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Chapter 1

Introduction

Many times throughout its history, Science has been the cause of deep changes in our perception
of the world. The development of Quantum Mechanics at the beginning of the 20th century
is certainly one of these revolutions of thought, and it still continues to confuse us. One of its
most astonishing features is that, at quantum scales, physical observables should be described
by operators, and that the position and momentum operators do not commute:

[

x̂, p̂x

]

= i~ . (1.1)

This leads to the well known Heisenberg uncertainty principle which states that it is not possible
to measure both the position and the momentum of a particle with an absolute precision.

A lot of work has been done since then, with the discovery of new fundamental interactions,
the development of quantum field theory, etc., so that the Standard Model is now the theory
that best fits our current understanding of particle physics. However, we have several reasons
to think that it is not the end of the story and the last decades have given birth to many new
theories aiming to address some of the still unresolved enigmas of Nature. Amongst them is the
hypothesis that the fundamental structure of spacetime should be entirely revised, considering
for instance that it is based on a noncommutative geometry.

In the framework of Quantum Mechanics, noncommutative geometry is generally studied through
the following commutator: [1]

[

x̂i, x̂j

]

= i~ θij , (1.2)

where θij is a constant matrix. One may also consider non vanishing commutators between the
momentum operators. A classic example of how noncommutativity may emerge in a physical
situation is given in the Landau problem [2] by projecting the whole system on the lowest Lan-
dau level. This idea has been introduced a long time ago by Snyder [3] and has been extensively
studied by Connes [4] but it has gained a lot more popularity since it has been found that
noncommutative geometry may emerge in string theories [5]. In a recent paper [6], a toy model
– which we will refer to as the Bigatti-Susskind model – has been built in order to further un-
derstand how noncommutativity appears. Evidently, even if ordinary non relativistic quantum
mechanics is now out of date in order to describe actual relativistic particle physics, it is still
a very convenient framework to investigate new theories and to get a further insight into their
physical consequences. The Bigatti-Susskind model consists in a system of two massive opposite
charges constrained to move in a plane, subjected to a constant homogeneous and perpendicular
magnetic field, and connected by a spring. By considering the limit of a strong magnetic field,
these authors recover a situation similar to that in the Landau problem, namely, noncommuta-
tivity of the coordinates appear.
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Another promising direction of actual research in physics is supersymmetry. Elementary particles
are classified either as bosons or as fermions, depending on the value of their spin. Supersym-
metry is a new internal symmetry of Nature that would relate these two kinds of particles by
transforming a boson into a fermion and vice-versa. The following natural question then arises
to ask whether it is possible to consider both noncommutative geometry and supersymmetry in
one system. Once again, Quantum Mechanics turns to be a convenient framework to address
this question. By extending the Landau problem to its N = 1 supersymmetric version [7], it
has been shown that noncommutativity is indeed compatible with supersymmetry, leading to a
deformation of the fermionic algebra consistent with the supersymmetry of the system. Turning
back to the Bigatti-Susskind model, the same question may be considered. The answer is not
straightforward since there is now a harmonic potential that seems difficult to handle in N = 1
Supersymmetric Quantum Mechanics. However, this question has been addressed in [8] and it
was shown that a harmonic potential may indeed be considered together with a N = 1 super-
symmetry. Following this last result, our work will therefore be devoted to the construction of
a N = 1 supersymmetric extension of a generalization of the Bigatti-Susskind model.

Generalization of the Bigatti-Susskind Model

With the previous considerations in mind, the starting point of this work is a system of two par-
ticles of charges ±q, mass m and respective positions r and s. Their motion is constrained to a
plane and is subjected to a constant, homogeneous magnetic field B0 = B0 ẑ,1 and the Coulomb
interaction between the particles is neglected. Furthermore, the particles are connected by a
spring, giving rise to a harmonic potential 1

2mω
2
0 (s − r)2. Finally, the Bigatti-Susskind model is

generalized by confining the center of mass of the system in a harmonic potential 1
8mk

2
0 (r + s)2

– the numerical factor is chosen for later convenience.

The system may be described by the following Lagrangian :

L (r, s ; ṙ, ṡ) =
1

2
m
(

ṙ 2 + ṡ 2
)

+ q ṙ · A (r ) − q ṡ · A (s )

− 1

2
mω2

0 (s − r )2 − 1

8
mk2

0 (r + s )2 ,

(1.3)

where A (r) is the magnetic vector potential. In order to keep the rotational covariance of
the system explicit, the circular gauge will be used for the vector potential: A (r) = 1

2B0 × r.
Introducing the variables

x =
1

2
(r + s ) ,

u = s − r ,
(1.4)

the Lagrangian may be expressed as

L (x,u ; ẋ, u̇) = mẋ 2 +
1

4
mu̇ 2 +

1

2
qB0 · (ẋ × u − x × u̇ )

− 1

2
mω2

0u 2 − 1

2
mk2

0x 2

L (xi, ui ; ẋi, ẋj) = mx2
i +

1

4
mu2

i +
1

2
qB0 ǫij (ẋi uj − xi u̇j)

− 1

2
mω2

0 x
2
i − 1

2
mk2

0 u
2
i

(1.5)

1Up to a global rotation of the system, there is no loss of generality in choosing a particular direction for the

magnetic field perpendicular to the plane.

6



Outline

In the following Chapter, the question of constructing a supersymmetric extension of the previous
system will be addressed. The appropriate formalism will first be presented, and then the
actual extension will be constructed. In Chapter 3, the Hamiltonian formulation of the system
will be described using Dirac’s constraint analysis formalism. The symmetries of the system
will also be discussed. This will lead to the quantization of the system in Chapter 4. The
diagonalization of the Hamiltonian will be addressed, first for the bosonic sector, then for the
fermionic one. The diagonalization of the angular momentum operator will be carried on,
followed by an analysis of the symmetry transformations of the quantized system. In Chapter 5,
a representation of the system will be constructed, and the energy spectrum will be discussed.
The supercharge will finally be diagonalized. The last Chapter is devoted to the construction of
N = 1 supersymmetric non(anti)commutative superplanes through the projection of the system
on two different subspaces of its Hilbert space of states. Some conclusions and perspectives will
then end this work.

Mathematica c©

The main part of the calculations of this work has been performed using Mathematica c©. In
particular, we had to implement Grassmannian calculus, and we have developed some convenient
tools to perform Dirac’s constraint analysis. The use of Mathematica c© has turned to be very
convenient to do many cross-checks during the calculations. We also would like to mentioned
that, for the calculations of Chapter 5 – namely, those related to the representation of the
system, the analysis of the energy spectrum and the supercharge diagonalization –, we have
used the convenient Quantum package of José Luis Gómez-Muñoz and Francisco Delgado that
may be found here: http://homepage.cem.itesm.mx/lgomez/quantum/.
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Chapter 2

Supersymmetric Extension

2.1 Formalism

We will now build a N = 1 supersymmetric extension of the generalization of the Bigatti-
Susskind system we have just exposed. Introducing some new fermionic degrees of freedom in
addition to the bosonic ones xi and ui, we will then define a supersymmetry transformation,
that is, a transformation that maps the bosonic variables into the fermionic ones and conversely.
We will then construct an extension of the previous Lagrangian such that the system action is
invariant under that new symmetry. In order to achieve this programme, we will make use of
the supertime formalism which allows to easily construct such supersymmetric action.

2.1.1 Grassmann variables

A fermionic degree of freedom is a feature specific to quantum mechanics. However, it is pos-
sible to introduce analogues to fermions in classical mechanics using Grassmann odd numbers.
These are numbers that anticommute, so that if we have a set {θ1, θ2, ..., θn} of Grassmann odd
numbers, we have:

θiθj = −θjθi, 1 ≤ i, j ≤ n (2.1)

In particular, the square of any of those numbers gives zero: θ2
i = 0 (no summation on i). In this

context, usual commuting numbers are referred to as Grassmann even numbers. Even though
Grassmann odd quantities have no direct geometrical interpretation at the classical level as
Grassmann even variables do, they will give rise to anticommuting operators after quantization,
as expected for physical fermions.

Here we will sketch only some useful rules of Grassmannian calculus but a complete review may
be found in [9]. Any function of one Grassmann odd variable θ can be Taylor expanded and,
due to the vanishing of θ2, the expansion ends after the first order:

f(θ) = a+ θ b (2.2)

It is then possible to define (left) derivation and integration operations in term of Grassmann
odd variables:

d

dθ
θ = 1 ,

d

dθ
1 = 0

∫

dθ θ = 1 ,

∫

dθ 1 = 0

(2.3)

For Grassmann odd variables, integration is therefore the same operation as derivation. Note
also that, due to the anticommutation of the θi’s, we have to care about their order when deriving
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(resp. integrating) a product of the θi’s: the derivation (resp. integration) variable has to be
brought to the foremost left-handed position in any product:

d

dθj

(θiθj) = − d

dθj

(θjθi) = −θi

∫

dθj θiθj = −
∫

dθj θjθi = −θi

(2.4)

Finally, we define complex conjugation to include a reversal in the order of the variables in any
product:

(θiθj)
∗ = θ∗

j θ
∗
i (2.5)

The reason of the reversed order of the variables is to keep the integration measure over complex
Grassmann odd numbers consistent under complex conjugation (see [10]).

2.1.2 Supertime

As a convenient way to include supersymmetry in our system, let us extend the usual time
coordinate t into a “supertime” (t, θ) where θ is a real Grassmann odd variable, that is, θ∗ = θ

and θ2 = 0. This is sometimes referred to as “supermechanics”. For some literature on the
subject, see [11, 12], and [13, 14] for a more mathematical introduction. As noted before, we
can Taylor expand any function f of the supertime to get

f(t, θ) = a(t) + θ b(t) (2.6)

with a(t) and b(t) being some functions of the usual time t, of which the Grassmann parity is
related to that of the function f(t, θ). We then promote the usual bosonic coordinates to the
following Grassmann even supercoordinates1:

Xi(t, θ) = xi(t) + iθ ψi(t)

Ui(t, θ) = ui(t) + iθ µi(t)
i = 1, 2, ..., d (2.7)

where xi and ui are real Grassmann even functions of t while ψi and µi are real Grassmann
odd functions of t. Notice that a factor i appears in the definitions of Xi and Ui in order to
make them real functions of the supertime. For a reason that will be explained later, we also
introduce the following Grassmann odd supercoordinates:

Λi(t, θ) = λi(t) + θ yi(t)

Γi(t, θ) = γi(t) + θ zi(t)
i = 1, 2, ..., d (2.8)

where yi and zi are real Grassmann even functions of t while λi and γi are real Grassmann
odd functions of t. Finally, any function F (x,u) of the usual coordinates can be extended to a
function of the supercoordinates by Taylor expansion so that we get:

F (X,U ) = F (x,u) + iθ ψj
∂F

∂xj
(x,u ) + iθ µj

∂F

∂uj
(x,u ) (2.9)

where the usual implicit summation over repeated indices is to be understood (this notation
applies throughout hereafter, unless otherwise specified).

1For the moment, we consider a d-dimensional space and will later on restrict ourself to 2 dimensions.
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2.1.3 Supersymmetry transformation

Time translations play a crucial role in physics since invariance under such transformations
implies the conservation of the system energy. It therefore seems natural to discuss supertime
translations which correspond to the following transformations:

t → t+ iǫθ

θ → θ + ǫ
(2.10)

where ǫ is a real Grassmann odd parameter. The operator that generates these translations is
given by:

Q = ∂θ + iθ ∂t (2.11)

and is such that:

Q† = Q ,
{

Q,Q
}

= 2i ∂t (2.12)

The second property shows that Q can be viewed as sort of a “square root” of the Hamiltonian
– namely the generator of time translations –, which is an expected feature for a supersymmetry
generator. To this transformation can be associated a supercovariant derivative D:

D = ∂θ − iθ ∂t (2.13)

{Q,D} = 0 , {D,D} = −2i ∂t (2.14)

When acting with Q on the supercoordinates, we get:

δǫXi(t, θ) = −iǫQXi(t, θ) (2.15)

so that the transformation acts on each component as follows:

δǫxi(t) = ǫλi(t) , δǫλi(t) = iǫẋi(t) (2.16)

We therefore see that Q indeed maps fermionic degrees of freedom onto bosonic ones and vice-
versa. It thus displays all the feature required of the generator of N = 1 supersymmetry
transformations. In the following, a superfield refers to any function of specific Grassmann
parity of the supertime that transforms under Q as in (2.15). Note that any usual combination
of superfields (product, sum, covariant derivative, scalar product, etc.) is still a superfield.

2.1.4 Supersymmetric invariant action

We now end the presentation of the supertime formalism by showing how it allows to build in a
straightforward way a system action which is invariant under supersymmetry. We consider an
action of the form:

S =

∫

dtL =

∫

dtdθL (2.17)

where L is a Grassmann odd function of superfields, the superlagrangian, so that the action S

is Grassmann even, as usual. The key point is that if we choose our superlagrangian to be any
combination of superfields, the action S will be automatically invariant under a supersymmetry
transformation. Indeed, since it is in that case itself a superfield which may be expressed as

L = L1 + θL2 (2.18)

with L1 being Grassmann odd and L2 Grassmann even, the transformation of the Lagrangian L
will be equal to δL2 under a supersymmetry transformation. Because of the expressions (2.15),
we have δL2 = − d

dt
L1, that is, a total time derivative. The action of the system therefore

changes by a surface term in time, which makes the system invariant under a supersymmetry
transformation. Note that the supercovariant derivative can be used to build an odd superfield
from an even one, and vice-versa.
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2.1.5 Potential and N = 1 supersymmetry

Because of the Grassmann odd character of the superlagrangian, any term built only from the
Grassmann even supercoordinates Xi and Ui is forbidden. Therefore, it first seems that this
formalism is not compatible with a potential V (Xi, Ui).

2 However, it was shown in [8] that it
is possible to introduce a harmonic potential for, say, xi by using an auxiliary Grassmann odd
superfield coupled to Xi. The auxiliary bosonic degree of freedom will turn out to be redundant
and to be proportional to xi, which upon reduction of that auxiliary variable induces a harmonic
potential, as will be shown later. This is the reason why we have introduced the Grassmann
odd superfields Λi and Γi in (2.8).

2.2 Supersymmetric Lagrangian

We now have all the tools necessary to build a supersymmetric extension of our generalization
of the Bigatti-Susskind system. Let us for a moment introduce the superfields associated to the
position of the superparticles3:

Ri(t, θ) = Xi(t, θ) − 1

2
Ui(t, θ)

Si(t, θ) = Xi(t, θ) +
1

2
Ui(t, θ)

(2.19)

We can verify that, after integrating over θ, the following term gives the right kinetic energy
terms for the superparticles:

−1

2
mD2RiDRi − 1

2
mD2SiDSi (2.20)

Considering now the vector potential Ai(xj) associated to the magnetic field:

Bij(xk) =
∂

∂xi
Aj(xk) − ∂

∂xj
Ai(xk) , (2.21)

we extend it to a function of the supercoordinates as in (2.9). The coupling of the superparticles
to the magnetic field is then given by:

iq
(

DRiAi

(

Rk

)−DSiAi

(

Sk

)

)

(2.22)

Reverting back to the superfields Xi and Ui and introducing the terms involving the auxiliary
superfields, the full superlagrangian becomes:

L = −mD2Xi DXi − 1

4
mD2Ui DUi

+ iq DXi

(

Ai

(

Xk − 1

2
Uk

)−Ai

(

Xk +
1

2
Uk

)

)

− i

2
q DUi

(

Ai

(

Xk − 1

2
Uk

)

+Ai

(

Xk +
1

2
Uk

)

)

+
1

2
mω2

0 DΛi Λi +
1

2
mk2

0 DΓi Γi

+ mω2
0β0 Ui Λi +mk2

0κ0 Xi Γi

(2.23)

2This remark is only valid for a N = 1 supersymmetry. Indeed, for N ≥ 2 for instance, the supertime is spanned

by two Grassmann odd variables in addition to the usual time t so that the superlagrangian is Grassmann even.
3We recall that Xi is associated to the center of mass of the system, while Ui to the relative position of the

particles.
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with β0 and κ0 being dimensionless real scaling factors. Up to a redefinition of the sign of the
superfields Λ and Γ, their signs may be chosen arbitrarily. In the following, we will choose
to take Sign(β0) = Sign(κ0) = 1 without any loss of generality. The integration over θ then
produces the Lagrange function:

L = mẋ2
i +

1

4
mu̇2

i − imψ̇iψi − i

4
mµ̇iµi

+ q ẋi

(

Ai(xk − 1

2
uk) −Ai(xk +

1

2
uk)
)

− q

2
u̇i

(

Ai(xk − 1

2
uk) +Ai(xk +

1

2
uk)
)

+
i

2
q
(

ψiµj

) (

Bij(xk − 1

2
uk) +Bij(xk +

1

2
uk)
)

+ iq
(

ψiψj +
iq

4
µiµj

) (

∂jAi(xk − 1

2
uk) − ∂jAi(xk +

1

2
uk)
)

+
1

2
mω2

0

(

y2
i − iλ̇iλi

)

+
1

2
mk2

0

(

z2
i − iγ̇iγi

)

+ mω2
0β0 (uiyi + iµiλi) +mk2

0κ0 (xizi + iψiγi)

(2.24)

In order to be able to further study this Lagrangian, let us restrict ourself to a two dimensional
space, and consider a constant, homogeneous and perpendicular magnetic field B12 = B0. To
keep the rotational covariance explicit, we also use the circular gauge for the vector potential:

Ai(rj) = −1

2
B0 ǫijrj (2.25)

The Lagrangian then simplifies to the following form:

L = mẋ2
i +

1

4
mu̇2

i − imψ̇iψi − i

4
mµ̇iµi

+
q

2
B0ǫij (ẋiuj − u̇jxi + 2iψiµj)

+
1

2
mω2

0

(

y2
i − iλ̇iλi

)

+
1

2
mk2

0

(

z2
i − iγ̇iγi

)

+ mω2
0β0 (uiyi + iµiλi) +mk2

0κ0 (xizi + iψiγi)

(2.26)

Note how this expression does not involve any time derivative of the bosonic auxiliary variables yi

and zi, and how the latter are coupled to dynamical bosonic coordinates ui and xi, respectively.
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2.3 Equations of Motion

Using the above Lagrange function the Euler-Lagrange equations of the system are:

2mǫij ẍj −mκ0k
2
0 ǫij zj − qB u̇i = 0

1

2
müi −mβ0ω

2
0 yi + qB ǫij ẋj = 0

−mβ0ω
2
0 ui −mω2

0 yi = 0

−mκ0k
2
0 xi −mk2

0 zi = 0

−imκ0k
2
0 ǫij γj − 2im ǫij ψ̇j + iqB µi = 0

−imβ0ω
2
0 λi − 1

2
im µ̇i − iqB ǫij ψj = 0

imβ0ω
2
0 µi − imω2

0 λ̇i = 0

imκ0k
2
0 ψi − imk2

0 γ̇i = 0

(2.27)

As was pointed out earlier, the auxiliary bosonic degrees of freedom zi and yi are redundant
being proportional to xi and ui respectively:

yi = −β0 ui , zi = −κ0 xi (2.28)

This is how harmonic potential contributions arise for xi and ui. The last two equations of motion
also show that the time evolution of the auxiliary fermionic degrees of freedom is specified by
that of their associated fermionic non-auxiliary variables. Given this observation, we find the
following independent set of equations of motion:

2mǫij ẍj +mκ2
0k

2
0 ǫij xj − qB u̇i = 0

m

2
üi +mβ2

0ω
2
0 ui + qB ǫij ẋj = 0

2mǫij ψ̈j +mκ2
0k

2
0 ǫij ψj − qB µ̇i = 0

m

2
µ̈i +mβ2

0ω
2
0 µi + qB ǫij ψ̇j = 0

(2.29)

Note the symmetry between the bosonic and fermionic sets of equations. These may be solved,
leading to the following solutions for the bosonic degrees of freedom:

xi(t) = i
m

2qBω1

(

2β2
0ω

2
0 − ω2

1

)

ǫij

(

Aj e
−iω1t −A∗

j e
+iω1t

)

+
(

Bi e
−iω2t +B∗

i e
+iω2t

)

ui(t) =
(

Ai e
−iω1t +A∗

i e
+iω1t

)

+ i
2m

qBω2

(

1

2
κ2

0k
2
0 − ω2

2

)

ǫij

(

Bj e
−iω2t −B∗

j e
+iω2t

)

(2.30)

with the following definitions of angular frequencies:

ω1 =
1

2

(

ω+ − ω−
)

ω2 =
1

2

(

ω+ + ω−

)

ω+ =

√

(

Bq

m

)2

+
1

2
(κ0 k0 + 2β0 ω0)2

ω− =

√

(

Bq

m

)2

+
1

2
(κ0 k0 − 2β0 ω0)2

(2.31)
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while Ai and Bi are arbitrary complex Grassmann even integration constants. It is useful to
note the following identity (no summation on i):

m

2qBωi

(

2ω2 − ω2
i

)

=
qBωi

2m

(

k2

2
− ω2

i

)−1

(2.32)

The fermionic solutions have the same form as the bosonic ones, but the corresponding complex
integration constants Gi and Hi are of course rather now Grassmann odd quantities:

ψi(t) = i
m

2qBω1

(

2β2
0ω

2
0 − ω2

1

)

ǫij

(

Gj e
−iω1t −G∗

j e
+iω1t

)

+
(

Hi e
−iω2t +H∗

i e
+iω2t

)

µi(t) =
(

Gi e
−iω1t +G∗

i e
+iω1t

)

+ i
2m

qBω2

(

1

2
κ2

0k
2
0 − ω2

2

)

ǫij

(

Hj e
−iω2t −H∗

j e
+iω2t

)

(2.33)
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Chapter 3

Hamiltonian Formulation

On the road towards the quantization of the system, we now have to move from the Lagrangian
formalism to the Hamiltonian one. The classical description of the system will not be anymore
in terms of positions and velocities, but rather in terms of the momentum phase space variables,
that is the configuration space coordinates and their conjugate momenta, treated as independent
variables. This is nothing new, but here we are in actual fact also dealing with a constrained
system, that is, the momentum phase space variables are not all independent (think for instance
to the bosonic auxiliary degrees of freedom). We have chosen to handle this particular feature
using Dirac’s constraints analysis to be described briefly. Then, we will study the rotational and
supersymmetrical invariances of the system to compute the associated Noether charges.

3.1 Conjugate Momenta

To each degree of freedom of the supercoordinates, we associate a conjugate momentum:

xi : pi =
∂L

∂ẋi
= 2mẋi +

q

2
B0ǫijuj

ui : πi =
∂L

∂u̇i
=

1

2
mu̇i +

q

2
B0ǫijxj

zi : ζi =
∂L

∂żi
= 0 yi : ϕi =

∂L

∂ẏi
= 0

ψi : χi =
∂L

∂ψ̇i

= −imψi µi : τi =
∂L

∂µ̇i
= − i

4
mµi

γi : ξi =
∂L

∂γ̇i

= − i

2
mk2

0γi λi : ηi =
∂L

∂λ̇i

= − i

2
mω2

0λi

From this, we see that the system is singular, in the sense that there is no one-to-one correspon-
dence between the velocity phase space and the momentum phase space. In mathematical terms,
this is encoded in the fact that the Hessian of the Lagrangian has a vanishing determinant:

det
[ ∂2L

∂q̇i ∂q̇j

]

= det
[∂pj

∂q̇i

]

= 0 (3.1)

where qi denotes the coordinates of the system, and pi their associated conjugate momenta. In
such cases, the Lagrangian is said to be irregular. This means that the velocities of the system
cannot all be uniquely determined from the momenta and vice-versa, so that we need to take
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into account the existence of the constraints originating from (3.1):

Mi = ζi , M′
i = ϕi

Fi = χi + imψi , F ′
i = τi +

i

4
mµi

Ti = ξi +
i

2
mk2

0γi , T ′
i = ηi +

i

2
mω2

0λi

(3.2)

These restrictions on the phase space dynamics are referred to as primary constraints in the
sense that they follow from the definitions of the conjugate momenta. Let us delay the discussion
of the constraints until the next Section, and define the canonical Hamiltonian:

H0 ≡ ẋipi + u̇iπi + ψ̇iχi + µ̇iτi + ẏiϕi + żiζi + λ̇iηi + γ̇iξi − L (3.3)

Using the relations (3.1), we get:

H0 =
1

4m

(

pi − q

2
B0ǫijuj

)2

+
1

m

(

πi − q

2
B0ǫijxj

)2

− iqB0ǫijψiµj − 1

2
mω2

0y
2
i − 1

2
mk2

0z
2
i

− mω2
0β0 (uiyi + iµiλi) −mk2

0κ0 (xizi + iψiγi)

(3.4)

From this Hamiltonian, the dynamic of the system is specified through the use of the Grassmann
graded Poisson brackets. For two arbitrary momentum phase space functions F and G of
respective Grassmann parity ǫF and ǫG, their Poisson bracket is denoted as

{

F,G
}

and is
defined by:

{

F,G
}

=
∑

a

(−1)ǫa ǫF

(

∂F

∂qa

∂G

∂pa
− (−1)ǫa

∂F

∂pa

∂G

∂qa

)

(3.5)

where the index a labels all momentum phase space variables (qa, pa) while ǫa denotes their
Grassmann parity. The time evolution of any momentum phase space quantity f(t, qa, pa) is
then given by:

d

dt
f =

∂

∂t
f +

{

f,H0
}

(3.6)

3.2 Dirac’s Constraints Analysis

As pointed to before, since we work with an irregular Lagrangian, the complete momentum
phase space has to be restricted to a surface specified by a collection of constraints

φr(qa, pa) = 0 , r = 1, ...,m (3.7)

A possible approach to handle such constraints is to solve them explicitly and then work with
independent degrees of freedom. However, this way of proceeding leads in general to intricate
calculations and often turns to hide the covariance of the system under some of its symmetries.
Therefore, here we will follow Dirac’s analysis of constraints that is exposed for instance in [15]
or [16]. Here we will only sketch the main ideas of this formalism without addressing all the
general details, by restricting the discussion to the situation which is encountered in our system.
The following considerations require the constraints to be locally independent and regular, that
is, the matrix ∂φr

∂zi has to be finite and of maximal rank, even when the constraints are imposed.

The starting point is to generalize the time evolution generator of the system by extending the
Hamiltonian to include a linear combination of the primary constraints φr:

H = H0 +
∑

r

ur(t, qa, pa)φr(qa, pa) (3.8)
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where the ur’s are would-be Lagrange multiplier functions of the momentum phase space and
of time, and of the same Grassmann parity ǫr as their corresponding constraints. Note that the
properties of the ur’s under complex conjugation have to be chosen such that H is real. This
generalization is motivated by the fact that, on the constraint surface of the momentum phase
space, H coincides with the canonical Hamiltonian. H and H0 are said to be weakly equal:

H ≈ H0 (3.9)

which means that the equality holds after the constraints have been imposed. Therefore, there
is no obvious reason why we should not consider H as generating the time evolution of the
system:

d

dt
f =

∂

∂t
f +

{

f,H
}

≈ ∂

∂t
f +

{

f,H0
}

+
∑

r

(−1)ǫf ǫr ur

{

f, φr

}

(3.10)

However, for the description of the system to be consistent, the time evolution of the constraints
themselves has to vanish so that they hold at any time:

0 = φ̇r ≈ {

φr,H0
}

+
∑

s

(−1)ǫf ǫs us

{

φr, φs

}

(3.11)

If these equations are not trivial, they either give some conditions on the Lagrange multipliers,
or give rise to new constraints, called secondary constraints. The latter should then also be
introduced in the generalized Hamiltonian, and the consistency check has to be reiterated.
Repeating the operation until no new constraints appear, one ends up with a possibly larger set of
constraints, still denoted as φr. A constraint is said to be second-class if its Poisson bracket with
at least one other constraint does not vanish on the constraint surface, and first-class otherwise.
Second-class constraints correspond to redundant degrees of freedom in the system description.
The case which implies to the system considered in this work is when all constraints we end
up with are second-class. All would-be Lagrange multipliers are then completely determined
by the consistency equations. This being done, the Hamiltonian H generates a consistent time
evolution of the system inside the constraint surface. However, from a practical point of view,
we still have to deal with constraints. A convenient way to avoid this has been introduced by
Dirac through the definition of the Dirac brackets:

{f, g}D ≡ {f, g} −
∑

r,r′

{f, φr}Crr′ {φr′ , g} (3.12)

with

Crr′ ≡
(

{φr, φr′}
)−1

(3.13)

It can be shown that by using Dirac brackets instead of Poisson brackets allows to solve the
second-class constraints to extract the independent degrees of freedom of the system and work
with a restricted momentum phase space inside the constraint surface, thus “forgetting” about
the constraints altogether.

Let us now apply the previous discussion to our system. We can first check that the set of primary
constraints (3.2) is irreducible and that they all are regular. Then, we define the generalized
Hamiltonian as follows:

H =
1

4m

(

pi − q

2
B0ǫijuj

)2

+
1

m

(

πi − q

2
B0ǫijxj

)2

− iqB0ǫijψiµj − 1

2
mω2

0y
2
i − 1

2
mk2

0z
2
i

− mω2
0β0 (uiyi + iµiλi) −mk2

0κ0 (xizi + iψiγi)

+ UiMi + U ′
iM′

i + ΦiFi + Φ′
iF ′

i + ΞiTi + Ξ′
iT ′

i

(3.14)
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where Ui and U ′
i are Grassmann even would-be Lagrange multipliers and Φi, Φ′

i, Ξi and Ξ′
i

Grassmann odd would-be Lagrange multipliers, according to the Grassmann parity of their
associated constraints. Requiring the consistency conditions under time evolution allows to
determine some of the would-be Lagrange multipliers:

Φi = −ǫij
qB

2m
µj − i

κ0

m
ξi

Φ′
i = −ǫij

2qB

m
ψj − i4

β0

m
ηi

Ξi = i
κ0

m
χi

Ξ′
i = i

4β0

m
τi

(3.15)

while also leading to the following additional or secondary constraints:

Ni = yi + β0ui , N ′
i = zi + κ0xi (3.16)

Introducing two new Grassmann even would-be Lagrange multipliers Vi and V ′
i, these secondary

constraints are included in the generalized Hamiltonian through the following term:

ViNi + V ′
iN ′

i (3.17)

Reiterating the requirement of the consistency conditions, one finds:

Ui = ǫij
qBκ0

4m
uj − κ0

2m
pi

U ′
i = ǫij

qBβ0

m
xj − 2β0

m
πi

Vi = 0

V ′
i = 0

(3.18)

The reiteration process thus terminates since we do not have any new constraint; all would-be
Lagrange multipliers have been determined. Again, we can check that the set of all primary
and secondary constraints is irreducible and that they are regular. The constraints are also
all second-class, since otherwise some Lagrange multipliers would have left arbitrary. We can
therefore reduce the redundant degrees of freedom, and compute the relevant Dirac brackets to
carry on the analysis of our system taking only the independent degrees of freedom into account.
We end up with 8 bosonic and 8 fermionic degrees of freedom. The non vanishing Dirac brackets
of the variables spanning the restricted phase space are given by:

{xi, pj}D = δij , {ui, πj}D = δij

{ψi, ψj}
D

= − i

2m
δij , {µi, µj}

D
= −2i

m
δij

{λi, λj}
D

= − i

mω2
0

δij , {γi, γj}
D

= − i

mk2
0

δij

(3.19)

which, for the quantized system, leads to a Heisenberg algebra for the bosonic degrees of freedom,
and a (non normalized) Clifford algebra for the fermionic ones. In the following, since we will
only use Dirac brackets, we will omit the D subscript. The Hamiltonian of the system reduced
to the constraint surface is given by:

H =
1

4m

(

pi − qB

2
ǫijuj

)2

+
1

m

(

πi − qB

2
ǫijxj

)2

− iqBǫijψiµj

+
1

2
mκ2

0k
2
0 x

2
i +

1

2
mβ2

0ω
2
0 u

2
i − imκ0k

2
0 ψiγi − imβ0ω

2
0 µiλi

(3.20)
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As expected, we now see explicitly the positive definite harmonic potentials for the bosonic
variables xi and ui.

3.3 Symmetries

We will now identify the Noether charges associated to the continuous symmetries of the system.
We consider a symmetry transformation parametrized by Grassmann even or odd parameters
ǫa. The fact it is a symmetry of the system means that the action has to transform at most
by a surface term (in time), that is, the Lagrangian is changed by a total time derivative. In
infinitesimal form, the transformation is then expressed as:

t → t+ ǫa χ
a

qn → qn + ǫa φ
a
n

L → L+ ǫa
d

dt
Ga

(3.21)

Because it is a symmetry transformation, it is associated to conserved quantities, the Noether
charges, given by: [16]

Qa = Ga − χa L−
∑

n

(φa
n − χa q̇n)

∂L

∂q̇n
(3.22)

These Noether charges are the generators of the symmetry transformation since, acting on a
phase space variable through the Dirac brackets, the Qa’s precisely generate the previous trans-
formation. Furthermore under Dirac brackets, the Noether charges also obey the Lie algebra of
their symmetry group, possibly including a central extension. Notice that, in this Section, the
study of each symmetry is initiated from the Lagrangian point of view – inclusived of the re-
dundant degrees of freedom – to finally identify the Noether charges on the reduced momentum
phase space.

3.3.1 Rotational invariance

By construction, the system is invariant under SO(2) rotations in the plane. There is a unique
Grassmann even parameter ǫR for these transformations which, in infinitesimal form, are given
by:

δxi = ǫR ǫij xj , δui = ǫR ǫij uj

δψi = ǫR ǫij ψj , δµi = ǫR ǫij µj

δzi = ǫR ǫij zj , δyi = ǫR ǫij yj

δγi = ǫR ǫij γj , δλi = ǫR ǫij λj

(3.23)

The time coordinate is not affected, and the Lagrangian remains unmodified. Given the general
formula (3.22), and using the constraints of the previous Sections, the angular momentum,
namely the generator of rotations, acquires the following expression in terms of the reduced
momentum phase space variables:

LNoether = ǫij xi pj + ǫij ui πj − imǫij ψi ψj − i

4
mǫij µi µj − i

2
mω2

0ǫij λi λj − i

2
mk2

0ǫij γi γj (3.24)

As a cross check, one may explicitly verify that LNoether indeed generates the transformations
(3.23) while it is also a conserved quantity as it should:

{

H, LNoether

}

= 0 (3.25)
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3.3.2 Supersymmetry invariance

According to (2.15), under a supersymmetry transformation a superfield Fi transforms as:

Fi → Fi − i ǫQ QFi (3.26)

where ǫQ is a Grassmann odd parameter. This gives, for the bosonic and fermionic coordinates
of the system:

δxi = ǫQ ψi , δui = ǫQ µi

δψi = ǫQ (i ẋi) , δµi = ǫQ (i u̇i)

δzi = ǫQ (−γ̇i) , δyi = ǫQ (−λ̇i)

δγi = ǫQ (−i zi) , δλi = ǫQ (−i yi)

(3.27)

As noted in Subsection (2.1.4), by construction the action is invariant under a supersymmetry
transformation, however up to a surface term. As was explained, if we define L = L1 + θL2, the
transformation of the Lagrangian is given by:

δǫQ
L = ǫQ

(

− d

dt
L1

)

(3.28)

Given (2.23), one finds:

L1 = −mẋi ψi − 1

4
mu̇i µi +

qB

2
ǫij (xi µj + ui ψj)

+
1

2
mω2

0 yi λi +
1

2
mk2

0 zi γi +mω2
0β0 ui λi +mk2

0κ0 xi γi

(3.29)

Using (3.22), the Noether charge associated to the invariance of the system under supersymmetry
transformations is then given by:

QNoether = −L1 − ψi
∂L

∂ẋi
− µi

∂L

∂u̇i
−mẋi ψi − 1

4
mu̇i µi +

1

2
mω2

0 yi λi +
1

2
mk2

0 zi γi (3.30)

Substituting the expression of L1 and using the Hamiltonian constraints, we finally establish:

QNoether = −pi ψi − πi µi −mβ0ω
2
0 ui λi −mκ0k

2
0 xi γi − qB

2
ǫij ui ψj − qB

2
ǫij xi µj (3.31)

Again, one may verify that QNoether generates the supersymmetric transformations (3.27). We
also have the following Dirac brackets:

{

H, QNoether

}

= 0
{

L, QNoether

}

= 0
{

QNoether, QNoether

}

= −2iH

(3.32)

Notice that, for “historical reasons”, we will use −QNoether in the following, instead of the
previous definition (3.31).
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Chapter 4

Quantization

We now promote each degree of freedom to an operator acting on a Hilbert space to be defined.
Following the canonical quantization procedure, we define the (anti-)commutation relations as
(i~) times the Dirac bracket of the classical quantities:

[

x̂i, p̂j

]

= i~ δij I ,
[

ûi, π̂j

]

= i~ δij I

{

ψ̂i, ψ̂j

}

= ~

2m
δij I ,

{

µ̂i, µ̂j

}

= 2~
m
δij I

{

λ̂i, λ̂j

}

= ~

mω2
0

δij I ,
{

γ̂i, γ̂j

}

= ~

mk2
0

δij I

(4.1)

where i, j = 1, 2 and all the operators are their own hermitian conjugate. Let us recall the
expression of the Hamiltonian, the angular momentum and the supersymmetric Noether charge
operators:

Ĥ =
1

4m

(

p̂i − qB

2
ǫijûj

)2

+
1

m

(

π̂i − qB

2
ǫijx̂j

)2

− iqBǫijψ̂iµ̂j

+
1

2
mκ2

0k
2
0 x̂

2
i +

1

2
mβ2

0ω
2
0 û

2
i − imκ0k

2
0 ψ̂iγ̂i − imβ0ω

2
0 µ̂iλ̂i

L̂ = ǫij x̂i p̂j + ǫij ûi π̂j − imǫij ψ̂i ψ̂j − i

4
mǫij µ̂i µ̂j − i

2
mω2

0ǫij λ̂i λ̂j − i

2
mk2

0ǫij γ̂i γ̂j

Q̂ = p̂i ψ̂i + π̂i µ̂i +mβ0ω
2
0 ûi λ̂i +mκ0k

2
0 x̂i γ̂i +

qB

2
ǫij ûi ψ̂j +

qB

2
ǫij x̂i µ̂j

(4.2)

In the following, we will omit the hat used to distinguish an operator from the corresponding
classical quantity.

4.1 Hamiltonian

First, we should note that the bosonic and fermionic sectors of the Hamiltonian are decoupled
from each other. Furthermore, using the fact that ǫij = −ǫji and that (ǫij)

2 = 1 (no summation
on i and j), we can write the Hamiltonian as follows:

H = 1
m

(

πi − qB
2 ǫijxj

)2
+ 1

4m

(

ǫij pj + qB
2 ui

)2
− iqB µi (ǫijψj)

+ 1
2mβ

2
0ω

2
0 u

2
i + 1

2mκ
2
0k

2
0 (ǫijxj)2 − imκ0k

2
0 (ǫijψj) (ǫikγk) − imβ0ω

2
0 µiλi

≡ H1 +H2

(4.3)

with H1 involving only the the bosonic operators u1, π1, x2, p2 and the fermionic operators µ1,
λ1, ψ2, γ2 ; and H2 involving only u2, π2, x1, p1 and µ2, λ2, ψ1, γ1. This splitting corresponds
to the two chiral sectors and will prove to be useful in the following.
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4.1.1 Bosonic sector

Let us first focus on the bosonic sector of the Hamiltonian. Since we are dealing with a quadratic
Hamiltonian, we would like to follow the usual procedure of constructing annihilation and cre-
ation Fock algebra operators. We could use the solutions to the equations of motion in order
to guess the form of those operators, which has been done, but it appears not to be a useful
technique. The expressions become quickly highly intricate, especially when expressing and di-
agonalizing the supersymmetry Noether charge operator. Furthermore, that way of proceeding
tends to hide the reason why such complicated expressions arise in this system in contrast with
the Landau problems with or without a harmonic potential that have been discussed in [7] and
[8]. As we will see, the subtlety is due to the two different frequencies ω0 and k0 appearing in
the two harmonic potentials.

Before rushing into the calculation, it is useful and inspiring to take some time to motivate
the general idea behind our following construction of Fock algebra operators. Suppose we have
found a convenient set of such operators ai, a

†
i for i = 1, ..., 4. They have to fulfil the following

conditions:
[

ai, a
†
j

]

= δij I

[

ai, aj

]

=
[

a
†
i , a

†
j

]

= 0

Hb =
∑

i

Ωia
†
iai + C

(4.4)

where C is a constant, and Hb is the bosonic part of the Hamiltonian. In order to avoid to deal
with too complicated equations, we will not diagonalize directly the Hamiltonian, but rather
relax the third condition. We will thus proceed in two steps, corresponding to two successive
linear combinations of the bosonic degrees of freedom:

1. impose the commutation relations and a Hamiltonian expression of the form

Hb =
∑

ij

Mij α
†
iαj + C (4.5)

2. finalize the diagonalization of the Hamiltonian.

First change of variables

To get further insight into the form of such operators, let us write them in the following form:

αi = Ai + iBi

α
†
i = Ai − iBi

(4.6)

with Ai and Bi being hermitian operators. We then have (no summation over i):

[

αi, α
†
i

]

= −2i
[

Ai, Bi

]

(4.7)

Now, let us see what these basic considerations imply for the construction of the Fock operators.
From those concerning the commutator of αi and α†

i , we get that (no summation on i)

[

Ai, Bi

]

=
i

2
I, (4.8)

which in turn implies that α†
iαi = A2

i + B2
i (no summation on i). From the third condition in

(4.4), because the kinetic energy terms of our Hamiltonian couple ui to ǫij pj (respectively, πi

to ǫij xj), we get that they both need to appear in the expression of at least one of the Ai’s or
Bi’s, say in Ak for the sake of the argument. In order for (4.8) to hold, Bk has to involve πi or
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ǫij xj (respectively, ui or ǫij pj). This leads us to the conclusion that we will need the following
more general form for the Fock algebra operators:

αi = Aui + F (ǫij pj) + i (Cπi + D (ǫij xj))

α
†
i = Aui + F (ǫij pj) − i (Cπi + D (ǫij xj))

βi = A′ui + F ′ (ǫij pj) + i
(

C ′πi + D′ (ǫij xj)
)

β
†
i = A′ui + F ′ (ǫij pj) − i

(

C ′ πi + D′ (ǫij xj)
)

(4.9)

with A, F , C and D being real constant parameters. We should notice that the fact that H1

and H2 have the same form justifies the equality of the coefficients for i = 1, 2. We have the
following inverse relations:

ui =
F ′
(

α
†
i + αi

)

− F
(

β
†
i + βi

)

2AF ′ − 2FA′

πi =
i
(

D′
(

α
†
i − αi

)

+ D
(

βi − β
†
i

))

2CD′ − 2DC ′

xi = −i ǫij

(

C ′
(

αj − α
†
j

)

+ C
(

β
†
j − βj

))

2CD′ − 2DC ′

pi = −ǫij
A
(

β
†
j + βj

)

− A′
(

α
†
j + αj

)

2AF ′ − 2FA′

(4.10)

Imposing the commutation relations of (4.4), we get the following system of six equations:

2~(AC + FD) = 1 = 2~
(

A′C ′ − F ′D′)

~
(

CA′ − AC ′ − DF ′ + FD′) = 0 = ~
(

CA′ + AC ′ − DF ′ − FD′)

~
(−CA′ − AC ′ + DF ′ + FD′) = 0 = ~

(−CA′ + AC ′ + DF ′ − FD′)

(4.11)

Amongst the solutions of that system, we will pick out the ones corresponding to F and C ′

equal to zero and A = 1
2C~

, A′ = − D
2C~D′ and F ′ = − 1

2~D′ , leaving three free parameters.
Substituting these expressions in the Hamiltonian, and imposing the coefficients of the terms
αiαj and α

†
iα

†
j to vanish according to (4.5), we get the following system:

~
2q2B2C4 − 4~2qB C3D~

2 + 4~2C2D2 + 8m2β2
0ω

2
0~

2C4 − 4 = 0

−q2B2C2 − 4 qB CD + 4~2C2D′4 − 2m2κ2
0k

2
0 C

2 − 4D2 = 0

−~
2 qB C3D′2 + qB C + 2~2C2DD′2 + 2D = 0

(4.12)

Solving it gives the following unique solution for the values of the parameters, up to some global
signs:

A =
1√
2

√

mβ0ω0ω+

~ (k0κ0 + 2β0ω0)
, A′ = − Bq

4
√

k0m~κ0ω+

(k0κ0 − 2β0ω0)
√

(k0κ0 + 2β0ω0)

C =
1√
2

√

k0κ0 + 2β0ω0

m~β0ω0ω+
, F ′ = − 1

2

√

k0κ0 + 2β0ω0

k0m~κ0ω+

D =
Bq

2
√

2
√
m~ω+

(k0κ0 − 2β0ω0)
√

β0ω0 (k0κ0 + 2β0ω0)
, D′ =

√

k0mκ0ω+

~ (k0κ0 + 2β0ω0)
(4.13)
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where ω+ is defined as in (2.31). Substituting these values and the combinations (4.10) in the
Hamiltonian, we obtain the expression:

Hb =

(

2~β0ω0ω+

k0κ0 + 2β0ω0

)

α
†
i αi +

(

~k0κ0ω+

k0κ0 + 2β0ω0

)

β
†
i βi

−
(√

2Bq~
√
k0β0κ0ω0

m (k0κ0 + 2β0ω0)

)

(

α
†
i βi + β

†
i αi

)

+ ~ω+

(4.14)

As expected, we have the right commutators:

[

αi, α
†
j

]

= δij I =
[

βi, β
†
j

]

, (4.15)

the remaining ones all being equal to zero.

Final diagonalization

We may now apply a second change of variables to remove the remaining non-diagonal terms in
the Hamiltonian. It is straightforward to check that the previous commutation relations do not
change under the following change of variables:

ai =
1√
2

(

√

1 − ξ αi −
√

1 + ξ βi

)

bi =
1√
2

(

√

1 + ξ αi +
√

1 − ξ βi

)

a
†
i =

1√
2

(

√

1 − ξ α
†
i −

√

1 + ξ β
†
i

)

b
†
i =

1√
2

(

√

1 + ξ α
†
i +

√

1 − ξ β
†
i

)

(4.16)

where ξ is a real parameter such that ξ2 < 1. We then have:

[

ai, a
†
j

]

= δij I =
[

bi, b
†
j

]

(4.17)

with the other commutators all being zero. The inverse transformations are given by:

αi =
1√
2

(

√

1 − ξ ai +
√

ξ + 1 bi

)

βi =
1√
2

(

√

1 − ξ bi −
√

ξ + 1 ai

)

α
†
i =

1√
2

(

√

1 − ξ a
†
i +

√

ξ + 1 b†
i

)

β
†
i =

1√
2

(

√

1 − ξ b
†
i −

√

ξ + 1 a†
i

)

(4.18)

If we now substitute these expressions in the Hamiltonian and require the non-diagonal terms
to vanish, we get a specific value for ξ given by:

ξ = s
(κ0 k0 − 2β0 ω0) ω+

(κ0 k0 + 2β0 ω0) ω−
(4.19)

with s = Sign(qB). Note that it is readily checked that this solution for ξ does indeed meet
the condition ξ2 < 1. The expressions (4.18) finally lead to the following diagonal bosonic
Hamiltonian:

Hb = ~Ω+ a
†
i ai + ~Ω− b

†
i bi + ~ω+ (4.20)
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with

Ω+ =
1

2
(ω+ + s ω−)

Ω− =
1

2
(ω+ − s ω−)

(4.21)

It is interesting to compare our system to the one studied in [8], that is, a supersymmetric
extension of a system of one charged particle constrained to move in a plane, subjected to a
constant, homogeneous and perpendicular magnetic field, and confined in a harmonic potential.
Naively, one could have expected that our system would be equivalent to two copies of that
simpler one. However, this is only true in the specific case where the two frequencies ω0 and k0

of the harmonic potentials are related as follows:

κ0 k0 = 2β0 ω0 (4.22)

In this case, many of the previous expressions simplify so that we recover the results found in
[8]. The reason why our general system exhibits a richer structure is that the center of mass
xi of the system and the relative position ui of the particles are coupled by the magnetic field
while they are subjected to different harmonic potentials.

4.1.2 Fermionic sector

We will now focus on the fermionic sector of the Hamiltonian. Again, rushing into the diag-
onalization without any further considerations leads to complicated expressions hiding some
characteristic properties of the system. Instead, we will use the supersymmetry of the system
to guess the convenient linear combination that diagonalizes the fermionic Hamiltonian. Let us
first rescale the fermionic degrees of freedom:

ψ′
i =

√

4m
~
ψi , µ′

i =
√

m
~
µi

λ′
i =

√

2mω2
0

~
λi , γ′

i =
√

2mk2
0

~
γi

(4.23)

ψ
′†
i = ψ′

i , µ
′†
i = µ′

i , λ
′†
i = λ′

i , γ
′†
i = γi (4.24)

so that the anti-commutation relations give a SO(8) Clifford algebra:

{

ψ′
i, ψ

′
j

}

= 2 δij I =
{

µ′
i, µ

′
j

}

{

λ′
i, λ

′
j

}

= 2 δij I =
{

γ′
i, γ

′
j

}

(4.25)

The fermionic part of the Hamiltonian now reads as:

Hf = − i~

4m

[√
2m

(

κ0 k0

(

ǫij ψ
′
j

) (

ǫij γ
′
j

)

+ 2β0 ω0 µ
′
i λ

′
i

)

− 2 qB
(

ǫij ψ
′
j

)

µ′
i

]

(4.26)

27



Since we will need it in this Section, it is useful to compute the charge Q in terms of the new
bosonic operators:

Q =
s qB~β0ω0 Ω+

2m
√

s β0 ω0ω−ω+ (2β0 ω0 Ω+ − κ0 k0 Ω−)

(

ai

(

ǫij ψ
′
j

)

+ a
†
i

(

ǫij ψ
′
j

))

− s qB~β0ω0 Ω−

2m
√

s β0 ω0ω−ω+ (κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

bi

(

ǫij ψ
′
j

)

+ b
†
i

(

ǫij ψ
′
j

))

− i s qB ~κ0k0 Ω+

2
√

2m
√

s κ0 k0ω−ω+ (κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

ai µ
′
i − a

†
i µ

′
i

)

− i s qB ~κ0k0 Ω−

2
√

2m
√

s κ0 k0ω−ω+ (2β0 ω0 Ω+ − κ0 k0 Ω−)

(

bi µ
′
i − b

†
i µ

′
i

)

+
~

2
√

2

√

s β0 ω0

ω+ ω−
(2β0 ω0 Ω+ − κ0 k0 Ω−)

(

ai λ
′
i + a

†
i λ

′
i

)

+
~

2
√

2

√

s β0 ω0

ω+ ω−
(κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

bi λ
′
i + b

†
i λ

′
i

)

+
i~

4

√

s κ0 k0

ω+ ω−
(κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

ai

(

ǫij γ
′
j

)

− a
†
i

(

ǫij γ
′
j

))

− i~

4

√

s κ0 k0

ω+ ω−
(2β0 ω0 Ω+ − κ0 k0 Ω−)

(

bi

(

ǫij γ
′
j

)

− b
†
i

(

ǫij γ
′
j

))

(4.27)

The point that should be stressed here is that each term involves the product of one bosonic and
one fermionic operator which, in particular, commute. This form suggests that the commutator
of Q with a bosonic operator is a purely fermionic operator, made of a linear combination of
the fermionic degrees of freedom. This will indeed turn to be the right way to diagonalize the
fermionic Hamiltonian. We therefore introduce the following operators:

Γi =
[

Q, ai

]

= − s qB~β0ω0 Ω+

2m
√

s β0 ω0ω−ω+ (2β0 ω0 Ω+ − κ0 k0 Ω−)

(

ǫij ψ
′
j

)

− i s qB ~κ0k0 Ω+

2
√

2m
√

s κ0 k0ω−ω+ (κ0 k0 Ω+ − 2β0 ω0 Ω−)
µ′

i

− ~

2
√

2

√

s β0 ω0

ω+ ω−
(2β0 ω0 Ω+ − κ0 k0 Ω−) λ′

i

+
i~

4

√

s κ0 k0

ω+ ω−
(κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

ǫij γ
′
j

)

(4.28)

Γ†
i = −[Q, a†

i

]

= − s qB~β0ω0 Ω+

2m
√

s β0 ω0ω−ω+ (2β0 ω0 Ω+ − κ0 k0 Ω−)

(

ǫij ψ
′
j

)

+
i s qB ~κ0k0 Ω+

2
√

2m
√

s κ0 k0ω−ω+ (κ0 k0 Ω+ − 2β0 ω0 Ω−)
µ′

i

− ~

2
√

2

√

s β0 ω0

ω+ ω−
(2β0 ω0 Ω+ − κ0 k0 Ω−) λ′

i

− i~

4

√

s κ0 k0

ω+ ω−
(κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

ǫij γ
′
j

)

(4.29)
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Λi =
[

Q, bi

]

= − s qB~β0ω0 Ω−

2m
√

s β0 ω0ω−ω+ (κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

ǫij ψ
′
j

)

− i s qB ~κ0k0 Ω−

2
√

2m
√

s κ0 k0ω−ω+ (2β0 ω0 Ω+ − κ0 k0 Ω−)
µ′

i

− ~

2
√

2

√

s β0 ω0

ω+ ω−
(κ0 k0 Ω+ − 2β0 ω0 Ω−) λ′

i

− i~

4

√

s κ0 k0

ω+ ω−
(2β0 ω0 Ω+ − κ0 k0 Ω−)

(

ǫij γ
′
j

)

(4.30)

Λ†
i = −[Q, b†

i

]

= − s qB~β0ω0 Ω−

2m
√

s β0 ω0ω−ω+ (κ0 k0 Ω+ − 2β0 ω0 Ω−)

(

ǫij ψ
′
j

)

+
i s qB ~κ0k0 Ω−

2
√

2m
√

s κ0 k0ω−ω+ (2β0 ω0 Ω+ − κ0 k0 Ω−)
µ′

i

− ~

2
√

2

√

s β0 ω0

ω+ ω−
(κ0 k0 Ω+ − 2β0 ω0 Ω−) λ′

i

+
i~

4

√

s κ0 k0

ω+ ω−
(2β0 ω0 Ω+ − κ0 k0 Ω−)

(

ǫij γ
′
j

)

(4.31)

The key point that will save us a fair amount of work is that these fermionic operators still
commute with the bosonic degrees of freedom:

[

Γ
(†)
i , aj

]

= 0 =
[

Γ
(†)
i , bj

]

[

Γ
(†)
i , a

†
j

]

= 0 =
[

Γ
(†)
i , b

†
j

]

[

Λ
(†)
i , aj

]

= 0 =
[

Λ
(†)
i , bj

]

[

Λ
(†)
i , a

†
j

]

= 0 =
[

Λ
(†)
i , b

†
j

]

(4.32)

These relations allow us to compute the anticommutation relations of the Γ’s and Λ’s in an
abstract way. Using the Jacobi identity, we have that:

{

Γi,Γj

}

=
{

Γi,
[

Q, aj

]

}

=
{

Q,
[

aj ,Γi

]

}

−
[

aj,
{

Γi, Q
}

]

= −
[

aj ,
{

Γi, Q
}

]

(4.33)

We also have that:
{

Q,Γi

}

=
{

Q,
[

Q, ai

]

}

= Q2ai −QaiQ+QaiQ− aiQ
2

= ~
[

H,ai

]

= −~
2 Ω+ ai

(4.34)
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where we used the fact that Q2 = ~H. This implies that
{

Γi,Γj

}

= 0. In a similar way, we have
that:

{

Γ†
i ,Γ

†
j

}

=
{

Γi,−
[

Q, a
†
j

]

}

=
{

Q,
[

a
†
j,Γi

]

}

−
[

a
†
j ,
{

Γi, Q
}

]

= −
[

a
†
j ,
{

Γi, Q
}

]

{

Q,Γ†
i

}

=
{

Q,−[Q, a†
i

]

}

= −Q2a
†
i +Qa

†
iQ−Qa

†
iQ+ a

†
iQ

2

= −~
[

H,a
†
i

]

= −~
2 Ω+ a

†
i

(4.35)

so that, again,
{

Γ†
i ,Γ

†
j

}

= 0. Finally, in a similar way, we have:

{

Γi,Γ
†
j

}

= −
{

Γi,
[

Q, a
†
j

]

}

=
[

a
†
j ,
{

Γi, Q
}

]

−
{

Q,
[

a
†
j ,Γi

]

}

=
[

a
†
j ,−~

2Ω+ai

]

= ~
2Ω+ δij I

(4.36)

The same argument applies to the Λ’s to get the same anticommutation relations provided Ω+

is replaced by Ω−. It is now convenient to normalize the fermionic operators:

Γ′
i = 1

~

√
Ω+

Γi , Γ†
i

′ = 1

~

√
Ω+

Γ†
i

Λ′
i = 1

~

√
Ω−

Λi , Λ†
i

′ = 1

~

√
Ω−

Λ†
i

(4.37)

so that we get:
{

Γ′
i,Γ

†
j

′} = δij I =
{

Λ′
i,Λ

†
j

′} (4.38)

while all other anticommutation relations not being given here are understood to be identically
vanishing. It is now rather straightforward to check that:

Q = −~
√

Ω+ ai Γ†
i

′ − ~
√

Ω+ a
†
i Γ′

i − ~
√

Ω− bi Λ†
i

′ − ~
√

Ω− b
†
i Λ′

i (4.39)

In order to establish how the Hamiltonian is expressed in terms of these new operators, we will
use the fact that Q2 = ~H instead of directly substituting the expressions (4.28-4.31) in the
Hamiltonian. Using the anticommutation of the non conjugated fermionic variables, we have:

H =
1

~
Q2

=
∑

i

[

~Ω+

(

aia
†
i Γ†

i
′Γ′

i + a
†
iai Γ′

iΓ
†
i

′
)

+ ~Ω−

(

bib
†
i Λ†

i
′Λ′

i + b
†
ibi Λ′

iΛ
†
i

′
)

]

= ~Ω+

(

a
†
iai + Γ†

i
′ Γ′

i

)

+ ~Ω−

(

b
†
i bi + Λ†

i
′ Λ′

i

)

(4.40)

It is worth noticing that, as may be expected for a supersymmetric Hamiltonian, the latter
does not contain any constant term. Indeed, the ones that come from the (anti)commutation
relations of the fermionic and bosonic Fock operators in the bosonic and fermionic parts of the
Hamiltonian cancel each other.
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4.2 Angular Momentum

As may be seen from (4.2), the angular momentum operator mixes the two chiral sectors that
were held decoupled in the Hamiltonian. It is therefore natural that a last change of variable
that mixes them is needed to diagonalize the operator L. Let us introduce the following chiral
Fock algebra operators:

a± =
1√
2

(a1 ∓ i a2) , a
†
± =

1√
2

(

a
†
1 ± i a

†
2

)

b± =
1√
2

(b1 ∓ i b2) , b
†
± =

1√
2

(

b
†
1 ± i b

†
2

)

(4.41)

Γ± =
1√
2

(

Γ′
1 ∓ iΓ′

2

)

, Γ†
± =

1√
2

(

Γ†
1

′ ± iΓ†
2

′
)

Λ± =
1√
2

(

Λ′
1 ∓ iΛ′

2

)

, Λ†
± =

1√
2

(

Λ†
1

′ ± iΛ†
2

′
)

(4.42)

such that:
[

a±, a
†
±

]

= I =
[

b±, b
†
±

]

[

a±, a
†
∓

]

= 0 =
[

b±, b
†
∓

]

{

Γ±,Γ
†
±

}

= I =
{

Λ±,Λ
†
±

}

{

Γ±,Γ
†
∓

}

= 0 =
{

Λ±,Λ
†
∓

}

(4.43)

We have the following inverse transformations:

a1 =
1√
2

(a− + a+) , a
†
1 =

1√
2

(

a
†
− + a

†
+

)

a2 =
i√
2

(a+ − a−) , a
†
2 = − i√

2

(

a
†
+ − a

†
−

)

b1 =
1√
2

(b− + b+) , b
†
1 =

1√
2

(

b
†
− + b

†
+

)

b2 =
i√
2

(b+ − b−) , b
†
2 = − i√

2

(

b
†
+ − b

†
−

)

(4.44)

Γ′
1 =

1√
2

(Γ− + Γ+) , Γ†
1

′ =
1√
2

(

Γ†
− + Γ†

+

)

Γ′
2 =

i√
2

(Γ+ − Γ−) , Γ†
2

′ = − i√
2

(

Γ†
+ − Γ†

−

)

Λ′
1 =

1√
2

(Λ− + Λ+) , Λ†
1

′ =
1√
2

(

Λ†
− + Λ†

+

)

Λ′
2 =

i√
2

(Λ+ − Λ−) , Λ†
2

′ = − i√
2

(

Λ†
+ − Λ†

−

)

(4.45)

In terms of these transformations, on may check that the angular momentum operator L is
diagonalized:

L = ~

(

a
†
+ a+ − a

†
− a− + b

†
+ b+ − b

†
− b− + Γ†

+ Γ+ − Γ†
− Γ− + Λ†

+ Λ+ − Λ†
− Λ−

)

(4.46)

31



while the form of the operators H and Q remains unchanged:

H = ~Ω+

(

a
†
+ a+ + a

†
− a−

)

+ ~Ω−

(

b
†
+ b+ + b

†
− b−

)

+ ~Ω+

(

Γ†
+ Γ+ + Γ†

− Γ−

)

+ ~Ω−

(

Λ†
+ Λ+ + Λ†

− Λ−

)

Q = − ~
√

Ω+

(

a+ Γ†
+ + a

†
+ Γ+ + a− Γ†

− + a
†
− Γ−

)

− ~
√

Ω−

(

b+ Λ†
+ + b

†
+ Λ+ + b− Λ†

− + b
†
− Λ−

)

(4.47)

4.3 Symmetry Transformations

To close this chapter, it is instructive to look at the symmetry transformations of the bosonic
and fermionic chiral Fock algebra operators under H, Q, and L. The first thing to note is that
the classical invariance of the system under the associated symmetries still holds at the quantum
level. The three operators indeed commute with each other:

[

H,Q
]

= 0,
[

H,L
]

= 0,
[

L,Q
]

= 0 (4.48)

4.3.1 Time invariance

For the Hamiltonian, which generates time translations, we have:

[

H,a+
]

= −~Ω+ a+ ,
[

H,a
†
+

]

= ~Ω+ a
†
+

[

H,a−

]

= −~Ω+ a− ,
[

H,a
†
−

]

= ~Ω+ a
†
−

[

H, b+
]

= −~Ω− b+ ,
[

H, b
†
+

]

= ~Ω− b
†
+

[

H, b−
]

= −~Ω− b− ,
[

H, b
†
−

]

= ~Ω− b
†
−

[

H,Γ+
]

= −~Ω+ Γ+ ,
[

H,Γ†
+

]

= ~Ω+ Γ†
+

[

H,Γ−
]

= −~Ω+ Γ− ,
[

H,Γ†
−

]

= ~Ω+ Γ†
−

[

H,Λ+
]

= −~Ω− Λ+ ,
[

H,Λ†
+

]

= ~Ω− Λ†
+

[

H,Λ−
]

= −~Ω− Λ− ,
[

H,Λ†
−

]

= ~Ω− Λ†
−

(4.49)

which shows that the operators a†
+, a†

−, Γ†
+ and Γ†

− create a quantum of energy ~Ω+ while their
hermitian conjugates annihilate one. For the b’s and Λ’s operators, the associated quantum of
energy is obviously ~Ω−. It is worth noticing the equality between the bosonic and fermionic
quanta of energy, which is a feature implied by the supersymmetry of the system.

4.3.2 Supersymmetry invariance

A supersymmetry transformation transforms a bosonic degree of freedom into a fermionic one
and vice-versa. The following relations show that the a±’s and the Γ±’s, and the b±’s and
the Λ±’s form respective doublet representations of the supersymmetry algebra since they are
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transformed into each other:

[

Q, a+
]

= ~
√

Ω+ Γ+ ,
[

Q, a
†
+

]

= −~
√

Ω+ Γ†
+

{

Q,Γ+
}

= −~
√

Ω+ a+ ,
{

Q,Γ†
+

}

= −~
√

Ω+ a
†
+

[

Q, a−
]

= ~
√

Ω+ Γ− ,
[

Q, a
†
−

]

= −~
√

Ω+ Γ†
−

{

Q,Γ−

}

= −~
√

Ω+ a− ,
{

Q,Γ†
−

}

= −~
√

Ω+ a
†
−

[

Q, b+
]

= ~
√

Ω− Λ+ ,
[

Q, b
†
+

]

= −~
√

Ω− Λ†
+

{

Q,Λ+
}

= −~
√

Ω− b+ ,
{

Q,Λ†
+

}

= −~
√

Ω− b
†
+

[

Q, b−

]

= ~
√

Ω− Λ− ,
[

Q, b
†
−

]

= −~
√

Ω− Λ†
−

{

Q,Λ−
}

= −~
√

Ω− b− ,
{

Q,Λ†
−

}

= −~
√

Ω− b
†
−

(4.50)

4.3.3 Rotational invariance

Finally, here is the action of the operator L on the degrees of freedom:

[

L, a+

]

= −~ a+ ,
[

L, a
†
+

]

= ~ a
†
+

[

L, a−
]

= ~ a− ,
[

L, a
†
−

]

= −~ a
†
−

[

L, b+
]

= −~ b+ ,
[

L, b
†
+

]

= ~ b
†
+

[

L, b−
]

= ~ b− ,
[

L, b
†
−

]

= −~ b
†
−

[

L,Γ+
]

= −~Γ+ ,
[

L,Γ†
+

]

= ~Γ†
+

[

L,Γ−
]

= ~Γ− ,
[

L,Γ†
−

]

= −~Γ†
−

[

L,Λ+
]

= −~Λ+ ,
[

L,Λ†
+

]

= ~Λ†
+

[

L,Λ−

]

= ~Λ− ,
[

L,Λ†
−

]

= −~Λ†
−

(4.51)

This shows that each creation operator subscripted with a “+” (respectively, “−”) creates a unit
+~ (respectively, “−~”) of angular momentum. In order to prevent any confusion, it should be
emphasised that the ± subscript of the operators refers to their angular momentum eigenvalues
±~, not to their energy eigenvalues ~Ω±.

By an appropriate use of the supersymmetry of the system, we have so far introduced some
convenient bosonic and fermionic Fock algebra operators so that the Hamiltonian and the angular
momentum operators are both diagonal. We are now prepared to work out the representation
of the quantum system, and proceed to the diagonalization of the supercharge Q, which is the
aim of the next Chapter.
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Chapter 5

Representation and Supercharge
Diagonalization

In the previous Chapter, we have constructed convenient creation and annihilation operators
which span bosonic or fermionic Fock algebras, and diagonalize the Hamiltonian of the system.
To complete the description of the quantum system, we now have to find a representation of these
operators. We therefore have to construct the Hilbert space of the physical states, and associate
to each operator a linear transformation on that space, such that the (anti)commutation relations
hold. We will then be able to determine the energy spectrum, as well as the spectrum of the
operators L and Q.

5.1 Bosonic Fock Space

A usual representation of the bosonic Fock algebra is given by considering the space of physical
bosonic states Hb as being the bosonic Fock space that will be defined in the following. That
space is constructed from the so called vacuum state, denoted by | Ωb 〉, having the following
properties:

〈 Ωb | Ωb 〉 = 1 ,

a± | Ωb 〉 = 0 = b± | Ωb 〉.
(5.1)

The other (orthonormalized) bosonic Fock states are constructed from that vacuum as follows:

|Na+
, Na−

, Nb+
, Nb−

〉 =
1

√

Na+
!Na−

!Nb+
!Nb−

!

(

a
†
+

)Na+
(

a
†
−

)Na
−

(

b
†
+

)Nb+
(

b
†
−

)Nb
− | Ωb 〉 ,

(5.2)

〈Na+
, Na−

, Nb+
, Nb−

|Ma+
,Ma−

,Mb+
,Mb−

〉 = δNa+
,Ma+

δNa
−

,Ma
−

δNb+
,Mb+

δNb
−

,Mb
−

.

(5.3)
These states form a complete orthonormal basis of the infinite dimensional bosonic Fock space,
so that we have:

Hb = Span
〈 {|Na+

, Na−
, Nb+

, Nb−
〉}

Na+
,Na

−
,Nb+

,Nb
−

= 0,1,2,...

〉

,

Ib =
∞
∑

Na+
,Na

−
,Nb+

,Nb
−

=0

|Na+
, Na−

, Nb+
, Nb−

〉〈Na+
, Na−

, Nb+
, Nb−

| ,
(5.4)

where Ib is the identity operator on Hb. It is then straightforward to determine how the bosonic
components of the operators H and L act on the bosonic Fock states. As mentioned before, the
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latter are eigenstates of the Hamiltonian:

Hb |Na+
, Na−

, Nb+
, Nb−

〉 = Eb

(

Na+
, Na−

, Nb+
, Nb−

) |Na+
, Na−

, Nb+
, Nb−

〉 ,
Eb

(

Na+
, Na−

, Nb+
, Nb−

)

=
(

Na+
+Na−

)

~Ω+ +
(

Nb+
+Nb−

)

~Ω− ,
(5.5)

as well as of the angular momentum operator:

Lb |Na+
, Na−

, Nb+
, Nb−

〉 = ~
(

Na+
−Na−

+Nb+
−Nb−

) |Na+
, Na−

, Nb+
, Nb−

〉 . (5.6)

5.2 Fermionic Fock Space

Because fermionic operators obey anticommutation relations in contradistinction to commu-
tation relations, their representation is easily constructed from the Pauli matrices σi. Let us
define

σ± =
1

2
(σ1 ± σ2) (5.7)

that act on R
2. Denoting

(

1
0

)

and

(

0
1

)

respectively by | + 〉 and | − 〉, we have:

σ+ | + 〉 = 0 σ+ | − 〉 = | + 〉
σ− | − 〉 = 0 σ− | + 〉 = | − 〉

(5.8)

We will then consider the Hilbert space Hf of physical fermionic states as being the 24 = 16
dimensional tensor product of four copies of the Hilbert space spanned by | + 〉 and | − 〉:

Hf = Span
〈 {| sΓ+

, sΓ−
, sΛ+

, sΛ−
〉}

sΓ+
,sΓ

−
,sΛ+

,sΛ
−

∈ {+,−}

〉

If =
∑

sΓ+
,sΓ

−
,sΛ+

,sΛ
−

∈{+,−}

| sΓ+
, sΓ−

, sΛ+
, sΛ−

〉〈 sΓ+
, sΓ−

, sΛ+
, sΛ−

| (5.9)

where If is the identity operator on Hf . The states are orthonormal | sΓ+
, sΓ−

, sΛ+
, sΛ−

〉, so
that:

〈 sΓ+
, sΓ−

, sΛ+
, sΛ−

| tΓ+
, tΓ−

, tΛ+
, tΛ−

〉 = δsΓ+
,tΓ+

δsΓ
−

,tΓ
−

δsΛ+
,tΛ+

δsΛ
−

,tΛ
−

(5.10)

We finally associate to the fermionic operators the following tensor products of the σ± and σ3

matrices:

Γ+ = σ− ⊗ I ⊗ I ⊗ I Γ†
+ = σ+ ⊗ I ⊗ I ⊗ I

Γ− = σ3 ⊗ σ− ⊗ I ⊗ I Γ†
− = σ3 ⊗ σ+ ⊗ I ⊗ I

Λ+ = σ3 ⊗ σ3 ⊗ σ− ⊗ I Λ†
+ = σ3 ⊗ σ3 ⊗ σ+ ⊗ I

Λ− = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ− Λ†
− = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ+

(5.11)

This provides a representation of the (complex) SO(8) Clifford algebra. Note that the presence
of the σ3 matrices ensure the anticommutativity of the fermionic operators. Once again, the
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fermionic states are eigenstates of the fermionic Hamiltonian:

Hf | −,−,−,− 〉 = 0

Hf | +,−,−,− 〉 = ~Ω+| +,−,−,− 〉 Hf | −,+,−,− 〉 = ~Ω+| −,+,−,− 〉
Hf | −,−,+,− 〉 = ~Ω−| −,−,+,− 〉 Hf | −,−,−,+ 〉 = ~Ω−| −,−,−,+ 〉
Hf | +,+,−,− 〉 = 2~Ω+| +,+,−,− 〉 Hf | −,−,+,+ 〉 = 2~Ω−| −,−,+,+ 〉
Hf | −,+,+,− 〉 = ~ (Ω+ + Ω−) | −,+,+,− 〉 Hf | +,−,−,+ 〉 = ~ (Ω+ + Ω−) | +,−,−,+ 〉
Hf | +,−,+,− 〉 = ~ (Ω+ + Ω−) | +,−,+,− 〉 Hf | −,+,−,+ 〉 = ~ (Ω+ + Ω−) | −,+,−,+ 〉
Hf | +,+,+,− 〉 = ~ (2Ω+ + Ω−) | +,+,+,− 〉 Hf | +,+,−,+ 〉 = ~ (2Ω+ + Ω−) | +,+,−,+ 〉
Hf | −,+,+,+ 〉 = ~ (Ω+ + 2Ω−) | −,+,+,+ 〉 Hf | +,−,+,+ 〉 = ~ (Ω+ + 2Ω−) | +,−,+,+ 〉
Hf | +,+,+,+ 〉 = 2~ (Ω+ + Ω−) | +,+,+,+ 〉

(5.12)
This is also the case for the fermionic part Lf of the angular momentum:

Lf | −,+,−,+ 〉 = −2~| −,+,−,+ 〉
Lf | −,+,−,− 〉 = −~| −,+,−,− 〉 Lf | −,−,−,+ 〉 = −~| −,−,−,+ 〉
Lf | +,+,−,+ 〉 = −~| +,+,−,+ 〉 Lf | −,+,+,+ 〉 = −~| −,+,+,+ 〉
Lf | −,−,−,− 〉 = 0 Lf | +,+,−,− 〉 = 0

Lf | −,+,+,− 〉 = 0 Lf | +,−,−,+ 〉 = 0

Lf | −,−,+,+ 〉 = 0 Lf | +,+,+,+ 〉 = 0

Lf | +,−,−,− 〉 = ~| +,−,−,− 〉 Lf | −,−,+,− 〉 = ~| −,−,+,− 〉
Lf | +,+,+,− 〉 = ~| +,+,+,− 〉 Lf | +,−,+,+ 〉 = ~| +,−,+,+ 〉
Lf | +,−,+,− 〉 = 2~| +,−,+,− 〉

(5.13)

5.3 Energy Spectrum and Degeneracies

The construction of the representation of the whole system is now straightforward if we consider
the tensor product of the representations of the bosonic and fermionic sectors. We therefore get:

H = Hb ⊗ Hf

Ib =
∞
∑

Na+
,Na

−
,Nb+

,Nb
−

=0

∑

sΓ+
,sΓ

−
,sΛ+

,sΛ
−

∈{+,−}

∗

|Na+
, Na−

, Nb+
, Nb−

; sΓ+
, sΓ−

, sΛ+
, sΛ−

〉〈Na+
, Na−

, Nb+
, Nb−

; sΓ+
, sΓ−

, sΛ+
, sΛ−

|
(5.14)

Using the eigenvalues listed in the two previous Sections, we can group these basis states accord-
ing to their energy, and determine the degeneracy of the Hamiltonian eigenvalues. The latter
are specified by two natural numbers, N+, N− ≥ 0, corresponding to the number of quanta of
energy ~Ω+ and ~Ω− respectively:

E (N+, N−) = N+ ~Ω+ +N− ~Ω− (5.15)

In order to classify the energy eigenstates, it is convenient to divide them into different sectors,
according to their values of N+ and N−.
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5.3.1 Ground state

As mentioned before, the manifest supersymmetry of the system leads to a zero energy for the
ground state:

| Ω 〉 = | 0, 0, 0, 0 ; −,−,−,− 〉 (5.16)

Note that this state is not degenerate, as it should since supersymmetry is not spontaneously
broken in this system.

5.3.2 N+ ≥ 1 and N− = 0 energy states

The eigenstates of the Hamiltonian with an eigenvalue equal to N+ ~Ω+ with N+ ≥ 1 can be
specified in terms of two parameters. The first one, a natural number n+, is related to the
occupancy number of the operator a†

−. The second one, S, is related to the spin configuration
of the state. Let us define:

|N+ , 0 ; 1 〉+ ≡ |N+ , 0 , 0 , 0 ; −,−,−,− 〉
|N+ , 0 ; 2 〉+ ≡ |N+ − 1 , 0 , 0 , 0 ; +,−,−,− 〉

|N+ , N+ ; 1 〉+ ≡ | 0 , N+ , 0 , 0 ; −,−,−,− 〉
|N+ , N+ ; 2 〉+ ≡ | 0 , N+ − 1 , 0 , 0 ; −,+,−,− 〉

(5.17)

and, for 1 ≤ n+ ≤ N+ − 1:

|N+ , n+ ; 1 〉+ ≡ |N+ − n+ , n+ , 0 , 0 ; −,−,−,− 〉
|N+ , n+ ; 2 〉+ ≡ |N+ − n+ , n+ − 1 , 0 , 0 ; −,+,−,− 〉
|N+ , n+ ; 3 〉+ ≡ |N+ − n+ − 1 , n+ , 0 , 0 ; +,−,−,− 〉
|N+ , n+ ; 4 〉+ ≡ |N+ − n+ − 1 , n+ − 1 , 0 , 0 ; +,+,−,− 〉

(5.18)

For the sake of clarity, we define:

|N+ , 0 ; 3 〉+ ≡ |N+ , N+ ; 1 〉+

|N+ , 0 ; 4 〉+ ≡ |N+ , N+ ; 2 〉+

(5.19)

so that an eigenstate of eigenvalue N+ ~Ω+ can be generically written as:

|N+ , n+ ; S 〉+ , 0 ≤ n+ ≤ N+ − 1 , s = 1, 2, 3, 4 (5.20)

The degeneracy of this energy level is therefore equal to 4N+. As angular momentum operator
eigenstates, the eigenvalues of the states |N+ , n+ , s 〉 are given by:

L |N+ , 0 ; 1 〉+ = ~N+ |N+ , 0 ; 1 〉+

L |N+ , 0 ; 2 〉+ = ~N+ |N+ , 0 ; 2 〉+

L |N+ , 0 ; 3 〉+ = −~N+ |N+ , 0 ; 3 〉+

L |N+ , 0 ; 4 〉+ = −~N+ |N+ , 0 ; 4 〉+

L |N+ , n+ ; 1 〉+ = ~(N+ − 2n+) |N+ , n+ ; 1 〉+

L |N+ , n+ ; 2 〉+ = ~(N+ − 2n+) |N+ , n+ ; 2 〉+

L |N+ , n+ ; 3 〉+ = ~(N+ − 2n+) |N+ , n+ ; 3 〉+

L |N+ , n+ ; 4 〉+ = ~(N+ − 2n+) |N+ , n+ ; 4 〉+

(5.21)
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5.3.3 N− ≥ 1 and N+ = 0 energy states

The results of this Section are very similar to those of the previous one. The eigenstates of energy
N− ~Ω− with N− ≥ 1 are specified by a natural number n−, related to the occupancy number
associated to the operator b†

−, and by a number S related to the spinor degrees of freedom:

|N− , n− ; S 〉− , 0 ≤ n− ≤ N− − 1 , s = 1, 2, 3, 4 (5.22)

with, similarly to the previous section:

|N− , 0 ; 1 〉− = | 0 , 0 , N− , 0 ; −,−,−,− 〉
|N− , 0 ; 2 〉− = | 0 , 0 , N− − 1 , 0 ; −,−,+,− 〉
|N− , 0 ; 3 〉− = | 0 , 0 , 0 , N− ; −,−,−,− 〉
|N− , 0 ; 4 〉− = | 0 , 0 , 0 , N− − 1 ; −,−,−,+ 〉

(5.23)

and, for 1 ≤ n− ≤ N− − 1:

|N− , n− ; 1 〉− = | 0 , 0 , N− − n− , n− ; −,−,−,− 〉
|N− , n− ; 2 〉− = | 0 , 0 , N− − n− , n− − 1 ; −,−,−,+ 〉
|N− , n− ; 3 〉− = | 0 , 0 , N− − n− − 1 , n− ; −,−,+,− 〉
|N− , n− ; 4 〉− = | 0 , 0 , N− − n− − 1 , n− − 1 ; −,−,+,+ 〉

(5.24)

The degeneracy of the N− ~Ω− energy level is therefore equal to 4N−. Again, we can list the
eigenvalues of the states corresponding to the angular momentum operator:

L |N− , 0 ; 1 〉− = ~N− |N− , 0 ; 1 〉−

L |N− , 0 ; 2 〉− = ~N− |N− , 0 ; 2 〉−

L |N− , 0 ; 3 〉− = −~N− |N− , 0 ; 3 〉−

L |N− , 0 ; 4 〉− = −~N− |N− , 0 ; 4 〉−

L |N− , n− ; 1 〉− = ~(N− − 2n−) |N− , n− ; 1 〉−

L |N− , n− ; 2 〉− = ~(N− − 2n−) |N− , n− ; 2 〉−

L |N− , n− ; 3 〉− = ~(N− − 2n−) |N− , n− ; 3 〉−

L |N− , n− ; 4 〉− = ~(N− − 2n−) |N− , n− ; 4 〉−

(5.25)

5.3.4 N+ ≥ 1 and N− ≥ 1 energy states

It finally remains to describe the states of energy (N+ ~Ω+ +N− ~Ω−) with N+, N− ≥ 1. Each
of these corresponds to the combination of one state of each of the two sectors described in the
two previous Sections. Therefore, they are specified by two natural numbers n+ and n− and by
a number S with the same physical interpretation as before:

|N+ , n+ , N− , n− ; S 〉 , 0 ≤ n+, n− ≤ N− − 1 , s = 1, 2, ..., 16 (5.26)

The list of the exact definition of these states can be found in Appendix A. The degeneracy
of this energy level is equal to 16 (N+N−). Finally, we can again list the angular momentum
operator eigenvalues:
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L |N+ , 0 , N− , 0 ; S 〉 = ~(N+ +N−) |N+ , 0 , N− , 0 ; S 〉 s = 1, 2, 3, 4

L |N+ , 0 , N− , 0 ; S 〉 = ~(N+ −N−) |N+ , 0 , N− , 0 ; S 〉 s = 5, 6, 7, 8

L |N+ , 0 , N− , 0 ; S 〉 = ~(N− −N+) |N+ , 0 , N− , 0 ; S 〉 s = 9, 10, 11, 12

L |N+ , 0 , N− , 0 ; S 〉 = −~(N+ +N−) |N+ , 0 , N− , 0 ; S 〉 s = 13, 14, 15, 16

L |N+ , n+ , N− , 0 ; S 〉 = ~(N+ +N− − 2n+) |N+ , n+ , N− , 0 ; S 〉
for s = 1, ..., 8

L |N+ , n+ , N− , 0 ; S 〉 = ~(N+ −N− − 2n+) |N+ , n+ , N− , 0 ; S 〉
for s = 9, ..., 16

L |N+ , 0 , N− , n− ; S 〉 = ~(N+ +N− − 2n−) |N+ , 0 , N− , n− ; S 〉
for s = 1, ..., 8

L |N+ , 0 , N− , n− ; S 〉 = ~(N− −N+ − 2n−) |N+ , 0 , N− , n− ; S 〉
for s = 9, ..., 16

L |N+ , n+ , N− , n− ; S 〉 = ~(N+ +N− − 2(n− + n+)) |N+ , n+ , N− , n− ; S 〉
for s = 1, ..., 16

(5.27)

5.4 Supercharge Diagonalization

As was noted earlier, the three operators H, L and Q commute amongst themselves, so that it
is possible to find a basis of the space of states which diagonalizes the three operators at the
same time. For now on, we have found how to diagonalize two of them, it remains to work
on the diagonalization of the supercharge Q. In order to distinguish the new states from the
previous ones, we will use the superscript Q: | ... 〉Q. The Tables in this Section aim to sum
up the different states and their eigenvalues corresponding to H, L and Q. As in the previous
Sections, we will work sector by sector.

5.4.1 Ground state

The ground state is annihilated by the supercharge, so we have for its eigenvalues:

H L Q

| Ω 〉 0 0 0
(5.28)

It therefore forms a trivial representation of the N = 1 supersymmetry.

5.4.2 N+ ≥ 1 and N− = 0 energy states

Let us recall that, since H, L and Q commute, the Q eigenstates will be built from linear
combinations of states having the same energy and angular momentum. As shown by (5.21), we
therefore have to diagonalize two 2-by-2 matrices, and one 4-by-4 matrix, so that we obtain at
the end:
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|N+ , 0 ; 1 〉Q
+ ≡ 1√

2

(

|N+ , 0 ; 1 〉+ + |N+ , 0 ; 2 〉+

)

|N+ , 0 ; 2 〉Q
+ ≡ 1√

2

(

|N+ , 0 ; 1 〉+ − |N+ , 0 ; 2 〉+

)

|N+ , 0 ; 3 〉Q
+ ≡ 1√

2

(

|N+ , 0 ; 3 〉+ − |N+ , 0 ; 4 〉+

)

|N+ , 0 ; 4 〉Q
+ ≡ 1√

2

(

|N+ , 0 ; 3 〉+ + |N+ , 0 ; 4 〉+

)

(5.29)

|N+ , n+ ; 1 〉Q
+ ≡ −

√

n+

2N+

|N+ , n+ ; 1 〉+ +
1√
2

|N+ , n+ ; 2 〉+ +

√

1

2

(

1 − n+

N+

)

|N+ , n+ ; 4 〉+

|N+ , n+ ; 2 〉Q
+ ≡ −

√

n+

2N+

|N+ , n+ ; 1 〉+ − 1√
2

|N+ , n+ ; 2 〉+ +

√

1

2

(

1 − n+

N+

)

|N+ , n+ ; 4 〉+

|N+ , n+ ; 3 〉Q
+ ≡

√

1

2

(

1 − n+

N+

)

|N+ , n+ ; 1 〉+ +
1√
2

|N+ , n+ ; 3 〉+ +

√

n+

2N+

|N+ , n+ ; 4 〉+

|N+ , n+ ; 4 〉Q
+ ≡

√

1

2

(

1 − n+

N+

)

|N+ , n+ ; 1 〉+ +
1√
2

|N+ , n+ ; 3 〉+ −
√

n+

2N+

|N+ , n+ ; 4 〉+

(5.30)

These states are normalized and orthogonal:

Q
+〈N+ , 0 ; S |M+ , 0 ; T 〉Q

+ = δN+,M+
δS,T (5.31)

They have the following eigenvalues:

H L Q

|N+ , 0 ; 1 〉Q
+ ~N+Ω+ ~N+ −~

√
N+Ω+

|N+ , 0 ; 2 〉Q
+ ~N+Ω+ ~N+ ~

√
N+Ω+

|N+ , 0 ; 3 〉Q
+ ~N+Ω+ −~N+ −~

√
N+Ω+

|N+ , 0 ; 4 〉Q
+ ~N+Ω+ −~N+ ~

√
N+Ω+

|N+ , n+ ; 1 〉Q
+ ~N+Ω+ ~(N+ − 2n+) −~

√
N+Ω+

|N+ , n+ ; 2 〉Q
+ ~N+Ω+ ~(N+ − 2n+) ~

√
N+Ω+

|N+ , n+ ; 3 〉Q
+ ~N+Ω+ ~(N+ − 2n+) −~

√
N+Ω+

|N+ , n+ ; 4 〉Q
+ ~N+Ω+ ~(N+ − 2n+) ~

√
N+Ω+

(5.32)

It is worth noting that, in agreement with the fact that Q2 = ~H, the supercharge of an
eigenstate is equal to ~ times a square root of its energy. Note also that a state is in general not
completely determined by its energy, angular momentum and supercharge. This point will be
discussed later on.
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5.4.3 N− ≥ 1 and N+ = 0 energy states

On this subspace, Q may be diagonalized following exactly the same approach as in the previous
Subsection. We therefore obtain the following states:

|N− , 0 ; 1 〉Q
− ≡ 1√

2

(

|N− , 0 ; 1 〉− + |N− , 0 ; 2 〉−

)

|N− , 0 ; 2 〉Q
− ≡ 1√

2

(

|N− , 0 ; 1 〉− − |N− , 0 ; 2 〉−

)

|N− , 0 ; 3 〉Q
− ≡ 1√

2

(

|N− , 0 ; 3 〉− − |N− , 0 ; 4 〉−

)

|N− , 0 ; 4 〉Q
− ≡ 1√

2

(

|N− , 0 ; 3 〉− + |N− , 0 ; 4 〉−

)

(5.33)

|N
−
, n

−
; 1 〉Q

−

≡ −
√

n
−

2N
−

|N
−
, n

−
; 1 〉

−
+

1√
2

|N
−
, n

−
; 2 〉

−
+

√

1

2

(

1 − n
−

N
−

)

|N
−
, n

−
; 4 〉

−

|N
−
, n

−
; 2 〉Q

−

≡ −
√

n
−

2N
−

|N
−
, n

−
; 1 〉

−
− 1√

2
|N

−
, n

−
; 2 〉

−
+

√

1

2

(

1 − n
−

N
−

)

|N
−
, n

−
; 4 〉

−

|N
−
, n

−
; 3 〉Q

−

≡
√

1

2

(

1 − n
−

N
−

)

|N
−
, n

−
; 1 〉

−
+

1√
2

|N
−
, n

−
; 3 〉

−
+

√

n
−

2N
−

|N
−
, n

−
; 4 〉

−

|N
−
, n

−
; 4 〉Q

−

≡
√

1

2

(

1 − n
−

N
−

)

|N
−
, n

−
; 1 〉

−
+

1√
2

|N
−
, n

−
; 3 〉

−
−
√

n
−

2N
−

|N
−
, n

−
; 4 〉

−

(5.34)

We also have the following eigenvalues:

H L Q

|N− , 0 ; 1 〉Q
− ~N−Ω− ~N− −~

√
N−Ω−

|N− , 0 ; 2 〉Q
− ~N−Ω− ~N− ~

√
N−Ω−

|N− , 0 ; 3 〉Q
− ~N−Ω− −~N− −~

√
N−Ω−

|N− , 0 ; 4 〉Q
− ~N−Ω− −~N− ~

√
N−Ω−

|N− , n− ; 1 〉Q
− ~N−Ω− ~(N− − 2n−) −~

√
N−Ω−

|N− , n− ; 2 〉Q
− ~N−Ω− ~(N− − 2n−) ~

√
N−Ω−

|N− , n− ; 3 〉Q
− ~N−Ω− ~(N− − 2n−) −~

√
N−Ω−

|N− , n− ; 4 〉Q
− ~N−Ω− ~(N− − 2n−) ~

√
N−Ω−

(5.35)

5.4.4 N+ ≥ 1 and N− ≥ 1 energy states

This last subspace is a bit more tricky to diagonalize. As can be seen from (5.27), we indeed
get up to 16-by-16 matrices that lead to cumbersome expressions. Furthermore, we will not
require these expressions in the sequel of this work since we will only be interested in the
previous subspaces. In order to save some paper, we therefore do not give the (known) complete
and exact expressions of |N+ , n+ , N− , n− ; S 〉Q, but their eigenvalues associated to the
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operators H, L and Q may be found in Appendix A. Let us however make the following remark.
As shown by (5.27), for fixed N+, N− ≥ 1, 1 ≤ n+ ≤ N+ −1 and 1 ≤ n− ≤ N− −1, the 16 states
|N+ , n+ , N− , n− ; S 〉 all share the same energy and angular momentum. This will thus
also be true for the alternative basis of states |N+ , n+ , N− , n− ; S 〉Q. Since there are only
two possible supercharges eigenvalues of opposite signs associated to a given energy, there will
be 8 states sharing the same three eigenvalues. This observation hints at one additional global
symmetry of the system at least that would distinguish these states.

5.4.5 Identity operator resolution

Summarizing the results of the previous Sections, we can write the identity resolution in terms
of the considered eigenstates of the operators H, L and Q:

I = | Ω 〉〈 Ω | (5.36)

+
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

|N+, n+, 0, 0 ;S 〉Q
+

Q
+〈N+, n+, 0, 0 ;S | (5.37)

+
∞
∑

N−=1

N+−1
∑

n−=0

4
∑

S=1

| 0, 0, N−, n− ;S 〉Q
−

Q
−〈 0, 0, N−, n− ;S | (5.38)

+
∞
∑

N+,N−=1

N+−1
∑

n+=0

N−−1
∑

n−=0

16
∑

S=1

|N+, n+, N−, n− ;S 〉Q Q〈N+, n+, N−, n− ;S | (5.39)
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Chapter 6

The N = 1 Supersymmetric
Non(anti)commutative Superplane

This Chapter aims to show how noncommutativity may emerge in our system. The general
idea is the same as the one used in [7] or [8] and consists in projecting the whole system onto
a well chosen subspace of its Hilbert space of states. This projection will lead to a deformation
of the operators algebra that, in our case, implies that the system bosonic coordinates do not
commute anymore. In the following Sections, we will consider two such possible projections,
requiring them to be consistent with the supersymmetry of the system. That way, these will
give examples of N = 1 supersymmetric non(anti)commutative superplanes.

Let us first begin by a general consideration about projections that will help us to simplify the
calculations of this Chapter. Let us consider a projection operator P, that is, an operator such
that P

2 = P (and P
† = P). For any operator A, we consider its projection

A = PAP. (6.1)

Since our aim is to determine the algebra that the projected operators obey, we will usually not
be interested in the exact expression of the projected operators, but rather in the expression of
their (anti)commutators. Therefore, it is useful to note that, if an operator A1 commutes with
P, we have, for any other operator A2:

[

A1, A2
]

= PA1PA2P − PA2PA1P

= PA1A2P − PA2A1P = P
[

A1, A2
]

P

(6.2)

Note that this argument holds also for an anticommutator instead of a commutator. We will
shortly see how this result can save us valuable work.

In order to clearly identify the subspaces on which we will project the system, let us recall the
identity operator resolution both in terms of the |N+, n+, N−, n− ;S 〉 and the |N+, n+, N−, n− ;S 〉Q
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eigenstates:

I = | Ω 〉〈 Ω |

+
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

|N+, n+ ;S 〉+ +〈N+, n+ ;S |

+
∞
∑

N−=1

N+−1
∑

n−=0

4
∑

S=1

|N−, n− ;S 〉− −〈N−, n− ;S |

+
∞
∑

N+,N−=1

N+−1
∑

n+=0

N−−1
∑

n−=0

16
∑

S=1

|N+, n+, N−, n− ;S 〉〈N+, n+, N−, n− ;S |

(6.3)

I = | Ω 〉〈 Ω |

+
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

|N+, n+ ;S 〉Q
+

Q
+〈N+, n+ ;S |

+
∞
∑

N−=1

N+−1
∑

n−=0

4
∑

S=1

|N−, n− ;S 〉Q
−

Q
−〈N−, n− ;S |

+
∞
∑

N+,N−=1

N+−1
∑

n+=0

N−−1
∑

n−=0

16
∑

S=1

|N+, n+, N−, n− ;S 〉Q Q〈N+, n+, N−, n− ;S |

(6.4)

6.1 Projection on the N+ Sector

We will first consider the projection operator on the subspace spanned by the eigenstates corre-
sponding to N− = 0 and N+ ≥ 0:

P0 = | Ω 〉〈 Ω |

+
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

|N+, n+ ;S 〉Q
+

Q
+〈N+, n+ ;S |

(6.5)

In this Section, for any operator A, we will define its projection by P0 as:

A = P0AP0. (6.6)

Let us note by H0 the subspace of all projected states. The projections of the operators H, Q
and L are easily obtained since we deal with eigenstates:

H =
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

(

~N+ Ω+

) |N+, n+ ;S 〉Q
+

Q
+〈N+, n+ ;S | (6.7)

Q =
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

(−1)S
~
√

N+ Ω+ |N+, n+ ;S 〉Q
+

Q
+〈N+, n+ ;S | (6.8)

L =
∞
∑

N+=1

4
∑

S=1

(−1)(S−1 mod 2)
~N+|N+ ;S 〉Q

+
Q
+〈N+ ;S |

+
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

~ (N+ − 2n+) |N+, n+ ;S 〉Q
+

Q
+〈N+, n+ ;S |

(6.9)
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These expressions imply that H0 is consistent with the N = 1 supersymmetry of the system
since the supercharge is still the “square root” of the Hamiltonian on the projected subspace:

Q
2

= ~H (6.10)

This could also have been deduced by observing that H, Q and L clearly commute with P0, so
that (6.2) implies (6.10). In the same way, we get:

[

H,Q
]

= 0,
[

H,L
]

= 0,
[

L,Q
]

= 0 (6.11)

For operators that do not admit the states in (6.5) as eigenstates, the calculation of their
projection is a bit more involved. As it may be seen, the projection (6.6) involves many sums,
two of them being infinite. In Mathematica c©, such sums are difficult to deal with. Therefore, for
some operators, it turns out to be more efficient to compute their commutators with P0 and use
the trick mentioned at the beginning of this Chapter instead of calculating the exact expression
of their projection. Furthermore, since the eigenstates |N+, n+, 0, 0 ;S 〉Q are orthonormal, one
may verify that the projector P0 is equivalent to the following one:

P
′
0 = | Ω 〉〈 Ω |

+
∞
∑

N+=1

N+−1
∑

n+=0

4
∑

S=1

|N+, n+ ;S 〉+ +〈N+, n+ ;S |
(6.12)

Again, the use of P′
0 instead of P0 leads to easier computations. Note however that in actual fact,

even though the notation used is different for convenience, P′
0 and P0 are identical projections.

6.1.1 Algebra of the projected chiral Fock algebra operators and invariance
properties

We will now work on the algebra of the projected bosonic and fermionic chiral Fock algebra
operators. Having the previous remarks in mind, we compute the commutators of the operators

a
(†)
± and Γ

(†)
± with the projector, and we find that they identically vanish:

[

P0, a±
]

= 0 =
[

P0,Γ±
]

[

P0, a
†
±

]

= 0 =
[

P0,Γ
†
±

]

(6.13)

This result can be easily understood since these operators create or annihilate a quantum of
energy ~Ω+ and therefore leave H0 invariant, hence the commutation of these operators with

P0. On the contrary, the operators b
(†)
± and Λ

(†)
± create/annihilate a quantum of energy ~Ω−

and therefore map a state of H0 outside of H0. As may therefore be expected, we find:

b+ P0 = P0 b
†
+ = 0 = b− P0 = P0 b

†
− ,

Λ+ P0 = P0 Λ†
+ = 0 = Λ− P0 = P0 Λ†

− ,
(6.14)

so that
b+ = b

†
+ = 0 = Λ+ = Λ

†
+ ,

b− = b
†
− = 0 = Λ− = Λ

†
− .

(6.15)

Therefore, using (6.2), the algebra of the projected operators is given by the following non
vanishing commutators:

[

a+, a
†
+

]

= P0 =
{

Γ+,Γ
†
+

}

,

[

a−, a
†
−

]

= P0 =
{

Γ−,Γ
†
−

}

.
(6.16)
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Using the commutation of H, Q and L with P0, it is straightforward to compute the transfor-
mations induced by H, Q and L on the non vanishing chiral Fock algebra operators: they are
given by the expressions of Section 4.3, the operators being replaced by the projected ones:

[

H, a+
]

= −~Ω+ a+ ,
[

H, a
†
+

]

= ~Ω+ a
†
+

[

H, a−
]

= −~Ω+ a− ,
[

H, a
†
−

]

= ~Ω+ a
†
−

[

H, Γ+
]

= −~Ω+ Γ+ ,
[

H, Γ
†
+

]

= ~Ω+ Γ
†
+

[

H, Γ−
]

= −~Ω+ Γ− ,
[

H, Γ
†
−

]

= ~Ω+ Γ
†
−

(6.17)

[

Q, a+

]

= ~
√

Ω+ Γ+ ,
[

Q, a
†
+

]

= −~
√

Ω+ Γ
†
+

{

Q, Γ+

}

= −~
√

Ω+ a+ ,
{

Q, Γ
†
+

}

= −~
√

Ω+ a
†
+

[

Q, a−

]

= ~
√

Ω+ Γ− ,
[

Q, a
†
−

]

= −~
√

Ω+ Γ
†
−

{

Q, Γ−

}

= −~
√

Ω+ a− ,
{

Q, Γ
†
−

}

= −~
√

Ω+ a
†
−

(6.18)

[

L, a+
]

= −~ a+ ,
[

L, a
†
+

]

= ~ a
†
+

[

L, a−
]

= ~ a− ,
[

L, a
†
−

]

= −~ a
†
−

[

L, Γ+
]

= −~Γ+ ,
[

L, Γ
†
+

]

= ~Γ
†
+

[

L, Γ−
]

= ~Γ− ,
[

L, Γ
†
−

]

= −~Γ
†
−

(6.19)

This shows that, like the whole system, the projected system is still invariant under the N = 1
supersymmetry transformations and the SO(2) rotations in the plane.

6.1.2 Coordinates and momenta commutation relations

It is now time to turn back to the Cartesian bosonic coordinates xi, ui and their conjugated
momenta pi, πi and the fermionic degrees of freedom ψi, µi, λi and γi. Their quantum algebra
(4.1) is supposed to be deformed after the projection of the system by P0. In order to verify
this, we will as before not consider the exact expression of the projection of the coordinates.
Instead, we will directly compute their commutators from the expressions (6.15) and (6.16).
Using the inverses of the linear transformations introduced in Chapter 4, the calculation will be
implemented in Mathematica c© using the following obvious identity:

[

∑

i

ci Ai ,
∑

j

dj Aj

]

=
∑

ij

cidj

[

Ai, Aj

]

(6.20)
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where the Ai’s label the bosonic and fermionic chiral Fock algebra operators. This leads us to
the following expressions:

[

ǫik xk, ǫjl pl

]

=
1

2

(

1 +
k2

0 κ
2
0 − 4β2

0 ω
2
0

2s ω+ω−

)

i~ δij P0

[

ui, πj

]

=
1

2

(

1 − k2
0 κ

2
0 − 4β2

0 ω
2
0

2s ω+ω−

)

i~ δij P0

[

ǫik xk, uj

]

=
s qB

m2ω+ω−
i~ δij P0

[

ǫik pk, πj

]

=
s qB

4m2ω+ω−

(

q2B2 + m2
(

k2
0 κ

2
0 + 4β2

0 ω
2
0

)

)

i~ δij P0

{

ψ1, ψ2

}

=

(

1 +
s

ω+ω−

(

q2B2

m2
+

1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

4m
δij P0

{

µ1, µ2

}

=

(

1 +
s

ω+ω−

(

q2B2

m2
− 1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

m
δij P0

{

λ1, λ2
}

=

(

1 − s

ω+ω−

(

q2B2

m2
+

1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

2mω2
0

δij P0

{

γ1, γ2

}

=

(

1 − s

ω+ω−

(

q2B2

m2
− 1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

2mk2
0

δij P0

{

ǫik ψk, λj

}

=
s qB β0

m2ω+ω−
~ δij P0

{

µi, ǫik γj

}

= − s qB κ0

m2ω+ω−
~ δij P0

(6.21)

As expected, the projected plane becomes noncommutative since the coordinates ǫij xj and ui

do not commute anymore. This result can be understood by noticing that, since the (b
(†)
± ,Λ

(†)
± )

sector is reduced to the null operator by the projection, a dependence appears between ǫijxj

and πi on the one hand, and between ui and ǫijpj on the other hand:

πi =
m2

4qB

(

κ2
0k

2
0 − 4β2

0ω
2
0 − 2s ω+ω−

)

ǫij xj

ǫij pj =
m2

4qB

(

κ2
0k

2
0 − 4β2

0ω
2
0 + 2s ω+ω−

)

ui

(6.22)

Note that this projection gives an example of noncommutativity where not only the coordinates
do not commute, but the momentum operators also. The fermionic algebra is also deformed,
in a consistent way with the N = 1 supersymmetry since the latter still holds on the projected
subspace. Note that the anticommutator between ǫij ψj and λj does not vanish anymore, show-
ing that these projected fermionic degrees of freedom are not independent. The same remark
holds for µi and ǫij γj .

One may check that for the specific case where κ0 k0 = 2β0 ω0, the expressions (6.21) are con-
sistent with the results which have been calculated in [8].

Finally, it is interesting to notice that, if we turn off the harmonic potential confining the center
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of mass of the system, and if we take the massless limit, we get, for the bosonic coordinates:

[

ǫik xk, uj

]

=
m,k0 → 0

s
i~

qB
δij P0 (6.23)

which is consistent with the discussion in [6]. However, this remark should be taken with great
care, since this limit would require a more careful treatment, as is seen for instance in the
fermionic anticommutation relations which become infinite naively in that limit.

6.2 Projection on the N− Sector

In a very similar way as in the previous Section, it is also possible to consider the projection of
the system on the subspace spanned by the eigenstates corresponding to N+ = 0 and N− ≥ 0.
The corresponding projector is given by

P1 = | Ω 〉〈 Ω |

+
∞
∑

N−=1

N−−1
∑

n−=0

4
∑

S=1

|N−, n− ;S 〉Q
−

Q
−〈N−, n− ;S |

(6.24)

and, given an operator A, we will consider its projection

A = P1AP1. (6.25)

As before, we have the following expressions for the projection of the operators H, L and Q:

H =
∞
∑

N−=1

N−−1
∑

n−=0

4
∑

S=1

(

~N− Ω−
) |N−, n− ;S 〉Q

−
Q
−〈N−, n− ;S | (6.26)

Q =
∞
∑

N−=1

N−−1
∑

n−=0

4
∑

S=1

(−1)S
~
√

N− Ω− |N−, n− ;S 〉Q
−

Q
−〈N−, n− ;S | (6.27)

L =
∞
∑

N−=1

4
∑

S=1

(−1)(S−1 mod 2)
~N−|N− ;S 〉Q

−
Q
−〈N− ;S |

+
∞
∑

N−=1

N−−1
∑

n−=0

4
∑

S=1

~ (N− − 2n−) |N−, n− ;S 〉Q
−

Q
−〈N−, n− ;S |

(6.28)

This shows that, again, this subspace is consistent with the N = 1 supersymmetry since

Q
2

= ~H. (6.29)

As for the N+ sector, the three projected operators still commute. The following Subsections
follow exactly the same arguments as in the previous Section, so we will not repeat them.

6.2.1 Algebra of the projected chiral Fock algebra operators and invariance
properties

The results are the same as previously, except that we have to replace the a
(†)
± ’s by the b

(†)
± ’s and

the Γ
(†)
± ’s by the Λ

(†)
± ’s and conversely. This is easily understood since this time, the considered

subspace corresponds to states carrying ~Ω− energy quanta. We therefore have:

[

P1, b±

]

= 0 =
[

P1,Λ±

]

[

P1, b
†
±

]

= 0 =
[

P1,Λ
†
±

]

(6.30)
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and
a+ P1 = P1 a

†
+ = 0 = a− P1 = P1 a

†
−

Γ+ P1 = P1 Γ†
+ = 0 = Γ− P1 = P1 Γ†

−

(6.31)

so that
a+ = a

†
+ = 0 = Γ+ = Γ

†
+

a− = a
†
− = 0 = Γ− = Γ

†
−

(6.32)

This leads us to the following algebra for the non vanishing projected bosonic and fermionic
chiral Fock algebra operators:

[

b+, b
†
+

]

= P1 =
{

Λ+,Λ
†
+

}

[

b−, b
†
−

]

= P1 =
{

Λ−,Λ
†
−

}

,

(6.33)

where it is understood that all the other (anti)commutators are equal to zero. Again, the
expressions for the transformations induced by H, L and Q still hold for the projected operators:

[

H, b+
]

= −~Ω− b+ ,
[

H, b
†
+

]

= ~Ω− b
†
+

[

H, b−
]

= −~Ω− b− ,
[

H, b
†
−

]

= ~Ω− b
†
−

[

H, Λ+
]

= −~Ω− Λ+ ,
[

H, Λ
†
+

]

= ~Ω− Λ
†
+

[

H, Λ−
]

= −~Ω− Λ− ,
[

H, Λ
†
−

]

= ~Ω− Λ
†
−

(6.34)

[

Q, b+
]

= ~
√

Ω− Λ+ ,
[

Q, b
†
+

]

= −~
√

Ω− Λ
†
+

{

Q, Λ+
}

= −~
√

Ω− b+ ,
{

Q, Λ
†
+

}

= −~
√

Ω− b
†
+

[

Q, b−
]

= ~
√

Ω− Λ− ,
[

Q, b
†
−

]

= −~
√

Ω− Λ
†
−

{

Q, Λ−
}

= −~
√

Ω− b− ,
{

Q, Λ
†
−

}

= −~
√

Ω− b
†
−

(6.35)

[

L, b+
]

= −~ b+ ,
[

L, b
†
+

]

= ~ b
†
+

[

L, b−
]

= ~ b− ,
[

L, b
†
−

]

= −~ b
†
−

[

L, Λ+
]

= −~Λ+ ,
[

L, Λ
†
+

]

= ~Λ
†
+

[

L, Λ−
]

= ~Λ− ,
[

L, Λ
†
−

]

= −~Λ
†
−

(6.36)

The projected system is therefore still invariant under the N = 1 supersymmetry and the SO(2)
rotations.

51



6.2.2 Coordinates and momenta commutation relations

Proceeding as in the previous Section, we can compute the commutation relations of the pro-
jected Cartesian bosonic coordinates xi, ui and their conjugated momenta pi, πi and the pro-
jected fermionic degrees of freedom ψi, µi, λi and γi, and find out that their initial quantum
algebra is deformed as follows:

[

ǫik xk, ǫjl pl

]

=
1

2

(

1 − k2
0 κ

2
0 − 4β2

0 ω
2
0

2s ω+ω−

)

i~ δij P1

[

ui, πj

]

=
1

2

(

1 +
k2

0 κ
2
0 − 4β2

0 ω
2
0

2s ω+ω−

)

i~ δij P1

[

ǫik xk, uj

]

= − s qB

m2ω+ω−
i~ δij P1

[

ǫik pk, πj

]

= − s qB

4m2ω+ω−

(

q2B2 + m2
(

k2
0 κ

2
0 + 4β2

0 ω
2
0

)

)

i~ δij P1

{

ψ1, ψ2

}

=

(

1 − s

ω+ω−

(

q2B2

m2
+

1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

4m
δij P1

{

µ1, µ2

}

=

(

1 − s

ω+ω−

(

q2B2

m2
− 1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

m
δij P1

{

λ1, λ2
}

=

(

1 +
s

ω+ω−

(

q2B2

m2
+

1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

2mω2
0

δij P1

{

γ1, γ2

}

=

(

1 +
s

ω+ω−

(

q2B2

m2
− 1

2

(

k2
0 κ

2
0 − 4β2

0 ω
2
0

)

))

~

2mk2
0

δij P1

{

ǫik ψk, λj

}

= − s qB β0

m2ω+ω−
~ δij P1

{

µi, ǫik γj

}

=
s qB κ0

m2ω+ω−
~ δij P1

(6.37)

These commutation relations are very similar to those obtained for the N+ sector, each differing
only by a (not necessary global) sign from its analogue in the N+ sector. As in the latter case,
noncommutativity in the bosonic configuration space coordinates can be understood to result
from a dependence between ui and ǫij pj, and between ǫij xj and πi that is a consequence of the

vanishing projection of the operators a
(†)
± and Γ

(†)
± :

πi =
m2

4qB

(

κ2
0k

2
0 − 4β2

0ω
2
0 + 2s ω+ω−

)

ǫij xj

ǫij pj =
m2

4qB

(

κ2
0k

2
0 − 4β2

0ω
2
0 − 2s ω+ω−

)

ui

(6.38)

In the fermionic sector also, the algebra is rescaled, and there appear new non vanishing an-
ticommutators coming from the dependence between ǫij ψj and λj and between µi and ǫij γj .
Again, this algebra deformation must be consistent with the N = 1 supersymmetry that still
holds in the considered subspace.

This strong similarity between the results of the N+ and N− sectors suggests that it could be
interesting to consider the projection on the subspace spanned by the eigenstates having either
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N+ or N− equal to zero, or both of them. Due to the opposite signs appearing between the
expressions in (6.21) and (6.37), such projection should lead to a more general quantum algebra
deformation. However, in this case, there is no chiral Fock operators that are reduced to the
null operator by the projection, and none of them commute with the projector. Therefore, the
commutators of the projected chiral Fock algebra operators are not simply given by the sum of
the commutators corresponding to the N+ and N− sectors, as may be seen by calculating the
projected commutator of a+ and b†

+. A complete analysis has thus to be carried on.
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Chapter 7

Conclusion and Perspectives

The aim of this work was to construct a N = 1 supersymmetric extension of a generalization
of the Bigatti-Susskind model presented in [6], and to see whether, in a similar fashion as in [7]
and [8], noncommutativity may arise in a consistent way with the supersymmetry of the system.

The first step towards the achievement of this programme was to build a supersymmetric action
for the system. We used the formalism of supermechanics which, by extending the usual time
with by a real Grassmann odd parameter, offers a convenient and rather straightforward way
to construct a N = 1 supersymmetric action. Note however that although it may first appear
to be impossible to include a harmonic potential that way, this issue may be addressed by the
introduction of Grassmann odd auxiliary fields [8]. This has led to add some fermionic degrees of
freedom to the system, as well as redundant bosonic variables. Note also that main calculations
of this work have been carried on using Mathematica c©. This has required the development of
some packages in order to deal with Grassmann odd variables but it also turned to be very
convenient to perform many cross-checks during the calculations.

The Hamiltonian formulation of the system has been described using Dirac’s constraint ana-
lysis formalism. Through the definition and use of Dirac brackets instead of the usual Poisson
brackets, the dynamics of the system could be described in terms of the relevant degrees of
freedom only, “forgetting” about the constraints resulting from the Lagrangian formulation. We
then have identified the Noether charges corresponding to the rotational and supersymmetrical
continuous symmetries of the system and we have found out that the Hamiltonian, the angular
momentum and the supercharge all commute amongst themselves.

In order to proceed to the quantization of the system, the operators have been promoted to
quantum operators such that their (anti)commutation relations are given by the Dirac brackets
of the corresponding classical quantities. It then turned out that the diagonalization of the
Hamiltonian was not as straightforward as it was thought. However, a careful and systematic
approach have led to the introduction of the right Fock algebra operators in the bosonic sector,
enlightening that the complications arise because of the non equality of the harmonic potential
frequencies. The diagonalization of the fermionic part of the Hamiltonian has been conducted
using the supersymmetry of the system. This way of proceeding appeared to be very convenient
to avoid unnecessary calculations. Since it depends only on a few properties of the system –
namely its supersymmetry and the form of the supercharge –, it may be asked to what extent
this technique may be generalized.

The representation of the quantized system was constructed using the usual Fock space in the
bosonic sector, and the Pauli matrices in the fermionic sector. We could then analyse the energy
spectrum of the Hamiltonian and the eigenvalues of the angular momentum and the supercharge.

55



Note that all the results were consistent with the N = 1 supersymmetry of the system. We have
found that the Hamiltonian, the supercharge and the angular momentum operator do not form
a complete set of commuting observables since the specification of their three eigenvalues do not
specify uniquely a state of the basis of states. This observation hints at one additional global
symmetry of the system at least that would distinguish these states. Though this is out of the
scope of this work, there are some reasons to think this question may be linked to the triality
of the SO(8) Clifford algebra of the fermionic operators.

Finally, we have addressed the question of whether noncommutativity may appear in this super-
symmetric system. We have found that indeed, through appropriate projections on subspaces
of the Hilbert space of states, the operators algebra is deformed in such a way that some coor-
dinates become noncommutative. We have worked out two such projections, that have led to
two different examples of N = 1 supersymmetric non(anti)commutative superplanes. It should
be emphasized that in both cases, the projected system is still consistent with supersymmetry,
and is invariant under SO(2) rotations. The algebra of the bosonic sector is deformed in such a
way that ui do not commute anymore with ǫij xj . For the first projection P0, we get:

[

ǫik xk, uj

]

=
s qB

m2ω+ω−
i~ δij P0 (7.1)

and a similar result holds for the second projection. It is instructive to note that this noncom-
mutativity results from the fact that, since some of the Fock algebra operators are reduced to
the null operator by the projection, a dependence appears between ui and ǫij pj , and between
ǫij xj and πi, leading to the non vanishing commutator (7.1). The algebra of the fermionic sec-
tor is also deformed, in a way which must be consistent with supersymmetry. Note that when
turning off the center of mass potential and when considering the massless limit of the system,
the results of the bosonic sector indeed reduce to the ones of the Bigatti-Susskind system [6].
However, such limit should be studied in a more careful way for the fermionic sector.

Inspired by the strong similarities between the results of the two projections, we have tried to
consider the projection on both subspaces at the same time. Some work has been done towards
the answer to this question, but it appeared that the results cannot be obtained in an easy way
from the results of the two previous projections, so that a complete and careful treatment has
to be performed.

At the end of this work, we have achieved our initial objective to build a N = 1 supersymmet-
ric extension of a generalization of the Bigatti-Susskind model. Recalling that the latter was
introduced in order to get a further insight of how noncommutativity appears in bosonic string
theories, the supersymmetric extension that has been developed in this work could be a first –
although tiny – step towards the question of noncommutativity in superstring theories, and the
way the fermionic algebra of such theories may be deformed while still being consistent with
supersymmetry.
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Appendix A

Eigenstates

A.1 Energy Eigenstates : N+ ≥ 1 and N− ≥ 1

Here we list the Hamiltonian eigenstates corresponding to the energy level (N+ ~Ω+ +N− ~Ω−)
with N+, N− ≥ 1. They are denoted by :

|N+ , n+ , N− , n− ; S 〉 , 0 ≤ n+, n− ≤ N− − 1 , s = 1, 2, ..., 16 (A.1)

with, for n+ = n− = 0,

|N+ , 0 , N
−
, 0 ; 1 〉 = |N+ , 0 , N

−
, 0 ; −,−,−,− 〉

|N+ , 0 , N
−
, 0 ; 2 〉 = |N+ , 0 , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , 0 , N
−
, 0 ; 3 〉 = |N+ − 1 , 0 , N

−
, 0 ; +,−,−,− 〉

|N+ , 0 , N
−
, 0 ; 4 〉 = |N+ − 1 , 0 , N

−
− 1 , 0 ; +,−,+,− 〉

|N+ , 0 , N
−
, 0 ; 5 〉 = |N+ , 0 , 0 , N

−
; −,−,−,− 〉

|N+ , 0 , N
−
, 0 ; 6 〉 = |N+ , 0 , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , 0 , N
−
, 0 ; 7 〉 = |N+ − 1 , 0 , 0 , N

−
; +,−,−,− 〉

|N+ , 0 , N
−
, 0 ; 8 〉 = |N+ − 1 , 0 , 0 , N

−
− 1 ; +,−,−,+ 〉

|N+ , 0 , N
−
, 0 ; 9 〉 = | 0 , N+ , N

−
, 0 ; −,−,−,− 〉

|N+ , 0 , N
−
, 0 ; 10 〉 = | 0 , N+ , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , 0 , N
−
, 0 ; 11 〉 = | 0 , N+ − 1 , N

−
, 0 ; −,+,−,− 〉

|N+ , 0 , N
−
, 0 ; 12 〉 = | 0 , N+ − 1 , N

−
− 1 , 0 ; −,+,+,− 〉

|N+ , 0 , N
−
, 0 ; 13 〉 = | 0 , N+ , 0 , N

−
; −,−,−,− 〉

|N+ , 0 , N
−
, 0 ; 14 〉 = | 0 , N+ , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , 0 , N
−
, 0 ; 15 〉 = | 0 , N+ − 1 , 0 , N

−
; −,+,−,− 〉

|N+ , 0 , N
−
, 0 ; 16 〉 = | 0 , N+ − 1 , 0 , N

−
− 1 ; −,+,−,+ 〉

(A.2)
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for 1 ≤ n+ ≤ N+ − 1 and n− = 0,

|N+ , n+ , N
−
, 0 ; 1 〉 = |N+ , 0 , N

−
, 0 ; −,−,−,− 〉

|N+ , n+ , N
−
, 0 ; 2 〉 = |N+ , 0 , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , n+ , N
−
, 0 ; 3 〉 = |N+ − 1 , 0 , N

−
, 0 ; +,−,−,− 〉

|N+ , n+ , N
−
, 0 ; 4 〉 = |N+ − 1 , 0 , N

−
− 1 , 0 ; +,−,+,− 〉

|N+ , n+ , N
−
, 0 ; 5 〉 = |N+ , 0 , 0 , N

−
; −,−,−,− 〉

|N+ , n+ , N
−
, 0 ; 6 〉 = |N+ , 0 , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , n+ , N
−
, 0 ; 7 〉 = |N+ − 1 , 0 , 0 , N

−
; +,−,−,− 〉

|N+ , n+ , N
−
, 0 ; 8 〉 = |N+ − 1 , 0 , 0 , N

−
− 1 ; +,−,−,+ 〉

|N+ , n+ , N
−
, 0 ; 9 〉 = | 0 , N+ , N

−
, 0 ; −,−,−,− 〉

|N+ , n+ , N
−
, 0 ; 10 〉 = | 0 , N+ , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , n+ , N
−
, 0 ; 11 〉 = | 0 , N+ − 1 , N

−
, 0 ; −,+,−,− 〉

|N+ , n+ , N
−
, 0 ; 12 〉 = | 0 , N+ − 1 , N

−
− 1 , 0 ; −,+,+,− 〉

|N+ , n+ , N
−
, 0 ; 13 〉 = | 0 , N+ , 0 , N

−
; −,−,−,− 〉

|N+ , n+ , N
−
, 0 ; 14 〉 = | 0 , N+ , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , n+ , N
−
, 0 ; 15 〉 = | 0 , N+ − 1 , 0 , N

−
; −,+,−,− 〉

|N+ , n+ , N
−
, 0 ; 16 〉 = | 0 , N+ − 1 , 0 , N

−
− 1 ; −,+,−,+ 〉

(A.3)

for 1 ≤ n− ≤ N− − 1 and n+ = 0,

|N+ , 0 , N
−
, n

−
; 1 〉 = |N+ , 0 , N

−
, 0 ; −,−,−,− 〉

|N+ , 0 , N
−
, n

−
; 2 〉 = |N+ , 0 , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , 0 , N
−
, n

−
; 3 〉 = |N+ − 1 , 0 , N

−
, 0 ; +,−,−,− 〉

|N+ , 0 , N
−
, n

−
; 4 〉 = |N+ − 1 , 0 , N

−
− 1 , 0 ; +,−,+,− 〉

|N+ , 0 , N
−
, n

−
; 5 〉 = |N+ , 0 , 0 , N

−
; −,−,−,− 〉

|N+ , 0 , N
−
, n

−
; 6 〉 = |N+ , 0 , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , 0 , N
−
, n

−
; 7 〉 = |N+ − 1 , 0 , 0 , N

−
; +,−,−,− 〉

|N+ , 0 , N
−
, n

−
; 8 〉 = |N+ − 1 , 0 , 0 , N

−
− 1 ; +,−,−,+ 〉

|N+ , 0 , N
−
, n

−
; 9 〉 = | 0 , N+ , N

−
, 0 ; −,−,−,− 〉

|N+ , 0 , N
−
, n

−
; 10 〉 = | 0 , N+ , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , 0 , N
−
, n

−
; 11 〉 = | 0 , N+ − 1 , N

−
, 0 ; −,+,−,− 〉

|N+ , 0 , N
−
, n

−
; 12 〉 = | 0 , N+ − 1 , N

−
− 1 , 0 ; −,+,+,− 〉

|N+ , 0 , N
−
, n

−
; 13 〉 = | 0 , N+ , 0 , N

−
; −,−,−,− 〉

|N+ , 0 , N
−
, n

−
; 14 〉 = | 0 , N+ , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , 0 , N
−
, n

−
; 15 〉 = | 0 , N+ − 1 , 0 , N

−
; −,+,−,− 〉

|N+ , 0 , N
−
, n

−
; 16 〉 = | 0 , N+ − 1 , 0 , N

−
− 1 ; −,+,−,+ 〉

(A.4)
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and, for 1 ≤ n+ ≤ N+ − 1 and 1 ≤ n− ≤ N− − 1,

|N+ , n+ , N
−
, n

−
; 1 〉 = |N+ , 0 , N

−
, 0 ; −,−,−,− 〉

|N+ , n+ , N
−
, n

−
; 2 〉 = |N+ , 0 , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , n+ , N
−
, n

−
; 3 〉 = |N+ − 1 , 0 , N

−
, 0 ; +,−,−,− 〉

|N+ , n+ , N
−
, n

−
; 4 〉 = |N+ − 1 , 0 , N

−
− 1 , 0 ; +,−,+,− 〉

|N+ , n+ , N
−
, n

−
; 5 〉 = |N+ , 0 , 0 , N

−
; −,−,−,− 〉

|N+ , n+ , N
−
, n

−
; 6 〉 = |N+ , 0 , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , n+ , N
−
, n

−
; 7 〉 = |N+ − 1 , 0 , 0 , N

−
; +,−,−,− 〉

|N+ , n+ , N
−
, n

−
; 8 〉 = |N+ − 1 , 0 , 0 , N

−
− 1 ; +,−,−,+ 〉

|N+ , n+ , N
−
, n

−
; 9 〉 = | 0 , N+ , N

−
, 0 ; −,−,−,− 〉

|N+ , n+ , N
−
, n

−
; 10 〉 = | 0 , N+ , N

−
− 1 , 0 ; −,−,+,− 〉

|N+ , n+ , N
−
, n

−
; 11 〉 = | 0 , N+ − 1 , N

−
, 0 ; −,+,−,− 〉

|N+ , n+ , N
−
, n

−
; 12 〉 = | 0 , N+ − 1 , N

−
− 1 , 0 ; −,+,+,− 〉

|N+ , n+ , N
−
, n

−
; 13 〉 = | 0 , N+ , 0 , N

−
; −,−,−,− 〉

|N+ , n+ , N
−
, n

−
; 14 〉 = | 0 , N+ , 0 , N

−
− 1 ; −,−,−,+ 〉

|N+ , n+ , N
−
, n

−
; 15 〉 = | 0 , N+ − 1 , 0 , N

−
; −,+,−,− 〉

|N+ , n+ , N
−
, n

−
; 16 〉 = | 0 , N+ − 1 , 0 , N

−
− 1 ; −,+,−,+ 〉

(A.5)

A.2 Q Eigenstates : N+ ≥ 1 and N− ≥ 1

Here is the complete list of the energy, angular momentum and supercharge eigenvalues of the
Q eigenstates |N+ , n+ , N− , n− ; S 〉Q for N+ ≥ 1 and N− ≥ 1. This allows us to display the
degeneracy associated to the specification of these three eigenvalues.

H L Q

|N+ , 0 , N
−
, 0 ; 1 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

+N+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 2 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

+N+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 3 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

−N+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 4 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

−N+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 5 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N+ −N
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 6 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N+ −N
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 7 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 8 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+) −~
√

N
−

Ω
−

+N+Ω+

(A.6)

59



H L Q

|N+ , 0 , N
−
, 0 ; 9 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

+N+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 10 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

+N+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 11 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

−N+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 12 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

−N+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 13 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N+ −N
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 14 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N+ −N
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 15 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, 0 ; 16 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+) ~
√

N
−

Ω
−

+N+Ω+

(A.7)

For 1 ≤ n+ ≤ N+ − 1, we have:

H L Q

|N+ , n+ , N
−
, 0 ; 1 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 2 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 3 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 4 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 5 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 6 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 7 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) −~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 8 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) −~
√

N
−

Ω
−

+N+Ω+

(A.8)

H L Q

|N+ , n+ , N
−
, 0 ; 9 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 10 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 11 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 12 〉Q

~(N
−

Ω
−

+N+Ω+) −~(N
−

−N+ + 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 13 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 14 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 15 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) ~
√

N
−

Ω
−

+N+Ω+

|N+ , n+ , N
−
, 0 ; 16 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n+) ~
√

N
−

Ω
−

+N+Ω+

(A.9)
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For 1 ≤ n− ≤ N− − 1, we have:

H L Q

|N+ , 0 , N
−
, n

−
; 1 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 2 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 3 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 4 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

−N+ − 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 5 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 6 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 7 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 8 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) −~
√

N
−

Ω
−

+N+Ω+

(A.10)

H L Q

|N+ , 0 , N
−
, n

−
; 9 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 10 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 11 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 12 〉Q

~(N
−

Ω
−

+N+Ω+) −~(−N
−

+N+ + 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 13 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 14 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 15 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

|N+ , 0 , N
−
, n

−
; 16 〉Q

~(N
−

Ω
−

+N+Ω+) ~(N
−

+N+ − 2n
−

) ~
√

N
−

Ω
−

+N+Ω+

(A.11)
Finally, for 1 ≤ n+ ≤ N+ − 1 and 1 ≤ n− ≤ N− − 1, we have:

H L Q

| N+ , n+ , N− , n− ; 1 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 2 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 3 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 4 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 5 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 6 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 7 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 8 〉Q
~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) −~

√

N−Ω− + N+Ω+

(A.12)
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H L Q

| N+ , n+ , N− , n− ; 9 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 10 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 11 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 12 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 13 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 14 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 15 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

| N+ , n+ , N− , n− ; 16 〉Q ~(N−Ω− + N+Ω+) ~(N− + N+ − 2n− − 2n+) ~

√

N−Ω− + N+Ω+

(A.13)
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