0 x < 0.

This shows that for a generic r, tr Ω cannot be smooth at x = 0. However,

it is a locally integrable function, as can be shown by explicitly computing
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∫
R kρ(q, q)dq from (1.70):

tr Ω(ρ) =

∫
R+

0

r(x,
√
x) + r(x,−

√
x)

2
√
x

ρ(x) dx. ♦

The next example shows that the distributional trace might not be given by

a locally integrable function. Here, this is due to the fact that the set of non

simple fixed points is not negligible, so their contribution to the distributional

trace leads to a δ−function.

Example 1.8.19. In the setting of Remark 1.8.17, let us consider the family of

geometric morphisms associated to the constant maps g ≡ −1 and r ≡ 1, and

to

f : R→ R ; q 7→


exp

(
1
q+1 − (q + 1)

)
q < −1

0 −1 ≤ q ≤ 1

exp
(

(q − 1)− 1
q−1

)
q > 1.

For every x 6= 0, τx admits a unique fixed point, which is simple. However,

the set of fixed points of τ0 is [−1, 1] and they are all non simple. This is

represented on Figure 1.2.
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Figure 1.2: Graph of ∆̃ and τ (left) and fixed point bundle of τ (right).

From (1.70), we compute that, for ρ ∈ D(R), we have:

tr Ω(ρ) =

∫
R
kρ(q, q) dq =

∫
R\[−1,1]

ρ(f(q)) dq +

∫ 1

−1

ρ(0) dq

= 2 ρ(0) +

∫
R0

1

2|x|

(
1 +

log(|x|)√
4 + log(|x|)2

)
ρ(x) dx.

On R0, the distributional trace is therefore smooth as predicted by Theorem

1.8.12, but at x = 0, the non simple fixed points give rise to a multiple of the

δ−function. ♦
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We now focus on the situation where (prM )|Z is not proper. In that case, the

distributional trace might fail to be a well-defined generalized function, as is

illustrated by the following example.

Example 1.8.20. Still in the setting of Remark 1.8.17, we consider the family

of geometric morphisms associated to a smooth map g : R → R+
0 and, the

constant map r ≡ 1, and to

f : R→ R ; q 7→ eq.

Then, τx has a unique fixed point if x > 0, none otherwise, and all the fixed

points are simple. For any ρ ∈ D(R), the kernel kρ along the diagonal has the

-1 0 1 2 3 4 5 6 7 8
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Figure 1.3: Fixed points bundle of τ .

form kρ(q, q) = g(q)ρ(eq) by (1.70). For g ≡ 1 for instance, the distributional

trace is thus not well-defined since Ω(ρ) is not smooth-traceable for every ρ.

It is, however, as soon as we choose g integrable since ρ, being compactly

supported, is bounded. In that case, the distributional trace is smooth and

given by

tr Ω(ρ) =

∫
R+

0

g(log(x))

x
ρ(x) dx,

which coincides with the result (1.68) of Theorem 1.8.14. ♦

Our last example, for which we will just describe the fixed point bundle, is

cooked up to show that, in the non proper case, the condition to have simple

fixed points is not an open condition.

Example 1.8.21. In the setting of Remark 1.8.17, let us consider the family of

geometric morphisms associated to the constant maps g ≡ 1 and r ≡ 1, and to

f : R→ R ; q 7→ 3

4

(
1 + cos

(
πq − arctan(

√
2)
)2
)
e
− π√

2
q
.

Since f is injective, surjective on R+
0 and f ′(q) = 0 ⇔ q ∈ N, for each x > 0,

τx has a unique fixed point, which is simple if and only if x 6= e
− πn√

2 for some

n ∈ Z, and τx has no fixed point if x ≤ 0. The situation is pictured on Figure

1.4. Therefore, the set of x ∈ R such that τx only has simple fixed points – that

is, the set of regular values of (prM )|Z (see Lemma 1.8.11) – is not an open set

since
(
e
− πn√

2

)
n∈N

is a sequence of singular values of (prM )|Z converging to the

regular value x = 0. ♦
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Figure 1.4: Fixed points bundle of τ . Notice that the horizontal axis has been

arbitrarily scaled in order to better show the stairlike behaviour.

1.8.4 The proofs

In order to prove Theorems 1.8.12 and 1.8.14, our strategy will consist of two

main steps. First Lemma 1.8.22 will show that, even when the fixed points of

τx are not all simple, tr (Ω(x)) still makes sense, but as a generalized function

on M , that we will denote tr τ . Then, in Proposition 1.8.23, we will show that

tr τ coincides with tr Ω. The proofs will mainly consist in playing with commu-

tations of pullbacks and pushforwards of δ−sections, and these manipulations

will often rely on a technical properness condition. In Theorems 1.8.12 and

1.8.14 we will finally give settings where this properness condition can be sim-

plified or relaxed. If at some point the reader feels a bit lost in the middle of all

those commutations of pullbacks and pushforwards, he is invited to come back

to the sketchy discussion of subsection 1.8.2 to interpret them as restrictions

to diagonals and integrals respectively, by playing with the kernels as if they

were smooth.

Lemma 1.8.22. Let M and Q be two manifolds, E → Q a vector bundle over

Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E parametrized

by M . We denote by

• k the kernel of τ∗ (see Proposition 1.7.2);

• ∆̃ : M ×Q→M ×Q×Q ; (x, q) 7→ (x, q, q) the diagonal map;

• prM : M ×Q→M the projection onto M .

Suppose that

1. τ is locally transitive;

2. (prM )|∆̃−1(supp(k)) is proper.

Then,

tr τ := (prM )∗Tr ∆̃∗k

is a well-defined generalized function on M . Furthermore, we have the following

result regarding the smoothness of tr τ :
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• supp(tr τ ) ⊂ prM ( ∆̃−1(supp(k)) ); 28

• tr τ is smooth at each x ∈M such that all the fixed points of τx are simple;

• for all open subset U ⊂M such that for all x ∈ U , all the fixed points of

τx are simple, the restriction (tr τ )|U is smooth and, for all x ∈ U :

(tr τ )|U (x) =
∑

p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣ , (1.71)

where the sum, which always has only a finite number of nonvanishing

terms, is over the fixed points of τx, and is equal to 0 if τx has no fixed

point.29

Proof. Let us begin with some notations. Let πi denote the projection of

M ×Q×Q onto the ith component, π12 : M ×Q×Q→M ×Q the projection

onto the first two components and π23 : M×Q×Q→ Q×Q the projection onto

the last two components. Let also prM : M ×Q → M and prQ : M ×Q → Q

be the projections.

Let us first verify that (prM )∗Tr ∆̃∗k is a well-defined generalized function on

M . Recall that, by Proposition 1.7.2, the kernel k of the pullback by τ is a

δ−section of the vector bundle

F := Hom
(
π∗3(E), π∗2(E)

)
⊗ π∗3(|TQ|)→M ×Q×Q.

along the submanifold graph(τ) ⊂M×Q×Q. By Lemma 1.8.9, ∆̃ is transverse

to graph(τ) and ∆̃∗ k is therefore a well-defined δ−section of the vector bundle

∆̃∗(F ), that is

prQ
∗(Hom(E,E)⊗ |TQ|

)
→M ×Q,

Taking the trace of the homomorphism gives a δ−section Tr ∆̃∗ k of the vector

bundle prQ
∗(|TQ|). The corresponding submanifold is the fixed point bundle

Z := ∆̃−1(graph(τ)), that is:

Z = {(x, q) ∈M ×Q | τx(q) = q} , (1.72)

which, by Lemma 1.8.9, is a properly embedded submanifold, either empty

or of dimension dim(M). (prM )|∆̃−1(supp(k)) being proper by assumption and

given that (see Remark 1.6.17)

supp(Tr ∆̃∗ k) ⊂ supp(∆̃∗ k) = ∆̃−1(supp(k)), (1.73)

(prM )|supp(Tr ∆̃∗ k) is also proper. Since prQ
∗(|TQ|) ' prM

∗(|TM |)∗ ⊗ |T (M ×
Q)|, Tr ∆̃∗ k can be seen as a δ−density which we can thus pushforward by prM

28In particular, any point x ∈M such that τx has no fixed point is outside of supp(tr τ ).
29Notice that, as we have seen in Example 1.8.21, the condition that the fixed points of τx

are all simple is not an open condition in general.
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to get (prM )∗ Tr ∆̃∗ k, a well-defined generalized section of |TM |∗⊗|TM | ' C,

that is, a generalized function on M . Let us denote it by tr τ .

Let us turn to the claims about the smoothness of tr τ . Regarding the support

of this generalized function, by (1.73) and Remark 1.5.13, we have indeed that

supp(tr τ ) ⊂ prM ( ∆̃−1(supp(k)) ).

Next, any x ∈ M such that all the fixed points of τx are simple is a regular

value of (prM )|Z by Lemma 1.8.11. It follows from Proposition 1.6.20 that

(prM )∗Tr ∆̃∗ k is smooth at x. Finally, let U ⊂ M be an open subset such

that for all x ∈ U , all the fixed points of τx are simple. We have just seen

that
(

(prM )∗ Tr ∆̃∗ k
)
|U

is smooth. To explicitly evaluate this function, let

x ∈ U and let us consider the pullback by τ |U = (τ|U , r|U ), where τ|U and r|U
are respectively the restrictions of τ and r to U instead of M . Then, the whole

previous discussion regarding (prM )∗Tr ∆̃∗ k still holds if we replace M by U

and we have (Tr ∆̃∗ k)|(prM )−1(U) = Tr ∆̃∗ kU , where on the right hand side, ∆̃

is restricted to U ×Q and kU denotes the kernel of the pullback by τ |U , which

is a δ−section along the submanifold ZU := {(x, q) ∈ U × Q|τx(q) = q} . By

Lemma 1.5.15, we have(
(prM )∗Tr ∆̃∗ k

)
|U

= (prU )∗Tr ∆̃∗ kU , (1.74)

where prU : U × Q → U is the projection. Let us introduce the following

smooth maps30:

π̄ : Q→ {?} ; q 7→ ?

ιx : {?} → U ; ? 7→ x

ι̃x : Q→ U ×Q ; q 7→ (x, q)

ι̂x : Q×Q→ U ×Q×Q ; (q, q′) 7→ (x, q, q′)

∆ : Q→ Q×Q ; q 7→ (q, q).

We also make the elementary observation that, for any function f : U → C, we

can write the evaluation at x as the pullback by ιx. Indeed, ιx
∗f is a function

over a point, that is, a number, which is precisely f(x). Therefore, we have:(
(prU )∗ Tr ∆̃∗ kU

)
(x) = ιx

∗(prU )∗Tr ∆̃∗ kU . (1.75)

Now, notice that we have the following commutative diagram:

{?} ιx−→ U

π̄ ↑ ↑ prU

Q
ι̃x−→ ZU ⊂ U ×Q.

30{?} denotes the set containing one point.
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Considering the trivial vector bundle over {?}, the density bundle |TU | over U

and the δ−section Tr ∆̃∗ kU of the vector bundle prQ
∗(|TQ|) ' prU

∗(|TU |)∗⊗
|T (Q×U)|, we are in the setting of Proposition 1.6.21 (we identify Q×{?} with

Q). Indeed, we have that ιx
∗(|TU |∗ ⊗ |TU |) ' C and that ι̃x is transverse to

ZU because we have seen in the proof of Lemma 1.8.11 that for all X ∈ Tq(Q),

(0, X) is tangent to ZU if and only if X = 0 since the fixed points of τx are

simple. Therefore,

ιx
∗(prU )∗Tr ∆̃∗ kU = π̄∗ ι̃x

∗ Tr ∆̃∗ kU (1.76)

= π̄∗Tr ι̃x
∗ ∆̃∗ kU = π̄∗ Tr (∆̃ ◦ ι̃x)∗ kU (1.77)

= π̄∗Tr (ι̂x ◦∆)∗ kU = π̄∗Tr ∆∗ ι̂x
∗kU (1.78)

= π̄∗Tr ∆∗ kx, (1.79)

where kx is the kernel of the pullback by τx. Line (1.77) is justified by Lemma

1.6.18. Line (1.78) as well because ι̂x is transverse to graph(τ|U ), and ∆ is

transverse to ι̂x
−1(graph(τ|U )) = graph(τx) by Lemma 1.7.4 since all the fixed

points of τx are simple (because x is a regular value of (prM )|Z). Line (1.79)

follows from the observation that the symbol of kx coincides with the pullback

by ι̂x of the symbol of kU . Now, notice that, since all the fixed points of τx are

simple, they are isolated by Lemma 1.7.4. The fixed points p of τx such that

Tr (rx(p)) 6= 0 are contained in (prM )−1({x})∩∆̃−1(supp(k)). The latter being

compact since (prM )|∆̃−1(supp(k)) is proper, they must be in finite number. We

can thus apply Proposition 1.7.5 to τx to get that 31

π̄∗Tr ∆∗ kx =
∑

p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣ . (1.80)

Putting equations (1.74), (1.75), (1.76) and (1.80) together finally gives

(tr τ )|U (x) =
∑

p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣ .

Proposition 1.8.23. Let M and Q be two manifolds, E → Q a vector bun-

dle over Q. Let τ = (τ, r) be a smooth family of geometric morphisms of E

parametrized by M . Let us denote by

• k the kernel of τ∗ (see Proposition 1.7.2);

• ∆̃ : M ×Q→M ×Q×Q ; (x, q) 7→ (x, q, q) the diagonal map;

• prM : M ×Q→M the projection onto M .

Suppose that

31As before, we sum over all fixed points because it only adds vanishing terms to the sum.
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(H1) τ is locally transitive;

(H2) (prM )|∆̃−1(supp(k)) is proper.

Then, for every ρ ∈ D(M, |TM |), the operator Ω(ρ) : E(Q,E) → E(Q,E)

defined by (1.59) is smooth-traceable and the linear map

tr Ω : D(M, |TM |)→ C ; ρ 7→ tr (Ω(ρ))

is a generalized function on M which coincides with tr τ (see Lemma 1.8.22).

Therefore, for all open subset U ⊂ M such that for all x ∈ U , all the fixed

points of τx are simple, the restriction (tr Ω)|U is smooth and, for all x ∈ U :

(tr Ω)|U (x) =
∑

p=τx(p)

Tr(rx(p))∣∣det
(
id− (τx)∗p

)∣∣ , (1.81)

where the sum, which always has a finite number of nonvanishing terms, is over

the fixed points of τx, and is equal to 0 if τx has no fixed point.

Proof. In this proof, we will use the same notations for the projection maps as

in the proof of Lemma 1.8.22.

Denote by k the kernel of the pullback by τ . We know by Proposition 1.7.2

that it is a δ−section along the submanifold graph(τ). Because of assumptions

(H1) and (H2), we can apply Lemma 1.8.22 to get that tr τ := (prM )∗Tr ∆̃∗k

is a well-defined generalized function on M .

Before going on, let us make the following observation. For all u ∈ D′(M) and

ρ ∈ D(M, |TM |), we can define the compactly supported generalized density

uρ by 〈uρ, f〉 := 〈u, fρ〉 for all f ∈ D(M). Then, we have that (see Remark

1.5.16):

〈u, ρ〉 = 〈uρ, 1〉 = Π∗(uρ),

where we denote by Π : M → {?} the projection onto a point.

If we take ρ ∈ D(M, |TM |) and apply this to (prM )∗Tr ∆̃∗k, we see that(
(prM )∗Tr ∆̃∗k

)
ρ = (prM )∗Tr ∆̃∗Kρ,

where Kρ is the kernel of the pullback by τρ as defined in the proof of Propo-

sition 1.8.5 (see equations (1.60) and (1.61)).32 Notice also that ∆̃∗Kρ is

32Let us explain why. By (1.62) and footnote 24, the symbol of k reads rx(q)⊗σ(x, q) and

the symbol of Kρ is rx(q) ⊗ ρ(x) ⊗ σ(x, q). Therefore, the symbols of Tr ∆̃∗k and Tr ∆̃∗Kρ
are respectively Tr (rx(q))⊗ ∆̃∗σ(x, q) and Tr (rx(q))⊗ ρ(x)⊗ ∆̃∗σ(x, q). From Proposition

1.6.19, we get that〈
(prM )∗Tr ∆̃∗k, ρ

〉
=

〈
Tr (rx(q))⊗ ∆̃∗σ(x, q), (prM )∗ρ

〉
=

〈
Tr (rx(q))⊗ ρ(x)⊗ ∆̃∗σ(x, q), 1

〉
=

〈
(prM )∗Tr ∆̃∗Kρ, 1

〉
.
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compactly supported. Indeed, supp(∆̃∗Kρ) is a closed subset contained in

(prM )−1(supp(ρ))∩∆̃−1(supp(k)), which is compact by assumption (H2). This

implies that the following pushforwards and their permutations are justified

since all the maps are proper on the supports of the generalized sections:〈
(prM )∗Tr ∆̃∗k, ρ

〉
= Π∗(prM )∗Tr ∆̃∗Kρ

= (Π ◦ prM )∗Tr ∆̃∗Kρ

= (π ◦ prQ)∗Tr ∆̃∗Kρ

= π∗(prQ)∗Tr ∆̃∗Kρ

= π∗Tr (prQ)∗∆̃
∗Kρ.

(1.82)

Now, notice that we have the following commutative diagram:

Q
∆−→ Q×Q

prQ ↑ ↑ π23

M ×Q ∆̃−→ graph(τ) ⊂M ×Q×Q.

Considering the vector bundles Hom (E,E)
∗ ⊗ |T (Q)| over Q and

Hom
(
p∗1(E), p∗2(E)

)
⊗ p∗1(|TQ|)→ Q×Q

as well as the δ−section Kρ, the fact that

Hom (E,E)
∗ ⊗ |T (Q)|

' ∆∗
( (

Hom
(
p∗1(E), p∗2(E)

)
⊗ p∗1(|TQ|)

)∗ ⊗ |T (Q×Q)|
)

together with our previous discussions ensure that the assumptions of Proposi-

tion 1.6.21 are satisfied, from which it follows that (prQ)∗∆̃
∗Kρ = ∆∗(π23)∗Kρ.

Recall from the proof of Proposition 1.8.5 that (π23)∗Kρ is the kernel of Ω(ρ)

and that it is smooth. Since ∆∗(π23)∗Kρ has compact support, we have by

Lemma 1.5.17 and equation (1.82) that

tr (Ω(ρ)) = π∗Tr ∆∗(π23)∗Kρ

= π∗Tr (prQ)∗∆̃
∗Kρ

=
〈

(prM )∗Tr ∆̃∗k, ρ
〉
.

This means that

tr Ω : D(M, |TM |) 7→ C ; ρ 7→ tr (Ω(ρ))

is a generalized function on M which coincides with tr τ and the proof is com-

plete by Lemma 1.8.22.
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Proof of Theorem 1.8.12. Notice first that if Q is compact, then prM is proper,

which implies that (prM )|Z is also proper since Z is a properly embedded

submanifold of M × Q and is therefore a closed subset of M × Q. Next,

suppose that (prM )|Z is proper. Since ∆̃−1(supp(k)) is closed and contained in

Z, (prM )|∆̃−1(supp(k)) is proper so we can apply Proposition 1.8.23 to get that,

for every ρ ∈ D(M, |TM |), the operator Ω(ρ) is smooth-traceable and that tr Ω

is a generalized function on M which coincides with (prM )∗Tr ∆̃∗k. By Lemma

1.8.11, the set U of all x ∈ M such that all the fixed points of τx are simple

coincides with the set of regular values of (prM )|Z . Since (prM )|Z is proper,

it is an open subset. Therefore, by Proposition 1.8.23, (tr Ω)|U is smooth and

given by (1.66). For all x ∈ U , the fixed points of τx are isolated by Lemma

1.7.4 and contained in (prM )|Z
−1({x}), which is compact, so they are in finite

number.

We finally turn to the proof of Theorem 1.8.14. Let us notice that if Q is

compact, everything boils down to Theorem 1.8.12. In the case where Q is not

compact, the difficulty is that we can not apply straightforwardly Proposition

1.8.23 because of the properness condition (H2). We will thus have to first

localize our operators to compact sets, and then globalize the result by using

an exhaustion of the manifold by compact sets and passing to the limit.

Proof of Theorem 1.8.14. In this proof, we will use the same notations for the

projection maps as in the proof of Lemma 1.8.22.

Let C0 ⊂ C1 ⊂ · · · ⊂ Q be a countable exhaustion of Q by compact sets.33

For each n ∈ N, let φn ∈ D(Q) such that 0 ≤ φn ≤ 1, supp(φn) ⊂ Cn+1 and

(φn)|Cn = 1.

Let us consider the geometric morphism τn = (τ, rn), with rn,x(q) := φn(q)r(q).

For each x ∈ M , the corresponding pullback operator reads, for ϕ ∈ E(M,E)

and q ∈ Q:

(Ωn(x)ϕ)(q) := rn,x(q)ϕ(τx(q))

= φn(q)rx(q)ϕ(τx(q)) = φn(q)(Ω(x)ϕ)(q).
(1.83)

Denote by kn the kernel of the pullback by τn. We know by Proposition 1.7.2

that it is a δ−section along the submanifold graph(τ). The expression (1.55)

of its symbol and the definition of rn imply that supp(kn) ⊂ M × Cn+1 × Q,

so ∆̃−1(supp(kn)) ⊂ M × Cn+1. Therefore, (prM )|∆̃−1(supp(kn)) is proper and

we can apply Proposition 1.8.23 to get that

tr Ωn : D(M, |TM |) 7→ C ; ρ 7→ tr (Ωn(ρ))

33That is, for all n = 0, 1, . . . ,+∞, Cn is a compact subset of Q and Cn is contained in

the interior of Cn+1, and Q = ∪+∞n=0Cn.
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is a generalized function on M which coincides with tr τn , that is, for every

ρ ∈ D(M, |TM |):

tr (Ωn(ρ)) =
〈

(prM )∗Tr ∆̃∗kn, ρ
〉
.

On the other hand, from (1.83), we get that, for all q ∈ Q:

(Ωn(ρ)ϕ)(q) = φn(q)(Ω(ρ)ϕ)(q).

If we denote by kρ the (smooth) kernel of Ω(ρ), this shows that kn,ρ(q, q
′) =

φn(q)kρ(q, q
′) for all q, q′ ∈ Q and thus that |Tr (kn(q, q))| ≤ |Tr (k(q, q))|. Since

Ω(ρ) is smooth-traceable by assumption – which means that q 7→ |Tr (k(q, q))|
is integrable –, Lebesgue’s dominated convergence theorem implies that:

tr Ω(ρ) =

∫
Q

lim
n→∞

Tr (kn,ρ(q, q)) = lim
n→∞

tr Ωn(ρ). (1.84)

By Theorem 1.3.14, tr Ω(ρ) is thus a generalized function on M .

Now, suppose that U ⊂ M is an open subset such that for all x ∈ U , all the

fixed points of τx are simple. Then, formula (1.68) follows from (1.84) and the

expression (1.81) of (tr Ωn)|U given by Proposition 1.8.23.
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Chapter 2

Quantization of symmetric

spaces

In this chapter, we investigate the question of constructing non-formal star-

products on a symmetric space. More specifically, we would like to understand

the appearance of the fixed points in the kernel of such a star-product, moti-

vated by the formula of Weinstein’s conjecture. The first section recalls some

facts about symmetric spaces. The next section is dedicated to the construction

of a quantization map, and to the study of its properties, such as equivariance.

In Section 2.3, some notions related to Hilbert-Schmidt and trace-class oper-

ators are recalled, and we briefly discuss when our quantization map fits into

that setting. Then, in Section 2.4, we tackle the problems of “dequantization”

and of defining a star-product. We also compute the kernel of the latter as a

fixed point formula, which is the main result of this chapter. Finally, in Section

2.5, we apply the previous results to elementary normal j-groups.

2.1 Symmetric spaces

There are several ways of approaching symmetric spaces, each of them providing

a new insight into that notion. A first one is to consider a symmetric space as a

manifold for which it is possible to define some kind of central symmetry around

each of its points. These central symmetries acquire a very geometric meaning

as soon as we highlight the natural affine structure of a symmetric space, and

its associated geodesics. Finally, the whole machinery of Lie theory can be used

to study symmetric spaces since they can be realized as homogeneous spaces

G/K for some Lie group G acting transitively on the symmetric space. In this

section, we are going to briefly describe those different aspects. For a complete

105
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treatment, we refer to the classical references of Loos [Loo69], Kobayashi and

Nomizu [KN09] and Helgason [Hel78]. A nice summary of the equivalence

between the different definitions can also be found in Voglaire [Vog11, Section

1.4].

A first definition

Definition 2.1.1. A symmetric space is a pair (M, s), where M is a connected

manifold 1 and s : M ×M →M is a smooth map such that:

1. For every x ∈ M , the map sx : M → M ; y 7→ s(x, y) is an involutive

(i.e. s2
x = IdM ) diffeomorphism admitting x as an isolated fixed point;

2. For every x, y ∈M , sx ◦ sy ◦ sy = ssx(y).

The map sx is called the symmetry at the point x.

Definition 2.1.2. Let (M, s) and (M ′, s′) be two symmetric spaces. A mor-

phism between (M, s) and (M ′, s′) is a smooth map φ : M →M ′ such that, for

all x, y ∈M ,

s′φ(x)(φ(y)) = φ(sx(y)).

It is an isomorphism if φ is also a diffeomorphism. An automorphism of (M, s)

is an isomorphism of (M, s) to itself.

Example 2.1.3. The simplest example of a symmetric space is given by Rn

endowed with the following symmetry:

s : Rn × Rn → Rn ; (x, y) 7→ 2x− y.

The symmetry sx corresponds to the central symmetry around x. ♦

Example 2.1.4. Generalizing the previous example, any Lie group G can be

endowed with a symmetric space structure through the following map:

s : G×G→ G ; (g, g′) 7→ g(g′)−1g. ♦

Let us briefly comment on the two conditions in the definition. As for the first

one, sx being an involution implies that (sx)∗x is an involutive automorphism

of TxM , hence is diagonalizable and admits only +1 and −1 as eigenvalues.

The fact that x is an isolated fixed point implies that +1 eigenvalues can not

occur. Therefore, (sx)∗x = −IdTxM , suggesting that sx is something like a

central symmetry around x. The second condition is represented in Figure 2.1

and, again, is a generalization of a property of the central symmetries of Rn.

1Notice that we restrict to connected symmetric space, which is not the case everywhere

in the literature.
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Figure 2.1: The point z must be mapped on the same point by the sequence of

transformations corresponding to the plain line, and by the one corresponding

to the dashed line.

Symmetric spaces and geodesics

The following theorem allows to highlight a geometric structure underlying a

symmetric space.

Theorem 2.1.5. Let (M, s) be a symmetric space. There exists a unique affine

connection (i.e. a covariant derivative)

∇ : Γ∞(M,TM)× Γ∞(M,TM)→ Γ∞(M,TM) ; (X,Y ) 7→ ∇XY

that is invariant under all symmetries. It is called the Loos connection. More-

over, it is complete, torsion-free, its curvature tensor is parallel and it is ex-

plicitly given by the formula, for all X,Y ∈ Γ∞(M,TM) and x ∈M ,

(∇XY )x =
1

2
[X,Y + sx∗Y ]x .

The next result asserts that the symmetry at a point x is in fact the geodesic

symmetry around x – at least for points that are connected to x by a geodesic.

This is again pictured in Figure 2.1.

Proposition 2.1.6. Let (M, s) be a symmetric space, and γ : R → M ; t 7→
γ(t) a maximal geodesic for the Loos connection. Then, for all t, s ∈ R,

sγ(t)(γ(t+ s)) = γ(t− s).

Symmetric spaces as homogeneous spaces

Proposition 2.1.7. Let (M, s) be a symmetric space. The group of automor-

phisms of (M, s), denoted by Aut(M, s), is a finite dimensional Lie group acting

transitively on M .
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Let (M, s) be a symmetric space, and fix o ∈ M . Let us denote by G the

identity component of Aut(M, s), and consider K the stabilizer in G of o, that

is, K := {g ∈ G | g(o) = o}. It is a closed subgroup of G and M is diffeomorphic

to the homogeneous space G/K – recall that M is connected by definition, so

G must act transitively on M . The second property in the definition of a

symmetric space ensures that every symmetry is an automorphism of M . We

can thus consider the following involutive homomorphism of Aut(M, s):

σ : Aut(M, s)→ Aut(M, s) ; g 7→ sogso.

When restricted to G, σ gives an involutive automorphism of G. Furthermore,

if we denote Gσ := {g ∈ G | σ(g) = g} and by (Gσ)0 the identity component of

Gσ, we have the inclusions

(Gσ)0 ⊂ K ⊂ Gσ.

This motivates the following definition.

Definition 2.1.8. A symmetric triple is a triple (G,K, σ), where

1. G is a connected Lie group;

2. σ : G→ G is an involutive automorphism of G;

3. K is a closed subgroup of G such that

(Gσ)0 ⊂ K ⊂ Gσ := {g ∈ G | σ(g) = g} ,

where (Gσ)0 denotes the identity component of Gσ.

Given a symmetric triple (G,K, σ), the homogeneous space G/K can be en-

dowed with the symmetric structure s̃ : G/K × G/K → G/K defined, for

gxK, gyK ∈ G/K, by the formula

s̃gxK(gyK) := gxσ(g−1
x gy)K.

If we start with a symmetric space (M, s) and consider the associated symmetric

triple (G,K, σ) as above, it turns out that (G/K, s̃) and (M, s) are isomorphic

as symmetric spaces. However, let us notice that there is generally not a

unique symmetric triple associated to a symmetric space. There is for instance

some freedom in the choice of K. But we could also have started the above

construction from any connected subgroup of Aut(M, s) acting transitively on

M and stabilized by σ.

At the infinitesimal level, given a symmetric triple (G,K, σ), the differential

σ∗e of σ at the neutral element is an involutive automorphism of the Lie algebra

g of G. We therefore have a decomposition g = g+ ⊕ g− corresponding to the

(±1)−eigenspace decomposition (that is, σ∗e = Idg+
⊕ (−Idg−)). Moreover, if

k denotes the Lie algebra of K, we have that g+ = k, and

[g+, g+] ⊂ g+ , [g−, g−] ⊂ g+ , [g+, g−] ⊂ g−.

Finally, notice that we have TeK(G/K) = g−.
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2.2 Equivariant quantization map

2.2.1 The setting

In this subsection, we describe the setting we will use for the construction of

the quantization map.

Definition 2.2.1. A nearly-quantum symmetric space is a tuple (G,K, σ,B, χ)

such that:

1. (G,K, σ) is symmetric triple such that there exists a G−invariant smooth

measure dG/K on G/K;

2. B is a closed subgroup of G such that K ⊂ B;

3. χ : B → U(1) is a unitary character of B which is σ−invariant, that is,

for all b ∈ B, χ(σ(b)) = χ(b).

A nearly-quantum symmetric space is said to be local if there exists a subgroup

Q of G such that the map

Q×B → G ; (q, b) 7→ qb

is a global diffeomorphism.

Remark 2.2.2. Recall that, as we have seen in the previous Section, the sym-

metric triple (G,K, σ) gives rise to a symmetric space (M ' G/K, s), with s

given, for all gxK, gyK ∈ G/K, by

sgxK(gyK) = gxσ
(
g−1
x gy

)
K. C

Remark 2.2.3. For a local quantum symmetric space (G,K, σ,B, χ), notice

that Q is a closed subgroup of G. For any element g ∈ G, there is a unique

decomposition g = qb, with q ∈ Q and b ∈ B and we will use the following

superscript notation to denote that decomposition:

g = gQ gB . C

Example 2.2.4. This example endows the cylinder with a symmetric structure.

Let us consider the group G given by the semi-direct product

G := S1 nρ C

for the action ρ defined, for eia ∈ S1 and z ∈ C, by ρ(a)z := eiaz. The corre-

sponding group law and inverse are respectively given, for (eia, z), (eia
′
, z′) ∈ G,

by:

(eia, z) · (eia
′
, z′) = (ei(a+a′), z′ + eia

′
z),

(eia, z)−1 = (e−ia,−e−iaz).
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Let us consider the following involution of G:

σ : G→ G ; (eia, z) 7→ (e−ia,−z̄),

and the subgroup K := Gσ = {g ∈ G | σ(g) = g} = {(0, iy) | y ∈ R} ⊂ G.

Then, (G,K, σ) is a symmetric triple and we may consider the corresponding

symmetric space M ' G/K. If we define the two subgroups of G

A :=
{

(eia, 0) | eia ∈ S1
}
' S1 and N := {(0, x) | x ∈ R} ,

we have the decomposition G = ANK. This gives the following coordinates:

AN
∼−→M ' G/K ; (eia, n) 7→ (eia, n)K,

which we use to identify M with AN . Under this identification, the action of

G on M is given, for (eia, x+ iy) ∈ G and (eia0 , n0) ∈M , by

(eia, x+ iy) · (eia0 , n0) =
(
ei(a0+a), n0 + x cos(a0)− y sin(a0)

)
.

The symmetric structure s : M ×M →M on M reads, for (eia, n), (eia
′
, n′) ∈

M :

s(eia,n)(e
ia′ , n′) = (ei(2a−a

′), 2x cos(a− a′)− x′).

The G−invariant measure on M is dM = dadn. Finally, we have some choice

left for the subgroup B and its character χ. As a first choice, we could take

B := K, and any unitary character of K would do (since σ is the identity on

K). As another example, let us consider B := NK. Then, since σ|N is the

inverse map, the σ−invariance of the character implies that χ|N = 1. It must

thus be of the form χm(x + iy) = eimy for some m ∈ R and all x + iy ∈ NK.

Notice that in this case, the nearly-quantum symmetric space is local. ♦

For the following discussion, let (G,K, σ,B, χ) be a nearly-quantum symmetric

space. It will be specified when we take it to be local. The remaining of this

section aims to construct a quantization map as in the Weyl quantization, which

is G-equivariant. The construction is based on the one of [BG15, Chapter 7],

adapted to the more general setting of nearly-quantum symmetric spaces.2

2.2.2 The Hilbert space and a first quantization map

As a first ingredient of the construction, we consider the unitary representation

of G induced by the character χ of B. It associates to the data of G, B and

χ, a vector bundle that carries a natural left action of G, and whose sections

allow to define a Hilbert space on which G acts by pullback. Let us recall how

2We need, for instance, to use half-densities on G/B, since we do not require the existence

of a G-invariant measure on G/B.
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it works. Given the B−principal bundle G→ G/B, we consider the associated

vector bundle over G/B

π :

(
Eχ := G×χ C :=

G× C
∼

)
→ G/B,

where, for all g ∈ G, b ∈ B and z ∈ C, the equivalence relation is defined by

(g, z) ∼
(
gb, χ(b)−1z

)
and the projection by π([g, z]) := gB. It is a complex line

bundle and there is a natural left action of G on Eχ defined, for all g0, g ∈ G
and z ∈ C, by:

g0 · [g, z] := [g0g, z]. (2.1)

We can endow Eχ with a G−invariant Hermitian structure h given, for all

g ∈ G and z, z′ ∈ C, by:

hgB ([g, z′], [g, z]) := z′z̄. (2.2)

We can now get a Hilbert space from that bundle by making use of its intrinsic

Hilbert space, that we denote by Hχ. Recall from Definition 1.2.25 that it is

built from sections of the tensor product of Eχ with the bundle of half-densities

on G/B. More precisely, it is the completion of Γ∞c (G/B,Eχ ⊗ |T (G/B)|1/2)

for the inner product

〈ϕ⊗ ρ, ϕ′ ⊗ µ〉 :=

∫
G/B

h(ϕ,ϕ′) ρ.µ̄. (2.3)

In order to define a representation of G on Hχ, we consider the representation

of G on Γ∞c (G/B,Eχ) given by the pullback, that is, for every g0, g ∈ G and

ϕ ∈ Γ∞c (G/B,Eχ):

(g · ϕ)(g0B) := g · ϕ(g−1g0B). (2.4)

Also, recall that, as mentioned in Remark 1.2.26, Diff(G/B) acts by pull-

back unitarily on the Hilbert space of half-densities. Since G is a subgroup

of Diff(G/B) via the left action of G on G/B given by left translations

α : G×G/B → G/B ; (g, g0B) 7→ αg(g0) := gg0B, (2.5)

G acts also on the half-densities. These two considerations define a representa-

tion of G on Hχ, which is unitary by G−invariance of the Hermitian structure

on Eχ.

Definition 2.2.5. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space,

the unitary representation of G

Uχ : G→ U(Hχ)

defined, for g ∈ G, ϕ⊗ ρ ∈ Γ∞c (G/B,Eχ ⊗ |T (G/B)|1/2), by

Uχ(g)(ϕ⊗ ρ) = (g · ϕ)⊗ (α ∗g−1ρ)

is called the unitary representation of G induced from (B,χ).
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Before going on, let us take some time to give different descriptions of the

Hilbert space Hχ. In each of the next remarks, we build an isomorphism be-

tween Γ∞c
(
G/B,Eχ ⊗ |T (G/B)|1/2

)
and another vector space of sections. By

transporting the pre-Hilbert structure (2.3) to that new vector space and tak-

ing the completion, we get a concrete realization of a Hilbert space isomorphic

to Hχ. These different realizations of Hχ will allow us to express our operators

on one or another vector space, depending on which one is the most convenient.

For the first one, we will need the following lemma which expresses the den-

sity bundle as an associated bundle. Since there are multiple conventions for

defining the modular function on a group, let us recall its definition.3

Definition 2.2.6. Let G be a Lie group. The modular function on G is the

smooth homomorphism ∆G : G→ R+
0 such that, for all left Haar measure λ on

G, dλ(xy) = ∆G(y)dλ(x) for all x, y ∈ G. It is given explicitly by the formula

∆G(x) = |det Ady−1 | for all y ∈ G.

Let us also recall the following notion, coming from the theory of quasi-invariant

integration on homogeneous spaces, for which we refer to Folland [Fol94].

Definition 2.2.7. Let G be a Lie group, B a closed subgroup of G. A ρ-

function associated to the pair (G,B) is a positive continuous function ρ : G→
R+

0 such that, for all g ∈ G and b ∈ B,

ρ(gb) =
∆B(b)

∆G(b)
ρ(g).

Lemma 2.2.8. Let G be a Lie group, B a closed subgroup of G and δ1/2 the

character of B defined by

δ1/2 : B → C ; b 7→ δ1/2(b) :=

(
∆G(b)

∆B(b)

)1/2

.

Then, we have an isomorphism of vector bundles 4

|T (G/B)|1/2 ' G×δ1/2 C,

which induces a G−equivariant 5 isomorphism at the level of sections

Γ∞(G/B, |T (G/B)|1/2)
∼−→ Γ∞(G/B,G×δ1/2 C).

Proof. Let us fix a positive half-density µ on G/B. By the theory of quasi-

invariant integration on homogeneous spaces (see for instance Folland [Fol94,

3We follow the convention of Folland [Fol94].
4G ×δ1/2 C is the associated vector bundle corresponding to the B−principal bundle

G→ G/B and the character δ1/2
5The action of G on G ×δ1/2 C is the natural one, given by the same formula (2.1), and

the induced action on the sections is given by (2.4).
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Section 2.6]), we know that there exists an associated so called ρ−function,

that is, some smooth (because µ is) positive function ρ : G → R+
0 such that,

for all g ∈ G, g0B ∈ G/B and b ∈ B:

(α∗g−1µ)(g0B) =

(
ρ(g−1g0)

ρ(g0)

)1/2

µ(g0B), (2.6)

ρ(gb) =
∆B(b)

∆G(b)
ρ(g). (2.7)

Let g0B ∈ G/B. Recall that the half-density bundle is a complex line bundle,

so any element of (|T (G/B)|1/2)g0B is of the form z.µ(g0B) for some z ∈ C.

We can thus consider the linear map between the fibers

(|T (G/B)|1/2)g0B
∼−→ (G×δ1/2 C)g0B ; z.µ(g0B) 7→ [g0, ρ(g0)1/2z].

It is well-defined because of (2.7), and it is an isomorphism, being a surjection

between one-dimensional spaces. Also, it depends smoothly on g0B since µ

and ρ are smooth. This gives the isomorphism of vector bundles

A : |T (G/B)|1/2 ∼−→ G×δ1/2 C.

We denote by the same letter the induced isomorphism at the level of sections

A : Γ∞(G/B, |T (G/B)|1/2)
∼−→ Γ∞(G/B,G×δ1/2 C).

It is G−equivariant because, for all g ∈ G and g0B ∈ G/B, we have, using

(2.6), (
A(α ∗g−1µ)

)
(g0B) = A

( (
ρ(g−1g0)

ρ(g0)

)1/2

µ(g0B)

)

=

[
g0, ρ(g0)1/2

(
ρ(g−1g0)

ρ(g0)

)1/2

µ(g0B)

]
= g ·

[
g−1g0, ρ(g−1g0)1/2µ(g0B)

]
= g · (A(µ(g0B))) = (g ·Aµ)(g0B).

Remark 2.2.9. The previous lemma allows to give a slightly different description

of the vector bundle Eχ ⊗ |T (G/B)|1/2. Let us define the character χ̃ of B by

χ̃ : B → C ; b 7→ χ(b) . δ1/2(b). (2.8)

Then, by Lemma 2.2.8, we have the isomorphism of vector bundles

Eχ ⊗ |T (G/B)|1/2 ' G×χ̃ C =: Eχ̃, (2.9)

and the natural left action of G on Eχ̃ given, for all g0, g ∈ G and z ∈ C, by:6

g0 · [g, z] := [g0g, z].

6We keep the same notation [·, ·] for the equivalence classes defining the elements of Eχ
and Eχ̃ since it should not introduce any confusion.
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This induces an isomorphism Γ∞c
(
G/B,Eχ ⊗ |T (G/B)|1/2

) ∼−→ Γ∞c (G/B,Eχ̃)

and, under this identification, the representation Uχ reads, for every g0, g ∈ G
and ϕ ∈ Γ∞c (G/B,Eχ̃):

(Uχ(g0)ϕ)(gB) := g0 · ϕ(g−1
0 gB). (2.10)

If we fix a positive half-density µ and denote by ρ the corresponding ρ−function,

the transported Hermitian structure on Eχ̃ is given, for g ∈ G and z, z′ ∈ C,

by

hgB([g, z′], [g, z]) = zz′ ρ(g)−1 (2.11)

and the inner product on Γ∞c (G/B,Eχ̃) is, for all ϕ,ψ ∈ Γ∞c (G/B,Eχ̃), given

by

〈ϕ,ψ〉 =

∫
G/B

hgB(ϕ(gB), ψ(gB))µ2(gB). (2.12)

C

Remark 2.2.10. Recall that we can identify the space Γ∞ (G/B,Eχ̃) of smooth

sections of Eχ̃ with the space of smooth (B, χ̃)−equivariant functions on G

C∞(G)(B,χ̃) :=
{
ϕ̂ ∈ C∞(G) | ϕ̂(gb) = χ̃(b)−1ϕ̂(g) ∀g ∈ G, b ∈ B

}
through the isomorphism

ϕ̂ ∈ C∞(G)(B,χ̃) 7→ Γ∞ (G/B,Eχ̃) 3 ϕ := [ gB 7→ [g, ϕ̂(g)] ∈ Eχ̃ ] .

We denote by C∞(G)
(B,χ̃)
c the pre-image of the space of compactly supported

smooth sections under this correspondence 7, which can be explicitly described

as

C∞(G)(B,χ̃)
c =

{
ϕ̂ ∈ C∞(G)(B,χ̃) | π(supp(ϕ̂)) is compact

}
, (2.13)

where π : G→ G/B is the natural projection. Then, under this identification,

the representation Uχ corresponds to the restriction to C∞(G)
(B,χ̃)
c of the left

regular representation of G: for every ϕ̂ ∈ C∞(G)
(B,χ̃)
c and g0, g ∈ G,

(Uχ(g0)ϕ̂)(g) = ϕ̂(g−1
0 g). (2.14)

Indeed, Uχ(g0)ϕ̂ is defined by the identity (Uχ(g0)ϕ)(gB) =: [g, (Uχ(g0)ϕ̂)(g)]

and ϕ̂ by ϕ(gB) =: [g, ϕ̂(g)], so we have:

(Uχ(g0)ϕ)(gB) = g0 · ϕ(g−1
0 gB) = g0 · [g−1

0 g, ϕ̂(g−1
0 g)]

= [g, ϕ̂(g−1
0 g)],

7Notice that the subscript is on the right of the parenthesis, to distinguish it from com-

pactly supported functions.
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which implies (2.14) by identification. Regarding the inner product, if we fix

a positive half-density µ and denote by ρ the corresponding ρ−function, from

(2.11) and (2.12), we have, for all ϕ̂, ψ̂ ∈ C∞(G)
(B,χ̃)
c ,

〈ϕ̂, ψ̂〉 =

∫
G/B

ψ̂(g)ϕ̂(g) ρ(g)−1 µ2(gB). (2.15)

Notice that the integrand in (2.15) is a well-defined function on G/B because

of the B−equivariance of ϕ̂, ψ̂ and ρ and the unitarity of the character χ. C

Remark 2.2.11. In the local case where G = QB, we have a natural half-density

on G/B ' Q, the one corresponding to the ρ−function defined, for all q ∈ Q
and b ∈ B, by ρ(qb) = ∆B(b)

∆G(b) . We denote it by µ, and by dQ the measure

corresponding to µ2. Furthermore, we have an isomorphism of vector spaces

given by

C∞(G)(B,χ̃)
c

∼−→ C∞c (Q) ; ϕ̂ 7→ ϕ̃ := ϕ̂|Q.

Notice that it indeed maps C∞(G)
(B,χ̃)
c on compactly supported sections be-

cause of the characterization (2.13). Under this identification, for every g ∈ G
and q0 ∈ Q, we have

(U(g)ϕ̃)(q0) = (U(g)ϕ̂)(q0) = ϕ̂
(
(g−1q0)Q (g−1q0)B

)
(2.16)

= χ̃
(
(g−1q0)B

)−1
ϕ̃
(
(g−1q0)Q

)
. C

From (2.15), we get that the inner product is given, for all ϕ̃, ψ̃ ∈ C∞c (Q), by

〈ϕ̃, ψ̃〉 =

∫
Q

ψ̃(g)ϕ̃(g) dQ(q),

which shows that Hχ ' L2(Q, dQ).

Remark 2.2.12. We now have four different descriptions of the Hilbert space

Hχ. In the following, we will use one or another depending on which one turns

out to be the most convenient for a given purpose. Notice that we are a bit

sloppy with the notation since we keep the same symbol for an operator when

it acts on one space or another. However, it should not cause any confusion

because it will be clear to which space the vector on which the operator acts

belongs (for instance, the “hat” indicates that ϕ̂ ∈ C∞(G)
(B,χ̃)
c and the “tilde”

indicates that ϕ̃ ∈ C∞c (G/B)). For the sake of clarity, let us summarize the

four descriptions of Hχ. It is defined as a completion of either:

1. the space of compactly supported smooth sections of the vector bundle

(Eχ := G×χ C)⊗ |T (G/B)|1/2 → G/B;

2. the space of compactly supported smooth sections of the vector bundle

Eχ̃ := G×χ̃ C→ G/B;
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3. the subspace C∞(G)
(B,χ̃)
c of (B, χ̃)−equivariant functions on G.

4. in the local case, the space of compactly supported functions on G/B '
Q. C

Remark 2.2.13. Let us also mention that the chosen positive half-density on

G/B appears in the expression of the inner products, so the completion of

the space of sections will depend on that choice. However, all the obtained

representations are unitarily equivalent and, since the half-density does not

appear in the expressions of the representation of G, we often won’t need to

specify that choice. C

The second ingredient of the quantization map arises from the observation that

the involution σ – which encodes the symmetric structure of G/B – allows to

define an operator on Hχ which commutes with Uχ(k) for all k ∈ K. It is based

on the following lemmas.

Lemma 2.2.14. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

Then, the character χ̃ is invariant under the restriction of σ to the subgroup

B, that is, χ̃ ◦ σ|B = χ̃.

Proof. The character χ is invariant under σ by assumption. The invariance un-

der σ of δ1/2 follows from its definition and from the invariance of the modular

function of a Lie group under any involutive homomorphism of the group.

Lemma 2.2.15. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space. The

map

σ : G/B → G/B ; gB 7→ σ(g)B,

is a well-defined involutive diffeomorphism of G/B. The map

σ̃ : Eχ̃ → Eχ̃ ; [g, z] 7→ [σ(g), z].

is a well-defined involutive isomorphism of Eχ̃ which lifts σ.

Proof. The fact that σ̃ and σ are well-defined follows from the stability of B

under σ and Lemma 2.2.14. They both are involutive diffeomorphisms since

σ is. Finally, for all g ∈ G, b ∈ B and z ∈ C, σ̃([gb, z]) = [σ(g)σ(b), z] ∈
(Eχ̃)σ(gB), so the fiber (Eχ̃)gB is mapped onto the fiber (Eχ̃)σ(gB).

In view of this Lemma, we can define a linear operator

Σ : Γ∞c (G/B,Eχ̃)→ Γ∞c (G/B,Eχ̃)

by the formula, for all ϕ ∈ Γ∞c (G/B,Eχ̃) and gB ∈ G/B,

(Σϕ)(gB) := σ̃ (ϕ (σ(gB))) . (2.17)

Notice that Σϕ is compactly supported since σ is a diffeomorphism.
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Remark 2.2.16. As in Remark 2.2.10, we can realize Σ on the space of (B, χ̃)−
equivariant functions on G. For all ϕ̂ ∈ C∞(G)

(B,χ̃)
c and g ∈ G, we have

(Σϕ̂)(g) = ϕ̂(σ(g)).

Indeed, Σϕ̂ is defined by the identity (Σϕ)(gB) =: [g, (Σϕ̂)(g)], and, ϕ̂ being

such that ϕ(gB) =: [g, ϕ̂(g)], we have

(Σϕ)(gB) = σ̃(ϕ(σ(gB))) = σ̃(ϕ(σ(g)B)) = σ̃([σ(g), ϕ̂(σ(g))])

= [σ(σ((g)), ϕ̂(σ(g))] = [g, ϕ̂(σ(g))]. C

Lemma 2.2.17. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space. The

operator Σ defined by (2.17) extends to an involutive unitary – hence self-

adjoint – operator on Hχ. Furthermore, for all k ∈ K:

Uχ(k) Σ = Σ Uχ(k). (2.18)

Proof. We will realize Σ on (B, χ̃)−equivariant functions on G and first show

that Σ leaves the inner product (2.3) invariant. Let ϕ̂, ψ̂ ∈ C∞(G)
(B,χ̃)
c , and let

µ be a half-density on G/B and ρ the associated ρ−function. We have, from

the expression (2.15) for the inner product,

〈ϕ̂,Σψ̂〉 =

∫
G/B

ϕ̂(g) Σψ̂(g) ρ(g)−1 µ2(gB)

=

∫
G/B

ϕ̂(g) ψ̂(σ(g)) ρ(g)−1 µ2(gB)

=

∫
G/B

ϕ̂(σ(g)) ψ̂(g) ρ(σ(g))−1 ρ(σ(g))

ρ(g)
µ2(σ(g)B)

=

∫
G/B

Σϕ̂(gB) ψ̂(g) ρ(σ(g))−1 µ2(gB) = 〈Σϕ̂, ψ̂〉,

where, for the transformation of µ under the change of variable, we have used

the fact that σ is an involutive automorphism of G. This implies that Σ extends

to a unitary operator on Hχ, which is involutive because σ̃ and σ are. Let

k ∈ K. In terms of equivariant functions, for all ϕ̂ ∈ C∞(G)
(B,χ̃)
c and g ∈ G,

we have

(Uχ(h)Σϕ̂)(g) = ϕ̂(σ(h−1g)) = ϕ̂(h−1σ(g))

= (ΣUχ(h)ϕ̂)(g),

which shows the last assertion.

We now have everything we need to define a map that associates in a natural

way an operator to every point of the symmetric space G/K. It is constructed

by intertwining the operator Σ by the representation Uχ of G.
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Proposition 2.2.18. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

The map

Ω : G/K → U(Hχ) ; gK 7→ Uχ(g) Σ Uχ(g)−1

is well-defined and defines a unitary representation of G/K in the sense that,

for every x, y ∈ G/K and g ∈ G, we have:

1. Ω(x)2 = IdHχ ,

2. Ω(x)Ω(y)Ω(x) = Ω(sx(y)),

3. Uχ(g)Ω(x)Uχ(g)−1 = Ω(g · x).

Proof. Let us define

Ω : G→ U(Hχ) ; g 7→ Ω(g) := Uχ(g) Σ Uχ(g)−1,

which is indeed valued in U(Hχ) since the representation Uχ and Σ are unitary.

From (2.18), we get

Ω(gk) = Uχ(g)Uχ(k) ΣUχ(k)−1Uχ(g)−1

= Uχ(g) ΣUχ(g)−1 = Ω(g),

so Ω induces a well defined map on G/K, which we still denote by Ω. We

then give the explicit formula for Ω on different realizations of Hχ. For all

x = gxK ∈ G/K and ϕ ∈ Γ∞c (G/B,Eχ̃) and g0B ∈ G/B, we have:

(Ω(x)ϕ)(g0B) = (Uχ(gx)ΣUχ(g−1
x )ϕ)(g0B)

= gx · σ̃
(
g−1
x · ϕ

(
gxσ(gx)−1σ(g0)B

))
.

In terms of equivariant functions, we have, for all ϕ̂ ∈ C∞(G)(B,χ̃) and g0 ∈ G:

(Ω(x)ϕ̂)(g0) = (Uχ(gx) Σ Uχ(g−1
x )ϕ̂)(g0)

= ϕ̂
(
gxσ(g−1

x g0)
)
.

This last expression allows to verify the three properties of the claim by explicit

computation. Let x = gxK, y = gyK ∈ G/K, g, g0 ∈ G and ϕ̂ ∈ C∞(G)
(B,χ̃)
c .

Then,

1. Ω(x)2 = Uχ(g) Σ Uχ(g)−1 Uχ(g) Σ Uχ(g)−1 = IdHχ ;

2. Since sx(y) = gxσ(g−1
x gy)K, we have

(Ω(x)Ω(y)Ω(x)ϕ̂)(g0) = ϕ̂
(
gxσ(g−1

x gyσ(g−1
y gxσ(g−1

x g0)))
)

= ϕ̂
(
gxσ(g−1

x gy)σ(σ(g−1
y gx)g−1

x g0))
)

= (Ω(sx(y))ϕ̂)(g0).
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3. Finally, Ω is G−equivariant since, from the definition, we have

Uχ(g)Ω(x)Uχ(g)−1 = Uχ(g)Uχ(gx)ΣUχ(gx)−1Uχ(g)−1

= Uχ(ggx)ΣUχ(ggx)−1 = Ω(g · x).

Remark 2.2.19. Notice that for all x ∈ G/K, Ω(x) is not only unitary but also

self-adjoint since it is an involution. C

Following [BG15], we introduce the following definition.

Definition 2.2.20. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

The pair (Hχ,Ω) is called the unitary representation of (G/K, s) induced by

the character χ of B.

We are now able to construct our first quantization map.

Proposition 2.2.21. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

Let us denote by dG/K the G−invariant measure on G/K and by L1(G/K) the

space of functions on G/K integrable with respect to dG/K . Then, the map

Ω : L1(G/K)→ L(Hχ) ; f 7→ Ω(f) (2.19)

where Ω(f) is the operator defined, for ϕ ∈ Γ∞c (G/B,Eχ̃) and g0B ∈ G/B, by

(Ω(f)ϕ)(g0B) :=

∫
G/K

f(x) (Ω(x)ϕ)(g0B) dG/K(x), (2.20)

is well-defined, continuous and G−equivariant in the sense that, for all g ∈ G:

Uχ(g)Ω(f)Uχ(g)−1 = Ω(gf), (2.21)

where gf : G/K → C ; gxK 7→ f(g−1gxK).

Proof. For all gx ∈ G, from the unitarity of Uχ(gx) and of Σ, we get the

unitarity of Ω(gx), which leads to

||Ω(f)|| ≤ ||f ||1

for all f ∈ L1(G/K), so Ω is well-defined and continuous. The G− equivariance

follows from Property 3 in Proposition 2.2.18 and from the G− invariance of

the measure.

Definition 2.2.22. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

The map Ω defined by (2.19) is called the quantization map of G/K induced

by (B,χ), or simply the quantization map of G/K when the context is clear.
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Remark 2.2.23. Notice that, since Ω(x) is self-adjoint for all x ∈ G/K (see

Remark 2.2.19), we have, for all f ∈ L1(G/K),

Ω(f)∗ = Ω(f).

Indeed, this is easily seen from (2.20) for compactly supported f , and the

property extends to the whole L1 by continuity of Ω. In particular, real-valued

functions are mapped to self-adjoint operators. C

2.2.3 Another quantization map

Although the quantization map Ω naturally encodes the symmetric space struc-

ture of G/K, it will turn out that a slight modification of it is more convenient

in order to define a deformed (i.e. noncommutative) product on G/K. The

modified quantization map arises from a very similar construction, which how-

ever involves a functional parameter. 8

Definition 2.2.24. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

Let m be a smooth function on G/B and denote also by m the operator of

multiplication by m of sections of Eχ̃. We define the operator Σm as the

composition m ◦ Σ:

Σm : Γ∞c (G/B,Eχ̃)→ Γ∞c (G/B,Eχ̃) ; ϕ 7→ (m ◦ Σ)(ϕ)

that is, for all ϕ ∈ Γ∞c (G/B,Eχ̃) and g0B ∈ G/B:

(Σmϕ)(g0B) := m(g0B) (Σϕ)(g0B) = m(g0B) σ̃ (ϕ(σ(g0)B))

= m(g0B) σ̃ (ϕ(σ(g0B))) .
(2.22)

In terms of (B, χ̃)−equivariant functions, we have, for all g0 ∈ G and ϕ̂ ∈
C∞(G)

(B,χ̃)
c ,

(Σmϕ̂)(g0) = m(g0B) ϕ̂(σ(g0)). (2.23)

It should be noted that Σm is only defined as a linear operator on the vector

space of compactly supported smooth sections. In general, it does not extend to

a bounded operator on Hχ, unless m is bounded. We will see that it might be

needed to consider such unbounded m. For a short time, we will therefore leave

the realm of bounded operators on Hilbert spaces and consider our operators as

linear operators on Γ∞ (G/B,Eχ̃). In this spirit, observe that for every g ∈ G,

Uχ(g) gives an endomorphism of Γ∞ (G/B,Eχ̃). Notice also that Σm as well

as U(g) map compactly supported sections to compactly supported sections

8Later on, this function will then be chosen in such a way that the quantization map

defines a unitary operator from the Hilbert space of square integrable functions on G/K and

the Hilbert space of Hilbert-Schmidt operators on Hχ.



2.2. Equivariant quantization map 121

since σ is a diffeomorphism and G acts on G/B by diffeomorphisms. As we

did before with Σ, we can therefore intertwine Σm by the representation Uχ to

define Ωm(g) = Uχ(g) Σm Uχ(g)−1 for all g ∈ G. However, many properties of

Proposition 2.2.18 do not hold anymore for Ωm for a generic m – for instance,

Ωm is not constant on the left cosets of K in G. Still, we can recover some of

them by imposing some conditions on m.

Definition 2.2.25. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

A smooth function m on G/B is called admissible if the two following condi-

tions are satisfied:

1. it is invariant for the natural left action of K on G/B, that is, if for all

k ∈ K and g0B ∈ G/B:

m(kg0B) = m(g0B).

2. m ◦ σ = m.

Lemma 2.2.26. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space and

let m be an admissible smooth function on G/B. Then, Σm is a symmetric op-

erator on Γ∞c (G/B,Eχ̃) for the inner product (2.12) for any choice of positive

half-density, that is, for all ϕ,ψ ∈ Γ∞c (G/B,Eχ̃),

〈ϕ,Σmψ〉 = 〈Σmϕ,ψ〉 .

Proof. We will use the expression (2.23) of Σm on (B, χ̃)−equivariant functions

on G. Let ϕ̂, ψ̂ ∈ C∞(G)
(B,χ̃)
c , and let µ be a half-density on G/B and ρ

the associated ρ−function. We have, from the expression (2.15) for the inner

product,

〈ϕ̂,Σmψ̂〉 =

∫
G/B

ϕ̂(g) Σmψ̂(g) ρ(g)−1 µ2(gB)

=

∫
G/B

ϕ̂(g) m(gB) ψ̂(σ(g)) ρ(g)−1 µ2(gB)

=

∫
G/B

m(gB)ϕ̂(σ(g)) ψ̂(g) ρ(σ(g))−1 ρ(σ(g))

ρ(g)
µ2(σ(g)B)

=

∫
G/B

Σmϕ̂(gB) ψ̂(g) ρ(σ(g))−1 µ2(gB) = 〈Σmϕ̂, ψ̂〉,

where we have used the fact that m is admissible, and the fact that σ is an

involutive automorphism of G for the transformation of µ under the change of

variable.

Lemma 2.2.27. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space and

let m be an admissible smooth function on G/B. Then, the map

Ωm : G→ End (Γ∞c (G/B,Eχ̃)) ; g 7→ Ωm(g) := Uχ(g) Σm Uχ(g)−1

satisfies the following properties:
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1. Ωm is G−equivariant, that is, for all g, g0 ∈ G,

Ωm(gg0) = Uχ(g) Ωm(g0)Uχ(g)−1;

2. for all g ∈ G, Ωm(g) is symmetric on Γ∞c (G/B,Eχ̃) for the inner product

(2.12) for any choice of positive half-density;

3. for all k ∈ K:

Uχ(k)Σm = ΣmUχ(k).

Proof. As in the case of Ω, the first claim follows immediately from the def-

inition. The last one is more easily proved by realizing the operators on

(B, χ̃)−equivariant functions on G. Let ϕ̂ ∈ C∞(G)
(B,χ̃)
c and g ∈ G. For

all k ∈ K, we have, by the K−invariance of m and the fact that σ is the

identity on K:

(Uχ(k)Σmϕ̂)(g) = m(k−1gB)ϕ̂(σ(k−1g))

= m(gB)ϕ̂(k−1σ(g)) = (ΣmUχ(k)ϕ̂)(g).

In view of the those results, we get a weaker but similar statement to Proposi-

tion 2.2.18, which allows to attach an operator to each point of the symmetric

space G/K.

Proposition 2.2.28. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. Then, the map

Ωm : G/K → End (Γ∞c (G/B,Eχ̃)) ; gK 7→ Uχ(g) Σm Uχ(g)−1

is well-defined and G−equivariant, and we have, for all ϕ ∈ Γ∞c (G/B,Eχ̃),

gK ∈ G/K and g0B ∈ G/B:

(Ωm(gK)ϕ)(g0B) = m(g−1g0B)
(
gσ(g−1)

)
· σ̃
(
ϕ(gσ(g−1g0)B)

)
. (2.24)

Proof. Because of Property 3 in Lemma 2.2.27, we have Ωm(gh) = Ωm(g) for

all g ∈ G and k ∈ K, so Ωm induces a map on G/K which we still denote by

Ωm. The G−equivariance still holds after passing to the quotient since the left

and right multiplications in G commute.

The expression (2.24) follows by the explicit formulas (2.10) and (2.22) for

Uχ(g) and Σm, and from the fact that for all g ∈ G and [g0, z] ∈ Eχ̃:

g · σ̃
(
g−1 · [g0, z]

)
=
[
gσ(g−1g0), z

]
=
(
gσ(g−1)

)
· σ̃([g0, z]).

Remark 2.2.29. For a later use, let us give the expression of Ωm on (B, χ̃)-

equivariant functions. For all gK ∈ G/K, ϕ̂ ∈ C∞(G)
(B,χ̃)
c and g0 ∈ G, we

have, from (2.14) and (2.23),

(Ωm(gK)ϕ̂)(g0) = m(g−1g0B) ϕ̂
(
gσ(g−1g0)

)
.
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From this expression, we also get that, in the local case G = QB, for all

gK ∈ G/K, ϕ̃ ∈ C∞c (Q) and q ∈ Q,

(Ωm(gK)ϕ̃)(q) = m
(
(g−1g0)Q

)
χ̃
(
(gσ(g−1q))B

)−1
ϕ̃
(
(gσ(g−1q)Q

)
.

C

In a similar way as we did for Ω, we can use this family of operators to construct

a quantization map for the functions on G/K. Let f ∈ C∞c (G/K), we define a

linear operator

Ωm(f) : Γ∞c (G/B,Eχ̃)→ Γ∞ (G/B,Eχ̃) (2.25)

by the formula given, for each ϕ ∈ Γ∞c (G/B,Eχ̃) and g0B ∈ G/B, by:

(Ωm(f)ϕ)(g0B) :=

∫
G/K

f(x) (Ωm(x)ϕ)(g0B) dG/K(x), (2.26)

where dG/K(x) is the G−invariant measure on G/K.

Lemma 2.2.30. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space and

let m be an admissible smooth function on G/B. The map f 7→ Ωm(f) is

G−equivariant in the sense that, for all f ∈ C∞c (G/K) and g ∈ G,

Ωm(gf) = U(g) Ω(f)U(g)−1,

where for all g0K ∈ G/K, (gf)(g0K) := f(g−1g0K).

Proof. This follows from the G−invariance of dG/K and Property (1) of Propo-

sition 2.2.28.

The next property will be useful later on, to show that, when it makes sense,

Ωm(f)∗ = Ωm(f).

Lemma 2.2.31. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space and

let m be an admissible smooth function on G/B. Then, for all f ∈ C∞c (G/K)

and ϕ,ψ ∈ Γ∞c (G/B,Eχ̃),

〈ϕ,Ωm(f)ψ〉 =
〈
Ωm(f)ϕ,ψ

〉
,

where 〈·, ·〉 denotes the inner product (2.12) for any choice of half-density on

G/B.

Proof. This follows from statement 2 in Lemma 2.2.27, and from the explicit

expression (2.26).

By identifying the smooth section Ωm(f)ϕ with the corresponding generalized

section (see Example 1.3.8) of Eχ̃, Ωm(f) defines a general operator from Eχ̃
to itself (see Section 1.4, Definition 1.4.1).
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Definition 2.2.32. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. The quantization map

of G/K induced by (B,χ,m) is the linear map

Ωm : C∞c (G/K)→ Lb
(
D(G/B,Eχ̃)→ D′(G/B,Eχ̃)

)
; f 7→ Ωm(f), (2.27)

where Ωm(f) is defined by (2.25) and (2.26).9 We will call it simply the quan-

tization map when the context is clear.

Remark 2.2.33. Although Ωm(gK) might not be a bounded operator, it is a le-

gitimate question to ask whether Ωm(f) extends to a honest bounded operator

on Hχ. Also, we would like to know to which extent the domain of the quan-

tization map Ωm can be enlarged to a larger space than compactly supported

functions, such as the space of square-integrable functions. Let us however

postpone that discussion to Section 2.3 and stick with general operators for

the moment, in order to make a link with the previous chapter. C

2.2.4 The family of geometric morphisms of the quanti-

zation map

We will now see that the construction of the quantization map Ωm exactly fits

into the setting of Section 1.8. Indeed, the operators Ωm(x) and Ωm(f) of our

quantization map correspond to the pullback operators associated in Subsection

1.8.1 to a family of geometric morphisms. Later on, this identification will allow

us to use the techniques that we developed in the previous chapter to compute

the trace of (compositions of) Ωm(f).

More precisely, let m be an admissible smooth function on G/B and let us

consider the smooth map

τ : G/K ×G/B → G/B

; (gK, g0B) 7→ τgK(g0B) := gσ
(
g−1g0

)
B

(2.28)

and, for each gK ∈ G/K and g0B ∈ G/B, the linear map

rgK(g0B) : (Eχ̃)τgK(g0B) → (Eχ̃)g0B

; [g1, z] 7→m(g−1g0B)
(
gσ(g−1)

)
· [σ(g1), z].

(2.29)

Notice that rgK(g0B) is well-defined since any element of (Eχ̃)τgK(g0B) is of the

form [gσ
(
g−1g0

)
, z] for some z ∈ C and that

(
gσ(g−1)

)
· [σ
(
gσ
(
g−1g0

))
, z] =

[g0, z] ∈ (Eχ̃)g0B . Since r depends smoothly on gK and g0B, the data τ = (τ, r)

gives a smooth family of geometric morphisms of Eχ̃ parametrized by G/K

(see Definition 1.8.1). For gK ∈ G/K, we see from (2.24) and (2.29) that

9Notice that in the case of m = 1, we recover the quantization map Ω of Definition 2.2.22.
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the pullback operator defined by (1.57) coincides with Ωm(gK). Now, denote

by |dG/K(x)| the smooth density corresponding to the G−invariant measure

on G/K. It is non-vanishing, so any compactly supported smooth density on

G/K is of the form f |dG/K(x)| for some f ∈ C∞c (G/K). Then, the operator

associated to f |dG/K(x)| by the expression (1.59) is equal to Ωm(f), given by

(2.26).

This rephrasing in terms of geometric morphisms allows to highlight some of

the geometric structure underlying the quantization map. In analogy with a

group action, the map τ may be considered as an action of the symmetric space

G/K on G/B in the sense of the following lemma.

Lemma 2.2.34. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space. The

smooth map

τ : G/K ×G/B → G/B

; (gK, g0B) 7→ τgK(g0B) := gσ
(
g−1g0

)
B

(2.30)

defines a G−equivariant action of the symmetric space G/K on G/B in the

sense that, for all x, y ∈ G/K, we have:

1. (τx)2 = IdG/B,

2. τx ◦ τy ◦ τx = τsx(y),

3. αg ◦ τx ◦ αg−1 = τg·x for all g ∈ G,

where α is the natural left action (2.5) of G on G/B.

Proof. Let gxK, gyK ∈ G/K, g0B ∈ G/B and g ∈ G. The results follow from

explicit computations and using the fact that σ is an involutive automorphism

of G.

1. τgxK(τgxK(g0B)) = gxσ
(
g−1
x gxσ

(
g−1
x g0

))
B = g0B;

2. Since sgxK(gyK) = gxσ
(
g−1
x gy

)
K, we have

(τgxK ◦ τgyK ◦ τgxK)(g0B) = gxσ
(
g−1
x gyσ

(
g−1
y gxσ

(
g−1
x g0

)))
B

= gxσ
(
g−1
x gy

)
σ
(
σ
(
g−1
y gx

)
g−1
x g0

)
B

= τsgxK(gyK)(g0B);

3. (αg ◦ τx ◦ αg−1)(g0B) = g gxσ
(
g−1
x g−1g0

)
B = τggxK(g0B).

Definition 2.2.35. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

The map (2.30) is called the symmetric action of G/K on G/B.

The map r then corresponds to a lift to the vector bundle Eχ̃ of the symmetric

action τ . Although, as noted in Lemma 2.2.27, it does not give a genuine rep-

resentation of symmetric space for generic admissible m, the G−equivariance

is always satisfied.
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Remark 2.2.36. In the local case G = QB, we identify G/B with Q and the

bundle Eχ̃ with the trivial bundle over Q. The morphisms rgK(q) are thus

simply given by a complex number. Recall from Remark 2.2.29 that, for all

gK ∈ G/K, ϕ̃ ∈ C∞c (Q) and q ∈ Q, we have

(Ωm(gK)ϕ̃)(q) = m
(
(g−1q)Q

)
χ̃
(
(gσ(g−1q))B

)−1
ϕ̃
(
(gσ(g−1q)Q

)
. (2.31)

Therefore, we have for all gK ∈ G/K, q ∈ Q:

τgK(q) = (gσ(g−1q))Q

rgK(q) = m
(
(g−1q)Q

)
χ̃
(
(gσ(g−1q))B

)−1
.

(2.32)

C

Building on the results of the previous chapter, we get the following Proposition.

Proposition 2.2.37. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. Suppose that the action τ

defined by (2.28) is locally transitive. Then, for all f ∈ C∞c (G/K), the operator

Ωm(f) has a smooth kernel.

Proof. In view of the previous discussion identifying Ωm(f) with (1.58) for

the family of geometric morphisms (τ, r) given by (2.28) and (2.29), this is an

immediate consequence of Proposition 1.8.5.

Let us now comment on the requirement that the action τ is locally transitive,

an essential feature to be able to apply the results of the previous chapter.

As the following counter-example shows, local transitivity needs not hold in

general.

Example 2.2.38. Let us consider the cylinder, as introduced in Example 2.2.4.

Recall that, as a manifold, M ' S1 × R and the symmetric structure is given,

for all (eia, n), (eia
′
, n′) ∈M , by

s(eia,n)(e
ia′ , n′) = (ei(2a−a

′), 2x cos(a− a′)− x′).

For this example, we consider B = K, so M acts on itself (i.e. τ = s). From

the latter expression, we can see that the action of M on itself is not locally

transitive. Indeed, identifying the tangent space to M with R2, for every

(eia, n) ∈M and

(Xa, Xn, 0, 0) ∈ T((eia,n),(1,0))(M ×M),

we have:

τ∗((eia,n),(1,0))
(Xa, Xn, 0, 0) = (2Xa, 2Xn cos(a)− 2Xa x sin(a)),

which is not surjective as soon as eia = ei
π
2 . In order to suggest a more

geometric intuition of what is going on, the situation is pictured in Figure 2.2.

♦
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★

● ■

a

n

Figure 2.2: Picture of the symmetric space M (the horizontal axis corresponds

to the coordinate a, and the vertical one to n). The plain lines are the geodesics

issued from the point • = (0, 0) corresponding to the Loos connection. ? =

(ei
π
2 , n), = s

(ei
π
2 ,n)

(0, 0) and the thin dotted line (a = π
2 ) shows the midpoints

of the geodesics between the points • and . The dashed lines (a = ±π)

represent points z ∈M such that there is no y ∈M such that sy(0, 0) = z. In

this situation, s fails to be locally transitive because moving ? vertically along

the dotted line does not move . Thus, the differential of s with respect to ?

cannot be surjective.

One possible way to ensure local transitivity is to require that any pair of points

in M admits a midpoint in the following sense.

Definition 2.2.39. Let (M, s) be a symmetric space. For x, y ∈M , a point z

satisfying sz(x) = y is called a midpoint of x and y. A midpoint map on M

is a smooth map

M ×M →M ; (x, y) 7→ mid(x, y)

such that, for all x, y ∈M , mid(x, y) is a midpoint of x and y, that is:

smid(x,y)(x) = y.

Midpoints in the present context of symmetric spaces have first been studied by

Qian [Qia97]. As can be seen in Example 2.2.38, they need not exist for generic

pairs of points, neither should they be unique. Also, as it is the case on the

circle, there might be topological obstructions to the smoothness of a midpoint

map. The relation between the existence of a midpoint map and properties

of the exponential map has been analyzed by Voglaire [Vog11]. Rephrasing

[Vog14, Theorem 1.1] and [Vog11, Theorem 2.2.20], we get the following im-

portant characterization.

Theorem 2.2.40. Let (M, s) be a connected symmetric space. Then, the fol-

lowing conditions are equivalent:

1. there exists a midpoint map on M ;
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2. any two points in M have at most one midpoint;

3. there exists x ∈ M such that the exponential map at x of the Loos con-

nection is a global diffeomorphism;

4. the exponential map at any point of M of the Loos connection is a global

diffeomorphism.

Remark 2.2.41. In particular, this implies that if every pair of points has at least

one midpoint, then they have exactly one. It also implies that if a midpoint

map exists, then it is unique, and every two points have a unique midpoint. C

Proposition 2.2.42. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space.

Suppose that there exists a midpoint map on G/K. Then, the smooth map τ

defined by (2.28) is locally transitive. Therefore, for any admissible smooth

function m on G/B, the operator Ωm(f) is smooth for every f ∈ C∞c (G/K).

Proof. Let g0K ∈ G/K, g1B ∈ G/B and define g2 := g0σ(g−1
0 g1). We have

thus τg0K(g1B) = g2B. Let X0 ∈ Tg2B(G/B) and X ∈ g such that X0 =
d
dt

∣∣
0

exp(−tX)g2B (such an X exists since G/B is a homogeneous space). For

ε > 0 sufficiently small, consider the path x : Iε :=] − ε, ε[→ M defined, for

t ∈ Iε, by

x(t) := mid (g1K, exp(−tX)g2K) .

It is smooth since mid is and, by uniqueness of the midpoints (Remark 2.2.41),

x(0) = g0K. Let g : Iε → G be a smooth lift of x such that g(0) = g0 – which

exists since G → G/K is a K−principal bundle. Then, by definition of x(t),

we have:

exp(−tX)g2K = sx(t)(g1K) = sg(t)K(g1K)

= g(t)σ(g(t)−1g1)K,

so for each t ∈ Iε, there exists k(t) ∈ K such that

exp(−tX)g2k(t) = g(t)σ(g(t)−1g1).

Then, since K ⊂ B, we have:

τx(t)(g1B) = τg(t)K(g1B) = g(t)σ(g(t)−1g1)B

= exp(−tX)g2k(t)B = exp(−tX)g2B.

Setting Y := d
dt

∣∣
0
x(t) ∈ Tg0K(G/K) the latter equation shows that

τ∗(g0K,g1B)
(Y, 0) = X0,

which proves the local transitivity of τ .

The last part of the claim follows from Proposition 2.2.37.
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Remark 2.2.43. It is worth mentioning that the existence of a midpoint map

is not a necessary condition for the local transitivity. Indeed, coming back to

the Example 2.2.4 of the cylinder, but this time choosing B = NK, we have

G/B = Q ' S1 and, for all (eia, n) ∈M and eia0 ∈ Q,

τ(eia,n)(e
ia0) = ei(2a−a0),

which is locally transitive. C

2.3 Hilbert-Schmidt and trace-class operators

We now come back to the realm of Hilbert spaces and pause for a moment to

review some fundamental facts about Hilbert-Schmidt and trace-class opera-

tors. The two notions are very much related, leading to a variety of ways to

introduce them, depending for instance on which one is introduced first. For

a complete exposition of the subject, we refer to Conway [Con00, Chapter 3,

§18]. Although his approach is slightly different than ours, all the equivalences

are stated and proved. Regarding the study of traces of operators, Pietsch

[Pie14] gives an illuminating review of its history, which shows that it extends

far beyond Hilbert spaces.

At the end of the section, we briefly discuss how our quantization map fits into

the setting of Hilbert-Schmidt operators.

Throughout this section, let H be a separable Hilbert space with inner product

〈·, ·〉 and denote by L(H) the space of bounded linear operators on H and by

|| · || the operator norm on L(H).

Proposition 2.3.1. Let A ∈ L(H) and {ei}i∈I be an orthonormal basis of H
such that

∑
i∈I 〈Aei, Aei〉 < +∞. Then, for all orthonormal basis {fi}i∈I of

H: ∑
i∈I
〈Afi, Afi〉 =

∑
i∈I
〈Aei, Aei〉 .

This justifies the following definition.

Definition 2.3.2. An operator A ∈ L(H) is called a Hilbert-Schmidt operator

if there exists an orthonormal basis {ei}i∈I of H such that∑
i∈I
〈Aei, Aei〉 < +∞.

The set of Hilbert-Schmidt operators on H is denoted by L2(H) and we define

|| · ||L2 : L2(H)→ R ; A 7→ ||A||L2 :=

(∑
i∈I
〈Aei, Aei〉

)1/2

,
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where {ei}i∈I is any basis of H.10

Theorem 2.3.3. We have:

1. L2(H) is a vector subspace of L(H) and || · ||L2 is a norm on L2(H) which

turns it into a Banach space;

2. for all A ∈ L2(H), ||A|| ≤ ||A||L2 ;

3. for all A ∈ L2(H), its adjoint A∗ belongs to L2(H) and ||A||L2 = ||A∗||L2 ;

4. L2(H) is a two-sided ideal of L(H), that is, for all A ∈ L2(H) and T ∈
L(H), AT ∈ L2(H) and TA ∈ L2(H);

5. for all A ∈ L2(H) and T ∈ L(H), ||AT ||L2 ≤ ||T || ||A||L2 and ||TA||L2 ≤
||T || ||A||L2 .

The subset of products of Hilbert-Schmidt operators turns out to be as impor-

tant as Hilbert-Schmidt operators themselves. This definition was introduced

by Schatten and von Neumann [SvN46].

Definition 2.3.4. An operator A ∈ L(H) is called a trace-class operator if it

is the product of two Hilbert-Schmidt operators. The set of trace-class operators

on H is denoted by L1(H).

Theorem 2.3.5. We have:

1. L1(H) is a vector subspace of L(H); 11

2. for all A ∈ L1(H), its adjoint A∗ belongs to L1(H);

3. L1(H) is a two-sided ideal of L(H), that is, for all A ∈ L1(H) and T ∈
L(H), AT ∈ L1(H) and TA ∈ L1(H);

4. for all A ∈ L(H), A ∈ L1(H) if and only if for every orthonormal basis

{ei}i∈I of H, ∑
i∈I
|〈Aei, ei〉| < +∞. (2.33)

In that case, the number
∑
i∈I 〈Aei, ei〉 is independent on the basis.

Remark 2.3.6. Some authors take (4) in Theorem 2.3.5 as a definition of trace-

class operators. However, it should be emphasized that, unlike in Proposition

2.3.1, the condition (2.33) is not independent on the basis for a generic bounded

operator. That is, there exists A ∈ L(H) which is not trace-class such that

10By Proposition 2.3.1, || · ||L2 is independent of the choice of basis.
11As for Hilbert-Schmidt operators, it is possible to define a norm || · ||L1 on L1(H), which

turns it into a Banach space, and which satisfies the same properties as || · ||L2 in Theorem

2.3.3. The trace functional (to be defined in a moment) turns out to be continuous with

respect to that norm.
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(2.33) holds for one basis but not for all. This is one reason why we take the

definition as a product of two Hilbert-Schmidt operators, which seems more

elegant and more practical to use. C

We can now define the trace of a trace-class operator which, by analogy with the

finite dimensional case, justifies the terminology and, by the previous Theorem,

is independent on the basis in the definition.

Definition 2.3.7. The trace of an operator A ∈ L1(H) is the number

Tr (A) :=
∑
i∈I
〈Aei, ei〉 ,

where {ei}i∈I is any orthonormal basis of H.

Theorem 2.3.8. We have:

1. Tr : L1(H)→ C is a linear functional;

2. for all A ∈ L1(H) Tr (A∗) = Tr (A).

3. for all A ∈ L1(H) and T ∈ L(H), Tr (AT ) = Tr (TA).

The trace allows to define an inner product on L2(H) which turns it into a

separable Hilbert space.

Theorem 2.3.9. The space L2(H) endowed with the inner product defined, for

every A,B ∈ L2, by

〈A,B〉L2 := Tr (B∗A)

is a separable Hilbert space whose norm coincides with || · ||L2 .

In the case where H is the space of square-integrable functions on a measurable

space, we have an important characterization of Hilbert-Schmidt operators on

H. We refer to [RS81, Theorem VI.23] for a proof of this result.

Theorem 2.3.10. Let M be a manifold, µ a measure on M and H = L2(M,µ)

the Hilbert space of square-integrable functions on M with respect to µ. Then,

an operator A ∈ L(H) is Hilbert-Schmidt if and only if there exists a function

K ∈ L2(M ×M,µ× µ) such that, for all f ∈ H:

(Af)(x) =

∫
M

K(x, y)f(y) dµ(y).

In that case, we have

||A|| 2L2 =

∫
M×M

|K(x, y)|2 dµ(x) dµ(y).
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As we have already mentioned in subsection 1.4.4, there is no such nice charac-

terization of a trace-class operator. However, when we know that an operator

is trace-class and has an almost-everywhere continuous kernel, let us recall that

we have the following trace formula. It follows from [Bri91, Corollary 3.2].

Theorem 2.3.11. Let µ be a measure on a manifold M , and let K be a trace-

class operator on L2(M,µ). If the kernel K(x, y) is continuous at (x, y) for

almost every x, then

Tr (K) =

∫
M

K(x, x)dµ(x).

We end up this section by discussing how our quantization procedure fits into

the setting of Hilbert-Schmidt operators. Recall that, in Definition 2.2.32,

the quantization map Ωm is defined as a general operator Lb
(
D(G/B,Eχ̃) →

D′(G/B,Eχ̃)
)
. However, in many interesting cases, it turns out that Ωm(f)

can be extended to a Hilbert-Schmidt operator on Hχ. As we will see in the

next section, it gives a powerful setting to compute the inverse of Ωm. It is

therefore useful to study whether the image of Ωm is contained in L2(Hχ), and

the following result gives a first sufficient condition.

Proposition 2.3.12. Let (G,K, σ,B, χ) be a local nearly-quantum symmet-

ric space and m an admissible smooth function on G/B. Suppose that G/B

is compact and that the action of G/K on G/B is locally transitive. Then,

for every f ∈ C∞c (G/K), the operator Ωm(f) extends to an Hilbert-Schmidt

operator on Hχ.

Proof. Recall from Definition 2.2.32 that for all f ∈ C∞c (G/K), Ωm(f) is a gen-

eral operator of Eχ̃, that is, an element of Lb
(
D(G/B,Eχ̃) → D′(G/B,Eχ̃)

)
.

By Proposition 2.2.37, the kernel of Ωm(f) is smooth, and it is therefore square-

integrable on G/B×G/B since G/B is compact. Since we are in the local case,

G/B ' Q and Hχ ' L2(Q) by Remark 2.2.11. We can thus apply Theorem

2.3.10, which implies that Ωm(f) extends to a Hilbert-Schmidt operator on

Hχ.

2.4 Symbol map, deformed product and three-

point kernel

Now we have built a quantization map, that associates operators to functions,

we would like to define a symbol map, which goes the other way around and

“dequantize” a quantized operator by assigning to it a function – its so-called

symbol. Ideally, we would like those two maps to be inverse of each other, in

the sense that the symbol of the operator quantizing a given function would be
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precisely that function. However, this won’t be true in general and the defect

of the inversion procedure will be encoded by the so-called Berezin transform.

Throughout this section, let (G,K, σ,B, χ) be a nearly-quantum symmetric

space, let m be an admissible smooth function on G/B and denote by dG/K(x)

the G−invariant measure on G/K. We further make the two following assump-

tions.

Hypothesis.

(H1) the symmetric action τ of G/K on G/B is locally transitive;

(H2) for every f ∈ C∞c (G/K), the operator Ωm(f) extends to an Hilbert-

Schmidt operator on Hχ, that is, the quantization map (2.27) induces a

linear map

Ωm : C∞c (G/K)→ L2(Hχ). ♣

As we mentioned earlier, hypothesis (H2) is verified for many interesting ex-

amples. It allows to use the trace as a powerful computational tool in the

quantization procedure. Hypothesis (H1) will then be used in to order to

apply the fixed point formula for the trace that has been developed in the pre-

vious chapter. This will lead to an explicit geometric expression of a deformed

product on G/K.

2.4.1 The symbol map and the deformed product

Let us begin with a heuristic explanation of how the symbol map arises. Let

A ∈ L2(Hχ). For all φ ∈ C∞c (G/K), since Ωm(φ) is Hilbert-Schmidt, Ωm(φ)∗A

is trace-class and we can define the following map:

ςm(A) : C∞c (G/K)→ C ; φ 7→ Tr (Ωm(φ)∗A). (2.34)

In the good cases, we can hope that ςm(A) is in fact continuous and that,

moreover, this antilinear distribution is represented by a (locally integrable)

function σm(A). That is, for all φ ∈ C∞c (G/K),

Tr (Ωm(φ)∗A) =

∫
G/K

σm(A)(x)φ(x) dG/K(x). (2.35)

Applying this to A := Ωm(f) for f ∈ C∞c (G/K) would give a dequantization

procedure, the symbol of Ωm(f) being defined as the function σm(Ωm(f)).

However, this function has no reason to be a smooth compactly supported

function (and it won’t be in general, even in the good cases). We therefore

need to require that the quantization map Ωm can be extended to a larger

domain F ⊃ C∞c (G/K) which is large enough for σm(Ωm(f)) to fall back in F .
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Notice that since |Tr (AΩm(φ)∗)| ≤ ||A||L2 ||Ωm(φ)||L2 , the continuity of (2.34)

is guaranteed as soon as the quantization maps is continuous for the L2 norm.

It seems therefore natural to take F as the space of square-integrable functions,

which leads us to strengthen (H2) with the following additional hypothesis.

Hypothesis.

(H3) the quantization map Ωm extends to a bounded linear operator 12

Ωm : L2(G/K)→ L2(Hχ). ♣

Now, observe that, by definition of the inner products of L2(Hχ) and L2(G/K),

the defining property (2.35) of σm(A) reads

〈A,Ω(φ)〉L2 = 〈σm(A),Φ〉L2 ,

which is exactly the definition of the adjoint map of Ωm. Assuming (H3)

therefore makes the whole dequantization procedure well-defined, and leads

naturally to the following definition.

Definition 2.4.1. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. Suppose that (H1), (H2)

and (H3) hold. Then, the adjoint of the quantization map Ωm,

σm : L2(Hχ)→ L2(G/K),

is called the symbol map.

This is not the end of the story since the symbol map has no reason to be

a left inverse of the quantization map. This would require the latter to be

an isometry, which is not always the case. The obstruction is encoded by the

notion of the so-called Berezin transform.

Definition 2.4.2. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. Suppose that (H1), (H2)

and (H3) hold. The Berezin transform is the linear operator defined by

Bm : L2(G/K)→ L2(G/K) ; f 7→ (σm ◦ Ωm)(f).

Proposition 2.4.3. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. Suppose that (H1), (H2)

and (H3) hold. The Berezin transform is a positive bounded linear operator on

L2(G/K), whose norm satisfies ||Bm|| ≤ ||Ωm||2.

Proof. This is immediate from the definition of Bm as a composition of a

bounded operator and its adjoint, and from the fact that Ωm is bounded.

12Later on, we will give examples for which it is indeed the case, and for which the functional

parameter m can be chosen so that Ωm is even unitary.
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Now we have a complete working quantization and dequantization procedure,

we are ready to define a deformed product on L2(G/H). For this, we assume

the quantization map to be unitary. It is therefore invertible and its inverse is

precisely the symbol map.

Hypothesis.

(H4) the quantization map Ωm : L2(G/K)→ L2(Hχ) is unitary.

♣

Definition 2.4.4. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space

and let m be an admissible smooth function on G/B. Suppose that (H1), (H2),

(H3) and (H4) hold. We define a product ?m on L2(G/K) by the formula, for

all f1, f2 ∈ L2(G/K):

f1 ?m f2 := σm (Ωm(f1)Ωm(f2)) . (2.36)

Theorem 2.4.5. Let (G,K, σ,B, χ) be a nearly-quantum symmetric space and

let m be an admissible smooth function on G/B. Suppose that (H1), (H2),

(H3) and (H4) hold. Then, ?m satisfies the following properties:

1. it is bilinear, continuous and associative;

2. it is G−equivariant in the sense that, for all g ∈ G and f1, f2 ∈ L2(G/K),

(gf1) ?m (gf2) = g(f1 ?m f2),

with (gf)(g0K) := f
(
g−1g0K

)
for all f ∈ L2(G/K) and g0K ∈ G/K.

3. the complex conjugation is an involution of ?m, that is, for all f1, f2 ∈
L2(G/K),

f1 ?m f2 = f2 ?m f1.

Proof. The bilinearity and the continuity follow from the linearity and conti-

nuity of the operators Ωm and σm. Regarding the associativity, let f1, f2, f3 ∈
L2(G/K). Since Ωm is unitary, we have Ωm ◦ σm = idL2(G/K), so

((f1 ?m f2) ?m f3) = σm (Ω(σm (Ω(f1)Ω(f2)))Ω(f3))

= σm (Ω(f1)Ω(f2)Ω(f3))

= σm (Ω(f1)Ω(σm(Ω(f2)Ω(f3))))

= (f1 ?m (f2 ?m f3)).

Next, recall from Lemma 2.2.30 that Ωm if G−equivariant on compactly sup-

ported functions. By continuity of Ωm, it is also on L2(G/K). For every
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A ∈ L2(Hχ), f ∈ L2(G/K) and g ∈ G, we thus have, by definition of the

adjoint, 〈
σm
(
U(g)AU(g)−1

)
, f
〉
L2 =

〈
U(g)AU(g)−1,Ωm(f)

〉
L2

=
〈
A,U(g)−1Ωm(f)U(g)

〉
L2

=
〈
A,Ωm(g

−1

f)
〉
L2

=
〈
σm (A) , g

−1

f
〉
L2

= 〈g(σm (A)), f〉L2 ,

(2.37)

where the last line follows from the G−invariance of the G−invariant measure

on G/K. This shows that σm
(
U(g)AU(g)−1

)
= g(σm (A)). This in turn gives

the G−equivariance of ?m since, for all g ∈ G, we have

(gf1) ?m (gf2) = σm (Ωm (gf1) Ωm (gf2))

= σm
(
U(g)Ωm (f1)U(g)−1 U(g)Ωm (f2)U(g)−1

)
= σm

(
U(g)Ωm (f1) Ωm (f2)U(g)−1

)
= g (σm (Ωm (f1) Ωm (f2))) = g(f1 ?m f2).

Finally, regarding the last assertion, notice that, because of Lemma 2.2.31,

Ωm(f) = Ωm(f)∗ for all f ∈ C∞0 (G/K). By continuity of Ωm, the same holds

for all f ∈ L2(G/K). Using the definition of the adjoint and a computation

similar to (2.37), we get that σm(A∗) = σ(A) for all A ∈ L2(Hχ). Therefore,

f1 ?m f2 = σm (Ωm (f1) Ωm (f2))

= σm ((Ωm (f1) Ωm (f2))∗) = σm
(
Ωm (f2)

∗
Ωm (f1)

∗)
= σm

(
Ωm

(
f2

)
Ωm

(
f1

))
= f2 ?m f1,

which ends the proof.

Remark 2.4.6. The definition (2.36) of ?m being rather abstract, let us give

a way to a more explicit expression of the product. By density of C∞0 (G/K)

in L2(G/K) and by continuity of ?m, it is enough to compute f1 ?m f2 for

f1, f2 ∈ C∞0 (G/K). The latter is uniquely determined by the datum of its

inner product with all f3 ∈ C∞0 (G/K), that is (we rather take f3 instead of f3

since it will be more convenient later on):〈
f1 ?m f2, f3

〉
L2 =

〈
σm (Ωm (f1) Ωm (f2)) , f3

〉
L2

=
〈
Ωm (f1) Ωm (f2) ,Ωm(f3)

〉
L2

= Tr
(
Ωm(f3)∗ Ωm (f1) Ωm (f2)

)
= Tr (Ωm (f1) Ωm (f2) Ωm(f3)) .

(2.38)

The next section is dedicated to compute this last quantity using the fixed

point formula of the previous chapter. C
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2.4.2 The three point kernel

In this subsection, we take one step back regarding our hypotheses, and suppose

solely (H1) and (H2). Indeed, it might be instructive to be able to compute

Tr (Ωm (f1) Ωm (f2) Ωm(f3)) even for examples which do not lead to a genuine

deformed product. In order to simplify a bit the notations, let us denote

M := G/K and Q := G/B. We will also restrict ourself to the local case.

We start with the following straightforward lemma, which shows that a com-

position of a locally transitive action is also locally transitive.

Lemma 2.4.7. Let M and Q be two manifolds, and τ : M ×Q→ Q a locally

transitive smooth map. Then,

τ̃ : (M ×M ×M)×Q→ Q ;
(

(x, y, z), q
)
7→ τz(τy(τx(q)))

is also locally transitive.

Proof. Let x, y, z ∈ M , q ∈ Q and X ∈ Tτ̃(x,y,z)(q)(Q). Denote q′ := τy(τx(q)).

Then, by definition of τ̃ , X ∈ Tτz(q′)(Q). By local transitivity of τ at (z, q′),

there exists Y ∈ Tz(M) such that τ∗(z,q′)(Y, 0) = X. Therefore,

τ̃∗((x,y,z),q)(0, 0, Y, 0) = X,

which shows the local transitivity of τ̃ .

We are now ready for our main theorems.

Theorem 2.4.8. Let (G,K, σ,B, χ) be a local nearly-quantum symmetric space

and let m be an admissible smooth function on Q. Suppose that

1. the symmetric action τ of M on Q is locally transitive;

2. for every f ∈ C∞c (M), the operator Ωm(f) extends to an Hilbert-Schmidt

operator on Hχ, that is, the quantization map (2.27) induces a linear map

Ωm : C∞c (M)→ L2(Hχ);

3. pr|Z is proper, where pr : M3 × Q → M3 denotes the projection, and Z

is the fixed point bundle

Z :=
{

((x, y, z), q) ∈M3 ×Q | (τz ◦ τy ◦ τx)(q) = q
}

;

4. for all x, y, z ∈M , all the fixed points p of τz ◦ τy ◦ τx are simple, that is

det
(
id− (τz ◦ τy ◦ τx)∗p

)
6= 0.
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Then, for every f1, f2, f3 ∈ C∞c (M), we have

Tr (Ωm (f1) Ωm (f2) Ωm (f3))

=

∫
M3

f1(x)f2(y)f3(z)K(x, y, z) dM (x)dM (y)dM (z),
(2.39)

where K : M3 → C is smooth and given, for all x, y, z ∈M , by

K(x, y, z) =
∑

p=τx(p)

rx
(
p
)
ry
(
τx(p)

)
rz
(
τy(τx(p))

)∣∣det
(
id− (τz ◦ τy ◦ τx)∗p

)∣∣ ,

where the sum is over the fixed points of τz ◦ τy ◦ τx, and, for all gK ∈M and

q ∈ Q,

rgK(q) = m(g−1qB) χ̃
(
(gσ(g−1q))B

)−1

= m(g−1qB)

(
∆B

(
(gσ(g−1q))B

)
∆G ((gσ(g−1q))B)

) 1
2

χ
(
(gσ(g−1q))B

)−1
.

Proof. Let f1, f2, f3 ∈ C∞0 (M). Since τ is locally transitive, each of the Ω(fi)

is smooth. They are also Hilbert-Schmidt by assumption, so their product

Ωm (f1) Ωm (f2) Ωm (f3) is a Hilbert-Schmidt operator with smooth kernel on

L2(Q, dQ).13 By Theorem 2.3.11, its trace is given by the integral along the

diagonal of its kernel, that is, its smooth trace tr (Ωm (f1) Ωm (f2) Ωm (f3)).

To compute that smooth trace, we will express Ωm (f1) Ωm (f2) Ωm (f3) as the

pullback operator corresponding to a family of geometric morphisms, and use

the results of the previous chapter. This is how it works.

Since f1, f2 and f3 are compactly supported, we get from (2.26) that, for all

ϕ ∈ Γ∞c (Q,Eχ̃),

Ωm (f1) Ωm (f2) Ωm(f3)ϕ (2.40)

=

∫
M×M×M

f1(x)f2(y)f3(z) (Ωm(x) Ωm(y) Ωm(z)ϕ) dM (x)dM (y)dM (z).

Let us consider the family of geometric morphisms of Eχ̃ parametrized by

M ×M ×M defined by

τ̃ : (M ×M ×M)×Q→ Q ;
(

(x, y, z), q
)
7→ τz(τy(τx(q)))

and, for all (x, y, z) ∈M ×M ×M and q ∈ Q,

r̃(x,y,z)(q) : (Eχ̃)τ̃(x,y,z)(q) → (Eχ̃)q,

r̃(x,y,z)(q) := rx(q) ◦ ry(τx(q)) ◦ rz(τy(τx(q))),

13dQ denotes the measure introduced in Remark 2.2.11.
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where τ is the symmetric action (2.30) of M on Q and r is its lift (2.29).

Notice that, since we are in the local case, as mentioned in Remark 2.2.36, Eχ̃
is identified with the trivial bundle over Q, and the morphisms r̃(x,y,z)(q) are

simply given by the complex numbers

r̃(x,y,z)(q) = rx
(
q
)
ry
(
τx(q)

)
rz
(
τy(τx(q))

)
, (2.41)

with r given by (2.32). If we denote by Ω̃m the pullback operators associated

to the family (τ̃ , r̃) as in subsection 1.8.1, we have, for all x, y, z ∈M ,

Ωm (x) Ωm (y) Ωm (z) = Ω̃m (x, y, z) .

From (2.40), we thus have (we identify smooth densities and smooth functions

on M through the G−invariant measure dM )

Ωm (f1) Ωm (f2) Ωm (f3) = Ω̃m (f1 ⊗ f2 ⊗ f3) .

τ being locally transitive, τ̃ is also locally transitive by Lemma 2.4.7. Together

with hypotheses 3 and 4, it allows to apply Corollary 1.8.13 which, given the

discussion at the beginning of the proof about the trace of Ωm (f1) Ωm (f2)

Ωm (f3), leads to

Tr (Ωm (f1) Ωm (f2) Ωm (f3)) = tr (Ωm (f1) Ωm (f2) Ωm (f3))

= tr
(

Ω̃m(f1 ⊗ f2 ⊗ f3)
)

=

∫
M3

f1(x)f2(y)f3(z)
∑

p=τx(p)

r̃(x,y,z)(p)∣∣det
(
id− (τ̃(x,y,z))∗p

)∣∣ dM (x)dM (y)dM (z),

where the sum is over the fixed points of τ̃x, and is equal to 0 if τ̃x has no

fixed point. This shows (2.39) and the expression for K(x, y, z) follows from

the expressions (2.41) for r̃, (2.32) for r and the definition (2.8) of χ̃. The

smoothness of K(x, y, z) is also given by Corollary 1.8.13.

Remark 2.4.9. Let us briefly comment on the hypotheses of Theorem 2.4.8.

Regarding the first one, we have seen in Proposition 2.2.42 that τ is locally

transitive as soon as there exists a midpoint map on M . Theorem 2.2.40 gives

a characterization of such spaces. Notice however that it is not a necessary

condition.

Regarding the hypothesis 3, we have seen in the proof of Theorem 1.8.12 that

it is always verified if Q is compact. If Q is not compact, the following Lemma

gives a sufficient condition. C

Lemma 2.4.10. Let (G,K, σ,B, χ) be a local nearly-quantum symmetric space.

If for all (x, y, z) ∈ M3, τz ◦ τy ◦ τx admits a unique fixed point p(x, y, z) ∈ Q
and if the map

M3 → Q ; (x, y, z) 7→ p(x, y, z)
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is smooth, then pr|Z is proper, where pr : M3×Q→M3 denotes the projection,

and Z :=
{

((x, y, z), q) ∈M3 ×Q | (τz ◦ τy ◦ τx)(q) = q
}

.

Proof. The map M3 3 (x, y, z) 7→ ((x, y, z), p(x, y, z)) ∈ Z is the inverse map

of pr|Z by uniqueness of the fixed points, and it is smooth since p is. pr|Z is

therefore a diffeomorphism, hence a proper map.

If we further assume that the quantization map is unitary, then, we have an

explicit formula for the associated deformed product (2.36).

Theorem 2.4.11. Let (G,K, σ,B, χ) be a local nearly-quantum symmetric

space, and let m be an admissible smooth function on Q. Suppose that

1. the symmetric action τ of M on Q is locally transitive;

2. the quantization map Ωm extends to a unitary operator

Ωm : L2(M)→ L2(Hχ);

3. pr|Z is proper, where pr : M3 × Q → M3 denotes the projection, and Z

is the fixed point bundle

Z :=
{

((x, y, z), q) ∈M3 ×Q | (τz ◦ τy ◦ τx)(q) = q
}

;

4. for all x, y, z ∈M , all the fixed points p of τz ◦ τy ◦ τx are simple, that is

det
(
id− (τz ◦ τy ◦ τx)∗p

)
6= 0.

Then, the following formula defines an associative, bilinear and continuous

product on L2(M), which is G−equivariant and admits the complex conjugation

as a ?−involution in the sense of Theorem 2.4.5. It is given, for all f1, f2 ∈
C∞c (M) and x ∈M , by

(f1 ?m f2)(x) =

∫
M×M

f1(y) f2(z)K(x, y, z) dM (y) dM (z), (2.42)

where K : M3 → C is called the three-point kernel of ?m and is a smooth map

given, for all x, y, z ∈M , by

K(x, y, z) =
∑

p= (τz◦τy◦τx)(p)

rx
(
p
)
ry
(
τx(p)

)
rz
(
τy(τx(p))

)∣∣det
(
id− (τz ◦ τy ◦ τx)∗p

)∣∣ ,

where the sum is over the fixed points of τz ◦ τy ◦ τx, and, for all gK ∈M and

q ∈ Q,

rgK(q) = m(g−1qB) χ̃
(
(gσ(g−1q))B

)−1

= m(g−1qB)

(
∆B

(
(gσ(g−1q))B

)
∆G ((gσ(g−1q))B)

) 1
2

χ
(
(gσ(g−1q))B

)−1
.
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Proof. Given our hypotheses, we can apply Theorem 2.4.5 to get a product

?m on L2(M) with the desired properties. To get the explicit formula for ?m,

let f1, f2 ∈ C∞(M). Repeating the arguments of Remark 2.4.6, we have to

compute
〈
f1 ?m f2, f3

〉
L2 for all f3 ∈ C∞c (M). On the one hand, by definition

of the inner product, we have〈
f1 ?m f2, f3

〉
L2 =

∫
M

f3(x) (f1 ?m f2)(x) dM (x). (2.43)

On the other hand, by Remark 2.4.6 and (2.38), we have〈
f1 ?m f2, f3

〉
L2 = Tr (Ωm (f1) Ωm (f2) Ωm (f3))

= Tr (Ωm (f3) Ωm (f1) Ωm (f2))

=

∫
M3

f3(x)f1(y)f2(z)K(x, y, z) dM (x)dM (y)dM (z), (2.44)

where the last line comes from the expression (2.39) for the trace in Theorem

2.4.8. Then, the expression (2.42) for ?m follows by identification of (2.43) and

(2.44).

2.5 Elementary normal j−groups

In this Section, we will apply the previous results to a particular class of sym-

metric spaces, the so called elementary normal j−groups. 14 For these spaces

M , the quantization map gives a unitary map from square-integrable functions

L2(M) to Hilbert-Schmidt operators, which leads thus to a deformed equiv-

ariant product on L2(M). We will see that all the hypotheses of the previous

section are satisfied, and will therefore be able to give an explicit fixed point for-

mula for the product. The study of elementary normal j−groups is motivated

by the theory of Pyatetskii-Shapiro and collaborators on the classification of

homogeneous bounded domains [GPSV64, PS69], where they appear as some

kind of “building blocks”. We refer to [Spi11] for some pedagogical details on

that theory. We adopt here a more pragmatical approach to elementary normal

j−groups, and define them from their infinitesimal structure.

14To avoid any possible confusion, let us emphasize that, even if they are groups, we will

consider them as a symmetric space G/K, not as the group G acting on that symmetric

space.
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2.5.1 Definitions and properties

Definition 2.5.1. Let (V, ω0) be a symplectic vector space.15 The Heisenberg

algebra associated to (V, ω0) is the Lie algebra h := V ⊕ RE, generated by the

elements of V and a generator E, which brackets are defined, for all v, w ∈ V ,

by

[v, w] := ω0(v, w)E and [E, v] := 0.

In particular, it is a central extension of the Abelian Lie algebra V .

Definition 2.5.2. Let (V, ω0) be a symplectic vector space, and let h be the

associated Heisenberg algebra. The Lie algebra s := RH ⊕ h = RH ⊕ V ⊕ RE
with Lie brackets given, for all v, w ∈ V and a, t ∈ R, by

[v, w] := ω0(v, w)E , [E, v] = 0 and [H, v + tE] := v + 2tE.

is called an elementary normal j−algebra. The connected simply connected Lie

group whose Lie algebra is s is called an elementary normal j−group.

Remark 2.5.3. The Lie algebra s is a split extension of the Heisenberg algebra

h:

0→ h→ RH nρh h→ RH → 0,

where the extension homomorpshism ρh : RH → Der(h) is given, for all v ∈ V
and t ∈ R, by

ρh(H)(v + tE) := [H, v + tE] := v + 2tE. (2.45)

C

Remark 2.5.4. Given an elementary j−algebra s = RH ⊕ V ⊕ RE associated

to a symplectic vector space (V, ω0) of dimension 2d, we will always make the

following identification

R2d+2 ∼−→ s ; (a, v, t) 7→ aH + v + tH,

where we identify V ' R2d. C

Elementary normal j−groups can be endowed with a natural symplectic struc-

ture, as well as a symmetric one. This is shown by the following Proposition,

for which we refer to [BG15, Section 3.2] and references therein.

Proposition 2.5.5. Let s the elementary j−algebra associated to a symplectic

vector space (V, ω0), and let S be the corresponding elementary normal j−group.

Then, S is an exponential (non-nilpotent) solvable Lie group. The map

s→ S ; (a, v, t) 7→ exp(aH) exp(v + tE) = exp(aH) exp(v) exp(tE) (2.46)

is a global coordinate chart. In this chart, we have

15Recall that a symplectic vector space is a vector space V endowed with a bilinear form

ω0 which is antisymmetric (ω0(u, v) = −ω0(v, u) for all u, v ∈ V ) and non-degenerate (for

all u ∈ V , if ω0(u, v) = 0 for all v ∈ V , then u = 0).
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1. The two form ωS := 2da ∧ dt+ ω0 is a symplectic form on S;

2. The group law and inversion map on S are given, for every (a, v, t),

(a′, v′, t′) ∈ S, by

(a, v, t)(a′, v′, t′) = (a+ a′, e−a
′
v + v′, e−2a′t+ t′ +

1

2
e−a

′
ω0(v, v′)),

(a, v, t)−1 = (−a,−eav,−e2at);

3. The map s : S× S→ S defined, for all (a, v, t), (a′, v′, t′) ∈ S, by

s(a,v,t)(a
′, v′, t′) =

(
2a− a′, 2v cosh(a− a′)− v′,
2t cosh(2a− 2a′)− t′ + ω0(v, v′) sinh(a− a′)

)
defines a symmetric structure on S;

4. there exists a midpoint map on (S, s), which is given, for all (a, v, t),

(a′, v′, t′) ∈ S, by

mid(a,v,t)(a
′, v′, t′) =

(
a+ a′

2
,

v + v′

2 cosh
(
a−a′

2

) , t+ t′

2 cosh (a− a′)

− ω0(v, v′)
sinh

(
a−a′

2

)
4 cosh (a− a′) cosh

(
a−a′

2

)).
The following examples show that the reader might well have already encoun-

tered an elementary normal j−group before.

Example 2.5.6. In the case V = 0, the elementary j−algebra s is generated by

the two elements H and E, with bracket [H,E] = 2E. The elementary normal

j− group S is the identity component of the group of affine transformations of

the real line, the so-called ax+ b group. ♦

Example 2.5.7. More generally, consider the group SU(1, n) and its Iwasawa

decomposition KAN . Then, the factor AN is an elementary normal j− group.

♦

2.5.2 Associated nearly-quantum symmetric space

From now on, let us fix an elementary j−algebra s = RH ⊕V ⊕RE associated

to a symplectic vector space (V, ω0) of dimension 2d. We denote by h the

Heisenberg algebra associated to (V, ω0) and, as in Remark 2.5.4, we identify

s ' R2d+2. We denote by S the corresponding elementary normal j−group,

and will always use the global coordinate chart s
∼−→ S given by (2.46).

In order to apply the quantization program developped before, the first step is

to realize the symmetric space (S, s) as a symmetric triple (G,K, σ). Following
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[BG15, Chapter 7] 16, we first introduce the Lie algebra underlying G. Let us

define g0 as a one-dimensional split extension of two copies of the Heisenberg

algebra in the following way. Let a = RH be the one-dimensional Lie algebra

generated by H and consider the extension homomorphism

ρ = ρh ⊕ (−ρh) ∈ Der(h⊕ h),

where ρh is defined by (2.45). We define

g0 := anρ (h⊕ h).

Explicitely, the vector space underlying g0 is RH ⊕ (V ⊕RE)⊕ (V ⊕RE) and

the brackets are given, for all X1 ⊕X2, X
′
1 ⊕X ′2 ∈ h⊕ h, by

[H,X1 ⊕X2]g0 = ρh(H)(X1)⊕ (−ρh(H)(X2)),

[X1 ⊕X2, X
′
1 ⊕X ′2]g0

= [X1, X
′
1]h ⊕ [X2, X

′
2]h,

where ρh(H)(v + tE) = v + 2tE for all v ∈ V and t ∈ R. Then, let us consider

the element Ω ∈ Λ2g∗ given, for all v, v′ ∈ V , by

Ω
(
H,E ⊕ (−E)

)
= 2,

Ω
(
v ⊕ (−v), v′ ⊕ (−v′)

)
= ω0(v, v′),

and vanishing everywhere else on g× g.

Finally, we define the Lie algebra g := g0 ⊕ RZ to be the one-dimensional

central extension of g0 with generator Z whose brackets are given, for all X,Y ∈
g, by

[X,Y ]g = [X,Y ]g0 + Ω(X,Y )Z

Notice that, as a vector space, g ' RH ⊕ V ⊕ V ⊕ RE ⊕ RE ⊕ RZ.

Let G be the connected simply connected Lie group whose Lie algebra is g. We

have the global chart g
∼−→ G given, for all a, t1, t2, l ∈ R and v1, v2 ∈ V , by

aH + v1 ⊕ v2 + t1E ⊕ t2E + lZ 7→ exp(aH) exp(v1 ⊕ v2 + t1E ⊕ t2E + lZ).

In these global coordinates, the group law is given, for every
(
a, v1, v2, t1, t2, l

)
,(

a′, v′1, v
′
2, t
′
1, t
′
2, l
′) ∈ G, by(

a, v1, v2, t1, t2, l
)(
a′, v′1, v

′
2, t
′
1, t
′
2, l
′) =(

a+ a′ , e−a
′
v1 + v′1 , ea

′
v2 + v′2 ,

e−2a′t1 + t′1 +
1

2
e−a

′
ω0(v1, v

′
1) , e2a′t2 + t′2 +

1

2
ea
′
ω0(v2, v

′
2) ,

l + l′ + (e−2a′ − 1)t1 + (e2a′ − 1)t2 +
1

2
ω0(e−a

′
v1 − ea

′
v2, v

′
1 − v′2)

)
,

(2.47)

16Beware that in [BG15], our group G is denoted G̃, its Lie algebra g̃ and K is denoted K̃.

In this text, G is not the transvection group of S, but its central extension.
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and the inversion map by(
a, v1, v2, t1, t2, l

)−1
=(

− a,−eav1,−e−av2,−e2at1,−e−2at2,−l − (e2a − 1)t1 − (e−2a − 1)t2
)
.

An involutive automorphism σ : G → G is given by the formula, for all(
a, v1, v2, t1, t2, l

)
∈ G,

σ(a, v1, v2, t1, t2, l) := (−a, v2, v1, t2, t1, l). (2.48)

It is easy to see that the closed subgroup K := Gσ = {g ∈ G | σ(g) = g} is

given by

K = {(0, v, v, t, t, l) | v ∈ V, t ∈ R, l ∈ R} . (2.49)

Now, to see that the symmetric triple (G,K, σ) indeed realizes the symmetric

space (S, s), notice that, for all
(
a, v1, v2, t1, t2, l

)
∈ G, we have the decomposi-

tion(
a, v1, v2, t1, t2, l

)
=
(
a, v1 − v2, 0, t1 − t2 −

1

2
ω0(v1, v2), 0

) (
0, v2, v2, t2, t2, l

)
.

Therefore, the map

Φ : G/K → R2d+2 ;
(
a, v1, v2, t1, t2, l

)
K 7→

(
a, v1 − v2, t1 − t2 −

1

2
ω0(v1, v2)

)
(2.50)

is a well-defined global chart on G/K, whose inverse is

Φ−1 : R2d+2 → G/K ; (a, v, t) 7→ (a, v, 0, t, 0, 0)K. (2.51)

If we denote by s̃ the symmetric structure on G/K coming from the symmetric

triple (G,K, σ), that is, for all gK, g′K ∈ G/K:

s̃gK(g′K) = gσ
(
g−1g′

)
K,

we compute

Φ
(
s̃(a,v,0,t,0,0)(a

′, v′, 0, t′, 0)
)

=
(
2a− a′, 2v cosh(a− a′)− v′,

2t cosh(2a− 2a′)− t′ + ω0(v, v′) sinh(a− a′)
)

= s(a,v,t)(a
′, v′, t′).

This shows that under the identification S ' R2d+2 ' G/K corresponding

to the charts (2.50) and (2.46), the symmetric space (S, s) is isomorphic to

the symmetric space (G/K, s̃) corresponding to the symmetric triple (G,K, σ).

From now on, we will always make the identification S ' R2d+2 ' G/K, and

we will also denote by s the symmetric structure on G/K.
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We compute that the action of G on S is given, for (a, v1, v2, t1, t2, l) ∈ G and

(a′, v′, t′) ∈ S, by

(a, v1, v2, t1, t2, l) · (a′, v′, t′) =
(
a′ + a, v′ + e−a

′
v1 − ea

′
v2,

t′ + e−2a′t1 − e2a′t2 −
1

2
(ω0(v1, v2)− ω0(v1, v

′)− ω0(v2, v
′))
)
.

From that expression, we see that dS := da dv dt is a G−invariant measure on

S ' G/K.

Our next step is to identify a subgroup B of G and a character χ of B in order

to define a nearly-quantum symmetric space (G,K, σ,B, χ). Let us consider

a decomposition of V as a direct sum of two complementary Lagrangian 17

subspaces l and l:

V = l⊕ l. (2.52)

For any vector v ∈ V , we will denote v = vl+vl its decomposition corresponding

to (2.52). Then, we define the closed subgroup of G

B := {(0, n⊕m1, n⊕m2, t1, t2, l) | m1,m2 ∈ l, n ∈ l, t1, t2, l ∈ R} .

One explicitely see from the group law that B is a subgroup of G. For any

θ ∈ R0, we also define the following character of B:

χθ(b) = e
i
θ l,

for all b = (0, n ⊕m1, n ⊕m2, t1, t2, l) ∈ B, which is clearly σ−invariant. We

thus have defined a nearly-quantum symmetric space and we will now see that

it is local. To this aim, let us consider the subgroup of G

Q := {(a, n, 0, 0, 0, 0) | a ∈ R, n ∈ l} .

Notice that it is indeed a subgroup of G because l is a Lagrangian subspace of

V . Next, observe that, for all q := (a, n, 0, 0, 0, 0) ∈ Q and b := (0, n⊕m1, n⊕
m2, t1, t2, l) ∈ B, we have

qb =
(
a, (n+ n′)⊕m′1, n′ ⊕m′2, t′1 +

1

2
ω0(n,m′1), t′2, l

′ +
1

2
ω0(n,m′1 −m′2)

)
.

This shows that the map

Q×B → G ; (q, b) 7→ qb

is a global diffeomorphism, so (G,K, σ,B, χθ) is local. For a later use, we

also compute the action of G on Q ' G/B. For all g := (a, n1 ⊕ m1, n2 ⊕
m2, t1, t2, l) ∈ G and q := (a′, n′, 0, 0, 0, 0) ∈ Q, we have

g · q := (gq)Q = (a+ a′, e−a
′
n1 − ea

′
n2 + n′, 0, 0, 0, 0). (2.53)

17Recall that a subspace W of V is called Lagrangian if W = W⊥, where W⊥ :=

{v ∈ V | ω0(v, w) = 0 ∀w ∈W}.
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From that expression, we notice that dQ := da dn is a G−invariant measure on

Q ' G/B. In particular, this implies that the modular functions of G and of

B coincides on B, a fact that we will use later on.

Putting all this together, we have:

Proposition 2.5.8. Let S be an elementary normal j−group, and let θ ∈
R0. Then, the tuple (G,K, σ,B, χθ) defined as above is a local nearly-quantum

symmetric space. Moreover, the symmetric space (S, s) is isomorphic to the

symmetric space G/K corresponding to the symmetric triple (G,K, σ).

2.5.3 The deformed product and its three-point kernel

In the following, let (V, ω0) be a symplectic vector space of dimension 2d, and

let S be the corresponding elementary normal j−group. Let θ ∈ R0 and let

(G,K, σ,B, χθ) be the local nearly-quantum symmetric space defined as above.

As before, we will make the identification S ' R2d+2 ' G/K. Since we are in

the local case G = QB, we will also make the identification G/B ' Q. Finally,

let m be an admissible smooth function on Q.

Let us first describe the quantization map associated to the nearly-quantum

symmetric space. Following what we have done in Section 2.2, for each point

of x ∈ S, we can define an operator Ωθ,m(x) 18 acting on compactly supported

smooth functions on Q. Recall from Remark 2.2.36 that it is given, for gK ∈
S ' G/K, ϕ̃ ∈ C∞c (Q) and q ∈ Q, by

Ωθ,m(gK)ϕ̃)(q) = rgK(q) ϕ̃( τgK(q) ),

where

τgK(q) = (gσ(g−1q))Q

rgK(q) = m
(
(g−1q)Q

)
χ̃θ
(
(gσ(g−1q))B

)−1
.

Recall that from (2.53), we have seen that there is a G−invariant measure on Q,

which implies that the modular functions of G and B coincide on B. Therefore,

χ̃θ = χθ. Let x := (a, n⊕m, t) ∈ S and q := (a′, n′) ∈ Q. From (2.51), we get

x = gK with g = (a, n ⊕ m, 0, t, 0, 0). From the explicit expressions that we

have given before, we compute the following identities:

(g−1q)Q =
(
a′ − a, n′ − ea−a

′
n
)
,

(gσ(g−1q))Q =
(
2a− a′, 2 cosh(a− a′)n− n′

)
,

18Notice that we now show the dependence on θ, not only on m.
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(gσ(g−1q))B =(
0, (n′ − ea−a

′
n)⊕ (ea

′−am), (n′ − ea−a
′
n)⊕ (−ea−a

′
m),

e−2(a−a′)t− 1

2
ea
′−a ω0(m, 2 cosh(a− a′)n− n′),

− e2(a−a′)t− 1

2
ea−a

′
ω0(m,n′),

− 2 sinh
(
2(a− a′)

)
t− 2ω0

(
cosh(a− a′)n− n′, cosh(a− a′)m

))
.

This leads to the expressions:

τ(a,n⊕m,t)(a
′, n′) =

(
2a− a′, 2 cosh(a− a′)n− n′

)
, (2.54)

and

r(a,n⊕m,t)(a
′, n′) = m

(
a′ − a, n′ − ea−a

′
n
)

× exp

(
2i

θ

(
sinh

(
2(a− a′)

)
t+ ω0

(
cosh(a− a′)n− n′, cosh(a− a′)m

)))
.

(2.55)

We thus have a quantization map

Ωθ,m : C∞c (S)→ Lb(D(Q)→ D′(Q)) ; f 7→ Ωθ,m(f), (2.56)

whith19

(Ωθ,m(f)ϕ̃)(q) =

∫
S
f(x) rx(q) ϕ̃(τx(q)) dS(x).

We now come to the deformed product ?θ,m associated to the quantization map

Ωθ,m as in Section 2.4. Let us verify that the various needed hypotheses are

fulfilled. The first question is whether the operators Ωθ,m(f) can be extended to

Hilbert-Schmidt operators on L2(Q), and defined for a larger class of functions

than the compactly supported ones. To this aim, let us introduce the following

smooth function on Q:

m0 : Q→ R ; (a, n) 7→ 2d+2 cosh1/2(2a) coshd(a). (2.57)

In [BG15, Theorem 6.43], it is shown that, if ||m/m0||∞ < +∞, the map (2.56)

extends to a bounded operator:

Ωθ,m : L2(S, dS)→ L2
(
L2(Q, dQ)

)
.

This is proved by explicitely computing the kernel of Ωθ,m(f), and showing that

it is square-integrable. Moreover, it is shown that if m = m0, then the operator

is unitary. Notice from (2.47), (2.49) and (2.48) that m0 is K−invariant and

σ−invariant. Since it is a real function, it is admissible.

19Recall that we identify a smooth function with the corresponding generalized function.
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Next, notice that, since G/K admits a midpoint map by Proposition 2.5.5,

Proposition 2.2.42 ensures that τ is locally transitive. This can also be checked

directly from (2.54). We still need to settle the question of the fixed points.

Let

x = (ax, vx = nx ⊕mx, tx) ∈ S,
y = (ay, vy = ny ⊕my, ty) ∈ S,
z = (az, vz = nz ⊕mz, tz) ∈ S.

From (2.54), we compute

(τz ◦ τy ◦ τx)(q) =
(
− a′ + 2(ax − ay + az),

− n′ + 2nx cosh(a′ − ax)− 2ny cosh(a′ − 2ax + ay)

+ 2nz cosh(a′ − 2ax + 2ay − az)
)
,

(2.58)

which allows to find that τz◦τy◦τx admits exactly one fixed point p(x, y, z) ∈ Q,

and it is given by

p(x, y, z) =
(
ax − ay + az,

cosh(ax − ay)nz − cosh(az − ax)ny + cosh(ay − az)nx
)
.

(2.59)

Since the map p : S3 → Q ; (x, y, z) 7→ p(x, y, z) is smooth, Lemma 2.4.10

implies that Hypothesis 3 of Theorem 2.4.8 and Theorem 2.4.11 is verified.

Finally, these fixed points are all simple. Indeed, from (2.58), we compute

(τz ◦ τy ◦ τx)∗p(x,y,z) =

(
−1 0

∗ −1d×d

)
,

where ∗ = −2(sinh(ax−ay)nz +sinh(ay−az)nx+sinh(az−ax)ny). Therefore,

det
(
Id− (τz ◦ τy ◦ τx)∗p(x,y,z)

)
= 2d+1 6= 0, (2.60)

which is the condition for the fixed point p(x, y, z) to be simple.

We are now finally able to get an bilinear, associative, continuous and G-

equivariant deformed product on L2(S) which is compatible with the complex

conjugation. Recall that if we choose m = m0, then the quantization map

is unitary, and the Berezin transform is trivial – that is, the symbol map

is the inverse of the quantization map, see Section 2.4. Putting everything

together, we have shown that the hypotheses of Theorem 2.4.5 are satisfied

and we get thus a genuine associative deformed product ?θ,m0
. Its kernel is

given by Theorem 2.4.11, whose hypotheses are also satisfied by the preceding

discussion. We therefore get:
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Theorem 2.5.9. Let S be an elementary normal j−space. Then, the associa-

tive product ?θ,m0
on L2(S) given by Theorem 2.4.5 has the expression, for all

f1, f2 ∈ C∞c (S) and x ∈ S,

(f1 ?θ,m0 f2)(x) =

∫
S2
f1(y) f2(z)Kθ,m0(x, y, z) dS(y) dS(z),

where the three-point kernel K : S3 → C is given, for all x, y, z ∈ S, by

Kθ,m0(x, y, z) = 2−(d+1) rx
(
p
)
ry
(
τx(p)

)
rz
(
τy(τx(p))

)
, (2.61)

where p = p(x, y, z) is the unique fixed point of τz ◦τy ◦τx. Explicitely, we have:

Kθ,m0(x, y, z) = Am0(x, y, z) e
2i
θ S(x,y,z),

with, for all x = (ax, vx, tx), y = (ay, vy, ty), z = (az, vz, tz) ∈ S,

Am0(x, y, z) =

22d+5 cosh
(
ax − ay

)d
cosh

(
ay − az

)d
cosh

(
az − ax

)d
× cosh

(
2(ax − ay)

)1/2
cosh

(
2(ay − az)

)1/2
cosh

(
2(az − ax)

)1/2
(2.62)

and

S(x, y, z) = sinh
(
2(ax − ay)

)
tz + sinh

(
2(ay − az)

)
tx + sinh

(
2(az − ax)

)
ty

+ cosh(ax − ay) cosh(ay − az)ω0(vx, vz)

+ cosh(ay − az) cosh(az − ax)ω0(vy, vx)

+ cosh(az − ax) cosh(ax − ay)ω0(vz, vy).

(2.63)

Proof. This follows from the previous discussion, which allows to apply Theo-

rem 2.4.11. It implies that the kernel is given by

Kθ,m(x, y, z) =
rx
(
p
)
ry
(
τx(p)

)
rz
(
τy(τx(p))

)∣∣det
(
id− (τz ◦ τy ◦ τx)∗p

)∣∣ ,

where p = p(x, y, z) is the unique fixed point of τz ◦ τy ◦ τx. From (2.60), we

get the expression (2.61). Let

x = (ax, vx = nx ⊕mx, tx) ∈ S,
y = (ay, vy = ny ⊕my, ty) ∈ S,
z = (az, vz = nz ⊕mz, tz) ∈ S.
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From the expressions (2.54) for τ and (2.59) for the fixed points, we get

p =
(
ax − ay + az,

cosh(ax − ay)nz − cosh(az − ax)ny + cosh(ay − az)nx
)
,

τx(p) =
(
ax + ay − az,
− cosh(ax − ay)nz + cosh(az − ax)ny + cosh(ay − az)nx

)
,

τy(τx(p)) =
(
− ax + ay + az,

cosh(ax − ay)nz + cosh(az − ax)ny − cosh(ay − az)nx
)
.

From the formula (2.55) for r, we thus get (notice that m0 is a function of a

alone, not n):

Am0(x, y, z) = m0(az − ay)m0(ax − az)m0(ay − ax),

which leads to (2.62) using the definition (2.57) of m0. For the phase – which

does not depend on m –, a (long) computation leads to

S(x, y, z) = sinh
(
2(ax − ay)

)
tz + sinh

(
2(ay − az)

)
tx + sinh

(
2(az − ax)

)
ty

+ cosh(ax − ay) cosh(ay − az) (ω0(nx,mz) + ω0(mx, nz))

+ cosh(ay − az) cosh(az − ax) (ω0(ny,mx) + ω0(my, nx))

+ cosh(az − ax) cosh(ax − ay) (ω0(nz,my) + ω0(mz, ny))

= sinh
(
2(ax − ay)

)
tz + sinh

(
2(ay − az)

)
tx + sinh

(
2(az − ax)

)
ty

+ cosh(ax − ay) cosh(ay − az)ω0(vx, vz)

+ cosh(ay − az) cosh(az − ax)ω0(vy, vx)

+ cosh(az − ax) cosh(ax − ay)ω0(vz, vy),

where the second line is obtained by using the fact that l and l are Lagrangian.

Remark 2.5.10. The formula (2.62) and (2.63) for the three-point kernel of the

deformed product has already been found in [BG15]. It has been computed

in two different ways, first by intertwining the Moyal product, and second by

using a quantization map as we do here. However, the computation of the trace

of that quantization map is done explicitely from the kernel of the operators.

The advantage of the approach we take here to the computation of the trace

is that it makes more transparent why the fixed points appear in the kernel of

the product. C

Remark 2.5.11. From [BG15, Equation 3.6], we extract that the area of the

double triangle defined by e = (0,~0, 0), x1 = (a1, v1, t1), x2 = (a2, v2, t2) ∈ S is

Scan(x1, x2) = sinh(2a1)t2 − sinh(2a2)t1 + ω0(v1, v2) cosh(a1) cosh(a2).

Using the fact that the area of double triangle is invariant under the group

law on S – since the left translations are automorphisms of (S, s), and sym-

plectomorphisms), a small computation shows that in the particular case of
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elementary normal j-groups, the phase S(x, y, z) corresponds to minus the area

of the double triangle determined by x, y and z. C



Appendix A

Locally convex vector

spaces

We collect here some basic definitions and constructions related to locally con-

vex topological vector spaces. We adopt a pragmatical approach, by defining

their topology from a family of seminorms. We refer to [Trè06] for a complete

treatment on the subject, as well as to [vdBC09] for a pedagogical exposition.

Definitions and properties

Definition A.1. A topological vector space is a vector space V (over C) en-

dowed with a topology T such that the following maps are continuous:

1. addition: V × V → V ; (v, w) 7→ v + w ;

2. scalar multiplication: C× V → V ; (λ, v) 7→ λv.

Proposition A.2. The topology of a topological vector space (V, T ) is com-

pletely determined by a basis of neighbourhoods of 0.

Definition A.3. A seminorm p on a vector space V is a nonnegative function

p : V → R+ such that:

1. ∀v, w ∈ V : p(v + w) ≤ p(v) + p(w) ;

2. ∀λ ∈ C, ∀v ∈ V : p(λv) = |λ|p(v).

Notice that condition 2 implies that p(0) = 0. A seminorm is called a norm if

∀v ∈ V , p(v) = 0 ⇒ v = 0. A family of seminorms {pα}α∈I is called total if

∀v ∈ V :

(∀α ∈ I , pα(v) = 0)⇒ v = 0.

153



154 Appendix A. Locally convex vector spaces

Let {pα}α∈I be a family of seminorms on a vector space V . For r > 0, n ∈ N0

and {α1, . . . , αn} ⊂ I, we can define the ball

Brα1,...,αn := {v ∈ V | pαi(v) < r ∀1 ≤ i ≤ n} ⊂ V.

The collection of all those balls
{
Brα1,...,αn

}
defines a family of neighbourhoods

of 0 which gives a vector space topology on V .

Definition A.4. A locally convex topological vector space (or l.c.v.s. in short)

is a topological vector space V such that there exists a family of seminorms on

V that induces the topology of V .

Remark A.5. Locally convex vector spaces are so called because they admit

enough “convex” neighbourhoods of 0. They are usually defined using this

property but we chose the practical seminorm approach because this is how

the topologies we deal with naturally arise. C

Remark A.6. Different families of seminorms on a vector space V can induce the

same topology on V . As a topological vector space, V should be considered as

the same object, even though the seminorms are different. Often, the topology

of V is defined using a very large family of seminorms but this family can

be restricted to a smaller one without changing the topology, as the following

results show. C

(I Restriction property of families of seminorms)

The following result is of first practical importance in order to verify the con-

tinuity of a map between locally convex spaces using their seminorms.

Proposition A.7 ([Trè06], Proposition 7.7). Let V and W be two locally con-

vex spaces. A linear map f : V → W is continuous if and only if for every

continuous seminorm q on W , there is a continuous seminorm p on V such

that, for all x ∈ V , q(f(x)) ≤ p(x).

Continuous dual of a l.c.v.s.

Definition A.8. Let V be a locally convex vector space. The continuous dual

of V is the vector space of continuous linear functionals on V . It is denoted by

V ′.

There are several topologies that we can consider on the continuous dual of a

l.c.v.s. We will describe two of them that will be of importance for us.

Definition A.9. Let V be a locally convex vector space. The weak∗ topology

on the continuous dual V ′ is the locally convex topology induced by the family

of seminorms {
pv : V ′ → R+ ; u 7→ |u(v)| | v ∈ V

}
.
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Remark A.10. In the weak∗ topology, the convergence of a sequence is given

by the pointwise convergence. That is, a sequence (uk)k∈N in V ′ converges to

u ∈ V ′ if and only if, for all v ∈ V , |un(v)− u(v)| → 0. C

Definition A.11. Let V be a locally convex vector space whose topology is

induced by the family of seminorms {pα}α∈I . A set B ⊂ V is bounded is for all

α ∈ I, there exists rα > 0 such that B ⊂ Brαα . Notice that any continuous linear

functional u is bounded on a bounded set B in the sense that supv∈B |u(v)| <∞.

Definition A.12. Let V be a locally convex vector space. The strong topology

on the continuous dual V ′ is the locally convex topology induced by the family

of seminorms{
pB : V ′ → R+ ; u 7→ sup

v∈B
|u(v)| | B ⊂ V bounded

}
.

Remark A.13. A linear map on V ′ is continuous in the weak∗ topology if it

is continuous in the strong topology. However, since both topologies are in

general different, the reverse is not true. C

Fréchet spaces and inductive limits of l.c.v.s.

Definition A.14. A locally convex vector space V is called Fréchet if its topol-

ogy is induced by a countable total family of seminorms and if it is complete.

In some cases, a vector space V can be seen as the limit of an infinite strictly

increasing family of vector subspaces, each of them carrying a locally convex

topology. Among all the locally convex topology on V such that all the inclu-

sions are continuous, one of them is particularly interesting.

Definition A.15. Let V be a vector space and V1 ⊂ V2 ⊂ . . . an infinite srictly

increasing sequence of vector subspaces of V such that :

1. V = ∪∞k=1Vk ;

2. for each k ≥ 1, Vk is a locally convex vector space, its topology being

denoted by Tk ;

3. for each k ≥ 1, Vk is closed in Vk+1 ;

4. for each k ≥ 1, Tk = Tk+1|Vk .

Then, we define the inductive limit topology on V as the locally convex topology

given by the following family of seminorms:{
p seminorm on V

∣∣ p|Vk is continuous ∀k ≥ 1
}
.
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Although the previous definition is rather abstract, the following results de-

scribe in a more explicit way the continuity of a linear map as well as the

convergence of a sequence in the inductive limit topology.

Proposition A.16 ([Trè06], Proposition 13.1). Let V = ∪∞k=1Vk be a vector

space endowed with the inductive limit as in (A.15), W a locally convex vector

space and A : V → W a linear map. Then, A is continuous if and only if, for

each k ≥ 1, A|Vk : Vk →W is continuous.

Proposition A.17 ([vdBC09], Theorem 2.1.11). Let V = ∪∞k=1Vk be a vector

space endowed with the inductive limit as in (A.15). A sequence (vn)n∈N in V

converges to v ∈ V if and only if the following two conditions are satisfied:

1. ∃ n0 ∈ N0 such that v, vn ∈ Vn0
for each n ∈ N ;

2. (vn)n∈N converges to v in Vn0
.

Proposition A.18 ([vdBC09], Theorem 2.1.11). Let V = ∪∞k=1Vk be a vec-

tor space endowed with the inductive limit as in (A.15). Then V cannot be

metrizable.

Proposition A.19. Let V and W be two locally convex vector spaces. Suppose

that V is a Fréchet space, or an inductive limit of Fréchet spaces. Then a linear

map L : V →W is continuous if it is sequentially continuous.

Proof. If V is a Fréchet space, it is metrizable and therefore, sequential conti-

nuity is equivalent to continuity. Suppose now that V = ∪∞k=1Vk is an inductive

limit of Fréchet spaces. Let L : V →W be a linear map. By Proposition A.16,

L is continuous if and only if L|Vk is continuous for each k. Since each of the

Vk is a metrizable, L|Vk is continuous if it is sequentialy continuous. Since all

the inclusions Vk ↪→ V are continuous, L|Vk is continuous if L is sequentially

continuous, so L is continuous if it is sequentially continuous.
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