SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS.

ALEXIS DROUOT

Abstract. We study resonances of compactly supported potentials $V_\varepsilon(x) = W(x, x/\varepsilon)$ where $W : \mathbb{R}^d \times \mathbb{R}^d/(2\pi\mathbb{Z})^d \to \mathbb{C}$, d odd. That means that $V_\varepsilon(x)$ is a sum of a slowly varying potential, $W_0(x)$, and one oscillating at frequency $1/\varepsilon$. For $W_0 \equiv 0$ we prove that there are no resonances above the line $\text{Im } \lambda = -A\ln(\varepsilon^{-1})$, except a simple resonance of modulus $\sim \varepsilon^2$, when $d = 1$. We show that this result is optimal by constructing a one-dimensional example. This settles a conjecture of Duchêne-Vukičević-Weinstein [DVW14]. In the case when $W_0 \not\equiv 0$ we prove that resonances in fixed strips admit an expansion in powers of ε. The argument provides a method for computing the coefficients of the expansion. We produce an effective potential converging uniformly to W_0 as $\varepsilon \to 0$ and whose resonances approach resonances of V_ε modulo $O(\varepsilon^4)$. This improves the one-dimensional result of Duchêne, Vukičević and Weinstein and extends it to all odd dimensions.

1. Introduction

In this paper we are interested in the poles of the meromorphic continuation of $(-\Delta + \mathcal{V} - \lambda^2)^{-1}$ where d is odd and $\mathcal{V} : \mathbb{R}^d \to \mathbb{C}$ is a bounded compactly supported potential. These poles called scattering resonances appear in many physical situations, for instance their imaginary parts are the rates of decay of waves scattered by \mathcal{V}.

Let $-\Delta \geq 0$ be the free Laplacian on \mathbb{R}^d. The operator $R_0(\lambda) = (-\Delta - \lambda^2)^{-1}$, well defined as an operator $L^2(\mathbb{R}^d) \to H^2(\mathbb{R}^d)$ for $\text{Im } \lambda > 0$, extends to a meromorphic family of bounded operators $L^2_{\text{comp}}(\mathbb{R}^d) \to H^2_{\text{loc}}(\mathbb{R}^d)$ for $\lambda \in \mathbb{C}$ (see §1.5 for review of notation). This family admits one simple pole at 0 if $d = 1$ and is entire if $d \geq 3$. If \mathcal{V} is a bounded compactly supported function on \mathbb{R}^d then $R_\mathcal{V}(\lambda) = (-\Delta + \mathcal{V} - \lambda^2)^{-1}$ is well defined for $\text{Im } \lambda \gg 1$ as an operator $L^2(\mathbb{R}^d) \to H^2(\mathbb{R}^d)$. It extends to a meromorphic family of operators $L^2_{\text{comp}}(\mathbb{R}^d) \to H^2_{\text{loc}}(\mathbb{R}^d)$ – see [DyZw15]. The poles of $R_\mathcal{V}(\lambda)$ are called scattering resonances. They are the complex analog of eigenvalues for real valued potentials.

Let W be a bounded complex valued function with support in $\mathbb{R}^d(0, L) \times \mathbb{T}^d$. We define V_ε as

$$V_\varepsilon(x) = W\left(x, \frac{x}{\varepsilon}\right).$$

If W is formally given by

$$W(x, y) = \sum_{k \in \mathbb{Z}^d} W_k(x)e^{iky}$$

1
we can write V_ε as a highly oscillatory perturbation of W_0:
$$V_\varepsilon(x) = W_0(x) + V_\varepsilon(x), \quad V_\varepsilon(x) = \sum_{k \neq 0} W_k(x)e^{ikx/\varepsilon}. \quad (1.1)$$

In this paper we study resonances of potentials V_ε given by (1.1).

1.1. **Main results.** The first theorem concerns the case of a vanishing slowly varying part in dimension one. In the notations of (1.1) we will assume for this result that $W \in L^\infty(\mathbb{B}^d(0,L) \times \mathbb{T}^d)$ satisfies
$$\exists s \in (0,1), \sum_{k \neq 0} \frac{|W_k|^{H^s}}{|k|^s} < \infty \text{ if } d = 1,$$
$$\sum_{k \neq 0} \frac{||W_k||_1}{|k|} < \infty \text{ if } d \geq 3. \quad (1.2)$$

Theorem 1. Let W be in $L^\infty(\mathbb{B}^d(0,L) \times \mathbb{T}^d, \mathbb{C})$ such that $W_0 \equiv 0$ and (1.2) holds. Then there exists C,c,A three positive constants such that
$$\text{Res}(V_\varepsilon) \setminus \mathbb{D}(0,c\varepsilon^{s/2}) \subset \{ \lambda \in \mathbb{C} : \text{Im} \lambda \leq C - A \ln(\varepsilon^{-1}) \}.$$

In addition if $d \geq 3$ then V_ε has no resonances in $\mathbb{D}(0,c\varepsilon^{s/2})$ for ε small enough.

This settles a conjecture of [DVW14]: for odd dimensions $d \geq 3$ and ε small enough the potential V_ε does not have a bound state. In §2.3 we construct a step-like function W such that $V_{\pi/(2m)}$ has a resonance $\lambda_n \sim -i\ln(n)$ as $n \to +\infty$.

In what follows we assume that W is smooth and consider the case of $W_0 \neq 0$. If λ_0 is a simple resonance of W_0 we can write
$$R_{W_0}(\lambda) = \frac{iu \otimes v}{\lambda - \lambda_0} + H(\lambda) \quad (1.3)$$
for some functions $u,v \in H^2_{\text{loc}}(\mathbb{R}^d, \mathbb{C})$ and some family of operators $H(\lambda)$ holomorphic near λ_0. As the potential V_ε given by (1.1) converges weakly to W_0 it is natural to expect that resonances of V_ε converge to resonances of W_0. In fact a much stronger statement holds:

Theorem 2. Assume that W belongs to $C_0^\infty(\mathbb{B}^d(0,L) \times \mathbb{T}^d, \mathbb{C})$ and that V_ε is given by (1.1). Let λ_0 be a simple resonance of W_0. In a neighborhood of λ_0 and for ε small enough the potential V_ε admits a unique resonance λ_ε. Moreover, for any N,
$$\lambda_\varepsilon = \lambda_0 + c_2\varepsilon^2 + c_3\varepsilon^3 + \ldots + c_{N-1}\varepsilon^{N-1} + O(\varepsilon^N), \quad c_j \in \mathbb{C}.$$

If u,v are the left and right resonant states given by (1.3) then
$$c_2 = i \int_{\mathbb{R}^d} \Lambda_0(x)u(x)v(x)dx, \quad c_3 = i \int_{\mathbb{R}^d} \Lambda_1(x)u(x)v(x)dx,$$
$$\Lambda_0 = \sum_{k \neq 0} \frac{W_kW_{-k}}{|k|^2}, \quad \Lambda_1 = -2\sum_{k \neq 0} \frac{W_{-k}(k \cdot D)W_k}{|k|^4}. \quad (1.4)$$
We remark that if W is real-valued then so are Λ_0 and Λ_1. In some cases the potentials Λ_0 and Λ_1 vanish identically, for instance if $W(x, y) = W_1(x)e^{iy}$ or $W(x, y) = W_1(x)e^{iy} + W_{-2}(x)e^{-iy}$. In such cases one can do even better than Theorem 2, see §4.5. In §3.1 we will prove a version of Theorem 2 for resonances of higher multiplicity. Theorem 2 implies that perturbations of W_0 by a high frequency potential V_ε enjoy some similarities with suitable analytic perturbations of W.

Theorem 3. Assume that W belongs to $C_0^\infty(\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C})$ and that V_ε is given by (1.1). Let $V_{\text{eff},\varepsilon} = W_0 - \varepsilon^2 \Lambda_0 - \varepsilon^3 \Lambda_1$ where Λ_0, Λ_1 are given in (1.4). For every bounded family $\varepsilon \mapsto \mu_\varepsilon$ of simple resonances of $V_{\text{eff},\varepsilon}$ there exists a family of resonances $\varepsilon \mapsto \lambda_\varepsilon$ of V_ε such that

$$|\lambda_\varepsilon - \mu_\varepsilon| = O(\varepsilon^4).$$

Conversely for every bounded family $\varepsilon \mapsto \lambda_\varepsilon$ of simple resonances of V_ε there exists a family of resonances $\varepsilon \mapsto \mu_\varepsilon$ of $V_{\text{eff},\varepsilon}$ such that

$$|\lambda_\varepsilon - \mu_\varepsilon| = O(\varepsilon^4).$$

The potential $V_{\text{eff},\varepsilon}$ plays the role of an effective potential. In dimension one Λ_0 was already derived in [DVW14].

We now give a uniform description of the behavior of resonances of V_ε as $\varepsilon \to 0$. For $W_0 \in C_0^\infty(\mathbb{B}^d(0, L), \mathbb{C})$ and some constants ε, B, c, A let $\mathcal{C}_\varepsilon, \mathcal{T}_\varepsilon$ and \mathcal{D}_ε be the sets

$$\mathcal{C}_\varepsilon = \bigcup_{\lambda \in \text{Res}(W_0), \Im \lambda \geq -B} \mathbb{D}(\lambda, c\varepsilon^{2/m_W(\lambda)})$$

$$\mathcal{T}_\varepsilon = \bigcup_{\lambda \in \text{Res}(W_0), \Im \lambda \leq -B} \mathbb{D}(\lambda, \langle \lambda \rangle^{-d-1})$$

$$\mathcal{D}_\varepsilon = \{ \lambda \in \mathbb{C} : \Im \lambda \leq -B, |\lambda|^{2d+1} \geq A \ln(\varepsilon^{-1}) \}.$$

Theorem 4. Assume that W belongs to $C_0^\infty(\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C})$ and that V_ε is given by (1.1). There exists $A > 0$ with the following. For any $B > 0$, there exists $c > 0$ such that for all $\varepsilon > 0$ if $\mathcal{C}_\varepsilon, \mathcal{T}_\varepsilon$ and \mathcal{D}_ε are given by (1.5) then

$$\text{Res}(V_\varepsilon) \subset \mathcal{C}_\varepsilon \cup \mathcal{T}_\varepsilon \cup \mathcal{D}_\varepsilon.$$

Therefore assume that $\varepsilon \mapsto \lambda_\varepsilon$ is a family of resonance of V_ε. Then after passing to a subsequence $\varepsilon_j \to 0$, one of the three following scenarios occurs:

(i) λ_ε converges to a resonance λ_0 of W_0 and $\lambda_\varepsilon = \lambda_0 + O(\varepsilon^{2/m_W(\lambda_0)}).$

(ii) $\Im \lambda_\varepsilon \to -\infty$ and $|\lambda_\varepsilon|$ grows at least like $\ln(\varepsilon^{-1})^{1/(2d+1)}.$

(iii) $\Im \lambda_\varepsilon \to -\infty$ and $d(\lambda_\varepsilon, \text{Res}(W_0)) = O(|\lambda_\varepsilon|^{-d-1}).$

(Here we suppressed the subsequence notation.)

For the case of a potential W_0 with simple resonances these results are illustrated on Figure 1.1 below.
\[\lambda = -B \]

\[|\lambda| = -A \ln(\varepsilon^{-1})^{1/(2d+1)} \]

Figure 1. The red (resp. black, blue) crosses denote resonances of \(W_0 \) (resp. \(V_\varepsilon, V_{\text{eff},\varepsilon} \)). Above the line \(\text{Im} \lambda = B \) resonances of \(V_{\text{eff},\varepsilon} \) and \(V_\varepsilon \) lie within red disks of radius \(\sim \varepsilon^2 \) centered at resonances of \(W_0 \). Resonances of \(V_{\text{eff},\varepsilon} \) and \(V_\varepsilon \) in these disks lie within a distance \(\sim \varepsilon^4 \) from each other. In the middle zone resonances of \(V_\varepsilon \) lie within disks of radius \(\sim 1 \) centered at resonances of \(W_0 \). Below both curves \(\text{Im} \lambda = -B \) and \(|\lambda| = -A \ln(\varepsilon^{-1})^{1/(2d+1)} \) resonances of \(V_\varepsilon, V_{\text{eff},\varepsilon} \) and \(W_0 \) are no longer correlated.

Theorems 2, 3 and 4 are actually consequences of stronger results. Let \(\Psi \) be the entire function defined by

\[\Psi(z) = (1 + z) \exp \left(-z + \frac{z^2}{2} - ... + \frac{(-z)^{p-1}}{p-1} \right) - 1. \] \tag{1.6}

For \(\mathcal{V} \in L^\infty(\mathbb{R}^d(0,L), \mathbb{C}) \) and \(\rho \in C_0^\infty(\mathbb{R}^d) \) that is 1 on \(\text{supp}(\mathcal{V}) \) we define \(K_\mathcal{V}(\lambda) = \rho R_0(\lambda) \mathcal{V} \). The operator \(\Psi(K_\mathcal{V}(\lambda)) \) is trace class if \(p \geq (d + 1)/2 \). This allows us to define the Fredholm determinant

\[D_\mathcal{V}(\lambda) = \text{Det} \left(\text{Id} + \Psi(K_\mathcal{V}(\lambda)) \right). \] \tag{1.7}

Apart from the special case of 0 in dimension one resonances of \(\mathcal{V} \) are exactly zeros of \(D_\mathcal{V} \) – see [GLMZ05, Theorem 5.4]. To deal with the particular case of the zero
resonance in dimension one we define $X_d = \mathbb{C}$ if $d \geq 3$ and $X_1 = \mathbb{C} \setminus \{0\}$. The following result shows that D_V admits an expansion in powers of ε.

Theorem 5. Let W in $C^\infty_0(\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C})$ and V_ε be the potential given by (1.1). Fix $N > 0$ and $p = 4(d + N)N$. If $D_{V_\varepsilon}(\lambda)$ is the Fredholm determinant defined in (1.7) then there exists a_0, \ldots, a_{N-1} holomorphic functions of $\lambda \in X_d$ such that uniformly on compact subsets of X_d,

$$D_{V_\varepsilon}(\lambda) = a_0(\lambda) + \varepsilon^2 a_2(\lambda) + \varepsilon^3 a_3(\lambda) + \ldots + \varepsilon^{N-1} a_{N-1}(\lambda) + O(\varepsilon^N).$$

Moreover if Λ_0 and Λ_1 are the potentials defined in Theorem 2 then $a_0(\lambda) = D_{W_0}(\lambda)$,

$$a_2(\lambda) = -D_{W_0}(\lambda) \cdot \text{Tr} (\text{Id} + K_{W_0})^{-1}(\cos K_{W_0})^{-1} K_{M_0},$$

$$a_3(\lambda) = -D_{W_0}(\lambda) \cdot \text{Tr} (\text{Id} + K_{W_0})^{-1}(\cos K_{W_0})^{-1} K_{M_1}. $$

Here again we note that a perturbation of a potential W_0 by a highly oscillatory potential enjoys similarities with a suitable analytic perturbation of W_0. We will make this observation more precise in §3.2 below.

1.2. **Relation with existing work.** Scattering resonances of potentials of the form (1.1) have recently been studied in dimension one. For W with $W_0 \equiv 0$ and V_ε given by (1.1) Borisov and Gadyl’shin investigate in [BoGa06] the behavior of eigenvalues of the Schrödinger operator $D_\varepsilon^2 + V_\varepsilon$. They give a sufficient condition for an eigenvalue to exist for small ε. Under this condition they derive an asymptotic of the eigenvalue as $\varepsilon \to 0$. In [Bo07] Borisov refines his own result by including potentials that are less regular. These two papers focus on the spectrum and on the eigenvalues rather than on the scattering resonances. Scattering theory for operators of the form $D_\varepsilon^2 + V_\varepsilon$ was first given by Duchêne–Weinstein [DuWe11]. In that paper the authors study the behavior of the transmission coefficients of such potentials. They prove that away from possible poles the transmission coefficient of V_ε converges to the one of W_0. They give estimates on the remainder that depend on the regularity of W. The study is later continued in [DVW14]. In that paper Duchêne, Vukičević and Weinstein generalize the result of [BoGa06] to potentials V_ε given by (1.1) without assuming that $W_0 \equiv 0$. They give conditions for the existence of a bound state of V_ε for small ε. Under these conditions they obtain an asymptotic of the energy expressed in terms of an effective potential which is an analytic perturbation of W_0.

Still in dimension one the work [Bo06] studies extensively the spectrum of Schrödinger operators with a potential that is the sum of a compactly supported potential and a periodic potential oscillating at frequency $\sim \varepsilon^{-1}$. The paper [DVW15] deals with potentials that are the sum of a periodic potential Q_{per} perturbed by a term Q_ε oscillating at frequency ε^{-1}. As $\varepsilon \to 0$ they observe the bifurcation of eigenvalues of $D_\varepsilon^2 + Q_{\text{av}} + Q_\varepsilon$ at distance ε^4 from the edges of the continuous spectrum of $D_\varepsilon^2 + Q_{\text{av}}$.

In higher dimension the work [GoWe05] deals with general perturbations of operators $-\Delta + W_0$. The perturbation V_ε needs to be small while measured in a suitable space. They show that the simple resonances of the perturbed operators depend analytically on V_ε. Although such a result applies to potentials given by (1.1) it does not yield
an expansion of resonances in powers of ε because V_ε does not depend smoothly on ε. The work [DVW14] shows that in dimension one an expansion in powers of ε of a simple resonance of V_ε exists with remainder of order $O(\varepsilon^3)$. Here we show that such an expansion exists for any odd dimension at arbitrary order.

Let us discuss in more details the relation between our results and the work [DVW14]. There the authors deal with potentials $W : \mathbb{R} \times \mathbb{T}^1 \to \mathbb{R}$. By a fine analysis of the scattering coefficients they show that the transmission coefficient of V_ε is equal to the transmission coefficient of the effective potential

$$V_{\text{eff}}(x) = W_0(x) - \varepsilon^2 \Lambda_0(x), \quad \Lambda_0(x) = \sum_{k \neq 0} \frac{|W_k(x)|^2}{|k|^2}$$

modulo an error of order ε^3. This surprising result provided the motivation for our investigation. It implies that the spectral and scattering study of highly oscillatory potentials can be reduced to the study of suitable small potentials modulo a small error. One of the main consequences is [DVW14, Corollary 3.7]: in the case $d = 1, W_0 \equiv 0$ and for ε small enough a ground state emerges from the edge of the continuous spectrum of D_x^2, with energy

$$-\frac{\varepsilon^4}{4} \left(\int_{\mathbb{R}} \Lambda_0(x) dx \right)^2 + O(\varepsilon^5). \quad (1.8)$$

If $W_0 \equiv 0$ then the functions u, v of (1.3) are given by $u = v = 1/\sqrt{2}$. Therefore as $\varepsilon \to 0$ the potential V_ε admits a ground state that emerges from the edge of the continuous spectrum of D_x^2, with energy

$$\lambda_\varepsilon = -\frac{\varepsilon^4}{4} \left(\int_{\mathbb{R}} \Lambda_0(x) dx \right)^2 - \frac{\varepsilon^5}{4} \int_{\mathbb{R}} \Lambda_0(x) dx \int_{\mathbb{R}} \Lambda_1(x) dx + O(\varepsilon^6). \quad (1.9)$$

This refines (1.8). In §1.3 we compare numerically the efficiency of the effective potential $V_{\text{eff},\varepsilon}$ derived here compared to the efficiency of the effective potential derived in [DVW14]. We also mention that the expansion (1.9) still works if less regularity on W is assumed. One can show that if W satisfies $W_0 \equiv 0$ and

$$\sum_{k \neq 0} |W_k|_\infty + \frac{||W_k||_1}{|k|} + \frac{||W_k||_2}{|k|^2} < \infty$$

then for ε small enough the potential V_ε admits a bound state with energy given by

$$-\frac{\varepsilon^4}{4} \left(\int_{\mathbb{R}} \Lambda_0(x) dx \right)^2 + o(\varepsilon^4).$$

It would be interesting to find a minimal hypothesis on W such that a similar result still holds.

It is likely that our proofs could be adapted to the case of even dimension but we concentrated on the less technical case of odd dimensions.
1.3. **Numerical results.** Let \(W \) be the smooth function on \(\mathbb{R} \times \mathbb{T}^1 \) defined by

\[
W(x, y) = \exp \left(-\frac{x^2}{1 - x^2} \right) \mathbb{1}_{[-1,1]}(x) (1 + 2 \cos(x/2 + y)).
\]

Let \(V_\varepsilon \) be given by (1.1) and \(\Lambda_0, \Lambda_1 \) the potentials defined in Theorem 2. Thanks to a Matlab simulation whose code was given to us by Duchêne, Vukićević and Weinstein we computed numerically the transmission coefficients \(t_\varepsilon \) of \(V_\varepsilon \), \(t_1^\varepsilon \) of \(V_{\text{eff,} \varepsilon}^1 = W_0 - \varepsilon^2 \Lambda_0 \) (the effective potential as derived in [DVW14]) and \(t_2^\varepsilon \) of \(V_{\text{eff,} \varepsilon}^2 = W_0 - \varepsilon^2 \Lambda_0 - \varepsilon^3 \Lambda_1 \) (the improved effective potential derived here). In Figure 2 we plotted the graphs of \(|t_\varepsilon - t_j^\varepsilon| \) for different values of \(\varepsilon \) and \(j = 1, 2 \). For \(\varepsilon > 0.1 \) neither the approximation of \(t_\varepsilon \) by \(t_1^\varepsilon \) nor \(t_2^\varepsilon \) give satisfying results. For \(\varepsilon \in [0.01, 0.1] \) it is much better but we still cannot see the improvements induced by choosing \(V_{\text{eff,} \varepsilon}^2 \) instead of \(V_{\text{eff,} \varepsilon}^1 \). For \(\varepsilon < 0.01 \) the approximation of \(t_\varepsilon \) by \(t_2^\varepsilon \) instead of \(t_1^\varepsilon \) gives better results.

1.4. **Plan of the paper.** We organize the paper as follows. In §2 we focus on the case \(W_0 \equiv 0 \) and we prove Theorem 1. The proof relies mainly on an application of the Lippman-Schwinger principle combined with integration by parts. In §2.3 we construct a step-like potential \(V_\varepsilon \) whose resonances are zeros of a \(2 \times 2 \) explicit determinant. Uniform estimates on this determinant and arguments from complex analysis show that \(V_\varepsilon \) admits a resonance \(\lambda_\varepsilon \sim i \ln(\varepsilon) \).

In §3 we apply Theorem 5 to prove that resonances of potentials of the form (1.1) admit an expansion in powers of \(\varepsilon \). We compute the first terms in the expansion using a trace estimate. Then we show that resonances of \(V_\varepsilon \) are comparable to the one of the effective potential \(V_{\text{eff,} \varepsilon} \) by comparing two Fredholm determinants. We then prove Theorem 4 using complex analysis arguments.

The section 4 consists in the proof of Theorem 5. It is by far the hardest part of the paper. We first describe how an expansion of the determinant \(D_{V_\varepsilon}(\lambda) \) in powers of \(\varepsilon \) can be reduced to an expansion on the trace of an operator that takes a complicated form. We split this operator into two parts in a natural way. By arguments of combinatorial nature we will prove that the first part is negligible as \(\varepsilon \to 0 \) and therefore produces no term in the expansion of \(D_{V_\varepsilon} \). We will deal with the second part essentially by deriving an operator-valued expansion of \(e^{ik\cdot x/\varepsilon} R_0(\lambda) e^{-ik\cdot x/\varepsilon} \) in powers of \(\varepsilon \). The operators in this expansion will produce all the terms in the expansion of \(D_{V_\varepsilon} \). The expression of the coefficients in the expansion is theoretically traceable directly from the proof. We compute the first few terms. In dimension one the pole of \(R_0(\lambda) \) at \(\lambda = 0 \) will cause some trouble. We will overcome these difficulties by arguments specific to the one-dimensional case but that still rely on trace and determinant computations rather than on ODE techniques.

1.5. **Notation.** From now on we drop the subscript \(\varepsilon \) and we fix \(L > 0 \). Given a function \(W \in L^\infty(\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C}) \), \(V \) is the function associated to \(W \) by (1.1). We will use the following notation:
Figure 2. Oscillatory potential and errors in approximating the transmission coefficient of V_ε by the transmission coefficient of $V_{\text{eff,}\varepsilon}^j$ for different values of ε and $j = 1, 2$.

- Any time \pm or \mp appears in an equation, this equation has two meanings: one for the upper subscripts, one for the lower one. For instance, $f(x) = \mp 1$ for $\pm x \geq 1$ means $f(x) = -1$ for $x \geq 1$ and $f(x) = 1$ for $-x \geq 1$.
- If $x \in \mathbb{R}$, $x_- = \max(0, -x)$.
- For $x \in \mathbb{R}^n$, $\langle x \rangle = (1 + |x|^2)^{1/2}$.
- If $z \in \mathbb{C}$ and $r > 0$, $\mathbb{D}(z, r)$ denotes the set of $w \in \mathbb{C}$ with $|z - w| < r$.
- If $x \in \mathbb{R}^d$ and $L > 0$, $\mathcal{B}^d(x, L)$ denotes the set of $y \in \mathbb{R}^d$ with $|x - y| < L$. \mathbb{T}^d is the d-dimensional torus $\mathbb{R}^d/(2\pi \mathbb{Z})^d$.

• Let \mathcal{H} be a space of functions on \mathbb{R}^d. We write $f \in \mathcal{H}_{\text{comp}}$ if f belongs to \mathcal{H} and has compact support and $f \in \mathcal{H}_{\text{loc}}$ if for every $\rho \in C_0^\infty(\mathbb{R}^d)$, $\rho f \in \mathcal{H}$.
• For a potential \mathcal{V}, $\text{Res}(\mathcal{V})$ is the set of resonances of \mathcal{V}. If $\lambda \in \text{Res}(\mathcal{V})$, $m_\mathcal{V}^\lambda$ is the geometric multiplicity of λ defined by
\[m_\mathcal{V}^\lambda = \text{rank} \int_\mathcal{V} R_\mathcal{V}(\mu)d\mu. \]
• If $\mathcal{H}_1, \mathcal{H}_2$ are two Hilbert space, we denote by $\mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ (resp. $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$) the space of bounded (resp. trace class) operators from \mathcal{H}_1 to \mathcal{H}_2 and by $\mathcal{B}(\mathcal{H}_1)$ (resp. $\mathcal{L}(\mathcal{H}_1)$) the space of bounded (resp. trace class) operators from \mathcal{H}_1 to itself. If $\mathcal{H}_1 = L^2(\mathbb{R}^d, \mathbb{C})$ we simply write $\mathcal{B} = \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{L} = \mathcal{L}(\mathcal{H}_1)$.
• If f is a function on \mathbb{R}^d, \hat{f} and $\mathcal{F}f$ both denote the Fourier transform of f:
\[\mathcal{F}f(\xi) = \hat{f}(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(x)e^{-ix\xi}dx. \]
• We define $H^s(\mathbb{R}^d)$ the space of complex-valued functions f with $\langle \xi \rangle^s \hat{f}(\xi) \in L^2(\mathbb{R}^d)$. If s is an integer we define $W^s(\mathbb{R}^d)$ the space of functions with s derivatives in $L^\infty(\mathbb{R}^d)$ and we write $\|\cdot\|_{W^s} = \|\cdot\|_s$.
• For $k \in \mathbb{Z}^d$, $e^{ikx/\varepsilon}$ denotes the multiplication operator by the function $e^{ikx/\varepsilon}$.
• ρ denotes a smooth function that is 1 on $\mathbb{B}^d(0, L)$ and 0 outside $\mathbb{B}^d(0, L+1)$.
• The operator D is $-i\partial_x$. It is a vector-valued operator in dimension $d > 1$. For $k = (k_1, \ldots, k_d) \in \mathbb{Z}^d$, $k \cdot D$ is the operator $k_1D_{x_1} + \ldots + k_dD_{x_d}$.
• If $A(\lambda)$ is a family of operators depending on λ we will write $A = A(\lambda)$ unless there is a possible confusion.

Acknowledgment. We would like to thank Maciej Zworski for his help and guidance. We also thank Michael Weinstein, Vincent Duchêne and Iva Vukičević for stimulating discussions and for sharing the Matlab codes leading to Figure 2. This research was partially supported by NSF grant DMS-1500852.

2. Resonance escaping in the case $W_0 \equiv 0$

In this part we start by preliminaries estimates that will be used all along the paper. Then we prove Theorem 1 and construct in §2.3 an example of potential that proves that this theorem is optimal.

2.1. Preliminaries. For $\mathcal{V} \in L^\infty(\mathbb{B}^d(0, L), \mathbb{C})$ we define $K_\mathcal{V}$ the operator $\rho R_0(\lambda)\mathcal{V}$. We start by the following preliminary:

Lemma 2.1. For all $\alpha, \beta \in \{0, 1, 2\}^d$ with $|\alpha| + |\beta| \leq 2$ and for all $\mathcal{V} \in W^{[\beta]}(\mathbb{B}^d(0, L), \mathbb{C})$ the following estimates hold. If $d = 1$,
\[|D^\alpha K_\mathcal{V} D^\beta|_{\mathcal{B}} \leq C \langle \lambda \rangle^{\alpha+\beta} e^{C(\text{Im} \lambda)} |\mathcal{V}|_{[\beta]} \]
and if $d \geq 3$,
\[|D^\alpha K_\mathcal{V} D^\beta|_{\mathcal{B}} \leq C \langle \lambda \rangle^{|\alpha|+|\beta|-1} e^{C(\text{Im} \lambda)} |\mathcal{V}|_{[\beta]}. \]
Such estimates are proved in [DyZw15, Theorem 2.1] and follow from Schur’s test. The following lemma characterizes resonances of a potential V via a Lippman-Schwinger equation:

Lemma 2.2. Let $\mathcal{V} \in L^\infty(\mathbb{B}^d(0, L), \mathbb{C})$. For $\lambda \in \mathbb{C}$ if $d = 3$ and $\lambda \in \mathbb{C} \setminus \{0\}$ if $d = 1$, λ is a resonance of \mathcal{V} if and only if there exists $0 \neq u \in L^2$ such that $u = -K_V u$.

Proof. For $\lambda \in \mathbb{C}$ if $d \geq 3$ and $\lambda \in \mathbb{C} \setminus \{0\}$ the operator $K_\mathcal{V}$ is compact. Thus $\text{Id} + K_\mathcal{V}$ is injective if and only if $\text{Id} + K_\mathcal{V}$ is invertible. For $\text{Im} \lambda \gg 1$ we can invert $\text{Id} + R_0(\lambda) \mathcal{V}$ via Neumann series. Moreover,

$$R_\mathcal{V}(\lambda) = (\text{Id} + R_0(\lambda) \mathcal{V})^{-1} R_0(\lambda)$$

$$= \left(\sum_{n=0}^{\infty} (-R_0(\lambda) \mathcal{V})^n \right) R_0(\lambda)$$

$$= \left(\sum_{n=0}^{\infty} (-K_{\mathcal{V}})^n + (1 - \rho) \sum_{n=1}^{\infty} (-R_0(\lambda) \mathcal{V})^n \right) R_0(\lambda)$$

$$= \left(\text{Id} + (1 - \rho) \sum_{n=1}^{\infty} (-R_0(\lambda) \mathcal{V})^n (\text{Id} + K_{\mathcal{V}}) \right) (\text{Id} + K_{\mathcal{V}})^{-1} R_0(\lambda)$$

$$= \left(\text{Id} + (1 - \rho) \sum_{n=1}^{\infty} (-R_0(\lambda) \mathcal{V})^n - (-R_0(\lambda) \mathcal{V})^{n+1} \right) (\text{Id} + K_{\mathcal{V}})^{-1} R_0(\lambda)$$

$$= (\text{Id} - (1 - \rho) R_0(\lambda) \mathcal{V}) \left(\text{Id} - (\text{Id} + K_{\mathcal{V}})^{-1} K_{\mathcal{V}} \right) R_0(\lambda).$$

The operator $R_0(\lambda)$ meromorphically continues to \mathbb{C} as an operator L^2_{comp} to H^2_{loc} while the operator $(\text{Id} + K_{\mathcal{V}})^{-1}$ meromorphically continues to \mathbb{C} as an operator L^2 to L^2. Thus the identity

$$R_\mathcal{V}(\lambda) = (\text{Id} - (1 - \rho) R_0(\lambda) \mathcal{V}) \left(\text{Id} - (\text{Id} + K_{\mathcal{V}})^{-1} K_{\mathcal{V}} \right) R_0(\lambda) \quad (2.1)$$

initially valid for $\text{Im} \lambda \gg 1$ meromorphically continues to all of \mathbb{C}. The poles of the RHS are precisely the set of λ such that $\text{Id} + K_{\mathcal{V}}$ is not invertible (apart from $\lambda = 0$ in dimension one) while the poles of the LHS are the resonances of \mathcal{V}. This proves the lemma. \qed

2.2. Escaping of resonances.

We start by proving Theorem 1 in the case $d = 1$. Assume that (1.2) holds. If $\lambda \neq 0$ is a resonance of V then by Lemma 2.2 there exists u such that $u = -K_V u$. It satisfies the *a priori* estimate

$$|u|_{H^1} = |K_V u|_{H^1} \leq |K_V|_{\mathcal{H}^1(\mathcal{L}^2)} |u|_2 \leq C(\lambda) e^{C|\text{Im} \lambda|} |W|_{\infty} |u|_2, \quad (2.2)$$
in particular it belongs to H^1. The well-known estimate $|fg|_{H^1} \leq |f|_{H^1}|g|_{H^1}$ (valid in dimension one) implies by duality that $|fg|_{H^{-1}} \leq |f|_{H^1}|g|_{H^{-1}}$. The bound (2.2) yields

$$|u|_2 = |K_V u|_2 \leq |K_\rho|_{\mathcal{S}(H^{-1},L^2)}|Vu|_{H^{-1}} \leq C \frac{\langle \lambda \rangle e^{C(\text{Im} \lambda)}}{|\lambda|} |V|_{H^{-1}}|u|_{H^1} \leq C \frac{\langle \lambda \rangle^2 e^{4L(\text{Im} \lambda)}}{|\lambda|^2} |V|_{H^{-1}}|W|_{\infty}|u|_2.$$ \hspace{1cm} (2.3)

To estimate $|K_\rho|_{\mathcal{S}(H^{-1},L^2)}$ we used the adjoint bound i.e. we estimated $|K_\rho(-\lambda)|_{\mathcal{S}(L^2,H^1)}$ thanks to Lemma 2.1. We claim that $|V|_{H^{-1}} \leq \varepsilon^s|W|_{X^s}$. Indeed using that $|\xi^s \hat{W}_k|_2 = |W_k|_{H^s}$ and $|V|_{H^{-1}} = |\langle \xi \rangle^{-1} \hat{V}|_2$ we have

$$|V|_{H^{-1}} = \left| \langle \xi \rangle^{-1} \sum_{k \neq 0} \hat{W}_k (\xi - k/\varepsilon) \right|_2 \leq \sum_{k \neq 0} \left| \langle \xi \rangle^{-1} \langle \xi - k/\varepsilon \rangle^{-s} \langle \xi - k/\varepsilon \rangle^s \hat{W}_k (\xi - k/\varepsilon) \right|_2 \leq \sum_{k \neq 0} \left| \langle \xi \rangle^{-1} \langle \xi - k/\varepsilon \rangle^{-s} \right|_\infty |W_k|_{H^s} \leq C \sum_{k \neq 0} \langle k/\varepsilon \rangle^{-s} |W_k|_{H^s} \leq \varepsilon^s |W|_{X^s}.$$ \hspace{1cm} (2.4)

In the last line we used Peetre’s inequality: for every $x, y \in \mathbb{R}^d$ and $t \geq 0$ there exists a constant C such that

$$\langle x \rangle^{-t} \langle y \rangle^{-t} \leq C \langle x - y \rangle^{-t}.$$ \hspace{1cm} (2.5)

Now combining $u = -K_V u$ with the estimate (2.3) we get

$$|u|_2 \leq C \varepsilon^s \frac{\langle \lambda \rangle^2 e^{4L(\text{Im} \lambda)}}{|\lambda|^2} |W|_{X^s}|W|_{\infty}|u|_2.$$ \hspace{1cm} (2.6)

Since $|u|_2 \neq 0$ this gives the lower bound

$$1 \leq C \varepsilon^s \frac{\langle \lambda \rangle^2 e^{4L(\text{Im} \lambda)}}{|\lambda|^2} |W|_{X^s}^2.$$ \hspace{1cm} (2.7)

Consequently either $|\lambda| \leq 1$ and then $|\lambda| \leq c \varepsilon^{s/2}$ for some constant c; or $|\lambda| \geq 1$ and

$$\text{Im} \lambda \leq \frac{1}{4L} \ln \left(C |W|_{X^s}^2 \right) - \frac{s}{4L} \ln(\varepsilon^{-1}).$$

This proves Theorem 1 for $d = 1$.

Now we prove the theorem in dimension $d \geq 3$. In this case the inequality $|fg|_{H^1} \leq |f|_{H^1}|g|_{H^1}$ no longer holds and we must find another way around. Let W such that $W_0 \equiv 0$ and (1.2) holds and $u \neq 0$ with

$$u = -K_V u = - \sum_{k \neq 0} K_{W_k} e^{ik \cdot \varepsilon} u.$$
As in the previous proof u satisfies the \textit{a priori} estimate
\[
|u|_{H^1} \leq |K_{\rho}|_{\mathcal{B}(L^2, H^1)}|Vu|_2 \leq Ce^{C(\text{Im} \lambda)} - |W|_{\infty}|u|_2.
\]
Note that
\[
e^{ik\bullet/\varepsilon} = \frac{\varepsilon}{|k|}[P_k, e^{ik\bullet/\varepsilon}] \quad \text{where} \quad P_k = \frac{k_1D_{x_1} + \ldots + k_dD_{x_d}}{|k|}.
\]
This yields
\[
\varepsilon^{-1}|k|K_{W_k}e^{ik\bullet/\varepsilon} = K_{W_k}[P_k, e^{ik\bullet/\varepsilon}]
\[
= K_{W_k}P_ke^{ik\bullet/\varepsilon} - K_{W_k}e^{ik\bullet/\varepsilon}P_k.
\]
Consequently
\[
\varepsilon^{-1}|k| |K_{W_k}e^{ik\bullet/\varepsilon}u|_2 \leq |K_{W_k}P_ke^{ik\bullet/\varepsilon}u|_2 + |K_{W_k}e^{ik\bullet/\varepsilon}P_ku|_2
\]
\[
\leq |K_{W_k}P_k|_{\mathcal{B}}|u|_2 + |K_{W_k}|_{\mathcal{B}}|P_ku|_2
\]
\[
\leq Ce^{C(\text{Im} \lambda)} - \|W_k\|_1|u|_2 + Ce^{C(\text{Im} \lambda)} - |W_k|_{\infty}|u|_{H^1}
\]
\[
\leq Ce^{4L(\text{Im} \lambda)} - \|W_k\|_1(1 + |W|_{\infty})|u|_2.
\]
From the second to the third line we used the estimates of Lemma 2.1. From the third to the fourth line we used (2.5). Sum (2.6) over $k \in \mathbb{Z}^d \setminus \{0\}$ to obtain
\[
|u|_2 = |K_Vu|_2 \leq C\varepsilon e^{4L(\text{Im} \lambda)} - (1 + |W|_{\infty}) \left(\sum_{k \neq 0} \frac{\|W_k\|_1}{|k|}\right)|u|_2.
\]
It follows that
\[
1 \leq C\varepsilon e^{4L(\text{Im} \lambda)} - (1 + |W|_{\infty}) \left(\sum_{k \neq 0} \frac{\|W_k\|_1}{|k|}\right)
\]
which implies an upper bound on Im λ of the required form. This ends the proof of Theorem 1.

2.3. Construction of an optimal potential. Here we prove that the rate of decay of imaginary parts of resonances of V_{ε} provided by Theorem 1 is optimal in dimension 1. We construct a function W with $W_0 \equiv 0$ satisfying (1.2) such that the potential V defined by (1.1) has a resonance $\lambda_{\varepsilon} \sim -i\varepsilon \ln(\varepsilon^{-1})$. Define $\varphi : \mathbb{T} \to \mathbb{R}$ by
\[
\varphi = 1_{[0, \pi]} - 1_{[0, \pi]},
\]
and
\[
W(x, y) = 1_{[-1/2, 1/2]}(x) \varphi(y).
\]
The Fourier coefficient W_k is given by
\[
W_k(x) = \begin{cases}
2 & \quad \text{if } k \text{ is even}, \\
\frac{1}{i\pi k} & \quad \text{if } k \text{ is odd},
\end{cases}
\]
The function \(f_{[-1/2,1/2]} \) belongs to \(H^{1/2-\delta} \) for all \(1/2 > \delta > 0 \) and
\[
\sum_{k \neq 0} |k|^{-1/2+\delta} |W_k|_{H^{1/2-\delta}} \leq c_5 \sum_{k \neq 0} |k|^{-3/2+\delta} < \infty.
\]
Therefore \(W \) satisfies (1.2) for every \(s \in (0, 1/2) \). The potential \(V \) associated to \(W \) by (1.1) is plotted on Figure 3.

The following lemma characterizes resonances of \(V \) as zeros of a certain \(2 \times 2 \) determinant.

Lemma 2.3. Let \(A_{\pm} \) be the matrix
\[
A_{\pm} = \begin{pmatrix} 0 & 1 \\ \pm 1 - \lambda^2 & 0 \end{pmatrix}.
\] (2.7)

Then \(\lambda \neq 0 \) is a resonance of \(V \) if and only if
\[D(\lambda) = 0\]
where
\[
D(\lambda) = \text{Det} \left(\left(e^{A_{+}/2n} e^{A_{-}/2n} \right)^{n} \begin{pmatrix} 1 \\ -i\lambda \end{pmatrix}, \begin{pmatrix} 1 \\ i\lambda \end{pmatrix} \right).
\]

Proof. We recall that since \(d = 1 \), \(\lambda \neq 0 \) is a resonance of \(V \) if and only if there exists a non zero function \(u \in H^2_{\text{loc}} \) with
\[
\begin{cases}
-u'' + Vu - \lambda^2 u = 0 \\
u(x) = a_{\pm} e^{\pm i\lambda x}, \quad \pm x \gg 1
\end{cases}
\]
see [DyZw15, Theorem 2.4]. Using standard uniqueness results for ODEs \(\lambda \neq 0 \) is a resonance of \(V \) if and only if there exists \(a \in \mathbb{C} \) such that the boundary problem
\[
\begin{cases}
-u'' + Vu - \lambda^2 u = 0, \\
u(-1/2) = 1, \ u'(-1/2) = -i\lambda, \\
u(1/2) = a, \ u'(1/2) = ia\lambda
\end{cases}
\] (2.8)
admits a non-zero solution u in H^2_{loc}. The ODE
\[
\begin{align*}
-u'' + Vu - \lambda^2 u &= 0, \\
u(-1/2) &= 1, \ u'(-1/2) = -i\lambda
\end{align*}
\]
admits a unique solution $u \in H^2_{loc}$. This solution satisfies
\[
\begin{pmatrix} u(1/2) \\ u'(1/2) \end{pmatrix} = \left(e^{A_+/2n} e^{A_-/2n} \right)^n \begin{pmatrix} 1 \\ -i\lambda \end{pmatrix} \tag{2.9}
\]
where A_{\pm} are the matrices given by (2.7). Putting together (2.8) and (2.9) $\lambda \neq 0$ is a resonance if and only if there exists a such that
\[
a \begin{pmatrix} 1 \\ i\lambda \end{pmatrix} = \left(e^{A_+/2n} e^{A_-/2n} \right)^n \begin{pmatrix} 1 \\ -i\lambda \end{pmatrix},
\]
that is, if and only if $D(\lambda) = 0$. This ends the proof. \blacksquare

Remark. Already the Trotter-Kato formula implies
\[
\lim_{n \to \infty} D(\lambda) = \text{Det} \left(\begin{pmatrix} e^{A_+/2n} e^{A_-/2n} & (1 \\ -i\lambda) \\ 1 \\ i\lambda \end{pmatrix} \right)
\]
where the convergence is uniform for λ in compact subsets of \mathbb{C}. Moreover,
\[
\frac{A_+ + A_-}{2} \begin{pmatrix} 1 \\ -i\lambda \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\lambda^2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i\lambda \end{pmatrix} = -i\lambda \begin{pmatrix} 1 \\ -i\lambda \end{pmatrix}.
\]
It follows that
\[
\lim_{n \to \infty} D(\lambda) = \text{Det} \left(\begin{pmatrix} e^{A_+/2n} e^{A_-/2n} & (1 \\ -i\lambda) \\ 1 \\ i\lambda \end{pmatrix} \right) = e^{-i\lambda} \begin{vmatrix} 1 \\ -i\lambda \end{vmatrix} = 2i\lambda e^{-i\lambda}.
\]
This has a simple zero at $\lambda = 0$. Therefore we already see that resonances of V either converge to 0 or escape all compact subsets of \mathbb{C} as $\varepsilon \to 0$.

In order to prove that $V_{\pi/(2n)}$ has a resonance $\lambda_n \sim -i \ln(n)$ we refine the analysis of this remark. By the Baker-Hausdorff-Campbell formula, there exists a matrix $Z_n \in M_2(\mathbb{C})$ such that
\[
e^{Z_n} = e^{A_+/n} e^{A_-/n},
\]
whose asymptotic development is given by
\[
Z_n = \frac{A_+ + A_-}{2n} + \frac{1}{8n^2} [A_+, A_-] + \sum_{m \geq 3} \frac{1}{(2n)^m} P_m(A_+, A_-).
\]
Here the terms $P_m(X, Y)$ are homogeneous polynomial of degree m in the non-commuting variables X, Y. The expansion converges as long as $|A_+| < 2n, |A_-| < 2n$ — see [BlCa04]. This is realized as long as $|\lambda| = o(n^{1/2})$. In what follows we restrict our attention to $\lambda = O(\ln(n))$. For such λ,
\[
Z_n = \frac{A_+ + A_-}{2n} + \frac{1}{8n^2} [A_+, A_-] + O \left(n^{-3} \lambda^6 \right).
\]
This yields
\[e^{nZ_n} = \exp \left(\frac{A_+ + A_-}{2} + \frac{1}{8n} [A_+, A_-] + O \left(n^{-2} \lambda^6 \right) \right) \]
\[= \exp \left(\frac{A_+ + A_-}{2} + \frac{1}{8n} [A_+, A_-] \right) \left(1 + O \left(n^{-2} \lambda^6 \right) \right). \]

A direct computation leads to
\[\frac{A_+ + A_-}{2} + \frac{1}{8n} [A_+, A_-] = \left(-\frac{1}{4n}, 1 \right) \left(-\frac{\lambda^2}{4}, \frac{1}{4n} \right). \]

The eigenvalues are \(\pm \nu, \quad \nu = i \sqrt{\lambda^2 - (4n)^{-2}} \) and therefore
\[\frac{A_+ + A_-}{2} + \frac{1}{8n} [A_+, A_-] = \Omega \Delta \Omega^{-1} \text{ with } \Delta = \left(-\nu, 0 \right), \Omega = \left(-\nu + (4n)^{-1}, \nu + (4n)^{-1} \right). \]

Another computation gives
\[D(\lambda) = \text{Det}(\Omega) \text{Det} \left(e^{\Delta \Omega^{-1} \left(\frac{1}{-i\lambda}, \Omega^{-1} \left(\frac{1}{i\lambda} \right) \right)} \left(1 + O \left(n^{-2} \lambda^6 \right) \right) \right) \]
\[= -\frac{\lambda^2 e^{-\nu}}{2\nu} \left(\left(\frac{\nu}{i\lambda} + 1 \right)^2 + (4n\lambda)^{-2} - e^{2\nu} \left(\left(\frac{\nu}{i\lambda} - 1 \right)^2 + (4n\lambda)^{-2} \right) \right) \left(1 + O \left(n^{-2} \lambda^6 \right) \right). \]

Note that
\[\left(\left(\frac{\nu}{i\lambda} + 1 \right)^2 + (4n\lambda)^{-2} \right) - e^{2\nu} \left(\left(\frac{\nu}{i\lambda} - 1 \right)^2 + (4n\lambda)^{-2} \right) = 4 + O \left((n\lambda)^{-2} \right) - \frac{e^{2i\lambda}}{(4n\lambda)^2} \left(1 + O \left(n^{-2} \lambda^{-1} \right) \right). \]

In order to investigate the behavior of zeros of \(D(\lambda) \) we investigate first the behavior of zeros of the function \(f \) given by the leading term of (2.10), that is
\[f(\lambda) = 4 - \frac{e^{2i\lambda}}{(4n\lambda)^2}. \]

Lemma 2.4. Zeros of \(f \) are given by
\[\lambda_{\nu}^\pm = i \mathcal{W}_\nu (\pm i/8n), \quad \nu \in \mathbb{Z} \]
where \(\mathcal{W}_\nu \) is the \(\nu \)-th branch of the Lambert function – see [CGHJK96]. In particular as \(n \) goes to infinity
\[\lambda_1^+ \sim -i \ln(n). \] (2.11)

Moreover, there exists \(r_0 \) (independent on \(n \)) such that for all \(n \) large enough and \(\theta \in \mathbb{S}^1 \),
\[|f(\lambda_1^+ + r_0 e^{i\theta})| \geq 3r_0. \] (2.12)
Proof. The equation $f(\lambda) = 0$ is equivalent to

$$-i\lambda e^{-i\lambda} = \pm \frac{i}{8n}.$$

Therefore zeros of f are given by $-i\sqrt[n]{\nu}(\pm i/8n)$. From [CGHJK96, equation (4.20)] we obtain the asymptotic (2.11). In order to show the lower bound (2.12) we consider $r \in (0, 1)$. We prove some estimates that are uniform in n and $\theta \in S^1$ as $r \to 0$. The identity $f(\lambda + 1) = 0$ yields

$$f(\lambda + re^{i\theta}) = 4 \left(1 - \left(e^{r e^{i\theta} / \lambda^1_+} \right)^2 \right).$$

As $r \to 0$, $e^{r e^{i\theta}} = 1 + re^{i\theta} + o(r)$, therefore

$$1 - \frac{e^{r e^{i\theta}}}{1 + re^{i\theta} / \lambda^1_+} = \frac{re^{i\theta}(1 - \lambda^1_+) + o(r)}{1 + re^{i\theta} / \lambda^1_+}.$$

For n large enough we have $\lambda^1_+ \sim -i \ln(n)$ and thus a fortiori $|\lambda^1_+| \geq 2$. This implies

$$\left| 1 - \frac{e^{r e^{i\theta}}}{1 + re^{i\theta} / \lambda^1_+} \right| \geq \frac{r/2 + o(r)}{1 + r/2} = r/2 + o(r).$$

Similarly,

$$\left| 1 + \frac{e^{r e^{i\theta}}}{1 + re^{i\theta} / \lambda^1_+} \right| \geq 2 + O(r).$$

Therefore for r small enough

$$|f(\lambda^1_+ + re^{i\theta})| \geq 4r + o(r) \geq 3r.$$

This completes the proof of the lemma. \(\Box\)

For $\lambda \in \partial \mathbb{D}(\lambda^1_+, r_0)$, $f(\lambda)$ is bounded from below uniformly in n large enough. Therefore for $\lambda \in \partial \mathbb{D}(\lambda^1_+, r_0)$,

$$4 + O\left((n\lambda)^{-2} \right) - \frac{e^{2i\lambda}}{(4n\lambda)^2} (1 + O\left(n^{-2}\lambda^{-1} \right)) = f(\lambda) (1 + O\left(n^{-2}\lambda^{-1} \right))$$

$$= f(\lambda) (1 + O\left(n^{-2}\ln(n)^{-1} \right)).$$

This implies that for $\lambda \in \partial \mathbb{D}(\lambda^1_+, r_0)$,

$$D(\lambda) = -\frac{\lambda^2 e^{-\nu}}{2\nu} f(\lambda) (1 + O\left(n^{-2}\ln(n)^{-1} \right)) (1 + O\left(n^{-2}\ln(n)^6 \right))$$

$$= -\frac{\lambda^2 e^{-\nu}}{2\nu} f(\lambda) (1 + O\left(n^{-2}\ln(n)^6 \right)).$$

By Rouché’s theorem this is enough to ensure that for n large enough, $D(\lambda)$ has exactly one zero on $\mathcal{C}(\lambda^1_+, r_0)$. This proves that there exists a resonance behaving like $-i \ln(n)$.

3. Applications of Theorem 5

In this part we consider \(W \in C_0^\infty (\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C}) \) and \(V_\varepsilon \) given by (1.1). We assume that Theorem 5 holds and we get directly to the applications. We prove that resonances of \(V_\varepsilon \) in compact sets admit a full expansion as \(\varepsilon \to 0 \) (Theorem 2); that they can be well approximated by a potential \(V_{\text{eff}, \varepsilon} \) that is a small perturbation of \(W_0 \) (Theorem 3); and we give a description of the localization of resonances of \(V_\varepsilon \) (Theorem 4).

3.1. Expansion of resonances. In this paragraph we prove Theorem 2. We start with the case \(d \geq 3 \) or \(\lambda_0 \neq 0 \).

Proof of Theorem 2 assuming \(d \geq 3 \) or \(\lambda_0 \neq 0 \). Let \(\lambda_0 \) be a simple resonance of \(W_0 \) with \(\lambda_0 \neq 0 \) if \(d = 1 \). For \(N > 0 \) and \(p = 4N(d + N) \) consider \(D_V(\lambda) \) given in (1.7). This is a holomorphic function of \(\lambda \) near \(\lambda_0 \). By Theorem 5 it converges to \(D_{W_0} \) as \(\varepsilon \to 0 \) uniformly on a neighborhood of \(\lambda_0 \). Thus by Hurwitz’s theorem \(D_V \) has exactly one zero \(\lambda_\varepsilon \) that converges to \(\lambda_0 \). It follows that for \(\varepsilon \) small enough and \(r_0 \) small enough \(\lambda_\varepsilon \) is the only resonance of \(V \) on \(\mathbb{D}(\lambda_0, r_0) \).

Define \(f(\lambda, \varepsilon) = D_V(\lambda) \) if \(\varepsilon \neq 0 \) and \(f(\lambda, 0) = D_{W_0}(\lambda) \) otherwise. By Theorem 5 the function \(f \) is of class \(C^{N-1} \) in a neighborhood of \((\lambda_0, 0)\). In addition since

\[
\frac{\partial f}{\partial \lambda}(\lambda_0, 0) = D'_{W_0}(\lambda_0) \neq 0
\]

by the implicit function theorem the equation \(f(\lambda, \varepsilon) = 0 \) has exactly one solution in a neighborhood of \((\lambda_0, 0)\). Using uniqueness it must be \((\lambda_\varepsilon, \varepsilon)\). It follows that the function \(\varepsilon \to \lambda_\varepsilon \) is \(C^{N-1} \). As \(N \) was arbitrary we conclude that \(\varepsilon \to \lambda_\varepsilon \) is \(C^\infty \) for \(\varepsilon \) near 0. Thus for all \(\varepsilon > 0 \),

\[
\lambda_\varepsilon = \lambda_0 + \varepsilon c_1 + \ldots + \varepsilon^{N-1} c_{N-1} + O(\varepsilon^N), \quad c_j \in \mathbb{C}.
\]

We now derive the values of \(c_1, c_2, c_3 \).

Let \(R_{W_0}(\lambda) \) be the meromorphic continuation of the operator \((-\Delta - \lambda^2 + W_0)^{-1}\). Since \(\lambda_0 \) is a simple resonance of \(W_0 \) there exists \(u \in H^2_{\text{loc}}(\mathbb{R}^d, \mathbb{C}), v \in \mathcal{D}'(\mathbb{R}^d, \mathbb{C}) \) such that

\[
R_{W_0}(\lambda) = \frac{iu \otimes v}{\lambda - \lambda_0} + H(\lambda)
\]

where \(H(\lambda) : L^2_{\text{comp}} \to H^2_{\text{loc}} \) is a family of operators holomorphic near \(\lambda_0 \). Let \(f \) be a smooth compactly supported function on \(\mathbb{R}^d \). Since \(R_{W_0}(\lambda)(P_V - \lambda^2)f = f \) we must have

\[
0 = (iu \otimes v)(P_V - \lambda_0^2)f
\]

\[
= iu \langle \nabla, (P_V - \lambda_0^2)f \rangle_{\mathcal{D}'},
\]

\[
= iu \langle (P_V - \lambda_0^2)^* \nabla, f \rangle_{\mathcal{D}'},
\]

Since this is valid for arbitrary \(f \) it yields \((P_V - \lambda_0^2)^* \nabla = 0 \). Thus \(v \in H^2_{\text{loc}} \) and \((P_V - \lambda_0^2)v = 0 \) which implies \(v + R_0(\lambda_0)W_0v = 0 \).
Let Π_0 be the operator $-i\rho(u \otimes v)W_0$. We claim that the family of operators

$$(-K_{W_0})^{p-2} (\text{Id} + K_{W_0})^{-1} - \frac{\Pi_0}{\lambda - \lambda_0}$$

(3.1)

is holomorphic in a neighborhood of λ_0. Indeed since $(\text{Id} + K_{W_0})^{-1} = \text{Id} - \rho R_{W_0}(\lambda)W_0$ there exists a family of operators $B(\lambda)$ holomorphic near λ_0 such that

$$(\text{Id} + K_{W_0})^{-1} = \frac{\Pi_0}{\lambda - \lambda_0} + B(\lambda).$$

It leads to

$$(-K_{W_0})^{p-2} (\text{Id} + K_{W_0})^{-1} - \frac{\Pi_0}{\lambda - \lambda_0} = (-K_{W_0})^{p-2} (\text{Id} + K_{W_0})^{-1} - (\text{Id} + K_{W_0})^{-1} + B(\lambda)$$

$$= ((-K_{W_0})^{p-2} - \text{Id}) (\text{Id} + K_{W_0})^{-1} + B(\lambda)$$

$$= -\text{Id} - ... - K_{W_0}^{p-2} + B(\lambda).$$

This is as claimed holomorphic near λ_0.

Let $\Lambda \in L^\infty(\mathbb{B}^d(0, L), \mathbb{C})$. We now compute the trace $\text{Tr}((-K_{W_0})^{p-2}(\text{Id} + K_{W_0})^{-1}K_\lambda)$ modulo a holomorphic function. Since the operator given by (3.1) is holomorphic near λ_0 and trace class there exists a function φ holomorphic near λ_0 such that

$$\text{Tr}((-K_{W_0})^{p-2}(\text{Id} + K_{W_0})^{-1}K_\lambda) = \frac{\text{Tr}(\Pi_0 K_\lambda)}{\lambda - \lambda_0} + \varphi(\lambda).$$

Using $\Pi_0 = -i\rho u \otimes vW_0$ and $v + R_0(\lambda_0)W_0v = 0$ we get

$$\text{Tr}(\Pi_0 K_\lambda)(\lambda_0) = -i \int_{\mathbb{R}^d} \rho(x) u(x)v(y)W_0(y)R_0(\lambda_0, y, x)\Lambda(x)dxdy$$

$$= -i \int_{\mathbb{R}^d} u(x)\Lambda(x) \left(\int_{\mathbb{R}^d} R_0(\lambda_0, x, y)W_0(y)v(y)dy \right) dx$$

$$= -i \int_{\mathbb{R}^d} u(x)\Lambda(x)(R_0(\lambda_0)W_0v)(x)dx$$

$$= i \int_{\mathbb{R}^d} \Lambda(x)u(x)v(x)dx.$$

It follows that

$$\text{Tr}((-K_{W_0})^{p-2}(\text{Id} + K_{W_0})^{-1}K_\lambda) = \frac{i}{\lambda - \lambda_0} \left(\int_{\mathbb{R}^d} \Lambda uv \right) + \varphi(\lambda).$$

(3.2)

Apply the formula (3.2) to $\Lambda = \varepsilon^2 \Lambda_0$ to obtain

$$D_V(\lambda) = D_{W_0}(\lambda) \left(1 - \text{Tr}((-K_{W_0})^{p-2}(\text{Id} + K_{W_0})^{-1}K_0\varepsilon^2 \Lambda_0) \right) + O(\varepsilon^3)$$

$$= D_{W_0}(\lambda) \left(1 - \frac{i\varepsilon^2}{\lambda - \lambda_0} \left(\int_{\mathbb{R}^d} \Lambda_0 uv \right) - \varepsilon^2 \varphi_0(\lambda) \right) + O(\varepsilon^3).$$
Here the function φ_0 is holomorphic near λ_0 and does not depend on ε. If g is the holomorphic function such that $g(\lambda)(\lambda - \lambda_0) = D_{W_0}(\lambda)$ then

$$D_V(\lambda) = g(\lambda) \left(\lambda - \lambda_0 - i\varepsilon^2 \left(\int_{\mathbb{R}^d} \Lambda_0 uv \right) - \varepsilon^2 (\lambda - \lambda_0)\varphi_0(\lambda) \right) + O(\varepsilon^3). \quad (3.3)$$

Note that as $\varepsilon \to 0$ we have $g(\lambda_\varepsilon) \to D_{W_0}(\lambda_0) \neq 0$. Thus specializing the identity (3.3) at $\lambda = \lambda_\varepsilon$ leads to

$$0 = \lambda_\varepsilon - \lambda_0 - i\varepsilon^2 \left(\int_{\mathbb{R}^d} \Lambda_0 uv \right) - \varepsilon^2 (\lambda_\varepsilon - \lambda_0)\varphi_0(\lambda_\varepsilon) + O(\varepsilon^3).$$

Since $\lambda_\varepsilon - \lambda_0 = O(\varepsilon)$ and $\varphi_0(\lambda_\varepsilon) \to \varphi_0(\lambda_0)$ as $\varepsilon \to 0$ we obtain

$$\lambda_\varepsilon = \lambda_0 + i\varepsilon^2 \left(\int_{\mathbb{R}^d} \Lambda_0 uv \right) + O(\varepsilon^3). \quad (3.4)$$

This recovers the result of [DVW14].

Now to get the second order correction we apply (3.2) successively to $\Lambda = \varepsilon^2 \Lambda_0$ and $\Lambda = \varepsilon^3 \Lambda_1$. The same operations as in the previous paragraph lead to

$$D_V(\lambda) = D_{W_0}(\lambda) \left(1 - \text{Tr} \left((-K_{W_0})^{p-2}(\text{Id} + K_{W_0})^{-1}K_{\varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda} \right) \right) + O(\varepsilon^4)$$

$$= g(\lambda) \left(\lambda - \lambda_0 - i \left(\int_{\mathbb{R}^d} (\varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1) uv \right) - (\lambda - \lambda_0)(\varepsilon^2 \varphi_0(\lambda) + \varepsilon^3 \varphi_1(\lambda)) \right) + O(\varepsilon^4)$$

for a function φ_1 holomorphic near λ_0. Here again specialize this identity at $\lambda = \lambda_\varepsilon$ and use $g(\lambda_\varepsilon) \to g(\lambda_0) \neq 0$ to obtain

$$0 = \lambda_\varepsilon - \lambda_0 - i \left(\int_{\mathbb{R}^d} (\varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1) uv \right) - (\lambda_\varepsilon - \lambda_0)(\varepsilon^2 \varphi_0(\lambda_\varepsilon) + \varepsilon^3 \varphi_1(\lambda_\varepsilon)) + O(\varepsilon^4).$$

This time by (3.4) we know that $\lambda_\varepsilon - \lambda_0 = O(\varepsilon^2)$. It follows that

$$\lambda_\varepsilon = \lambda_0 + i\varepsilon^2 \left(\int_{\mathbb{R}^d} \Lambda_0 uv \right) + i\varepsilon^3 \left(\int_{\mathbb{R}^d} \Lambda_1 uv \right) + O(\varepsilon^4).$$

This proves the theorem. \hfill \Box

We now work with the case of the zero resonance in dimension one. In this case we have

Lemma 3.1. If W belong to $C_0^\infty([-L, L] \times T^1, \mathbb{C})$ and V be given by (1.1). There exists an entire function h_V satisfying the following:

(i) λ_0 is a resonance of V of multiplicity m if and only if it is a zero of h_V of multiplicity.

(ii) There exists $h_4, ..., h_{N-1}$ such that locally uniformly on \mathbb{C}

$$h_V(\lambda) = \lambda d_{W_0}(\lambda) \left(1 - \text{Tr} \left((\text{Id} + K_{W_0})^{-1}K_\Lambda \right) \right) + \varepsilon^4 h_4(\lambda) + ... + \varepsilon^{N-1} h_{N-1}(\lambda) + O(\varepsilon^N)$$

for $\varepsilon > 0$. The functions $h_4, ..., h_{N-1}$ are analytic in \mathbb{C} and $h_V(\lambda_0) = 0$.
Assume that $\lambda = \det(\text{Id} + K_{W_0})$ and Λ is the potential given by

$$\Lambda = \varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1 = \varepsilon^2 \sum_{k \neq 0} \frac{W_k W_{-k}}{k^2} - 2 \varepsilon^3 \sum_{k \neq 0} \frac{W_k (DW_{-k})}{k^3}.$$

To complete the proof of Theorem 2 we directly modify the proof of the case $\lambda = 0$, $d = 1$ using the function h_V instead of D_V. We postpone the proof of Lemma 3.1 to §4.6. We end this part with a version of Theorem 2 for resonances $\lambda = 0$ of W_0 with higher multiplicity.

Theorem 6. Assume that W belongs to $C^\infty_0(\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C})$ and that $\lambda = 0$ is a resonance of W_0 with multiplicity m. Then in a neighborhood of $\lambda = 0$ the potential V_ε has exactly m resonances $\lambda_{1, \varepsilon}, ..., \lambda_{m, \varepsilon}$ for ε small enough. In addition for every $j \in [1, m]$ and $N > 0$,

$$\lambda_{j, \varepsilon} = \lambda_0 + c_{j, 1} \varepsilon^{2/m} + c_{j, 3} \varepsilon^{3/m} + ... + c_{j, N - 1} \varepsilon^{(N - 1)/m} + O(\varepsilon^{N/m}), \quad c_{j, n} \in \mathbb{C}.$$

Proof. Let $\lambda_0 \in X_d$ be a resonance of W_0 of multiplicity $m > 1$. Fix $N > 0$ and p, D_V given by Theorem 5. Since locally uniformly on \mathbb{C} we have $D_V(\lambda) = D_{W_0}(\lambda)$, by Hurwitz’s theorem the function D_V has exactly m zeros (counted with multiplicity) converging to λ_0. These zeros admit a Puiseux expansion: there exists $c_{1, 1}, ..., c_{m, N - 1}$ such that the zeros $\lambda_{1, \varepsilon}, ..., \lambda_{m, \varepsilon}$ of D_V near λ_0 are given by

$$\lambda_{j, \varepsilon} = \lambda_0 + \varepsilon^{1/m} c_{j, 1} + ... + \varepsilon^{(N - 1)/m} c_{j, N - 1} + O(\varepsilon^{N/m}).$$

Now since $D_V(\lambda) = D_{W_0}(\lambda) + O(\varepsilon^2)$, $c_{j, 1} = 0$. In the case $\lambda_0 = 0$ in dimension one the proof can be modified by considering h_V instead of D_V. This proves Theorem 6. \qed

3.2. Derivation of an effective potential.

In this part we prove Theorem 3. We start by giving a few preliminaries concerning trace class operators and Fredholm determinant. The reader can consult [DyZw15, Chapter B] for a complete introduction.

The singular values of a compact operator $X : \mathcal{H} \to \mathcal{H}$ are defined as the non-increasing sequence $s_j(X) = \lambda_j((X^* X)^{1/2})$. In particular $s_0(X) = |X|_{\mathcal{B}(\mathcal{H})}$. The singular values satisfy two remarkable inequalities. If Y is another compact operator then for every j, ℓ,

$$s_{j + \ell}(X + Y) \leq s_j(X) + s(\ell),$$

$$s_{j\ell}(XY) \leq s_j(X)s(\ell).$$

We say that a compact operator X is trace class if the sequence $s_j(X)$ is summable. The trace class norm of X denoted by $|X|_\mathcal{S}$ is the sum of the series. If X trace class we can define the trace of X and the Fredholm determinant $\det(\text{Id} + X)$. This determinant vanishes if and only if $\text{Id} + X$ is not invertible. We now give estimates on the singular values of the operator $K_{\mathcal{Y}} = \rho R_0(\lambda)\mathcal{Y}$.

Lemma 3.2. Let \mathcal{Y} in $L^\infty(\mathbb{B}^d(0, L), \mathbb{C})$. Locally uniformly on X_d $s_j(K_{\mathcal{Y}}) \leq C|\mathcal{Y}|_{\infty}j^{-2/d}$. Consequently if $p \geq d$ is an integer the operator $K_{\mathcal{Y}}^p$ is trace class and locally uniformly on X_d, $|K_{\mathcal{Y}}^p|_{\mathcal{S}} \leq C|\mathcal{Y}|^p_{\infty}$.
Proof. We combine [DyZw15, Equation (B.3.9)] with Lemma 2.1. This gives:

\[
s_j(K^p) \leq C |V|^{j-2/d} |D|^2 K^p \leq C |V|^{j-2/d}.
\]

Now in order to prove that the operator \(K^p\) belongs to \(L^1\) for \(p \geq d\) it suffices to prove that the sequence of singular values \(s_j(K^p)\) is summable. Using the properties of the singular values,

\[
\sum_{j=0}^{\infty} s_j(K^p) \leq p \sum_{j=0}^{\infty} s_{pj}(K^p) \leq p \sum_{j=0}^{\infty} s_j(K)^p \leq C |V|^p \sum_{j=0}^{\infty} j^{-2p/d}.
\]

Since \(p \geq d\) the series converges and the lemma follows. \(\square\)

This lemma implies that for \(\lambda \in X_d\) the Fredholm determinant

\[
D_V(\lambda) = \text{Det}(\text{Id} + \Psi(K^p)), \quad \Psi(z) = (1 + z) \exp \left(-z + \frac{z^2}{2} - \ldots + \frac{(-z)^{p-1}}{p-1} \right) - 1
\]

is well defined – see [Si77, Lemma 6.1]. It is an entire function of \(\lambda\) for \(d \geq 3\) and is a meromorphic function of \(\lambda\) with a pole at \(\lambda = 0\) for \(d = 1\). We now show the seemingly unknown:

Lemma 3.3. Let \(W_0, \Lambda \in L^\infty(\mathbb{B}^d(0, L), \mathbb{C})\). If \(p \geq d\) and \(D_{W_0+\varepsilon\Lambda}\) is the Fredholm determinant given by (1.7) then there exists \(b_0, b_1, \ldots\) holomorphic functions of \(\lambda \in X_d\) such that locally uniformly on \(X_d\),

\[
D_{W_0+\varepsilon\Lambda}(\lambda) = \sum_{j=0}^{\infty} b_j(\lambda) \varepsilon^j.
\]

In addition \(b_0(\lambda) = D_{W_0}(\lambda)\) and

\[
b_1(\lambda) = D_{W_0}(\lambda) \cdot \text{Tr} \left((\text{Id} + K_{W_0})^{-1} (-K_{W_0})^{p-1} K_{\Lambda} \right).
\]

Proof. Let \(W_0, \Lambda \in L^\infty(\mathbb{B}^d(0, L), \mathbb{C})\). By [Si77, Theorem 3.3] if \(p \geq d\) and \(\Psi\) is given by (1.6) the determinant \((\varepsilon, \lambda) \mapsto D_{W_0+\varepsilon\Lambda}(\lambda) = \text{Det}(\text{Id} + \Psi(K_{W_0+\varepsilon\Lambda}))\) is an entire function of \(\varepsilon\) (with \(\lambda \in X_d\) fixed) and a holomorphic function of \(\lambda\) on \(X_d\) (with \(\varepsilon\) fixed). Thus by Hartogs’s theorem it is analytic on \(\mathbb{C} \times X_d\). Write a power expansion of \(D_{W_0+\varepsilon\Lambda}\) as follows:

\[
D_{W_0+\varepsilon\Lambda}(\lambda) = \sum_{n=0}^{\infty} b_n(\lambda) \varepsilon^n.
\]

Since

\[
b_n(\lambda) = \frac{1}{n!} \left. \frac{\partial^n D_{W_0+\varepsilon\Lambda}}{\partial \varepsilon^n} \right|_{\varepsilon=0} (\lambda)
\]

the function \(b_n\) is holomorphic on \(X_d\). It remains to identify the coefficient \(b_0(\lambda)\) and \(b_1(\lambda)\).

First fix \(m \geq d\) and assume that \(\text{Im} \lambda \geq 1\). By Lemma 2.1 and Lemma 3.2,

\[
|K_{W_0+\varepsilon\Lambda}^m|_{\mathcal{Z}} \leq |K_{W_0+\varepsilon\Lambda}^{|m-d|}|_{\mathcal{Z}} |K_{W_0+\varepsilon\Lambda}^d|_{\mathcal{Z}} \leq C_{m}^m |\lambda|^{m-d}.
\]
It follows that the series
\[\sum_{m=p}^{\infty} (-1)^m \frac{K_{W_0^m+\varepsilon\Lambda}}{m} \]
converges absolutely in \(\mathcal{L} \) for \(\text{Im} \lambda \gg 1 \) and in addition
\[D_{W_0+\varepsilon\Lambda}(\lambda) = \exp \left(- \sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K_{W_0^m+\varepsilon\Lambda} \right)}{m} \right), \]
see [Si77, Theorem 6.2]. If \(d = 1 \) then \(\text{Tr}(K_{W_0^m+\varepsilon\Lambda}) = \text{Tr}(K_{W_0}) + \varepsilon \text{Tr}(K_{\Lambda}) \). We now obtain a first order Taylor expansion of \(\text{Tr}(K_{W_0^m+\varepsilon\Lambda}) \) for \(m \geq d \). Using the binomial expansion and the cyclicity of the trace,
\[\text{Tr}(K_{W_0^m+\varepsilon\Lambda}) = \text{Tr}(K_{W_0}) + m\varepsilon \text{Tr}(K_{W_0}^{-1}K_{\Lambda}) + r_m(\varepsilon). \]
Here \(r_m(\varepsilon) \) is a sum of less than \(2^m \) terms of the form
\[\text{Tr}(K_{\gamma_1}...K_{\gamma_m}) \]
where \(\gamma_j \) is equal to \(\varepsilon\Lambda \) for at least two values of the indexes \(j \) and to \(W_0 \) for all other values. By the estimates of Lemma 2.1 and 3.2 we have for \(\text{Im} \lambda > 0 \) and \(|\varepsilon| \leq 1 \)
\[s_{p_j}(K_{\gamma_1}...K_{\gamma_m}) \leq s_j(K_{\gamma_1})...s_j(K_{\gamma_p}) |K_{\gamma_{p+1}}|_{\mathcal{B}}...|K_{\gamma_m}|_{\mathcal{B}} \leq C |\lambda|^{-m-p/2} |\gamma_1|_{\mathcal{B}}...|\gamma_m|_{\mathcal{B}} \leq \varepsilon^2 |\lambda|^{-m-p/2}. \]
Summing over \(j \) we therefore obtain
\[|r_m(\varepsilon)| \leq \varepsilon^2 \frac{(2C)^m}{|\lambda|^{-m-p}}. \]
It follows that for \(\text{Im} \lambda \) large enough,
\[\sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K_{W_0^m+\varepsilon\Lambda} \right)}{m} = \sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K_{W_0}^m \right)}{m} + \varepsilon \sum_{m=p}^{\infty} (-1)^m \text{Tr} \left(K_{W_0}^{-1}K_{\Lambda} \right) + O(\varepsilon^2) \]
\[= \sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K_{W_0}^m \right)}{m} - \varepsilon \text{Tr} \left((K_{W_0})^{-1}(I + K_{W_0})^{-1}K_{\Lambda} \right) + O(\varepsilon^2). \]
The following determinant asymptotic follows: for \(\text{Im} \lambda \) large enough,
\[D_{W_0+\varepsilon\Lambda}(\lambda) = \exp \left(- \sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K_{W_0}^m \right)}{m} + \varepsilon \text{Tr} \left((K_{W_0})^{-1}(I + K_{W_0})^{-1}K_{\Lambda} \right) + O(\varepsilon^2) \right) \]
\[= D_{W_0}(\lambda) \left(1 + D_{W_0}(\lambda) \text{Tr} \left((K_{W_0})^{-1}(I + K_{W_0})^{-1}K_{\Lambda} \right) \right) + O(\varepsilon^2). \]
Thus \(b_0(\lambda) = D_{W_0}(\lambda) \) and \(b_1(\lambda) = D_{W_0}(\lambda) \text{Tr} \left((K_{W_0})^{-1}(I + K_{W_0})^{-1}K_{\Lambda} \right) \) for \(\text{Im} \lambda \gg 1 \). Since the functions \(b_0, b_1 \) are holomorphic by the unique continuation principle these identities must also hold on \(X_d \). This ends the proof of the theorem. \(\square \)
Remark. We have proved that b_1 is holomorphic on X_d by general arguments. However from the explicit expression of b_1 it is not clear that b_1 does not have singularities on Res(W_0). These possible singularities are in fact removable, see Appendix 5.1.

We are now ready to prove Theorem 3 which is a consequence from the case $m = 1$ of the following

Theorem 7. Let $V_{\text{eff}} = W_0 + \varepsilon^2\Lambda_0 + \varepsilon^3\Lambda_1$ were Λ_0,Λ_1 where defined in Theorem 5. Let μ_ε be a family of resonances of $V_{\text{eff},\varepsilon}$ with multiplicity m. For every $\varepsilon > 0$ there exist m resonances counted with multiplicity $\lambda_{1,\varepsilon}, \ldots, \lambda_{m,\varepsilon}$ of V_{ε} such that

$$ |\lambda_{j,\varepsilon} - \mu_\varepsilon| = O(\varepsilon^{4/m}). $$

Conversely let λ_{ε} be a family of resonances of V_{ε} with multiplicity m. For every $\varepsilon > 0$ there exist m resonances counted with multiplicity $\mu_{1,\varepsilon}, \ldots, \mu_{m,\varepsilon}$ of $V_{\text{eff},\varepsilon}$ such that

$$ |\lambda_{j,\varepsilon} - \mu_{j,\varepsilon}| = O(\varepsilon^{4/m}). $$

Proof. Assume $d \geq 3$. Fix $N = 4$, $p = 16(d + 4)$ and D_V given in Theorem 5. Let $V_{\text{eff}} = W_0 - \varepsilon^2\Lambda_0 - \varepsilon^3\Lambda_1$. By Theorem 5,

$$ D_V = D_{W_0}(\lambda) \left(1 + \text{Tr} \left((\text{Id} + K_{W_0})^{-1}(-K_{W_0})^{p-2}K_{-\varepsilon^2\Lambda_0 - \varepsilon^3\Lambda_1} \right) \right) + O(\varepsilon^4). \quad (3.5) $$

Define \mathcal{D}_γ the Fredholm determinant

$$ \mathcal{D}_\gamma(\lambda) = \text{Det} (\text{Id} + \psi(K)_{\gamma}), \quad \psi(z) = (1 + z) \exp \left(-z + \frac{z^2}{2} + \ldots + \frac{(-z)^{p-2}}{p-2} \right) - 1. $$

Since

$$ \Psi(z) = \exp \left(\frac{(-z)^{p-1}}{p-1} \right) \psi(z) $$

the Fredholm determinants D_V defined in (1.7) and \mathcal{D}_γ are related through the identity

$$ D_V(\lambda) = \exp \left(\frac{\text{Tr}((-K)_{\gamma}^{p-1})}{p-1} \right) \mathcal{D}_\gamma(\lambda). $$

Therefore (3.5) implies $D_V(\lambda) =$

$$ \exp \left(\frac{\text{Tr}((-K_{W_0})^{p-1})}{p-1} \right) \mathcal{D}_{W_0}(\lambda) \left(1 + \text{Tr} \left((\text{Id} + K_{W_0})^{-1}(-K_{W_0})^{p-2}K_{-\varepsilon^2\Lambda_0 - \varepsilon^3\Lambda_1} \right) \right) + O(\varepsilon^4). $$

Lemma 3.3 leads to

$$ D_V(\lambda) = \exp \left(\frac{\text{Tr}((-K_{W_0})^{p-1})}{p-1} \right) \mathcal{D}_{V_{\text{eff}}}(\lambda) + O(\varepsilon^4) $$

where $V_{\text{eff}} = W_0 - \varepsilon^2\Lambda_0 - \varepsilon^3\Lambda_1$. Consider now μ_ε a bounded family of resonances of V_{eff} of multiplicity m. As μ_ε is bounded there exist C, r such that for every $\lambda \in \mathbb{D}(\mu_\varepsilon, r)$,

$$ \exp \left(\frac{\text{Tr}((-K_{W_0})^{p-1})}{p-1} \right) \mathcal{D}_{V_{\text{eff}}}(\lambda) \geq C|\lambda - \mu_\varepsilon|^m. \quad (3.6) $$
Let $\gamma_\varepsilon = \partial D(\mu_\varepsilon, c\varepsilon^{4/m})$. If c is small enough then by (3.6) for every $\lambda \in \gamma_\varepsilon$,
\[
|D_V(\lambda) - \exp \left(\frac{\text{Tr}((-K_{W_0})^{p-1})}{p-1} \right) \mathcal{G}_{\text{eff}}(\lambda)\| < \exp \left(\frac{\text{Tr}((-K_{W_0})^{p-1})}{p-1} \right) \mathcal{G}_{\text{eff}}(\lambda)\|.
\]
By Rouché’s theorem this implies that V and V_{eff} have the same number of resonances inside the disk $D(\mu_\varepsilon, c\varepsilon^{4/m})$. The proof of the convert part is similar and we omit it. This proves Theorem 7 away from the resonance 0 in dimension one.

We now concentrate on $d = 1$. In this case by Theorem 5 and Lemma 3.3 the function h_V of Lemma 3.1 satisfies $h_V(\lambda) = \lambda d_{V_{\text{eff}}}(\lambda) + O(\varepsilon^4)$ locally uniformly on X_d. The functions h_V and $d_{V_{\text{eff}}}$ are both entire. By a Cauchy formula, if $\lambda \in D(0,1)$ then
\[
h_V(\lambda) = \frac{1}{2\pi i} \int_{\partial D(0,2)} \frac{d_{V_{\text{eff}}}(\mu) d\mu}{\mu - \lambda} + O(\varepsilon^4)
\]
and this holds uniformly on $D(0,1)$. Thus the estimate $h_V(\lambda) = \lambda d_{V_{\text{eff}}}(\lambda) + O(\varepsilon^4)$ holds locally uniformly on \mathbb{C}. The end of the proof is the same as in the case $d \geq 3$.

3.3. Uniform description of the resonant set. Here we prove Theorem 4. Let $W \in C^\infty_0(\mathbb{B}^d(0,L) \times \mathbb{T}^d, \mathbb{C})$ and V associated to W by (1.1). Fix $B > 0$. We first localize resonances of V that are above the line $\text{Im} \lambda = -B$. According to (2.1) the set of resonances of V (minus $\{0\}$ in dimension one) is the set of λ such that the operator $\text{Id} + K_V(\lambda)$ is not invertible on L^2. Thus if $\lambda \in X_d$ is a resonance then $|K_V|_{\mathcal{B}} \geq 1$. Since for $\text{Im} \lambda \geq -B$, $|K_V|_{\mathcal{B}} \leq C|V|_\infty e^{2LB}/|\lambda|$, for ε small enough resonances of V and W_0 in the half plane $\text{Im} \lambda \geq -B$ all belong to a same disk $D(0,\rho)$. By Theorem 5,
\[
D_V(\lambda) = D_{W_0}(\lambda) + O(\varepsilon^2) \text{ uniformly on } D(0,\rho).
\]
As D_{W_0} has no zero on $\partial D(0,\rho)$ we have
\[
\frac{1}{2\pi i} \int_{\partial D(0,\rho)} \frac{D_V(\lambda)}{D_V(\lambda)} d\lambda \to \frac{1}{2\pi i} \int_{\partial D(0,\rho)} \frac{D_{W_0}(\lambda)}{D_{W_0}(\lambda)} d\lambda.
\]
Therefore W_0 and V have the same (finite) number of resonances on $D(0,\rho)$ for ε small enough. By Theorem 6 there exists $c > 0$ such that these resonances belong to
\[
\mathcal{C}_\varepsilon = \bigcup_{\lambda_0 \in \text{Res}(W_0), \text{Im} \lambda_0 \geq -B} \mathbb{D} \left(\langle \lambda_0, c\varepsilon^{2/mW_0}(\lambda_0) \rangle \right).
\]

Now assume that $\lambda \in \text{Res}(V)$ satisfies $\text{Im} \lambda \leq -B$ and that λ does not belong to the set \mathcal{C}_ε defined in (1.5). This means
\[
\lambda \notin \bigcup_{\lambda_0 \in \text{Res}(W_0), \text{Im} \lambda_0 \leq -B} \mathbb{D} \left(\langle \lambda_0, (\lambda_0)^{-d-1} \rangle \right).
\]
Then (see the proof of [DyZw15, Theorem 3.49]):
\[
\left| (\text{Id} + K_{W_0})^{-1} \right|_{\mathcal{B}} \leq e^{C(\lambda)^{2d+1}}.
\]
We now reproduce the proof of Theorem 1 for $d \geq 3$. Since $\lambda \in \text{Res}(V)$ there must exist $u \in L^2$ with $u = -K_V u$. In particular u belongs to H^1 with $|u|_{H^1} \leq Ce^{C(\text{Im}\lambda)} |W|_\infty |u|_2$. The equation $u = -K_V u$ is equivalent to
\[
 u = -(\text{Id} + K_{W_0})^{-1} K_V u = -(\text{Id} + K_{W_0})^{-1} \sum_{k \neq 0} K_{W_k} e^{ik\bullet /\varepsilon} u.
\]

As in the proof of Theorem 1, we perform an integration by parts on the term $K_{W_k} e^{ik\bullet /\varepsilon} u$:
\[
 \frac{|k|}{\varepsilon} K_{W_k} e^{ik\bullet /\varepsilon} u = K_{W_k} P_k e^{ik\bullet /\varepsilon} u - K_{W_k} e^{ik\bullet /\varepsilon} P_k u.
\]

This yields
\[
 \frac{|k|}{\varepsilon} |K_{W_k} e^{ik\bullet /\varepsilon} u|_2 \leq C e^{C(\text{Im}\lambda)} - \|W_k\|_1 |u|_2 + C e^{C(\text{Im}\lambda)} - |W_k|_\infty |u|_{H^1}.
\]

Using the a priori bound of $|u|_{H^1}$ and summing over $k \neq 0$ we obtain
\[
 |K_V u|_2 \leq C \varepsilon e^{C(\text{Im}\lambda)} - |W|_\infty \left(\sum_{k \neq 0} \frac{\|W_k\|_1}{|k|} \right) |u|_2.
\]

It follows that
\[
 |u|_2 = \left| (\text{Id} + K_{W_0})^{-1} K_V u \right|_2 \leq C \varepsilon e^{C(\text{Im}\lambda)} - e^{C(\lambda) 2d+1} |W|_\infty \left(\sum_{k \neq 0} \frac{\|W_k\|_1}{|k|} \right) |u|_2.
\]

Since $u \neq 0$, this implies a lower bound on $|\lambda|$ of the form $|\lambda| \geq A - C \ln(\varepsilon^{-1})^{1/(2d+1)}$. Thus λ belongs to the set \mathcal{D}_ε defined in (1.5). This ends the proof of Theorem 4.

4. Proof of Theorem 5

We now get to the core of the paper: the proof of Theorem 5. It is a quite technical step and we first explain the ideas. If D_V is the determinant given by (1.7) we can write heuristically
\[
 D_V(\lambda) = \exp \left(\sum_{m=p}^{\infty} \frac{(-1)^m}{m} \text{Tr} \left(K_V^m \right) \right).
\]

It is then natural to think that a necessary step in the proof of Theorem 5 is to obtain an expansion in powers of ε for $\text{Tr}(K_V^m)$. For a potential V given by $V(x) = \sum_{k \in \mathbb{Z}^d} W_k(x) e^{ikx / \varepsilon}$ then $\text{Tr}(K_V^m)$ can be decomposed as a sum of terms of the form
\[
 T[k_1, ..., k_m] = \text{Tr} \left(\prod_{j=1}^{m} K_{W_{k_j}} e^{ik_j x / \varepsilon} \right)
\]

where $k_1, ..., k_m \in \mathbb{Z}^d$. We now explain how to obtain an expansion for $T[k_1, ..., k_m]$. We say that the sequence $k_1, ..., k_m$ is constructive if $k_1 + ... + k_m = 0$ and destructive otherwise. We use this terminology for the following reason. In the case of a destructive sequence the behavior of the oscillatory terms $ik_j x / \varepsilon$ imply $\prod_{j=1}^{m} e^{ik_j x / \varepsilon} \to 0$ weakly as
\[\varepsilon \to 0. \] We will prove that in this case \(T[k_1, ..., k_m] \) is of order \(O(\varepsilon^N) \) and thus produces no term in the expansion provided by Theorem 5. This will be the hardest part of the proof and will require some arguments of combinatorial nature. In the case of a constructive sequence \(k_1, ..., k_m \) the situation is in fact simpler. Let \(R(\xi) = (\xi^2 - \lambda^2)^{-1} \) so that formally \(R_0(\lambda) = R(D) \). Using the commutation relation \(e^{-ik \cdot /\varepsilon} De^{ik \cdot /\varepsilon} = D + k/\varepsilon \), we have

\[
T[k_1, ..., k_m] = \text{Tr} \left(\prod_{j=1}^{m} \rho R(D) W_{k_j} e^{ik_j \cdot /\varepsilon} \right)
\]

\[
= \text{Tr} \left(\prod_{j=1}^{m} \rho R(D + \sigma_j /\varepsilon) W_{k_j} \right)
\]

where \(\sigma_j = k_j + ... + k_m \). An expansion of \(T[k_1, ..., k_m] \) follows then from an operator-valued expansion of the operator \(R(D + \sigma_j /\varepsilon) \), which in return follows from an expansion of the function \(R(\xi + \sigma_j /\varepsilon) \).

4.1. Preliminaries on Fredholm determinants. We start by giving a formula for general Fredholm determinants as infinite series. Consider \(X, Y \) two trace class operators on \(L^2 \) and assume that \(\text{Id} + X \) is invertible. Define the Fredholm determinant

\[
D(\mu) = \text{Det}(\text{Id} + X + \mu Y).
\]

This is a holomorphic function of the variable \(\mu \), satisfying the bound \(|D(\mu)| \leq e^{X/|\lambda| + \mu |Y|} \). Expand it in power series: there exists a sequence \(\omega_n(X,Y) \) such that

\[
D(\mu) = \sum_{n=0}^{\infty} \frac{\mu^n}{n!} \omega_n(X,Y).
\]

(4.1)

The terms \(\omega_n(X,Y) \) are given by the \(n \times n \) determinant

\[
\omega_n(X,Y) = \text{Det}(\text{Id} + X)
\]

\[
\begin{vmatrix}
\tau_1 & n-1 & 0 & \ldots & 0 \\
\tau_2 & \tau_1 & n-2 & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\tau_{n-1} & \ddots & \ddots & \ddots & 1 \\
\tau_n & \tau_{n-1} & \ldots & \tau_2 & \tau_1
\end{vmatrix},
\]

(4.2)

where \(\tau_j = \text{Tr}(((\text{Id} + X)^{-1} Y)^j) \) — see [Si77, Theorem 6.8].

Lemma 4.1. Let \(s \geq 0 \) and assume that \(\langle D \rangle^s X \) and \(\langle D \rangle^s Y \), initially defined as operators from \(L^2 \) to \(H^{-s} \), are trace class operator on \(L^2 \). Then

\[
|\omega_n(X,Y)| \leq |\langle D \rangle^s \text{Tr}(X)^{-s}| \varepsilon^{\langle D \rangle^s \langle D \rangle^{-s}}. \]

(4.3)

Proof. First note that since \(\langle D \rangle^{-s} \in \mathcal{B} \) and \(\langle D \rangle^s (X + \mu Y) \in \mathcal{L} \) we can use the cyclicity of the determinant to get

\[
\text{Det}(\text{Id} + X + \mu Y) = \text{Det}(\text{Id} + \langle D \rangle^s (X + \mu Y) \langle D \rangle^{-s}).
\]
Therefore
\[|\text{Det}(\text{Id} + X + \mu Y)| \leq e^{|(D)^*X(D)^{-s}|x} + |\mu||\langle D\rangle^*Y(D)^{-s}|x. \]
This proves that \(\text{Det}(\text{Id} + X + \mu Y) \) is an entire function of order 1. Therefore by Cauchy estimates the coefficients \(\omega_n(X, Y) \) must satisfy (4.3). This completes the proof. \(\square \)

Remark. The function \(Y \mapsto \text{det}(\text{Id} + X + Y) \) is an analytic function of \(Y \). Therefore for \(Y \) small enough its simple zeros depend analytically on \(Y \). This gives a new possible approach to [GoWe05, Theorem 4.1]. However it is not clear that this approach could give a result on the stability of resonant states.

4.2. Reduction to a trace expansion.

We now start the proof of Theorem 5. Fix without loss of generality \(N \geq d + 1 \) and \(p = 4(d + N)N \). Let \(W \in C_0^\infty(\mathbb{B}^d(0, L) \times \mathbb{T}^d, \mathbb{C}) \) be given by
\[W(x, y) = \sum_{k \in \mathbb{Z}^d} W_k(x)e^{iky} \]
and \(V \) be the potential
\[V(x) = W_0(x) + V_\delta(x), \quad V_\delta(x) = \sum_{k \neq 0} W_k(x)e^{ik\xi/\varepsilon}. \]

We define \(|W|_{Z^s} = \sum_{k \in \mathbb{Z}^d} ||W_k||_s \). Since \(W \) is smooth this is finite for every \(s \geq 0 \).

Let \(X \) and \(Y \) be the trace class operators given by
\[X = \Psi(K_{W_0}), \quad Y = \Psi(K_V) - \Psi(K_{W_0}), \quad \Psi(z) = (1 + z)\exp \left(-z + \frac{z^2}{2} - \ldots + \frac{(-z)^{p-1}}{p-1} \right) - 1. \]

The expansion (4.1) yields
\[D_V(\lambda) = \text{Det}(\text{Id} + X + Y) = \sum_{n=0}^\infty \frac{1}{n!} \omega_n(X, Y). \]

We now reduce this exact infinite expansion to a finite expansion modulo a term of order \(O(\varepsilon^{2N}) \). We recall that \(X_d = \mathbb{C} \) if \(d \geq 3 \) and \(X_1 = \mathbb{C} \setminus \{0\} \).

Lemma 4.2. Locally uniformly on \(X_d \),
\[D_V(\lambda) = \sum_{n=0}^N \frac{1}{n!} \omega_n(X, Y) + O(\varepsilon^{2N}). \]

Proof. It is enough to show that the coefficients \(\omega_n(X, Y) \) satisfy the inequality
\[|\omega_n(X, Y)| \leq (C\varepsilon^2)^n \]
for all \(n \geq 0 \). Because of (4.3) it suffices then to estimate \(|Y|_{\mathcal{X}} \). Write a power series expansion of \(\Psi \) as
\[\Psi(z) = \sum_{m=0}^\infty \alpha_m z^m, \quad \alpha_m = \frac{1}{m!} \frac{d^m\Psi}{dz^m}(0). \]
Since the function Ψ is entire of order $p-1$ and type $(p-1)^{-1}$ we can estimate the coefficients α_m by Cauchy estimates. There exist C such that $|\Psi(z)| \leq Ce^{p-1/(p-1)}$ for $|z| = r$. Thus

$$|\alpha_m| \leq \inf_{r>0} r^{-m}Ce^{p-1/(p-1)} \leq C \left(\inf_{\rho>0} \rho^{-m}e^{\rho} \right)^{1/(p-1)}.$$

By taking $\rho = m$ we obtain the following estimate on the coefficients α_m:

$$|\alpha_m| \leq C \left(m^{-m}e^m \right)^{1/(p-1)} \leq C(m^{1/2}/m!)^{1/(p-1)}. \quad (4.6)$$

We will use this estimate all over the rest of the paper to justify the convergence of certain series. Write

$$Y = \Psi(K_V) - \Psi(K_{W_0}) = \int_0^1 \frac{d}{dt} \Psi(K_{W_0+tV_2})dt = \int_0^1 \sum_{m=p}^{\infty} \alpha_m \sum_{\ell=0}^{m-1} K_{W_0+tV_2}^\ell K_{V_2}^{m-\ell-1} dt.$$

This yields

$$\langle D \rangle^2 \langle \Psi(K_V) - \Psi(K_{W_0}) \rangle \langle D \rangle^{-2} = \int_0^1 \sum_{m=p}^{\infty} \alpha_m \sum_{\ell=0}^{m-1} \langle D \rangle^2 K_{W_0+tV_2}^\ell \langle D \rangle^{-2} \langle D \rangle^2 K_{W_0+tV_2} \langle D \rangle^{-2} \langle D \rangle^2 K_{W_0+tV_2} \langle D \rangle^{-2} dt.$$

The singular values of $\langle D \rangle^2 K_{W_0+tV_2} \langle D \rangle^{-2}$ are bounded as follows:

$$s_j \left(\langle D \rangle^2 K_{W_0+tV_2} \langle D \rangle^{-2} \right) \leq \| \langle D \rangle^2 K_{W_0+tV_2} \| \leq s_j \left(\langle D \rangle^{-2} \right) \leq C|W|_{\infty} s_j \left(\langle D \rangle^{-2} \right).$$

To estimate $s_j \left(\langle D \rangle^{-2} \right)$ we note that as the singular values of an operator X are the eigenvalues of $(XX^*)^{1/2}$,

$$s_j \left(\langle D \rangle^{-2} \right) = \lambda_j \left(\langle D \rangle^{-4} \right)^{1/2} \leq \lambda_j \left(\langle D \rangle^{-4} \rho \right)^{1/2} \leq s_j \left(\rho \langle D \rangle^{-4} \right)^{1/2} \leq C j^{-2/d}. \quad (4.7)$$

In the last line we used $[\text{DyZw15}, \text{B.3.9}]$. It follows that

$$s_j \left(\langle D \rangle^2 K_{W_0+tV_2} \langle D \rangle^{-2} \right) \leq C|W|_{\infty} j^{-2/d}.$$

In addition using the commutation relation

$$e^{ik\cdot \xi/\varepsilon} = \frac{\varepsilon}{|k|} [P_k, e^{ik\cdot \xi/\varepsilon}], \quad P_k = \frac{k_1D_{x_1} + \ldots + k_dD_{x_d}}{|k|}.$$
we obtain
\[
|K_{V_2} \langle D \rangle^{-2}|_{\mathcal{S}} \leq |K_{\rho} \langle D \rangle^2|_{\mathcal{S}} |\langle D \rangle^{-2} V_s \langle D \rangle^{-2}|_{\mathcal{S}}
\]
\[
\leq \sum_{k \neq 0} |K_{\rho} \langle D \rangle^2|_{\mathcal{S}} |\langle D \rangle^{-2} W_k e^{ik/\epsilon} \langle D \rangle^{-2}|_{\mathcal{S}}
\]
\[
\leq \sum_{k \neq 0} \varepsilon^2 \frac{1}{|k|^2} |K_{\rho} \langle D \rangle^2|_{\mathcal{S}} |\langle D \rangle^{-2} W_k [P_k, [P_k, e^{ik/\epsilon}]] \langle D \rangle^{-2}|_{\mathcal{S}}
\]
\[
\leq C \varepsilon^2 |W|_{Z^2}.
\] (4.8)

Consequently,
\[
s_{(m-2)j} \left((\langle D \rangle^2 K_{W_0 + tv_2} \langle D \rangle^{-2})^{\ell-1} \langle D \rangle^2 K_{W_0 + tv_2} K_{V_2} \langle D \rangle^{-2} \langle D \rangle^2 K_{W_0 + tv_2} \langle D \rangle^{-2} \right)^{m-\ell-1}
\]
\[
\leq s_j \left(\langle D \rangle^2 K_{W_0 + tv_2} \langle D \rangle^{-2} \right)^{m-2} |\langle D \rangle^2 K_{W_0 + tv_2}|_{\mathcal{S}} |K_{V_2} \langle D \rangle^{-2}|_{\mathcal{S}}
\]
\[
\leq C m \varepsilon^2 |W|_{\infty}^{m-1} |W|_{Z^2}^{-2}. j^{(m-2)/d}.
\]

Sum over \(\ell \in [0, m-1], j \geq 0\) and note that \(m \geq p \geq d + 2\) to obtain the bound
\[
\left| \sum_{\ell=0}^{m-1} \langle D \rangle^2 K_{W_0 + tv_2} K_{V_2}^{m-1-\ell} \langle D \rangle^{-2} \right|_{\mathcal{S}} \leq m^2 C m \varepsilon^2 |W|_{\infty}^{m-1} |W|_{Z^2}.
\]

This yields
\[
|\langle D \rangle^2 (\Psi(K_V) - \Psi(K_{W_0})) \langle D \rangle^{-2}|_{\mathcal{S}} \leq \sum_{m=p}^{\infty} m^2 |\alpha_m| C m \varepsilon^2 |W|_{\infty}^{m-1} |W|_{Z^2} \leq C \varepsilon^2,
\]

where the series indeed converges because of the decay of the coefficients \(\alpha_m\) proved in (4.6). This ends the proof of the lemma. \(\square\)

We now show that Theorem 5 can be reduced to the following key result:

Lemma 4.3. Let \(X, Y\) be given by (4.4) and \(\mathcal{T}_X\) be the holomorphic continuation of the operator \(\text{Det}(\text{Id} + X)(\text{Id} + X)^{-1}\) given in Appendix 5.1. There exist \(N\) functions \(c_0, c_1, \ldots c_{N-1}\) holomorphic on \(X_d\) such that for all \(1 \leq a \leq N\),
\[
\text{Tr} \left((\mathcal{T}_X Y)^a \right) = c_0(\lambda) + \varepsilon c_1(\lambda) + \ldots + \varepsilon^{N-1} c_{N-1}(\lambda) + O(\varepsilon^N).
\]

Assuming that this lemma holds Theorem 5 is only a consequence of a complex analysis argument resumed in

Lemma 4.4. Let \(E = \mathbb{C}\) or \(\mathbb{C} \setminus \{0\}\), \(S_0\) be a discrete subset of \(E\). Let \((\lambda, \varepsilon) \to f(\lambda, \varepsilon), g(\lambda, \varepsilon)\) two functions such that \(f(\cdot, \varepsilon), g(\cdot, \varepsilon)\) are meromorphic with poles in \(S_0\) and such that \(h(\cdot, \varepsilon) = f(\cdot, \varepsilon)g(\cdot, \varepsilon)\) is holomorphic on \(E\). Assume moreover that locally uniformly on \(E \setminus S_0\) we have
\[
f(\lambda, \varepsilon) = f_0(\lambda) + \varepsilon f_1(\lambda) + \ldots + \varepsilon^{N-1} f_{N-1}(\lambda) + O(\varepsilon^N)
\]
\[
g(\lambda, \varepsilon) = g_0(\lambda) + \varepsilon g_1(\lambda) + \ldots + \varepsilon^{N-1} g_{N-1}(\lambda) + O(\varepsilon^N)
\] (4.9)
where \(f_0, g_0, \ldots, f_{N-1}, g_{N-1} \) are meromorphic functions of \(\lambda \in \mathbb{C} \). Then there exist holomorphic functions \(h_0, \ldots, h_{N-1} \) on \(E \) such that uniformly locally on \(E \),

\[
h(\lambda, \varepsilon) = h_0(\lambda) + \varepsilon h_1(\lambda) + \ldots + \varepsilon^{N-1} h_{N-1}(\lambda) + O(\varepsilon^N). \tag{4.10}
\]

Proof. First note that (4.9) and the fact that \(h = fg \) imply that the expansion (4.10) holds for \(\lambda \) away from \(S_0 \). It remains to show that the functions \(h_j \) are holomorphic on \(E \) and that the expansion holds locally uniformly on \(E \). We first note that locally uniformly on \(E \setminus S_0 \),

\[
f_j(\lambda) = \lim_{\varepsilon \to 0} \frac{f(\lambda) - f_0(\lambda) - \ldots - \varepsilon^{j-1} f_{j-1}(\lambda)}{\varepsilon^j}
\]

where by convention \(f_{-1} = 0 \). A uniform limit of holomorphic functions is holomorphic; thus by an immediate recursion \(f_0, \ldots, f_{N-1} \) must be holomorphic on \(E \). The poles of the \(f_n \) are then a subset of the poles of \(f \) and thus they all belong to \(S_0 \). The same holds for the poles of \(g_n \). Consequently the poles of the \(h_n \) belong to \(S_0 \). Let \(n \) minimal so that \(h_n \) has a pole at \(\lambda_0 \in E \). Write a Laurent series of \(h_n \) in the form

\[
h_n(\lambda) = \sum_{j=-\infty}^{\infty} c_{n,j}(\lambda - \lambda_0)^{-j}.
\]

Take \(j > 0 \) minimal with \(c_{n,j} \neq 0 \) and \(r_0 > 0 \) so that \(\partial \mathbb{D}(\lambda_0, r_0) \subset E \) and \(\lambda_0 \) is the only pole of the \(h_j \) on \(\partial \mathbb{D}(\lambda_0, r_0) \). Since \((\lambda - \lambda_0)^{j-1} h \) is holomorphic,

\[
0 = \frac{1}{2\pi i} \oint_{\partial \mathbb{D}(\lambda_0, r_0)} (\lambda - \lambda_0)^{j-1} h
\]

\[
= \frac{1}{2\pi i} \oint_{\partial \mathbb{D}(\lambda_0, r_0)} (\lambda - \lambda_0)^{j-1} h_0 + \ldots + \frac{\varepsilon^{N-1}}{2\pi i} \oint_{\partial \mathbb{D}(\lambda_0, r_0)} (\lambda - \lambda_0)^{j-1} h_{N-1}
\]

\[
= \varepsilon^n c_{n,j} + O(\varepsilon^{n+1}).
\]

In the last line we used the minimality of \(n, j \). This implies \(c_{n,j} = 0 \) which is a contradiction. Thus the \(h_n \) are holomorphic on \(E \).

Let \(\mu_0 \in S_0 \) and \(r > 0 \) so that \(\mathbb{D}(\mu_0, 2r) \subset E \) and \(\mu_0 \) is the only point of \(S_0 \cap \mathbb{D}(\mu_0, 2r) \). Since \(h, h_n \) are holomorphic on \(\mathbb{D}(\mu_0, 2r) \) and the expansion (4.10) holds uniformly on \(\mathbb{D}(\mu_0, r) \) the following holds uniformly for \(\mu \in \mathbb{D}(\mu_0, r) \):

\[
h(\mu, \varepsilon) = \frac{1}{2\pi i} \oint_{\mathbb{D}(\mu_0, 2r)} \frac{h(\lambda)}{\lambda - \mu} d\lambda
\]

\[
= \frac{1}{2\pi i} \oint_{\mathbb{D}(\mu_0, 2r)} \frac{h_0(\lambda)}{\lambda - \mu} d\lambda + \ldots + \frac{\varepsilon^{N-1}}{2\pi i} \oint_{\mathbb{D}(\mu_0, 2r)} \frac{h_{N-1}(\lambda)}{\lambda - \mu} d\lambda + O(\varepsilon^N)
\]

\[
= h_0(\mu) + \ldots + \varepsilon^{N-1} h_{N-1}(\mu) + O(\varepsilon^N).
\]

This proves that (4.10) also holds uniformly near \(S_0 \). This completes the proof. \(\square \)

Proof of Theorem 5 assuming Lemma 4.3. By Lemma 4.2 it suffices to prove that for every \(n \in [0, N] \), \(\omega_n(X, Y) \) admits an expansion in powers of \(\varepsilon \) at order \(N \). By (4.2),
\[\omega_n(X, \text{Det}(\text{Id} + X)Y) \] is a finite combination of terms of the form \(\text{Tr}((\mathcal{S}_X Y)^a) \), \(1 \leq a \leq N \). Thus by Lemma 4.3, \(\omega_n(X, \text{Det}(\text{Id} + X)Y) \) has an expansion of the form
\[\omega_n(X, \text{Det}(\text{Id} + X)Y) = f_0(\lambda) + \varepsilon f_1(\lambda) + \ldots + \varepsilon^{N-1} f_{N-1}(\lambda) + O(\varepsilon^N). \tag{4.11} \]

Here the convergence holds locally uniformly on \(X_d \).

Note that
\[\omega_n(X, Y) = \frac{1}{\det(\text{Id} + X)^n} \omega_n(X, \text{Det}(\text{Id} + X)Y). \]

Now apply Lemma 4.4 to \(E = X_d \), \(S_0 = \text{Res}(W_0) \), \(f = \det(\text{Id} + X)^{-n} \) and \(g = \omega_n(X, \text{Det}(\text{Id} + X)Y) \). The meromorphic function \(f \) does not depend on \(\varepsilon \) and its poles in \(E \) are exactly the resonances of \(W_0 \). The function \(g \) is holomorphic on \(E \), depends on \(\varepsilon \) and admits an expansion given by (4.11). The product \(h = fg \) is then meromorphic; by (4.5) it is locally uniformly bounded on \(E \) and consequently it is holomorphic on \(E \). Thus \(\omega_n(X, Y) \) admits an expansion in powers of \(\varepsilon \) at order \(N \) and Theorem 5 follows. We will compute the first few terms in §4.5 below. \(\square \)

Now we focus on proving Lemma 4.3. Our first goal is to simplify the expression \(\text{Tr}((\mathcal{S}_X Y)^a) \). We recall that the sequence \(\alpha_m \in \mathbb{C} \) is defined by \(\alpha_m = \Psi(m)!/m! \).

Lemma 4.5. For \(a \in [1, N] \), \(\text{Tr}((\mathcal{S}_X Y)^a) \) can be written modulo \(O(\varepsilon^N) \) as a finite sum of expressions of the form \(\text{Tr}(\mathcal{S}_X F_{n_1} \ldots F_{n_p}) \) where \(1 \leq n_j \leq 2N - 1 \) and
\[F_n = \sum_{m=p}^{\infty} \alpha_m \sum_{\ell_0 + \ldots + \ell_n \cdot m=n} K_{W_0}^{\ell_1} K_{V_1}^{\ell_1} \ldots K_{W_0}^{\ell_n-1} K_{V_1}^{\ell_n} \cdot \tag{4.12} \]

Proof. Fix \(1 \leq a \leq N \) and define \(\mathcal{H}_X = \langle D \rangle \mathcal{S}_X \langle D^{-1} \rangle \). Using the cyclicity of the trace,
\[\text{Tr}((\mathcal{S}_X Y)^a) = \text{Tr}((\mathcal{S}_X X')^a) \]
\[X' = \text{Det}(\text{Id} + \Psi(\mathcal{H}_{W_0}))(\text{Id} + \Psi(\mathcal{H}_{W_0}))^{-1}, \quad Y' = \Psi(\mathcal{H}_{V_0}) - \Psi(\mathcal{H}_{W_0}). \]

Define
\[E_{m,n} = \sum_{\ell_0 + \ldots + \ell_n \cdot m=n} \mathcal{H}_{W_0}^{\ell_0} \mathcal{H}_{V_1}^{\ell_1} \ldots \mathcal{H}_{W_0}^{\ell_n-1} \mathcal{H}_{V_1}^{\ell_n} \cdot \mathcal{F}_n = \sum_{m=p}^{\infty} \alpha_m E_{m,n}. \tag{4.12} \]

The index \(n \) holds for the number of times \(\mathcal{H}_{V_1} \) exactly appears in each term of the sum defining \(E_{m,n} \) or \(\mathcal{F}_n \). Using the power series expansion of \(\Psi \),
\[Y' = \Psi(\mathcal{H}_{V_0}) - \Psi(\mathcal{H}_{W_0}) = \sum_{m=p}^{\infty} \alpha_m (\mathcal{H}_{W_0} + \mathcal{H}_{V_1})^m - \sum_{m=p}^{\infty} \alpha_m \mathcal{H}_{W_0}^m \]
\[= \sum_{m=p}^{\infty} \alpha_m (E_{m,1} + \ldots + E_{m,m}) = \sum_{n=1}^{\infty} \mathcal{F}_n. \]
We claim that
\[\sum_{n=2N}^{\infty} \mathcal{F}_n = O(\varepsilon^N). \tag{4.13} \]

In order to prove this start by fixing \(\ell_0, \ldots, \ell_n \) with \(\ell_0 + \ldots + \ell_n + n = m \geq p \). Since \(\mathcal{K}_V \) appears exactly \(n \) times in the product \(\mathcal{K}_{W_0}^{\ell_0} \mathcal{K}_V \mathcal{K}_{W_0}^{\ell_n} \mathcal{K}_{V}^{\ell_n-1} \mathcal{K}_V \mathcal{K}_{W_0}^{\ell_0} \mathcal{K}_{V} \mathcal{K}_{W_0}^{\ell_n} \), we have
\[s_{nj} \left(\mathcal{K}_{W_0}^{\ell_0} \mathcal{K}_V \mathcal{K}_{W_0}^{\ell_n} \mathcal{K}_{V}^{\ell_n-1} \mathcal{K}_V \mathcal{K}_{W_0}^{\ell_0} \mathcal{K}_{V} \mathcal{K}_{W_0}^{\ell_n} \right) \leq s_j(\mathcal{K}_V^m) |\mathcal{K}_{W_0}|^{m-n}. \tag{4.14} \]

We now prove some estimates on \(s_j(\mathcal{K}_V) \). On one hand by the same argument as in (4.8) we have
\[s_j(\mathcal{K}_V) \leq |\mathcal{K}_V| \leq |\langle D \rangle K_{\rho} \langle D \rangle| \langle D \rangle^{-1} V_{\rho} \langle D \rangle^{-1} |_{\mathcal{B}} \leq C\varepsilon |W|_Z. \]

On the other hand by arguments similar to (4.7) we have
\[s_j(\mathcal{K}_V) \leq |\langle D \rangle K_{\rho} \langle D \rangle| s_j(\rho \langle D \rangle^{-1}) \leq C|W|_{\infty} j^{-1/d}. \]

Interpolating both inequalities yields
\[s_j(\mathcal{K}_V) \leq C\varepsilon^{1/2} |W|_Z j^{-1/(2d)}. \]

Coming back to (4.14) we obtain
\[s_{nj} \left(\mathcal{K}_{W_0}^{\ell_0} \mathcal{K}_V \mathcal{K}_{W_0}^{\ell_n} \mathcal{K}_{V}^{\ell_n-1} \mathcal{K}_V \mathcal{K}_{W_0}^{\ell_0} \mathcal{K}_{V} \mathcal{K}_{W_0}^{\ell_n} \right) \leq C^m |W|_Z^{m} \varepsilon^{n/2} j^{-n/(2d)}. \]

This implies after summation over \(j \) that for \(n \geq 2N \geq 2d + 2 \),
\[\left| \sum_{n=2N}^{\infty} \mathcal{F}_n \right|_{\mathcal{B}} \leq m \varepsilon^{n/2} (C|W|_Z)^m. \]

Consequently if \(\mathcal{E}_{m,n} \) is given by (4.12) then for \(n \geq 2N \)
\[|\mathcal{E}_{m,n}| \leq m \left(\begin{array}{c} m \\ n \end{array} \right) \varepsilon^N (C|W|_Z)^m. \]

The claim (4.13) follows from this bound on \(|\mathcal{E}_{m,n}| \) and the estimate on the coefficients \(\alpha_m \) proved in equation (4.6). Indeed,
\[\sum_{n=2N}^{\infty} |\mathcal{F}_n| \leq \sum_{m=p}^{\infty} \alpha_m (\mathcal{E}_{m,2N} + \ldots + \mathcal{E}_{m,m}) \leq \varepsilon^N \sum_{m=p}^{\infty} m |\alpha_m| (\varepsilon N)^m \left(\begin{array}{c} m \\ 2N \end{array} + \ldots + \begin{array}{c} m \\ m \end{array} \right) \leq \varepsilon^N \sum_{m=p}^{\infty} m |\alpha_m| (2C|W|_Z)^m = O(\varepsilon^N). \]
It follows that we can write Y' as a the sum of a finite combination of the operators \mathcal{F}_n with $1 \leq n \leq m$ and a small error in \mathcal{L}:

$$Y' = \sum_{n=1}^{\infty} \mathcal{F}_n = \sum_{n=1}^{2N-1} \mathcal{F}_n + O(\varepsilon^N).$$

Therefore $\text{Tr}\left(\left(\mathcal{F}_X Y'\right)^a\right)$ is modulo $O(\varepsilon^N)$ a finite sum of expressions of the form

$$\text{Tr}(\mathcal{F}_X \mathcal{F}_{n_1} \cdots \mathcal{F}_X \mathcal{F}_{n_a}),$$

where $1 \leq n_j \leq 2N - 1$. Now as $X = \langle D \rangle^{-1} X' \langle D \rangle$, $F_n = \langle D \rangle^{-1} \mathcal{F}_n \langle D \rangle$ and $\text{Tr}(\left(\mathcal{F}_X Y'\right)^a) = \text{Tr}(\left(\mathcal{F}_X Y\right)^a)$ this completes the proof of the lemma.

To sum up we have proved that Theorem 5 holds if Lemma 4.3 holds, that is if for $a \in [1,N]$, $\text{Tr}(\left(\mathcal{F}_X Y\right)^a)$ admits an expansion in powers of ε. In addition Lemma 4.3 holds if for all $n_j \in [1,2N-1]$,

$$\text{Tr}(\mathcal{F}_X F_{n_1} \cdots \mathcal{F}_X F_{n_a})$$

admits an expansion in powers of ε.

We write the operator F_n in the following form:

$$F_n = \sum_{m=p}^{\infty} \alpha_m \sum_{\ell_0 + \cdots + \ell_n = m} K_{W_0}^{\ell_0} K_{V_1}^{\ell_1} \cdots K_{W_0}^{\ell_{n-1}} K_{V_1}^{\ell_n}$$

where \mathcal{F}_m is the set of sequences of length $m \geq p$, with exactly n non-vanishing terms. Because of the conclusion of Lemma 4.5 we can restrict our attention to operators F_n with $n \leq 2N - 1$. For $n \leq 2N - 1$ and $m \geq p$ the sequences of \mathcal{F}_m have much more vanishing terms than non vanishing terms. This will allow us to use some arguments of combinatorial nature. The expansion of F_n given by (4.15) leads to

$$\prod_{j=1}^{a} \mathcal{F}_X F_{n_j} = \sum_{m_1,\ldots,m_p=p}^{\infty} \sum_{\{k_1\} \in \mathcal{F}_m^{n_1}, \ldots, \{k_a\} \in \mathcal{F}_m^{n_a}} \left(\prod_{j=1}^{a} \alpha_{m_j} \mathcal{F}_X \prod_{\ell=1}^{m_j} K_{W_{k_{j\ell}}}^{e^{ik_{j\ell}/\varepsilon}} \right)$$

where

$$\mathcal{D}_{n_1,\ldots,n_a} = \sum_{m_1,\ldots,m_p=p}^{\infty} \sum_{\{k_1\} \in \mathcal{F}_m^{n_1}, \ldots, \{k_a\} \in \mathcal{F}_m^{n_a}, k_{1\ell} + \cdots + k_{a\ell} \neq 0} \left(\prod_{j=1}^{a} \alpha_{m_j} \mathcal{F}_X \prod_{\ell=1}^{m_j} K_{W_{k_{j\ell}}}^{e^{ik_{j\ell}/\varepsilon}} \right),$$

$$\mathcal{C}_{n_1,\ldots,n_a} = \sum_{m_1,\ldots,m_p=p}^{\infty} \sum_{\{k_1\} \in \mathcal{F}_m^{n_1}, \ldots, \{k_a\} \in \mathcal{F}_m^{n_a}, k_{1\ell} + \cdots + k_{a\ell} = 0} \left(\prod_{j=1}^{a} \alpha_{m_j} \mathcal{F}_X \prod_{\ell=1}^{m_j} K_{W_{k_{j\ell}}}^{e^{ik_{j\ell}/\varepsilon}} \right).$$

(4.16)
In the next paragraph we study the trace of the operator $\mathcal{D}_{n_1,\ldots,n_a}$.

4.3. **Destructive interaction.** In this subsection we prove the following lemma:

Lemma 4.6. For $1 \leq a \leq N$ and $n_1,\ldots,n_a \in [0,2N-1]$ let $\mathcal{D}_{n_1,\ldots,n_a}$ be the trace class operator given by (4.16). Then locally uniformly on X_d,

$$\text{Tr} \left(\mathcal{D}_{n_1,\ldots,n_a} \right) = O(\varepsilon^N).$$

We start with a few definitions. Let $\{k_{t}\}_{1 \leq t \leq \nu}$ a sequence of numbers in \mathbb{Z}^d of length ν. We say that $\{k_{t}\}_{1 \leq t \leq \nu}$ is constructive if it satisfies $k_1 + \ldots + k_{\nu} = 0$ and destructive otherwise. A sequence of numbers $\{k_{t}\}_{1 \leq t \leq \nu}$ is said to be admissible if

(i) It is destructive.
(ii) It starts and ends with N vanishing terms.

A sequence $\{k_{t}\}_{1 \leq t \leq \nu'}$ with exactly γ non-vanishing terms is said to be good if

(i) It is admissible.
(ii) $\nu' \leq N + N \gamma + 1$.

A subsequence of an admissible sequence $\{k_{t}\}_{1 \leq t \leq \nu}$ is a good subsequence if it takes the form $\{k_{t}\}_{q+1 \leq t \leq q+\nu'}$ for some q, ν' and if the sequence $\{k_{t+q}\}_{1 \leq t \leq \nu'}$ is good.

A cyclic permutation of $\{k_{t}\}_{1 \leq t \leq \nu}$ is a sequence equal to

$$(k_{L+1},\ldots,k_{\nu},k_1,\ldots,k_{L})$$

for some $L \geq 0$. In what follows we will use many times the following version of the pigeonhole principle. Let $\{k_{t}\}_{1 \leq t \leq \nu}$ a sequence with exactly γ non-vanishing terms. If $\nu \geq N(\gamma+1)$, there exists a subsequence of $\{k_{t}\}_{1 \leq t \leq \nu}$ made of N consecutive vanishing numbers. We start with the following combinatorial result.

Lemma 4.7. Every admissible sequence $\{k_{t}\}_{1 \leq t \leq \nu}$ admits a good subsequence.

Proof. We prove this lemma by recursion on ν. We start by noting that any admissible sequence with length $\nu \leq 2N+1$ has at least one non-vanishing term and therefore it is a good sequence. We now fix $\nu \geq 2N+2$ and we assume that all admissible sequences of length strictly less than ν admit a good subsequence. Let $\{k_{t}\}_{1 \leq t \leq \nu}$ be an admissible sequence with γ non-vanishing terms. We want to prove that it admits a good subsequence.

If $\nu \leq N + \gamma N + 1$ then the sequence is good. Therefore assume that $\nu \geq N + \gamma N + 2$. Consider the subsequence of minimal length of consecutive numbers starting at k_1, containing at least one non-zero term and ending with N zeros: $(k_1,\ldots,k_{\nu'})$. Let γ' be the number of non-zero terms in this subsequence. Since this sequence is of minimal length the pigeonhole principle implies $\nu' \leq N + \gamma' N + 1$. Hence if $k_1 + \ldots + k_{\nu'} \neq 0$ then this subsequence is good and therefore we are done.

Otherwise the sequence $\{k_{t}\}_{\nu'-N+1 \leq t \leq \nu}$ is admissible. Indeed it starts and ends with N zeros and it is destructive since $k_1 + \ldots + k_{\nu'} = 0$ and $k_1 + \ldots + k_{\nu'} \neq 0$. Therefore we can apply the induction hypothesis: it admits a good subsequence. This completes the recursion and the proof. \square
Lemma 4.8. Let \(\{k_\ell\}_{1 \leq \ell \leq \nu} \) be an admissible sequence. Then locally uniformly on \(X_d \),
\[
\left| \prod_{\ell=1}^{\nu} K_{W_\ell} e^{i k_\ell \cdot x} \right|_{\mathcal{B}} \leq C^{\nu^2} \left(\prod_{\ell=1}^{\nu} \|W_\ell\|_{2\nu} \right) \varepsilon^N. \tag{4.17}
\]

This lemma is the key to prove Lemma 4.6. We start by a preliminary result:

Lemma 4.9. The operator \(I_{Y,1}(\lambda) = K_Y(\lambda) - K_Y(-\lambda) \) is a smoothing operator that satisfies the bounds
\[
\left| (D^2 - \lambda^2)^s I_{Y,1}(\lambda) \right|_{\mathcal{B}} \leq C^s \frac{\langle \lambda \rangle^{2s+d}}{\|\lambda\|} e^{2L|\lambda|}|\mathcal{Y}|_\infty \tag{4.18}
\]
for every nonnegative integer \(s \).

Proof. The operator \(I_{Y,1}(\lambda) \) is smoothing as the kernel of the operator \(R_0(\lambda) - R_0(-\lambda) \) is given by the smooth function
\[
I_{Y,1}(\lambda, x, y) = \frac{i}{2} \frac{\lambda^{d-2}}{(2\pi)^{d-1}} \int_{\mathbb{S}^{d-1}} e^{i \lambda \langle w, x - y \rangle} d\omega,
\]
see [DyZw15, Theorem 3.4]. In order to prove the estimate (4.18) we note that by the product rule for derivatives the operator \((D^2 - \lambda^2)^s I_{Y,1}(\lambda) \) is a finite sum of operators of the form
\[
\frac{i}{2} \frac{\lambda^{d-2+2s-2t}}{(2\pi)^{d-1}} \chi D^{2t} (R_0(\lambda) - R_0(-\lambda)) \mathcal{Y}
\]
where \(t \in [0, s] \), \(\tau \in [0, t] \) and \(\chi \) is smooth and supported on \(\mathbb{B}^d(0, L) \). The operators of the form (4.19) have kernel given by
\[
(x, y) \mapsto \frac{i}{2} \frac{\lambda^{d-2+2s-2t}}{(2\pi)^{d-1}} \chi(x) \left(D_x^{2\tau} \int_{\mathbb{S}^{d-1}} e^{i \lambda \langle w, -y \rangle} d\omega \right) (x) \mathcal{Y}(y).
\]
The function \(x \mapsto \int_{\mathbb{S}^{d-1}} e^{i \lambda \langle w, x - y \rangle} d\omega \) admits an analytic continuation on \(\mathbb{C}^d \) with
\[
\left| \int_{\mathbb{S}^{d-1}} e^{i \lambda \langle w, x - y \rangle} d\omega \right| \leq C e^{\|\lambda\| |x - y|}.
\]
Thus by Cauchy estimates,
\[
\left| \left(D_x^{2\tau} \int_{\mathbb{S}^{d-1}} e^{i \lambda \langle w, -y \rangle} d\omega \right) (x) \right| \leq C \langle \lambda \rangle^{2\tau} e^{\|\lambda\| |x - y|}. \tag{4.20}
\]
Since \(\chi \) and \(\mathcal{Y} \) are compactly supported the \(\mathcal{B} \)-norm of operators of the form (4.19) can be estimated by Schur’s lemma and the bound (4.20). It leads to
\[
\left| \frac{i}{2} \frac{\lambda^{d-2+2s-2t}}{(2\pi)^{d-1}} \chi D^{2t} (R_0(\lambda) - R_0(-\lambda)) \mathcal{Y} \right|_{\mathcal{B}} \leq C^s \frac{\langle \lambda \rangle^{2s+d}}{\|\lambda\|} e^{2L|\lambda|}|\mathcal{Y}|_\infty.
\]
As \((D^2 - \lambda^2)^s I_{Y,1}(\lambda) \) is a finite sum of operators of the form (4.19) this completes the proof. \(\square \)
Proof of Lemma 4.8. Fix $M > 1$. We start by proving that uniformly for $1 \leq \text{Im} \lambda \leq M$,
\[\left| \prod_{\ell=1}^{\nu} K_{W_{\xi_{\ell}}} e^{ik_{\ell}/\varepsilon} \right|_{\mathcal{B}} \leq C \nu^2 \langle \lambda \rangle^\nu \left(\prod_{\ell=1}^{\nu} \| W_{k_{\ell}} \|_{2\nu} \right) \varepsilon^N, \quad \text{Im} \lambda \in [1, M]. \quad (4.21) \]

Let $R(\xi, \lambda) = (\xi^2 - \lambda^2)^{-1}$ and
\[A(k, \lambda) = R(D + k/\varepsilon, \lambda) = e^{-ik/\varepsilon} R_0(\lambda) e^{ik/\varepsilon}. \]
Define $\sigma_\ell = k_\ell + \ldots + k_\nu$. Using the commutation relation $e^{-ik/\varepsilon} D e^{ik/\varepsilon} = D + k/\varepsilon$ we obtain
\[K_{W_{k_1}} e^{ik_1/\varepsilon} \ldots K_{W_{k_\nu}} e^{ik_\nu/\varepsilon} = \rho A(0, \lambda) W_{k_1} e^{ik_1/\varepsilon} A(0, \lambda) W_{k_2} e^{ik_2/\varepsilon} \ldots A(0, \lambda) W_{k_\nu} e^{ik_\nu/\varepsilon} = e^{i\sigma_\ell/\varepsilon} \rho A(\sigma_1, \lambda) W_{k_1} A(\sigma_2, \lambda) W_{k_2} \ldots A(\sigma_\nu, \lambda) W_{k_\nu}. \]

Now define $T_j(\lambda) = A(\sigma_j, \lambda) \ldots A(\sigma_\nu, \lambda)$. Since we are working with $\text{Im} \lambda \geq 1$ the operator $T_j(\lambda)$ is well defined and bounded from $H^{-2(\nu-j)}$ to L^2. It admits a bounded inverse $T_j(\lambda)^{-1}$ from L^2 to $H^{-2(\nu-j)}$. Thus $A(\sigma_{j-1}, \lambda) = T_{j-1}(\lambda) T_j(\lambda)^{-1}$ as an operator on L^2. This yields
\[K_{W_{k_1}} e^{ik_1/\varepsilon} \ldots K_{W_{k_\nu}} e^{ik_\nu/\varepsilon} = e^{i\sigma_\ell/\varepsilon} T_1(\lambda) (T_2(\lambda)^{-1} W_{k_1} T_2(\lambda)) \ldots (T_\nu(\lambda)^{-1} W_{k_{\nu-1}} T_\nu(\lambda)) W_{k_\nu}. \quad (4.22) \]

The estimate (4.17) for $\text{Im} \lambda \in [1, M]$ follows then from a bound on $|T_j(\lambda)^{-1} W_{k_j} T_j(\lambda)|_{\mathcal{B}}$ and a bound on $|T_1(\lambda)|_{\mathcal{B}}$.

We start with the bound on $|T_1(\lambda)|_{\mathcal{B}}$. We have
\[|T_1(\lambda)|_{\mathcal{B}} = \sup_{\xi \in \mathbb{R}^d} \left| \prod_{j=1}^{\nu} R(\xi + \sigma_j/\varepsilon, \lambda) \right|. \]

We reduce this estimate for $\text{Im} \lambda \in [1, M]$ to an estimate for $\lambda = i$. For that we note that for $\xi \in \mathbb{R}^d$ and $\text{Im} \lambda \in [1, M]$,
\[\left| \frac{\xi^2 + 1}{\xi^2 - \lambda^2} \right| \leq C \langle \lambda \rangle. \]
This yields
\[\sup_{\xi \in \mathbb{R}^d} \left| \prod_{j=1}^{\nu} R(\xi + \sigma_j/\varepsilon, \lambda) \right| = \sup_{\xi \in \mathbb{R}^d} \left| \prod_{j=1}^{\nu} \left| R(\xi + \sigma_j/\varepsilon, i) \right| \right| \frac{(\xi + \sigma_j/\varepsilon)^2 + 1}{(\xi + \sigma_j/\varepsilon)^2 - \lambda^2} \leq (C \langle \lambda \rangle)^\nu \sup_{\xi \in \mathbb{R}^d} \left| \prod_{j=1}^{\nu} \langle \xi + \sigma_j/\varepsilon \rangle^{-2} \right|. \]
Since the sequence \(\{k_j\}_{j \leq \nu} \) is admissible we have \(\sigma_1 = \ldots = \sigma_N \neq 0 \) and \(\sigma_{\nu-N+1} = \ldots = \sigma_{\nu} = 0 \). Thus the sequence \(\{\sigma_j\}_{j \leq \nu-1} \) starts with \(N \) equal non-vanishing terms and ends with \(N \) vanishing terms. By Peetre’s inequality (see equation (2.4)) it implies

\[
\sup_{\xi \in \mathbb{R}^d} \left| \prod_{j=1}^\nu \langle \xi + \sigma_j/\varepsilon \rangle^{-2} \right| \leq \left| \langle \xi + \sigma_1/\varepsilon \rangle^{-2N} \langle \xi \rangle^{-2N} \right|_{\mathcal{B}} \leq C \varepsilon^{2N}.
\]

It follows that for \(\lambda \in [1, M] \), \(|T_1|_{\mathcal{B}} \leq C \lambda^{\nu} \varepsilon^N \).

We now prove that for every \(j \in [2, \nu] \),

\[
|T_j^{-1}W_kT_j|_{\mathcal{B}} \leq C \varepsilon^{-j} \|W_k\|_{2(\nu-j)}
\]

using a descendent recursion on \(j \). If \(j = \nu \) then \(T_j = A(\sigma) \) for some \(\sigma \in \mathbb{Z}^d \). Thus

\[
A(\sigma)^{-1}W_kA(\sigma) = W_k + [W_k, (D + \sigma/\varepsilon)^2 - \lambda^2]A(\sigma) = W_k + (D^2W_k)A(\sigma) + 2(DW_k) \cdot (D + \sigma/\varepsilon)A(\sigma).
\]

The operator \(A(\sigma) = e^{-i\sigma/\varepsilon}R_0(\lambda) e^{i\sigma/\varepsilon} \) is bounded on \(L^2 \) with uniform bound. The operator \((D + \sigma/\varepsilon)A(\sigma) = e^{-i\sigma/\varepsilon}D R_0(\lambda) e^{i\sigma/\varepsilon} \) is also bounded on \(L^2 \) with uniform bound as \(DR_0(\lambda) \) is bounded on \(L^2 \) with uniform bound. Therefore:

\[
|A(\sigma)^{-1}W_kA(\sigma)|_{\mathcal{B}} \leq C \|W_k\|_2.
\]

This proves the case \(j = \nu \) of (4.23). Now assume that (4.23) holds for some \(j \in [3, \nu] \) and let us prove that it also holds for \(j - 1 \). Write \(T_{j-1} = A(\sigma)T_j \) for some \(\sigma \). It yields

\[
T_j^{-1}W_kT_{j-1} = T_j^{-1}A(\sigma)^{-1}W_kA(\sigma)T_j = (T_j^{-1}W_kT_j) + (T_j^{-1}(D^2W_k)T_j)A(\sigma) + 2(T_j^{-1}(DW_k)T_j) \cdot (D + \sigma/\varepsilon)A(\sigma).
\]

Therefore the bounds follows from the recursion hypothesis applied to the operators \(T_j^{-1}W_kT_j, T_j^{-1}(D^2W_k)T_j \) and \(T_j^{-1}(DW_k)T_j \):

\[
|T_{j-1}^{-1}W_kT_{j-1}|_{\mathcal{B}} \leq C \varepsilon^{j-1} \|W_k\|_{2(\nu-j)} + C \varepsilon^{j-1} \|DW_k\|_{2(\nu-j)} + C \varepsilon^{j+1} \|D^2W_k\|_{2(\nu-j)} \leq C \varepsilon^{j-1} \|W_k\|_{2(\nu-j+1)}.
\]

This ends the recursion and thus the proof of (4.23).

Let us come back to (4.22). Putting together the bound on \(|T_j^{-1}W_kT_j|_{\mathcal{B}} \) and the bound on \(|T_1|_{\mathcal{B}} \) we obtain (4.21). Now we prove that an estimate similar to (4.21) holds for \(\text{Im} \lambda \in [-M, -1] \). Write \(K_{\nu}(\lambda) = I_{\nu,0}(\lambda) + I_{\nu,1}(\lambda) \) where \(I_{\nu,0}(\lambda) = K_{\nu}(-\lambda) \) and \(I_{\nu,1}(\lambda) \) was defined in Lemma 4.9. This yields

\[
\prod_{\ell=1}^\nu K_{W_k} e^{ik_{\ell}/\varepsilon} = \sum_{\epsilon_1, \ldots, \epsilon_\nu \in \{0, 1\}^{\nu}} \prod_{\ell=1}^\nu I_{W_k, \epsilon_\ell}(\lambda) e^{ik_{\ell}/\varepsilon}.
\]
Fix a sequence \(\epsilon_1, \ldots, \epsilon_\nu \in \{0, 1\}^\nu \). If all the terms vanish, then
\[
\prod_{\ell=1}^{\nu} I_{W_{k_\ell}, \epsilon_\ell}(\lambda)e^{ik_{k_\ell}/\varepsilon} = \prod_{\ell=1}^{\nu} K_{W_{k_\ell}}(-\lambda)e^{ik_{k_\ell}/\varepsilon}.
\]

As \(\text{Im}(-\lambda) \in [1, M] \) we can bound the norm of this operator by directly applying (4.21). Now assume that at least one of the \(\epsilon_\ell \) is equal to 1. The indexes \(\ell_1, \ldots, \ell_\nu \) with \(\epsilon_{\ell_1} = \ldots = \epsilon_{\ell_s} = 1 \) split the sequence \(k_1, \ldots, k_\nu \) in \(s + 1 \) subsequences, of the form
\[
(k_{\ell_1}, \ldots, k_{\ell_{\ell_1} - 1}), (k_{\ell_{\ell_1}}, \ldots, k_{\ell_{\ell_2} - 1}), \ldots, (k_{\ell_s}, \ldots, k_{\ell_\nu}).
\]

At least one of these subsequences is destructive. Let us assume that it is the first one. Then \((k_1, \ldots, k_{\ell_1 - 1}) \) is destructive and starts with \(N \) zeros. Since the operator \(I_{W_{k_{\ell_1}}, \lambda}(\lambda) \) is smoothing this will not be not an issue. Write first
\[
\left| \prod_{\ell=1}^{\nu} I_{W_{k_\ell}, \epsilon_\ell}(\lambda)e^{ik_{k_\ell}/\varepsilon} \right| \leq \left| \prod_{\ell=1}^{\ell_1 - 1} K_{W_{k_\ell}}(-\lambda)e^{ik_{k_\ell}/\varepsilon} \right| I_{W_{k_{\ell_1}}, 1}(\lambda)e^{ik_{k_{\ell_1}}/\varepsilon} \prod_{\ell=\ell_1 + 1}^{\nu} I_{W_{k_\ell}, \epsilon_\ell}(\lambda)e^{ik_{k_\ell}/\varepsilon}.
\]

The second factor of the RHS of (4.25) can be controlled by the estimates Lemma 2.1. It gives
\[
\left| \prod_{\ell=\ell_1 + 1}^{\nu} I_{W_{k_\ell}, \epsilon_\ell}(\lambda)e^{ik_{k_\ell}/\varepsilon} \right| \leq \prod_{\ell=\ell_1 + 1}^{\nu} C_M |W_{k_\ell}|_{\infty}
\]
for a constant \(C_M \) depending on \(M \). For the first factor of the RHS of (4.25) we note that if \(\chi \in \mathbb{C}_0(\mathbb{B}^d(0, L)) \) is equal to 1 on \(\text{supp}(\rho) \) then
\[
\left| \prod_{\ell=1}^{\ell_1 - 1} K_{W_{k_\ell}}(-\lambda)e^{ik_{k_\ell}/\varepsilon} \right| I_{W_{k_{\ell_1}}, 1}(\lambda)e^{ik_{k_{\ell_1}}/\varepsilon} \leq \left| \prod_{\ell=1}^{\ell_1 - 1} K_{W_{k_\ell}}(-\lambda)e^{ik_{k_\ell}/\varepsilon} \right| R_0(-\lambda)^N \chi(D^2 - \lambda^2)^N I_{W_{k_{\ell_1}}, 1}(\lambda) \leq \left| \prod_{\ell=1}^{\ell_1 - 1} K_{W_{k_\ell}}(-\lambda)e^{ik_{k_\ell}/\varepsilon} \right| R_0(-\lambda)^N \chi(D^2 - \lambda^2)^N I_{W_{k_{\ell_1}}, 1}(\lambda) \leq \left| \prod_{\ell=1}^{\ell_1 - 1} K_{W_{k_\ell}}(-\lambda)e^{ik_{k_\ell}/\varepsilon} \right| R_0(-\lambda)^N \left| (D^2 - \lambda^2)^N I_{W_{k_{\ell_1}}, 1}(\lambda) \right| \leq C_M |W_{k_{\ell_1}}|_{2\nu} \varepsilon^N.
\]
By Lemma 4.9, \((D^2 - \lambda^2)^N I_{W_{k_1}}(\lambda)\) \(\leq C N^N \langle \lambda \rangle^{2N+4d} e^{2L|\lambda|} |W_{k_1}|_\infty\) for \(\text{Im} \lambda \in [-1, -M]\).

Coming back to (4.26) and putting these bounds together we obtain

\[
\left|\left(\prod_{\ell=1}^{\ell_1} K_{W_{k_\ell}}(-\lambda)e^{i k_\ell / \varepsilon}\right) I_{W_{k_1}}(\lambda)e^{i k_1 / \varepsilon}\right| \leq C \ell_1^{\ell_1+N} \langle \lambda \rangle^{\ell_1+2N+4d} e^{2L|\lambda|} \left(\prod_{\ell=1}^{\ell_1} \|W_{k_\ell}\|_{2\nu}\right) \varepsilon^N.
\]

Consequently coming back to (4.25) we conclude that if the first sequence among (4.24) is destructive we have

\[
\left|\prod_{\ell=1}^{\nu} I_{W_{k_{\ell}, \epsilon}}(\lambda)e^{i k_{\ell, \epsilon} / \varepsilon}\right| \leq C_M^{\nu} \langle \lambda \rangle^{2\nu+4N+2d} e^{4L|\lambda|} \left(\prod_{\ell=1}^{\ell_1} \|W_{k_\ell}\|_{2\nu}\right) \varepsilon^N.
\]

We skip the additional details. Summing the bound (4.27) over all possible \(\epsilon_1, \ldots, \epsilon_\nu \in \{0, 1\}^\nu\) leads to

\[
\left|\prod_{\ell=1}^{\nu} K_{W_{k_{\ell}}} e^{i k_{\ell, \epsilon} / \varepsilon}\right| \leq C_M^{2\nu} \langle \lambda \rangle^{2\nu+4N+2d} e^{4L|\lambda|} \left(\prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_{2\nu}\right) \varepsilon^N, \quad \text{Im} \lambda \in [-M, -1].
\]

Now we are ready to prove (4.17). By proving the estimates the estimates (4.21) and (4.28) we showed that (4.17) holds locally for \(|\text{Im} \lambda| \geq 1\). Thus it remains to show that it holds locally for \(|\text{Im} \lambda| \leq 1\). Fix \(u, v \in L^2\) and consider

\[
f(\lambda) = \frac{\lambda^\nu e^{-\lambda^2}}{(\lambda + 2i)^{2\nu+4N+2d}} \left(\prod_{\ell=1}^{\nu} K_{W_{k_{\ell}}} e^{i k_{\ell, \epsilon} / \varepsilon} u, v\right).
\]

This function is holomorphic in the strip \(|\text{Im} \lambda| \leq 1\). For \(\lambda\) with \(|\text{Im} \lambda| \leq 1, -\text{Re}(\lambda^2) = -|\text{Re} \lambda|^2 + |\text{Im} \lambda|^2 \leq 1\). Therefore for \(|\text{Im} \lambda| \leq 1,\)

\[
|f(\lambda)| \leq C^{\nu} \left(\prod_{\ell=1}^{\nu} |W_{k_\ell}|_\infty\right) |u|_2 |v|_2.
\]

In particular it is bounded. In addition for \(|\text{Im} \lambda| = 1,\)

\[
-\text{Re}(\lambda^2) + 4L|\lambda| \leq -|\text{Re} \lambda|^2 + |\text{Im} \lambda|^2 + 4L|\text{Re} \lambda| + 4L|\text{Im} \lambda|
\]

\[
\leq -|\text{Re} \lambda|^2 + 1 + 4L + (2L)^2 + |\text{Im} \lambda|^2
\]

\[
\leq 1 + 4L + 4L^2.
\]
Therefore $e^{-\lambda^2 + 4L|\lambda|}$ is uniformly bounded on $|\text{Im } \lambda| = 1$. Hence on the boundary of the strip $|\text{Im } \lambda| \leq 1$ the estimates (4.21) and (4.28) imply the bound

$$|f(\lambda)| \leq C^{\nu^2} \left(\prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_{2\nu} \right) \varepsilon^N |u|_2 |v|_2.$$ \hfill (4.29)

Therefore by the three lines theorem the function f satisfies (4.29) for all λ with $|\text{Im } \lambda| \leq 1$. Taking the supremum over $u, v \in L^2$ shows that (4.17) holds for $|\text{Im } \lambda| \leq 1$. This ends the proof of the lemma. \hfill \Box

Although Lemma 4.8 is the key result to prove Lemma 4.6 it is somehow unsatisfying. The bound (4.17) involves the norm $\|W_k\|_{2\nu}$. In general the quantity $\|W_k\|_{2\nu}$ grows quite fast as $\nu \to \infty$. It seems unlikely to us that a refinement of Lemma 4.8 could involve a much smaller norm. Therefore we must deal with this growth. In order to use anyway the result of Lemma 4.8 we refine it using some arguments of combinatorial nature.

Lemma 4.10. Let $\{k_\ell\}_{1 \leq \ell \leq \nu}$ be a destructive sequence with exactly γ non-vanishing terms. Let $s = 2(N + \gamma N + 1)$. If $\nu \geq (2N + 2d)(\gamma + 1)$ then locally uniformly on X_d

$$\left| \text{Tr} \left(\prod_{\ell=1}^{\nu} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon} \right) \right| \leq C^{\nu^2 + s^2} \varepsilon^N \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_s.$$

If moreover the sequence $\{k_\ell\}_{1 \leq \ell \leq \nu}$ starts and ends with $N + d$ zeros then locally uniformly on X_d

$$\left| \prod_{\ell=1}^{\nu} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon} \right|_{\mathcal{L}} \leq C^{\nu^2 + s^2} \varepsilon^N \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_s. \hfill (4.30)$$

Proof. First note that since $\nu \geq (2N + 2d)(\gamma + 1)$ by the pigeonhole principle there exists a cyclic permutation (in the sense precised above) of $\{k_\ell\}$ that starts and ends with $N + d$ zeros. Using the cyclicity of the trace we can assume that the sequence $\{k_\ell\}$ starts and ends with $N + d$ zeros. In particular we are reduced to prove (4.30). Since the sequence $\{k_\ell\}$ is now admissible it admits a good subsequence $\{k_\ell\}_{q+1 \leq \ell \leq \nu'}$. Without loss of generality $q \geq d$. Write

$$\left| \prod_{\ell=1}^{\nu} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon} \right|_{\mathcal{L}} \leq \left| \prod_{\ell=1}^{d} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon} \right|_{\mathcal{L}} \prod_{\ell=d+1}^{q} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon} \left| \prod_{\ell=q+1}^{\nu' + q} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon} \right|_{\mathcal{L}} \prod_{\ell=\nu' + q + 1}^{\nu} K_{W_{k_\ell}} e^{ik_{\ell} \cdot / \varepsilon}.$$
For \(\lambda \) in compact subsets of \(X_d \) the first, second and fourth factor are estimated by the estimates of Lemma 2.1. The third factor is controlled by (4.17). It leads to

\[
\left| \prod_{\ell=1}^{\nu} K_{W_k\ell} e^{ik\ell \cdot \xi} \right|_{\xi} \leq C^{\nu + \nu^2} \sum_{\ell=1}^{N} \prod_{\ell \leq q, \ell \geq \nu' + q + 1} |W_{k\ell}|_{\infty} \left(\prod_{\ell = q + 1}^{\nu' + q} \|W_{k\ell}\|_{2\nu} \right) \leq C^{\nu + s^2} \sum_{\ell=1}^{N} \|W_{k\ell}\|_{s}.
\]

This completes the proof of the lemma. \(\square \)

With this refinement we are now ready for the proof of Lemma 4.6.

Proof of Lemma 4.6. We start by fixing \(a \in [1, N] \) and \(n_1, ..., n_a \in [1, 2N - 1] \). First note that the function \(z \mapsto (1 + \Psi(z))^{-1} \) is meromorphic with a simple pole at \(z = -1 \). Write a Taylor expansion of \(z \mapsto (1 + \Psi(z))^{-1} \) at \(z = 0 \):

\[
(Id + \Psi(z))^{-1} = P_N(z) + z^{2N+2d} \rho_N(z).
\]

Here \(P_N \) is a polynomial of degree \(2N + 2d - 1 \) and \(\rho_N \) is a holomorphic function on \(\mathbb{C} \setminus \{-1\} \). The pole at \(-1\) is of multiplicity one. Away from resonances of \(W_0 \),

\[
(Id + \Psi(K_{W_0}))^{-1} = P_N(K_{W_0}) + K_{W_0}^{N+d} \rho_N(K_{W_0}) K_{W_0}^{N-d}.
\]

The operator \(B_{W_0} = \text{Det}(Id + \Psi(K_{W_0})) \rho_N(K_{W_0}) \), well defined on \(\mathbb{C} \setminus \text{Res}(K_{W_0}) \), extends to an entire family of operators by Appendix 5.1. Let us write

\[
\mathcal{S}_X = C_0 + C_1, \quad C_0 = \text{Det}(Id + \Psi(K_{W_0})) \cdot P_N(K_{W_0}), \quad C_1 = K_{W_0}^{N+d} \cdot B_{W_0} \cdot K_{W_0}^{N-d}.
\]

Fix now \(m_1, ..., m_a \geq p \) and for each \(1 \leq j \leq a \) a sequence \(\{k^j_\ell\} \in \mathcal{S}_{m_j} \), with \(k^1_1 + ... + k^a_{m_a} \neq 0 \). We define \(\gamma = n_1 + ... + n_a \) and \(\nu = m_1 + ... + m_a \). Using \(\mathcal{S}_X = C_0 + C_1 \) we get

\[
\text{Tr} \left(\prod_{j=1}^{a} \mathcal{S}_X^{m_j} K_{W_k\ell} e^{ik\ell \cdot \xi} \right) = \sum_{\epsilon_1, ..., \epsilon_a \in \{0, 1\}^a} \text{Tr} \left(\prod_{j=1}^{a} C_{\epsilon_j}^{m_j} K_{W_k\ell} e^{ik\ell \cdot \xi} \right).
\]

Fix now a sequence \(\epsilon_1, ..., \epsilon_a \in \{0, 1\}^a \). If all the terms of this sequence vanish then

\[
\text{Tr} \left(\prod_{j=1}^{a} C_{\epsilon_j}^{m_j} K_{W_k\ell} e^{ik\ell \cdot \xi} \right) = \text{Tr} \left(\prod_{j=1}^{a} C_{0}^{m_j} K_{W_k\ell} e^{ik\ell \cdot \xi} \right).
\]

This is a finite sum of terms studied in Lemma 4.10. Indeed, the sequence \(\{k^j_\ell\} \) is destructive, \(\nu \geq pa \geq 2(N+d) \cdot 2Na \) and \(2Na \geq \gamma + 1 \), which implies

\[
\nu \geq 2(N+d)(\gamma + 1).
\]
If $s = 2(N + 2N^3 + 1)$ then $s \geq 2(N + \gamma N + 1)$, thus

$$\left| \text{Tr} \left(\prod_{j=1}^{a} C_0 \prod_{\ell=1}^{m_j} K_{W_j} e^{ik_j \ell / \varepsilon} \right) \right| \leq C' \varepsilon^n \prod_{\ell=1}^{\nu} \| W_{k_\ell} \|_s.$$

for a constant C depending only on N, d and $|W_0|$. Since $W \in C_0^\infty(\mathbb{R}^d \times \mathbb{T}^d, \mathbb{C})$ the RHS is $O(\varepsilon^N)$.

Now we consider a sequence $\epsilon_1, \ldots, \epsilon_a \in \{0, 1\}^a$ with exactly one non-vanishing term. Using cyclicity of the trace we can assume without loss of generality that $\epsilon_1 = 1$. Hence

$$\text{Tr} \left(\prod_{j=1}^{a} C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{W_j} e^{ik_j \ell / \varepsilon} \right) = \text{Tr} \left(B_{W_0} K_{W_0}^{N+d} \left(\prod_{\ell=1}^{m_1} K_{W_j} e^{ik_1 \ell / \varepsilon} \right) \left(\prod_{j=2}^{a} C_0 \prod_{\ell=1}^{m_j} K_{W_j} e^{ik_j \ell / \varepsilon} \right) K_{W_0}^{-N+d} \right).$$

Using (4.30) we obtain again

$$\left| \text{Tr} \left(\prod_{j=1}^{a} C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{W_j} e^{ik_j \ell / \varepsilon} \right) \right| \leq |B_{W_0}| \varepsilon \left| K_{W_0}^{N+d} \left(\prod_{\ell=1}^{m_1} K_{W_j} e^{ik_1 \ell / \varepsilon} \right) \left(\prod_{j=2}^{a} C_0 \prod_{\ell=1}^{m_j} K_{W_j} e^{ik_j \ell / \varepsilon} \right) K_{W_0}^{-N+d} \right|.$$

The second factor in the second line is a finite sum of terms studied in Lemma 4.10. Consequently we obtain the bound

$$\left| \text{Tr} \left(\prod_{j=1}^{a} C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{W_j} e^{ik_j \ell / \varepsilon} \right) \right| \leq C' \varepsilon^n |B_{W_0}| \prod_{\ell=1}^{\nu} \| W_{k_\ell} \|_s.$$

Finally we need to consider some sequences $\epsilon_1, \ldots, \epsilon_a \in \{0, 1\}^a$ with more than 2 non-vanishing terms. Using a circular permutation we can assume without loss of generality that $\epsilon_1 = 1$. Let us prove the following statement: there exists two indexes $j_1, j_2 \in [1, a]$ such that

(i) the sequence $\{k_{\ell}\}_{1 \leq \ell \leq m_{j_1}}$ is destructive;

(ii) $\epsilon_j = 0$ for all j with $j \in (j_1, j_2)$.

We process by recursion on a. If $a = 2$ this is obvious: either the sequence $\{k_{\ell}\}_{1 \leq \ell \leq m_{j_1}}$ or the sequence $\{k_{\ell}\}_{1 \leq \ell \leq m_{j_2}}$ is destructive. Now assume that the statement holds true for all $a' \leq a - 1$. Let us prove it for a. Let j_0 be the smallest index with $\epsilon_{j_0} = 1$ and $j_0 > 1$. Then either the sequence $\{k_{\ell}\}_{1 \leq \ell \leq m_{j_0}}$ is destructive and we are done, or it is constructive. But then the sequence $\{k_{\ell}\}_{1 \leq \ell \leq m_0}$ is destructive and so we can apply the recursion hypothesis to it.
Here again using a circular permutation we can assume without loss of generality that \(j_1 = 1 \). Thus

\[
\left| \text{Tr} \left(\prod_{j=1}^{a} C_{ej} \prod_{\ell=1}^{m_j} K_{W_{j_{\ell}} \epsilon i k_{\ell}^{j_{\ell}} / \epsilon} \right) \right| \leq |B_{W_0}| \| B_{W_0} \| \left| K_{W_0}^{2(N+d)} \left(\prod_{j=1}^{m_j} K_{W_{j_{\ell}}} \epsilon i k_{\ell}^{j_{\ell}} / \epsilon \right) \left(\prod_{j=2}^{m_j} C_{j} \prod_{\ell=1}^{m_j} K_{W_{j_{\ell}}} \epsilon i k_{\ell}^{j_{\ell}} / \epsilon \right) \right| \leq C^v \| W_{k_l} \|_s \cdot \left(\prod_{j=1}^{a} \| X \|_2(\epsilon) \right) \cdot \left(\prod_{\ell=1}^{\nu} W_{k_{\ell}} \right)
\]

The first line is a finite sum of terms estimated by Lemma 4.10. The second line is controlled by the standards bounds of Lemma 2.1. It leads to the bound

\[
\left| \text{Tr} \left(\prod_{j=1}^{a} C_{ej} \prod_{\ell=1}^{m_j} K_{W_{j_{\ell}}} \epsilon i k_{\ell}^{j_{\ell}} / \epsilon \right) \right| \leq C^v \| W_{k_l} \|_s.
\]

It follows that (4.32) holds for all sequences \(\epsilon_1, ..., \epsilon_a \in \{0, 1\}^a \). Summing it over all such sequences leads to

\[
\left| \text{Tr} \left(\prod_{j=1}^{a} X_{\sum} \prod_{\ell=1}^{m_j} K_{W_{j_{\ell}}} \epsilon i k_{\ell}^{j_{\ell}} / \epsilon \right) \right| \leq C^v \| W_{k_l} \|_s.
\]

The last step of the proof is to sum the bound (4.33) to show that \(\text{Tr}(D_{n_1, ..., n_a}) = O(\epsilon^N) \). Recall that

\[
D_{n_1, ..., n_a} = \sum_{m_1, ..., m_a = p} \sum_{\{k_{\ell}^1\} \in S_{\epsilon, a_1}, ..., \{k_{\ell}^a\} \in S_{\epsilon, a_a}} \left(\prod_{j=1}^{a} \alpha_m \prod_{\ell=1}^{m_j} K_{W_{j_{\ell}}} \epsilon i k_{\ell}^{j_{\ell}} / \epsilon \right)
\]

where \(S_{\epsilon, m} \) is the set of sequences of length \(m \) with \(n \) non-vanishing terms. Hence

\[
|\text{Tr}(D_{n_1, ..., n_a})| \leq \sum_{m_1, ..., m_a = p} \sum_{\{k_{\ell}^1\} \in S_{\epsilon, a_1}, ..., \{k_{\ell}^a\} \in S_{\epsilon, a_a}} |\alpha_m \prod_{\ell=1}^{m_1} W_{k_{\ell}} |_s \prod_{\ell=1}^{m_1+...+m_a} \sum_{\{k_{\ell}^1\} \in S_{\epsilon, a_1}, ..., \{k_{\ell}^a\} \in S_{\epsilon, a_a}} \prod_{\ell=1}^{m_1+...+m_a}
\]

\[
= \epsilon^N \Phi(C |W|_{Z_s}),
\]
where \(\Phi \) is the entire function given by
\[
\Phi(z) = \left(\sum_{m=p}^{\infty} |\alpha_m| z^m \right)^a.
\] (4.34)

Since \(\Phi(C|W|z) < \infty \) we have \(\text{Tr}(\mathcal{D}_{n_1,...,n_a}) = O(\varepsilon^N) \), which completes the proof. \(\Box \)

4.4. Constructive interaction. In this paragraph we prove the following lemma:

Lemma 4.11. For \(1 \leq a \leq N \) and \(n_1,...,n_a \in [1,2N-1] \) let \(\mathcal{C}_{n_1,...,n_a} \) be the trace class operator given by (4.16). There exists \(\varphi_0,...,\varphi_{N-1} \) holomorphic functions on \(X_d \) such that
\[
\text{Tr}(\mathcal{C}_{n_1,...,n_a}) = \varphi_0(\lambda) + \varepsilon\varphi_1(\lambda) + ... + \varepsilon^{N-1}\varphi_{N-1}(\lambda) + O(\varepsilon^N)
\]
locally uniformly on \(X_d \).

We start by giving some expansions of operators.

Lemma 4.12. For every \(n \geq 0 \) there exists some operators \(A_0,...,A_{n-1},\mathcal{R}_n \) with
\[
e^{-ik\cdot/\varepsilon}K_{W_k}e^{ik\cdot/\varepsilon} = A_0 + ... + \varepsilon^{n-1}A_{n-1} + \varepsilon^n\mathcal{R}_n,
\] (4.35)
such that:

(i) \(A_j \) is a pseudodifferential operator of order \(j - 2 \) and maps locally supported functions to compactly supported functions. It does not depend on \(\varepsilon \) and satisfies the bound
\[
|A_j|_{\mathcal{B}(H^{s+j},H^s)} \leq C\|W_k\|_N, \quad s + j \leq N.
\]

(ii) \(\mathcal{R}_n \) is a pseudodifferential operator of order \(n - 1 \) and maps locally supported functions to compactly supported functions. It depends on \(\varepsilon \) and satisfies the bound
\[
|\mathcal{R}_n|_{\mathcal{B}(H^{s+n+1},H^s)} \leq C\|W_k\|_N, \quad s + n + 1 \leq N
\]
uniformly in \(\varepsilon \) near 0.

Proof. For \(k = 0 \) there is nothing to prove. Thus we assume \(k \neq 0 \). In Appendix 5.2 we prove that if \(R(\xi,\lambda) = (\xi^2 - \lambda^2)^{-1} \) then
\[
R(\xi + k/\varepsilon,\lambda) = \sum_{j=2}^{n-1} \varepsilon^j p_{j-2}(\xi,\lambda) + \varepsilon^n p_{n-2}(\xi,\lambda) + \varepsilon^{n+1} p_{n-1}(\xi,\lambda) + \varepsilon^n \frac{r_n(\xi,\lambda,\varepsilon)}{(\xi^2 - k/\varepsilon)^2 - \lambda^2}.
\] (4.36)

Here \(p_j(\xi,\lambda) \) is a polynomial in \(\xi \) and \(\lambda \) of degree at most \(j \) in \(\xi \); and \(r_n \) is a polynomial in \(\xi \) and \(\lambda \) of degree at most \(n + 1 \) in \(\xi \) and whose coefficients depend smoothly of \(\varepsilon \) as \(\varepsilon \to 0 \). In particular,
\[
\sup_{\xi \in \mathbb{R}^d} \left| \frac{r_n(\xi,\lambda,\varepsilon)}{\langle \xi \rangle^{n+1}} \right| = O(1) \quad \text{uniformly as } \varepsilon \to 0.
\] (4.37)
Since \(e^{-ik/\varepsilon}De^{ik/\varepsilon} = D + k/\varepsilon \) we have for \(\text{Im} \lambda > 0, \)
\[
e^{-ik/\varepsilon}R_0(\lambda)e^{ik/\varepsilon} = ((D + k/\varepsilon)^2 - \lambda^2)^{-1}.
\]
Therefore the expansion (4.36) implies that for \(\text{Im} \lambda > 0, \)
\[
e^{-ik/\varepsilon}R_0(\lambda)e^{ik/\varepsilon} = \left(\sum_{j=2}^{n-1} \frac{\varepsilon^j}{|k|^2}p_{j-2}(D) \right) + \varepsilon^n (p_{n-2}(D) + \varepsilon p_{n-1}(D) + R_0(\lambda)r_n(D, \varepsilon)).
\]
This identity extends analytically to \(X_d \) and yields
\[
e^{-ik/\varepsilon}K_{W_k}e^{ik/\varepsilon} = A_0 + \ldots + \varepsilon^{n-1}A_{n-1} + \varepsilon^n \mathcal{R}_n,
\]
where
\[
A_0 = A_1 = 0,
\]
\[
A_j = \frac{1}{|k|^2} \rho p_{j-2}(D)W_k \quad \text{for} \quad j \in [2, n - 1],
\]
\[
\mathcal{R}_n = \rho (p_{n-2}(D) + \varepsilon p_{n-1}(D) + R_0(\lambda)r_n(D, \varepsilon)) W_k.
\]
The operators \(A_j \) are pseudodifferential of order \(j - 2 \) and map locally supported functions to compactly supported functions. For \(\text{Im} \lambda > 0 \) the operator \(K_{W_k}(\lambda) \) is pseudodifferential. Moreover by Lemma 4.9 the operator \(K_{W_k}(\lambda) - K_{W_k}(-\lambda) \) is smoothing and thus pseudodifferential. Thus \(K_{W_k}(\lambda) \) is pseudodifferential for all \(\lambda \in X_d \). As
\[
\mathcal{R}_n = \frac{e^{-ik/\varepsilon}K_{W_k}e^{ik/\varepsilon} - A_0 - \ldots - \varepsilon^{n-1}A_{n-1}}{\varepsilon^n}
\]
and the RHS is pseudodifferential \(\mathcal{R}_n \) must also be pseudodifferential. To evaluate its order we note that \(p_{n-2}(D) \) (resp. \(p_{n-1}(D) \)) is a differential operator of order \(n - 4 \) (resp. \(n - 3 \)) and that \(r_n(D) \) is a differential operator of order \(n + 1 \). Thus \(R_0(\lambda)r_n(D) \) maps \(H^{n+1} \) to \(H^2 \) and \(\mathcal{R}_n \) must be of order \(n - 1 \). To prove the required bounds, we note that for \(s \leq N \), the multiplication operator \(u \mapsto W_ku \) from \(H^s \) to itself has norm bounded by \(\|W_k\|_N \). Therefore for \(s + j \leq N \),
\[
|A_j|_{\mathcal{B}(H^{s+j}, H^s)} \leq C \|p_{j-2}(D)\|_{\mathcal{B}(H^{s+j}, H^s)} |W_k|_{\mathcal{B}(H^{s+j}, H^{s+j})} \leq C \|W_k\|_N.
\]
This proves (i). Now we prove (ii). For \(s + n + 1 \leq N \) the bound (4.37) implies that the operator \(r_n(D, \varepsilon) \) (which is a differential operator) satisfies the bound
\[
|r_n(D, \varepsilon)W_k|_{\mathcal{B}(H^{s+n+1}, H^s)} = O(1) \quad \text{uniformly as} \quad \varepsilon \to 0.
\]
Let \(\chi \in C_0^\infty(\mathbb{R}^d(0, L)) \) with \(\chi = 1 \) on \(\text{supp} (\chi) \). The operator \(\rho R_0(\lambda)\chi \) maps \(H^s \) to itself. Consequently
\[
|\rho R_0(\lambda)r_n(D, \varepsilon)W_k|_{\mathcal{B}(H^{s+n+1}, H^s)} \leq |\rho R_0(\lambda)\chi|_{\mathcal{B}(H^s, H^s)} |r_n(D, \varepsilon)W_k|_{\mathcal{B}(H^{s+n+1}, H^s)} = O(1)
\]
uniformly as \(\varepsilon \to 0 \). The operators \(\rho p_{n-2}(D)W_k \) and \(\rho p_{n-1}(D)W_k \) do not depend on \(\varepsilon \) and are bounded from \(H^{s+n+1} \) to \(H^s \). This shows (ii) and completes the proof of the lemma.
Lemma 4.13. Let \(\{k_\ell\}\}_{1 \leq \ell \leq _n} \) be a sequence of numbers in \(\mathbb{Z}^d \). For every \(n \geq 0 \) there exists some operators \(\mathcal{A}_0, \ldots, \mathcal{A}_{n-1}, \mathcal{R}_n \) with

\[
e^{-i\sigma_\ell / \varepsilon} \left(\prod_{\ell=1}^{\nu} K_{W_{k_\ell}} e^{i k_\ell / \varepsilon} \right) = \mathcal{A}_0 + \ldots + \varepsilon^{n-1} \mathcal{A}_{n-1} + \varepsilon^n \mathcal{R}_n
\]

where \(\sigma_1 = k_1 + \ldots + k_\nu = \sigma_1 \) and

(i) \(\mathcal{A}_j \) is a pseudodifferential operator of order \(j - 2 \) and maps locally supported functions to compactly supported functions. It does not depend on \(\varepsilon \) and satisfies the bound

\[
|\mathcal{A}_j|_{\mathcal{D}(H^{s+j},H^s)} \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N, \quad s + j \leq N.
\]

(ii) \(\mathcal{R}_n \) is a pseudodifferential operator of order \(n - 1 \) and maps locally supported functions to compactly supported functions. It depends on \(\varepsilon \) and satisfies the bound

\[
|\mathcal{R}_n|_{\mathcal{D}(H^{s+n+1},H^s)} \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N, \quad s + n + 1 \leq N
\]

uniformly as \(\varepsilon \rightarrow 0 \).

Proof. We prove this lemma by recursion. For \(\nu = 1 \) it is the result of Lemma 4.12. Now assume that Lemma 4.13 holds true for all sequences \(\{k_j\} \) of length less or equal to \(\nu - 1 \). Let \(\{k_j\} \) be a sequence of length \(\nu \). Define \(\sigma_2 = k_2 + \ldots + k_\nu \) so that

\[
e^{-i\sigma_1 / \varepsilon} \left(\prod_{\ell=1}^{\nu} K_{W_{k_\ell}} e^{i k_\ell / \varepsilon} \right) = \left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \cdot \left(e^{-i\sigma_2 / \varepsilon} \prod_{\ell=2}^{\nu} K_{W_{k_\ell}} e^{i k_\ell / \varepsilon} \right).
\]

Using the recursion hypothesis we have

\[
\left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \cdot \left(e^{-i\sigma_2 / \varepsilon} \prod_{\ell=2}^{\nu} K_{W_{k_\ell}} e^{i k_\ell / \varepsilon} \right)
= \left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \mathcal{A}_0 + \ldots + \varepsilon^{n-1} \left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \mathcal{A}_{n-1} + \varepsilon^n \left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \mathcal{R}_n.
\]

For each of the terms \(\varepsilon^j \left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \mathcal{A}_j \) expand the operator \(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \) at order \(n - j \) as given by Lemma 4.12:

\[
e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} = A_0 + \varepsilon A_1 + \ldots + \varepsilon^{n-j-1} A_{n-j-1} + \varepsilon^n \mathcal{R}_{n-j}.
\]

(4.38)

It leads to

\[
\varepsilon^j \left(e^{-i\sigma_1 / \varepsilon} K_{W_{k_1}} e^{i \sigma_1 / \varepsilon} \right) \mathcal{A}_j = \varepsilon^j A_0 \mathcal{A}_j + \ldots + \varepsilon^{n-1} A_{n-1-j} \mathcal{A}_j + \varepsilon^n \mathcal{R}_{n-j} \mathcal{A}_j.
\]
The operator $A_j\mathcal{A}_j$ has order $j' - 2 + j - 2 = j' + j - 4 \leq j' + j - 2$ and in the above expression it is weighted with a term $\varepsilon^{j' + j}$. Moreover if $s + j' + j \leq N$ then

$$|A_j\mathcal{A}_j|_{\mathcal{B}(H^{s+j'+j},H^s)} \leq |A_j|_{\mathcal{B}(H^{s+j},H^s)}|\mathcal{A}_j|_{\mathcal{B}(H^{s+j'+j},H^{s+j})} \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N.$$

The remainder term $\mathcal{R}_{n-j}\mathcal{A}_j$ has order $n - j - 1 + j - 2 = n - 3 \leq n - 1$ and satisfies the bound

$$|\mathcal{R}_{n-j}\mathcal{A}_j|_{\mathcal{B}(H^{n+s},H^s)} \leq |\mathcal{R}_{n-j}|_{\mathcal{B}(H^{n+j+1},H^s)}|\mathcal{A}_j|_{\mathcal{B}(H^{s+j+1},H^{s+j})} \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N.$$

The term $e^{-i\sigma_1\cdot \varepsilon} K_{W_{k_1}} e^{i\sigma_1\cdot \varepsilon} \mathcal{R}_n$ is of order $n - 1 - 2 = n - 3 \leq n - 1$ and satisfies

$$|e^{-i\sigma_1\cdot \varepsilon} K_{W_{k_1}} e^{i\sigma_1\cdot \varepsilon} \mathcal{R}_n|_{\mathcal{B}(H^{s+j+1},H^s)} \leq |e^{-i\sigma_1\cdot \varepsilon} K_{W_{k_1}} e^{i\sigma_1\cdot \varepsilon}|_{\mathcal{B}(H^s,H^s)} |\mathcal{R}_n|_{\mathcal{B}(H^{s+j+1},H^s)} \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N.$$

This prove that the lemma holds for all sequences of length ν. This completes the recursion and ends the proof. \hfill \Box

The expansion of Lemma 4.13 implies a trace expansion as follows:

Lemma 4.14. Let $\{k_\ell\}_{1 \leq \ell \leq \nu}$ be a constructive sequence with γ non-vanishing terms. Assume that $\nu \geq N(\gamma + 1)$. Then there exists $a_0, a_1, \ldots, a_{N-1}$ holomorphic functions on X_d such that locally uniformly on X_d, $|a_j(\lambda)| \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N$ and

$$\left| \operatorname{Tr} \left(\prod_{\ell=1}^{\nu} K_{W_{k_\ell}} e^{ik_\ell \cdot \varepsilon} - a_0(\lambda) - \varepsilon a_1(\lambda) + \ldots - \varepsilon^{N-1} a_{N-1}(\lambda) \right) \right| \leq \varepsilon^N C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N.$$

Proof. Since $\nu \geq N(\gamma + 1)$, there exists a subsequence of $\{k_\ell\}_{1 \leq \ell \leq \nu}$ made of N vanishing numbers. Using the cyclicity of the trace we can assume that $k_{\nu-N+1} = \ldots = k_\nu = 0$. The sequence $k_1, \ldots, k_{\nu-N}$ is constructive. Therefore we can apply Lemma 4.13 to obtain the expansion

$$\prod_{\ell=1}^{\nu-N} K_{W_{k_\ell}} e^{ik_\ell \cdot \varepsilon} = \mathcal{A}_0 + \varepsilon^{N-1} \mathcal{A}_{N-1} + \varepsilon^N \mathcal{R}_N.$$

Here \mathcal{A}_j is pseudodifferential of order $j - 2$ and does not depend on ε and \mathcal{R}_N is pseudodifferential of order $N - 1$ and satisfies the bound

$$|\mathcal{R}_N|_{\mathcal{B}(H^{N+1},L^2)} \leq C^\nu \prod_{\ell=1}^{\nu} \|W_{k_\ell}\|_N.$$
Both these operators map locally supported functions to compactly supported functions. As $k_{\nu-N+1} = ... = k_{\nu} = 0$ we obtain

$$
\prod_{\ell=1}^{\nu} K_{W_{k_{\ell}}} e^{ik_{\ell}/\varepsilon} = A_{0}K_{W_{0}}^{N} + ... + \varepsilon^{N-1} A_{N-1}K_{W_{0}}^{N} + \varepsilon^{N} R_{N}K_{W_{0}}^{N}. \quad (4.39)
$$

We recall that $N \geq d$. The operators $A_{j}K_{W_{0}}^{N}$ have order $j - 2 - 2N \leq -2 - N \leq -2 - d$ therefore they are trace class. The operator $R_{N}K_{W_{0}}^{N}$ has order $-N - 1 \leq -d$ hence it is also trace class. It satisfies the bound

$$
|R_{N}K_{W_{0}}^{N}|_{\mathcal{B}(H^{1-N}, L^{2})} \leq |R_{N}|_{\mathcal{B}(H^{N+1}, L^{2})}|K_{W_{0}}^{N}|_{\mathcal{B}(H^{1-N}, H^{N+1})} \leq C_{\nu} \prod_{\ell=1}^{\nu} \|W_{k_{\ell}}\|_{N}.
$$

By [DyZw15][Equation (B.3.9)] this implies $|R_{N}K_{W_{0}}^{N}|_{\mathcal{B}} \leq |R_{N}K_{W_{0}}^{N}|_{\mathcal{B}(H^{1-N}, L^{2})} \leq C_{\nu} \prod_{\ell=1}^{\nu} \|W_{k_{\ell}}\|_{N}$. Taking the trace of both sides of (4.39) yields

$$
\left| \text{Tr} \left(\prod_{\ell=1}^{\nu} K_{W_{k_{\ell}}} e^{ik_{\ell}/\varepsilon} \right) - \text{Tr} \left(A_{0}K_{W_{0}}^{N} \right) - ... - \varepsilon^{N-1} \text{Tr} \left(A_{N-1}K_{W_{0}}^{N} \right) \right| \leq \varepsilon^{N} C_{\nu} \prod_{\ell=1}^{\nu} \|W_{k_{\ell}}\|_{N}.
$$

This gives the required expansion. We now need to prove the estimate on the coefficients $a_{0}, ..., a_{N-1}$ appearing in the expansion. By [DyZw15][Equation (B.3.9)] and the estimate (i) of Lemma 4.13,

$$
|\text{Tr}(A_{j}K_{W_{0}}^{N})| \leq |A_{j}K_{W_{0}}^{N}|_{\mathcal{B}} \leq C|A_{j}K_{W_{0}}^{N}|_{\mathcal{B}(H^{-N}, L^{2})} \leq C|A_{j}|_{\mathcal{B}(H^{N}, L^{2})}|K_{W_{0}}^{N}|_{\mathcal{B}(L^{2}, H^{N})} \leq C_{\nu} \prod_{\ell=1}^{\nu} \|W_{k_{\ell}}\|_{N}.
$$

This completes the proof. \qed

Fix $a \in [1, N]$ and $n_{1}, ..., n_{a} \in [1, 2N - 1]$. The operator $q_{n_{1}, ..., n_{a}}$ defined by (4.16) is a linear combination of operators of the form

$$
L[k_{\ell}^{a}] = \prod_{j=1}^{a} \prod_{\ell=1}^{m_{j}} K_{W_{k_{\ell}^{j}}} e^{ik_{\ell}^{j}/\varepsilon}, \quad (4.40)
$$

where

(i) For every $j \in [1, a]$, $m_{j} \geq p$.

(ii) The sequence $\{k_{\ell}^{j}\}_{1 \leq \ell \leq m_{j}}$ is constructive.

(iii) For every $j \in [1, a]$, the sequence $\{k_{\ell}^{j}\}_{1 \leq \ell \leq m_{j}}$ has n_{j} non-vanishing terms.

In order to prove Lemma 4.11 we prove an expansion for operators of the form (4.40) where $\{k_{\ell}^{j}\}$ satisfies (i), (ii) and (iii). We fix $s = 2(N + 2N^{2} + 1)$.

Lemma 4.15. Let $L[k_{\ell}^{a}]$ be an operator of the form (4.40) where $\{k_{\ell}^{j}\}$ satisfies (i), (ii) and (iii) above. Then there exist $b_{0}[k_{\ell}^{a}], ..., b_{N-1}[k_{\ell}^{a}]$ holomorphic functions on X_{a} such
that locally uniformly on \(X_d \) we have \(|b_i[k^j_\ell]| \leq C_\nu \prod_{\ell=1}^\nu \|W_{k_\ell}\|_s \) and
\[
|\text{Tr} \left(L[k^j_1] \right) - b_0[k^j_\ell] + ... - b_{N-1}[k^j_\ell] \varepsilon^{N-1}| \leq \varepsilon^N C_\nu \prod_{j=1}^a \prod_{\ell=1}^m \|W_{k^j_\ell}\|_s. \tag{4.41}
\]

Proof of Lemma 4.11. Fix \(a \in [1, N] \), \(n_1, ..., n_a \in [1, 2N - 1] \) and \(k^j_\ell \) satisfying (i), (ii) and (iii) above. Let \(\gamma = n_1 + ... + n_a \) be the number of non-vanishing terms of \(\{k^j_\ell\} \). Write \(\mathcal{F}_X = C_0 + C_1 \) where \(C_0, C_1 \) were defined in (4.31). Then
\[
\text{Tr} \left(L[k^j_\ell] \right) = \text{Tr} \left(\prod_{j=1}^a \mathcal{F}_X \prod_{\ell=1}^{m_j} K_{k^j_\ell} e^{ik^j_\ell x / \varepsilon} \right) = \sum_{\epsilon_1, ..., \epsilon_a \in \{0, 1\}^a} \text{Tr} \left(\prod_{j=1}^a C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{k^j_\ell} e^{ik^j_\ell x / \varepsilon} \right). \tag{4.42}
\]
Fix a sequence \(\epsilon_j \in \{0, 1\}^a \). In order to prove the lemma it suffices to prove that the term
\[
\text{Tr} \left(\prod_{j=1}^a C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{k^j_\ell} e^{ik^j_\ell x / \varepsilon} \right) \tag{4.42}
\]
admits an expansion in powers of \(\varepsilon \) at order \(N \).

Since \(\{k^j_\ell\} \) has \(\gamma \leq (2N - 1)a \) non-vanishing terms and length \(\nu \geq pa \) we have \(\nu \geq N(\gamma + 1) \). Assume that \(\epsilon_1 = ... = \epsilon_a = 0 \) and recall that \(C_0 \) is a polynomial in \(K_{W_0} \). In this case (4.42) is a finite sum of terms studied in Lemma 4.14. These all admit an expansion in powers of \(\varepsilon \) and thus so does (4.42). From now we assume that \(\epsilon_j \) has at least one non-zero term and without loss of generality \(\epsilon_1 = 1 \).

The indexes \(j_1, ..., j_r \) such that \(\epsilon_j = 1 \) split the sequence \((k^1_1, ..., k^1_{m_1}, k^2_1, ..., k^a_{m_a}) \) into \(r + 1 \) subsequences
\[
(k^1_{m_{j_1}}, ..., k^j_{m_1}), ..., (k^r_{m_{j_r}}, ..., k^a_{m_a}). \tag{4.43}
\]
Assume that each of the subsequences in (4.43) is constructive. Then since \(C_1 = K_{W_0}^{N+d} B_{W_0} K_{W_0}^{N+d} \) we can write (4.42) as the trace of a product of operators of the form
\[
B_{W_0} K_{W_0}^{N+d} \prod_{j=j_t}^{j_{t+1}-1} C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{k^j_\ell} e^{ik^j_\ell x / \varepsilon} K_{W_0}^{N+d}. \tag{4.44}
\]
The operator
\[
K_{W_0}^{N+d} \prod_{j=j_t}^{j_{t+1}-1} C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{k^j_\ell} e^{ik^j_\ell x / \varepsilon} K_{W_0}^{N+d}
\]
admit an expansion given by Lemma 4.13. Thus so does the operator (4.44). Multiplying these expansions over \(t = 1, ..., r \) leads to an expansion for the operator
\[
\prod_{j=1}^a C_{\epsilon_j} \prod_{\ell=1}^{m_j} K_{k^j_\ell} e^{ik^j_\ell x / \varepsilon}
\]
in the spirit of Lemma 4.13. An adaptation of the proof of Lemma 4.14 proves then that (4.42) admits an expansion in powers of ε. Now assume that one of the sequences in (4.43) is destructive. Without loss of generality $(k_{j_1}^1, ..., k_{j_1}^{m_1})$ is destructive. We recall that $C_1 = K_{W_0}^{N+d} B_{W_0} K_{W_0}^{N+d}$. Thus the product of operators

$$K_{W_0}^{N+d} \left(\prod_{j=1}^{j_1} C_{0} \prod_{\ell=1}^{m_j} K_{W_{k_{j_1}^\ell}} e^{i k_{j_1}^\ell / \varepsilon} \right) K_{W_0}^{N+d} \quad (4.45)$$

is associated with a destructive sequence, that starts and ends with $N + d$ zeros. Consequently Lemma 4.10 applies and yields

$$\left| K_{W_0}^{N+d} \left(\prod_{j=1}^{j_1} C_{0} \prod_{\ell=1}^{m_j} K_{W_{k_{j_1}^\ell}} e^{i k_{j_1}^\ell / \varepsilon} \right) K_{W_0}^{N+d} \right| \leq C_{\nu + s}^2 \varepsilon N \prod_{j=1}^{j_1} \prod_{\ell=1}^{m_j} ||W_{k_{j_1}^\ell}||_s.$$

Since (4.45) is one of the factors in the product

$$\prod_{j=1}^{a} \prod_{\ell=1}^{m_j} C_{c_j} \prod_{\ell=1}^{m_j} K_{W_{k_{j_1}^\ell}} e^{i k_{j_1}^\ell / \varepsilon}$$

this yields the estimate:

$$\text{Tr} \left(\prod_{j=1}^{a} \prod_{\ell=1}^{m_j} C_{c_j} \prod_{\ell=1}^{m_j} K_{W_{k_{j_1}^\ell}} e^{i k_{j_1}^\ell / \varepsilon} \right) \leq \left| K_{W_0}^{N+d} B_{W_0} \right| \left| K_{W_0}^{N+d} \left(\prod_{j=1}^{j_1} C_{0} \prod_{\ell=1}^{m_j} K_{W_{k_{j_1}^\ell}} e^{i k_{j_1}^\ell / \varepsilon} \right) K_{W_0}^{N+d} \right|$$

$$\cdot \left| B_{W_0} K_{W_0}^{N+d} \right| \prod_{\ell=1}^{m_{j_1} + 1} K_{W_{k_{j_1 +1}^\ell}} e^{i k_{j_1 +1}^\ell / \varepsilon} \prod_{j=j_1+2}^{a} \prod_{\ell=1}^{m_j} C_{c_j} \prod_{\ell=1}^{m_j} K_{W_{k_{j_1}^\ell}} e^{i k_{j_1}^\ell / \varepsilon}$$

$$\leq C_{\nu + s}^2 \varepsilon N \prod_{j=1}^{a} \prod_{\ell=1}^{m_j} ||W_{k_{j_1}^\ell}||_s.$$

We obtained an expansion in powers of ε for the two possible cases: either one of the sequences in (4.43) is destructive or they are all constructive. The expansion (4.41) follows now from a summation over $\epsilon_1, ..., \epsilon_a \in \{0, 1\}^a$ of the expansions obtained for (4.42). This ends the proof.

We are now ready to prove Lemma 4.11.

Proof of Lemma 4.11. Let us recall that for $a \in [1, N]$ and $n_1, ..., n_a \in [1, 2N − 1]$ the operator $\mathcal{C}_{n_1, ..., n_a}$ is defined by

$$\mathcal{C}_{n_1, ..., n_a} = \sum_{m_1, ..., m_a = p}^{\infty} \alpha_{m_1} ... \alpha_{m_a} \sum_{\{k_1^1, ..., k_1^{m_1}\} \in \mathcal{S}_{m_1}^{n_1}}^{\mathcal{S}_{m}^{n}} \sum_{k_1^1 + ... + k_1^{m_1} = 0}^{k_1^{m_1}} L[k_1^j].$$

Here $L[k_1^j]$ is given by (4.40), \mathcal{S}_{m}^{n} is the set of sequences of length m with n non-vanishing terms and $\alpha_m = \Psi^{(m)}(0)/m!$. Therefore the proof consist of proving that the
sum of the expansions of $\text{Tr}(L[k^j])$ provided by Lemma 4.15 is convergent. By Lemma 4.15,

$$\sum_{m_1,\ldots,m_a=p}^{\infty} |\alpha_{m_1}\ldots\alpha_{m_a}| \sum_{\{k^j\} \in \mathcal{S}^n_{m_1}, \ldots, \{k^a\} \in \mathcal{S}_{m_a}, k^1_1+\ldots+k^a_{ma}=0} \text{Tr} \left(L[k^j] \right) - b_0[k^j] + \ldots - b_{N-1}[k^j] \varepsilon^{N-1}$$

$$\leq \varepsilon N \sum_{m_1,\ldots,m_a=p}^{\infty} |\alpha_{m_1}\ldots\alpha_{m_a}| \sum_{\{k^j\} \in \mathcal{S}^n_{m_1}, \ldots, \{k^a\} \in \mathcal{S}_{m_a}, k^1_1+\ldots+k^a_{ma}=0} C^{m_1+\ldots+m_a} \prod_{j=1}^{a} \prod_{\ell=1}^{m_j} \|W_{k_\ell}\|_s$$

$$\leq \varepsilon N \sum_{m_1,\ldots,m_a=p}^{\infty} |\alpha_{m_1}\ldots\alpha_{m_a}| C^{m_1+\ldots+m_a} W_{X^*}^{m_1+\ldots+m_a}$$

$$= \varepsilon N \Phi(C||W||_{Z^*})$$

where Φ was given by (4.34). It follows that $\text{Tr}(\mathcal{G}_{n_1,\ldots,n_a})$ has an expansion given by

$$\text{Tr}(\mathcal{G}_{n_1,\ldots,n_a}) = \left(\sum_{m_1,\ldots,m_a=p}^{\infty} \alpha_{m_1}\ldots\alpha_{m_a} \sum_{\{k^j\} \in \mathcal{S}^n_{m_1}, \ldots, \{k^a\} \in \mathcal{S}_{m_a}, k^1_1+\ldots+k^a_{ma}=0} b_0[k^j] + \ldots + b_{N-1}[k^j] \varepsilon^{N-1} \right) + O(\varepsilon^N)$$

$$= \varphi_0 + \ldots + \varepsilon^{N-1} \varphi_{N-1} + O(\varepsilon^N),$$

where

$$\varphi_i = \sum_{m_1,\ldots,m_a=p}^{\infty} \alpha_{m_1}\ldots\alpha_{m_a} \sum_{\{k^j\} \in \mathcal{S}^n_{m_1}, \ldots, \{k^a\} \in \mathcal{S}_{m_a}, k^1_1+\ldots+k^a_{ma}=0} b_i[k^j].$$

This ends the proof. \qed

Since

$$\prod_{j=1}^{a} \mathcal{I}_j F_{n_j} = \mathcal{G}_{n_1,\ldots,n_a} + \mathcal{D}_{n_1,\ldots,n_a},$$

the combination of Lemma 4.5, Lemma 4.6 and Lemma 4.11 proves Lemma 4.3. This in return proves the expansion of $D_V(\lambda)$ given in Theorem 5. In the next part we compute explicitly the first few terms in the expansion.

4.5. Computation of coefficients in the expansion. Here we use the proof of Theorem 5 to compute the first few coefficients in the expansion of D_V. Since we know that these coefficients are holomorphic functions of λ it suffices to compute them for $\text{Im} \lambda \gg 1$ and extends them to \mathbb{C} by the unique continuation principle. This makes the computational task a lot easier and actually we already did most of the work. Fix
$N \geq 4$. By arguments similar to the proof of Lemma 3.3 if $\text{Im } \lambda$ is large enough then $|K_V|_\mathcal{L} < 1$. In this case the series

$$\ln(1 + \Psi(K_V)) = -\sum_{m=p}^{\infty} \frac{(-K_V)^m}{m}$$

converges in \mathcal{L}. This implies that for $\text{Im } \lambda \gg 1$

$$D_V(\lambda) = \exp \left(-\sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr}(K_V^m)}{m} \right). \quad (4.46)$$

We now explain how to obtain an expansion of $\text{Tr}(K_V^m)$ for $\text{Im } \lambda \gg 1$. Write

$$\text{Tr}(K_V^m) = \sum_{k_1, \ldots, k_m} \left(\prod_{\ell=1}^{m} K_{W_{k_{\ell}}} e^{ik_{\ell}/\epsilon} \right)$$

$$= \sum_{k_1, \ldots, k_m} \text{Tr} \left(\prod_{\ell=1}^{m} K_{W_{k_{\ell}}} e^{ik_{\ell}/\epsilon} \right) + \sum_{k_1, \ldots, k_m, k_1 + \ldots + k_m \neq 0} \text{Tr} \left(\prod_{\ell=1}^{m} K_{W_{k_{\ell}}} e^{ik_{\ell}/\epsilon} \right).$$

By Lemma 4.10 destructive sequences induce negligible contributions.

$$\text{Tr}(K_V^m) = \sum_{k_1, \ldots, k_m} \text{Tr} \left(\prod_{\ell=1}^{m} K_{W_{k_{\ell}}} e^{ik_{\ell}/\epsilon} \right) + O(\epsilon). \quad (4.47)$$

Thus an expansion of $\text{Tr}(K_V^m)$ at order 4 follows from an expansion of

$$\sum_{k_1, \ldots, k_m} \text{Tr} \left(\prod_{\ell=1}^{m} K_{W_{k_{\ell}}} e^{ik_{\ell}/\epsilon} \right)$$

at order 4. Fix k_1, \ldots, k_m with $k_1 + \ldots + k_m = 0$ and define $\sigma_j = k_j + \ldots + k_\nu$. We have:

$$\prod_{j=1}^{m} K_{W_{k_{j}}} e^{ik_{j}/\epsilon} = \prod_{j=1}^{m} \rho R(D + \sigma_j/\epsilon W_{k_j},$$

where $R(\xi, \lambda) = (\xi^2 - \lambda^2)^{-1}$. The expansion of $R(\xi + \sigma/\epsilon, \lambda)$ given in Appendix 5.2 induces

$$R(D + \sigma/\epsilon) = \epsilon^2 \frac{\text{Id}}{[\sigma]^2} - \epsilon^3 \frac{2\sigma \cdot D}{|\sigma|^4} + O_{\mathcal{B}(H^{1+\delta}, H^1)}(\epsilon^4).$$

Thus if two or more of the σ_j are non-zero then

$$\text{Tr} \left(\prod_{j=1}^{m} K_{W_{k_{j}}} e^{ik_{j}/\epsilon} \right) = O(\epsilon^4).$$
On the other hand the only constructive sequences with at most one non-vanishing \(\sigma_j \) are the cyclic permutations of \((0, \ldots, 0, -k, k)\) where \(k \neq 0 \). For every \(k \neq 0 \) there are \(m \) such sequences. It yields

\[
\text{Tr}(K^m_V) = \text{Tr}(K^m_{W_0}) + m \sum_{k \neq 0} \text{Tr} \left(K^{m-2}_{W_0} K_{W-k} R(D + k/\varepsilon) W_k \right) + O(\varepsilon^4)
\]

\[
= \text{Tr}(K^m_{W_0}) + m \sum_{k \neq 0} \frac{\varepsilon^2}{|k|^2} \text{Tr} \left(K^{m-2}_{W_0} K_{W-k} W_k \right) - 2m \sum_{k \neq 0} \frac{\varepsilon^3}{|k|^4} \text{Tr} \left(K^{m-2}_{W_0} K_{W-k} (k \cdot D) W_k \right) + O(\varepsilon^4).
\]

Note moreover that as operators,

\[
2 \sum_{k \neq 0} \frac{W_k (k \cdot D) W_{-k}}{|k|^4} = 2 \sum_{k \neq 0} \frac{W_{-k} ((k \cdot D) W_k)}{|k|^4}.
\]

Thus the LHS is actually a multiplication operator and thus can be seen as a potential. This leads to

\[
\text{Tr}(K^m_V) = \text{Tr}(K^m_{W_0}) + m \varepsilon^2 \text{Tr} \left(K^{m-2}_{W_0} K_{\Lambda_0} \right) + m \varepsilon^3 \text{Tr} \left(K^{m-2}_{W_0} K_{\Lambda_1} \right) + O(\varepsilon^4),
\]

\[
\Lambda_0 = \sum_{k \neq 0} \frac{W_{-k} W_k}{|k|^2}, \quad \Lambda_1 = -2 \sum_{k \neq 0} \frac{W_{-k} ((k \cdot D) W_k)}{|k|^4}.
\]

Coming back to (4.46),

\[
D_V(\lambda) = \exp \left(- \sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K^m_V \right)}{m} \right)
\]

\[
= \exp \left(- \sum_{m=p}^{\infty} (-1)^m \frac{\text{Tr} \left(K^m_{W_0} \right)}{m} - \sum_{m=p-2}^{\infty} (-1)^m \text{Tr} \left(K^{m}_{W_0} K_{\varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1} \right) + O(\varepsilon^4) \right)
\]

\[
= D_{W_0}(\lambda) \left(1 - \text{Tr} \left((Id + K_{W_0})^{-1} (-K_{W_0})^{p-2} K_{\varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1} \right) \right) + O(\varepsilon^4).
\]

This gives the value of \(a_0, a_1, a_2, a_3 \). It is in practice possible to use this method to compute all the other coefficients \(a_4, \ldots, a_{N-1} \) given by Theorem 5. The terms \(a_2, a_3 \) generate analytic corrections \(\varepsilon^2 \Lambda_0, \varepsilon^3 \Lambda_1 \) of \(W_0 \) so that \(V_{\text{eff}} = W_0 + \varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1 \) plays the role of an effective potential. We describe how to obtain an expansion of \(\text{Tr}(K^m_V) \) at order \(O(\varepsilon^5) \) in Appendix 5.3.

We end this part by a comment for the case of vanishing potentials \(\Lambda_0 \) and \(\Lambda_1 \). Define the sets

\[
E_j = \{(k_1, \ldots, k_j) \in \mathbb{Z}^d \text{ non all zero}, W_{k_1} \cdot \ldots \cdot W_{k_j} \neq 0, k_1 + \ldots + k_j = 0\}.
\]

Let \(J \) be the smallest integer with \(E_J \neq \emptyset \). If \(J > 2 \) then \(\Lambda_0 = \Lambda_1 = 0 \). We derive the expansion of the leading term of \(\text{Tr}(K^m_V) \) following the arguments of the previous paragraph. This leading term is generated by sequences \((k_1, \ldots, k_j) \in E_J \) only. Let \(N = 2J \) and \(m \geq p = 4d(d + N) \). Since the operators appearing in the expansion of
$e^{-ik \cdot \varepsilon} K_{W_k} e^{ik \cdot \varepsilon}$ are local (apart from the remainder) we have

$$\text{Tr}(K^m_V) = \text{Tr}(K^m_{W_0}) + \sum_{(k_1, \ldots, k_J) \in E_J} \text{Tr} \left(K^m_{W_0} \prod_{j=1}^{J} K_{W_{kj}} e^{i k_j \cdot \varepsilon} \right) + O(\varepsilon^{2J})$$

$$= \text{Tr}(K^m_{W_0}) + \sum_{(k_1, \ldots, k_J) \in E_J} \text{Tr} \left(K^m_{W_0} \prod_{j=1}^{J} \rho R(D + \sigma_j / \varepsilon) W_{kj} \right) + O(\varepsilon^{2J})$$

Since J is minimal in the sense precised above the partial sums $\sigma_j = k_j + \ldots + k_J$ are non-zero for every $j \geq 2$. Therefore the expansion of $R(D + \sigma_j / \varepsilon)$ starts with a term in ε^2. The only terms with a non negligible contribution correspond to the expansion of $R(D + \sigma_j / \varepsilon)$ up to $O(\varepsilon^4)$. We consequently obtain

$$\text{Tr}(K^m_V) = \text{Tr}(K^m_{W_0}) + \sum_{(k_1, \ldots, k_J) \in E_J} \text{Tr} \left(K^m_{W_0} \prod_{j=2}^{J} \rho R(D + \sigma_j) W_{kj} \right) + O(\varepsilon^{2J})$$

$$= \text{Tr}(K^m_{W_0}) + \sum_{(k_1, \ldots, k_J) \in E_J} \text{Tr} \left(K^m_{W_0} \prod_{j=1}^{J} \rho \left(\varepsilon^2 \frac{\text{Id}}{|\sigma|^2} - 2 \varepsilon^3 \frac{\sigma \cdot D}{|\sigma|^4} \right) W_{kj} \right) + O(\varepsilon^{2J})$$

$$= \text{Tr}(K^m_{W_0}) + \varepsilon^{2J-2} \sum_{(k_1, \ldots, k_J) \in E_J} \text{Tr} \left(K^m_{W_0} \rho \left(\varepsilon^{2J-2} \Lambda_0 + \varepsilon^{2J-1} \Lambda_1 \right) W_{kj} \right) + O(\varepsilon^{2J})$$

where

$$\Lambda_0 = \sum_{(k_1, \ldots, k_J) \in E_J} \prod_{j=1}^{J} \frac{W_{kj}}{|\sigma_j|^2}, \quad \Lambda_1 = -2 \sum_{(k_1, \ldots, k_J) \in E_J} \sum_{\ell=1}^{J} \left(\prod_{j \neq \ell} \frac{W_{kj}}{|\sigma_j|^2} \right) \frac{\sigma_{\ell} \cdot D}{|\sigma_{\ell}|^4}.$$

By arguments similar we obtain asymptotic expansion of simple resonances in the form

$$\lambda_\varepsilon = \lambda_0 + \varepsilon^{2J-2} \int_{\mathbb{R}^d} \Lambda_0 uv + \varepsilon^{2J-1} \int_{\mathbb{R}^d} \Lambda_1 uv + O(\varepsilon^{2J})$$

with the notations Theorem 2 for notations. We can also derive an effective potential $V_{\text{eff}} = W_0 + \varepsilon^{2J-2} \Lambda_0 + \varepsilon^{2J-1} \Lambda_1$ in the same spirit as Theorem 3.

4.6. The case $\lambda_0 = 0$ in dimension one. In this part we prove Lemma 3.1. Thus we assume $d = 1$. For $\lambda \neq 0$ the operator K_{γ} is trace class. This allows us to define $d_{\gamma}(\lambda) = \text{Det}(\text{Id} + K_{\gamma})$. By [DyZw15, Theorem 2.6] the function $\lambda \mapsto \lambda d_{\gamma}(\lambda)$ is entire. It is related to the modified Fredholm determinant D_{γ} by the identity

$$\lambda \exp \left(- \sum_{m=1}^{p-1} (-1)^m \frac{\text{Tr}(K^m_{\gamma})}{m} \right) D_{\gamma}(\lambda) = \lambda d_{\gamma}(\lambda). \quad (4.48)$$

If φ is a meromorphic function with a pole at 0 we write $\varphi = \sum_{m \in \mathbb{Z}} \beta_m z^m$ and we define $\text{sing}(\varphi)$ the meromorphic function $\text{sing}(\varphi)(z) = \sum_{m < 0} \beta_m z^m$.

Lemma 4.16. Let $d = 1$ and $N \geq 4$. For every $m \geq 2$ there exists a holomorphic function $\lambda \in \mathbb{C} \setminus \{0\} \mapsto t_m(\lambda)$ with the following:
The singular parts of t_m and $\text{Tr}(K_V^m)$ are equal.

(ii) Locally uniformly on $\mathbb{C} \setminus \{0\}$,

$$t_m(\lambda) = \text{Tr}(K_W^m) + m \text{Tr}(K_W^{m-2}K_\Lambda) + \ldots + O(\varepsilon^N)$$

where Λ is the potential given by

$$\Lambda = \varepsilon^2 \Lambda_0 + \varepsilon^3 \Lambda_1 = \varepsilon^2 \sum_{k \neq 0} \frac{W_k W_{-k}}{k^2} - 2\varepsilon^3 \sum_{k \neq 0} \frac{W_k (DW_{-k})}{k^3}.$$ \hfill (4.49)

Proof of Lemma 3.1 assuming Lemma 4.16. Let $p = 4N(N + 1)$ and

$$h_V(\lambda) = \lambda \exp \left(- \sum_{m=1}^{p-1} \frac{(-1)^m t_m(\lambda)}{m} \right) D_V(\lambda)$$

where $D_V(\lambda)$ is the Fredholm determinant defined in (1.7). Equation (4.48) implies that

$$\lambda d_V(\lambda) = h_V(\lambda) \exp \left(\sum_{m=1}^{p-1} \frac{(-1)^m t_m(\lambda) - \text{Tr}(K_V^m)}{m} \right).$$

The function

$$\sum_{m=1}^{p-1} \frac{(-1)^m t_m(\lambda) - \text{Tr}(K_V^m)}{m}$$

is entire thanks to point (i) of Lemma 4.16. Consequently resonances of V (counted with multiplicity) are exactly zeros of h_V (counted with multiplicity).

We next show that the function h_V has an expansion in powers of ε on all of \mathbb{C}. For that we use Lemma 4.4 with $S_0 = \{0\}$, $E = \mathbb{C}$,

$$f(\lambda, \varepsilon) = \lambda \exp \left(- \sum_{m=1}^{p-1} \frac{(-1)^m t_m(\lambda)}{m} \right), \quad g(\lambda, \varepsilon) = D_V(\lambda).$$

Both f, g are meromorphic on \mathbb{C} and their only pole is at 0. They both admit an expansion away from $\{0\}$ by Lemma 4.16 for f and Theorem 5 for g. Their product $h_V = fg$ is entire. Consequently h_V admits an expansion of the form

$$h_V(\lambda) = h_0(\lambda) + \varepsilon h_1(\lambda) + \ldots + \varepsilon^{N-1} h(\lambda) + O(\varepsilon^N)$$

that holds locally uniformly on \mathbb{C}. We next compute the first few terms in this expansion. Because of (ii) in Lemma 4.16 and of Theorem 5 we have

$$h_V(\lambda) = \lambda \exp \left(- \sum_{m=1}^{p-1} \frac{(-1)^m t_m(\lambda)}{m} \right) D_V(\lambda)$$

$$= \lambda d_{W_0}(\lambda) \exp \left(- \sum_{m=0}^{p-3} \frac{(-1)^m \text{Tr}(K_{W_0}^m K_\Lambda)}{m} \right) (1 - \text{Tr}((\text{Id} + K_{W_0})^{-1}K_{W_0}^{p-2}K_\Lambda)) + O(\varepsilon^4)$$

$$= \lambda d_{W_0}(\lambda) (1 - \text{Tr}((\text{Id} + K_{W_0})^{-1}K_\Lambda)) + O(\varepsilon^4).$$

This ends the proof of Lemma 3.1. \hfill \square
We next prove Lemma 4.16. We start with a preliminary lemma:

Lemma 4.17. Let \(k \in \mathbb{Z} \) and \(\varphi : \mathbb{R} \to \mathbb{C} \) be a smooth compactly supported function. Let \(p_n \) be the polynomial defined by
\[
p_n(X) = -2 \left(1 + 2X + 3X^2 + \ldots + (N + 1)X^N \right).
\]
Then for every \(N \geq 2 \),
\[
\left| \int_{\mathbb{R}} \varphi(x) e^{i \epsilon x / \epsilon} |x| dx - \epsilon^2 (p_{N-3}(\epsilon D/k) \varphi)(0) \right| \leq CN \left(\frac{\epsilon}{k} \right)^N \| \varphi \|_{N+1}.
\] (4.50)
where the constant \(C \) depends only on the support of \(\varphi \).

We note that in particular if \(\varphi \) depends smoothly on a parameter then the coefficients of the expansion (4.50) also depend smoothly on this parameter.

Proof. By rescaling \(\epsilon \) to \(\epsilon / k \) we see that it suffices to prove the lemma in the case \(k = 1 \). Define
\[
I[\varphi] = \int_{\mathbb{R}} e^{i \epsilon x / \epsilon} \varphi(x) |x| dx, \quad J[\varphi] = \frac{1}{i} \int_{\mathbb{R}} e^{i \epsilon x / \epsilon} \varphi(x) \text{sgn}(x) dx.
\]
By an integration by parts
\[
I[\varphi] = -\epsilon (J[\varphi] + I[D \varphi]), \quad J[\varphi] = \epsilon (2\varphi(0) - J[D \varphi]).
\]
Consequently:
\[
I[\varphi] = \epsilon^2 \left(-2\varphi(0) + 2J[D \varphi] + I[D^2 \varphi] \right). \tag{4.51}
\]
We prove by recursion: for every \(n \geq 0 \)
\[
I[\varphi] = \epsilon^2 \left(p_n(\epsilon D) \varphi(0) + \epsilon^{n+2} I[(-D)^n \varphi] - \epsilon^{n+2}(n + 2) J[(-D)^{n+1} \varphi] \right) \tag{4.52}
\]
where \(p_n = -2(1 + 2X + 3X^2 + \ldots + (n + 1)X^n) \). For \(n = 2 \) this holds by equation (4.51). Now assume (4.52) holds for some \(n \). Then
\[
I[\varphi] = \epsilon^2 \left[p_{n+1}(\epsilon D) \varphi(0) + \epsilon^{n+3} (-J[(-D)^{n+2} \varphi] + I[(-D)^{n+3} \varphi]) \right.
\]
\[
- \epsilon^{n+3}(n + 2) \left(2(-D)^{n+1} \varphi(0) + J[(-D)^{n+2} \varphi] \right)\]
\[
= \epsilon^2 \left[p_{n+1}(\epsilon D) \varphi(0) + \epsilon^{n+3} I[(-D)^{n+3} \varphi] - \epsilon^{n+3}(n + 3) J[(-D)^{n+2} \varphi] \right]
\]
where \(p_{n+1} = p_n - 2(n + 2)x^{n+1} \). This ends the recursion. Equation (4.50) follows from (4.52) and the estimate \(|I[D^N \varphi]| \leq C \epsilon \| \varphi \|_{N+1}, \quad |J[D^N \varphi]| \leq C \epsilon \| \varphi \|_{N+1} \). \(\square \)

Proof of Lemma 4.16. In dimension one the kernel of the free resolvent \(R_0(\lambda) \) is given by \(R_0(\lambda, x, y) = i e^{i \lambda |x-y|} / (2\lambda) \). We decompose it as follows:
\[
R_0(\lambda, x, y) = \frac{f_0(\lambda, x-y)}{\lambda} + f_1(\lambda, x-y) |x-y|,
\]
\[
f_0(\lambda, x-y) = \frac{i}{2} \cos(\lambda |x-y|), \quad f_1(\lambda, x-y) = -\frac{\sin(\lambda |x-y|)}{2\lambda |x-y|}.
\]
The functions f_0 and f_1 are both smooth on $\mathbb{C} \times \mathbb{R}$. This induces a decomposition of $K_\nu(\lambda)$ given by

$$K_\nu(\lambda) = E_{\nu,0}(\lambda) + E_{\nu,1}(\lambda),$$

$$E_{\nu,\epsilon}(\lambda, x, y) = \rho(x)\frac{f_0(\lambda, x - y)}{\lambda} \nu(y), \quad E_1(\lambda, x, y) = \rho(x)f_1(\lambda, x - y)|x - y|\nu(y).$$

Thus $K_\nu(\lambda)$ is the sum of a smoothing operator $E_{\nu,0}(\lambda)$ with a pole at $\lambda = 0$ and of an operator $E_{\nu,1}(\lambda)$ which is not smoothing but has no pole. We now define

$$t_m(\lambda) = \begin{cases} \text{Tr}(K^m_\nu) - \text{Tr}(E_{\nu,1}^m) + m\text{Tr}(E_{\nu,0}^{m-2}E_{\Lambda,1}) & \text{if } m \geq 3 \\ \text{Tr}(K_\nu^2) + \text{Tr}(E_{\nu,1}^2) & \text{if } m = 2 \end{cases}$$

where Λ is the potential given by (4.49). Since $\text{Tr}(E_{\nu,0}^m) - \text{Tr}(E_{\nu,1}^m) + m\text{Tr}(E_{\nu,0}^{m-2}E_{\Lambda,1})$ and $\text{Tr}(E_{\nu,1}^2)$ are both entire function of λ we have $\text{sing}(t_m) = \text{sing}(\text{Tr}(K_\nu^m))$. It remains to show that the function t_m satisfies the expansion given by (ii). Write

$$\text{Tr}(K^m_\nu) = \sum_{\epsilon_1, \ldots, \epsilon_m \in \{0, 1\}^m} \text{Tr}\left(\prod_{j=1}^m E_{\nu,\epsilon_j} \right) = \text{Tr}(E_{\nu,1}^m) + \sum_{\epsilon_1, \ldots, \epsilon_m \in \{0, 1\}^m} \sum_{\epsilon_1' \cdots \epsilon_m = 0} \text{Tr}\left(\prod_{j=1}^m E_{W_{k_j, \epsilon_j}} e^{ik_j \epsilon_j / \epsilon} \right).$$

We first claim that for every N and locally uniformly on $\mathbb{C} \setminus \{0\}$

$$\sum_{k_1 + \ldots + k_m \neq 0} \sum_{\epsilon_1, \ldots, \epsilon_m \in \{0, 1\}^m} \text{Tr}\left(\prod_{j=1}^m E_{W_{k_j, \epsilon_j}} e^{ik_j \epsilon_j / \epsilon} \right) \leq C\epsilon^N ||W||_{ZN}^m. \quad (4.53)$$

Fix a sequence $\epsilon_1, \ldots, \epsilon_m \in \{0, 1\}^m$ with $\epsilon_1 \cdot \ldots \cdot \epsilon_m = 0$ and $k_1, \ldots, k_m \in \mathbb{Z}$ with $k_1 + \ldots + k_m \neq 0$. There exists j_0 with $\epsilon_{j_0} = 0$. Using the cyclicity of the trace we have

$$\text{Tr}\left(\prod_{j=1}^m E_{W_{k_j, \epsilon_j}} e^{ik_j \epsilon_j / \epsilon} \right) = \text{Tr}\left(E_{W_{k_{j_0}, 0}} e^{ik_{j_0} \epsilon_{j_0} / \epsilon} \prod_{j=j_0+1}^m E_{W_{k_j, \epsilon_j}} e^{ik_j \epsilon_j / \epsilon} \right) \prod_{j=1}^{j_0-1} E_{W_{k_j, \epsilon_j}} e^{ik_j \epsilon_j / \epsilon}$$

and therefore we can assume without loss of generality that $j_0 = 1$. Let $n = m - \epsilon_1 - \ldots - \epsilon_m$. Using the explicit expression of the kernel of the operators $E_{\nu,\epsilon}$ we have

$$\text{Tr}\left(\prod_{j=1}^m E_{W_{k_j, \epsilon_j}} e^{ik_j \epsilon_j / \epsilon} \right) = \lambda^{-n} \int_{\mathbb{R}^m} \left(\prod_{j=1}^m f_{\epsilon_j}(x_j - x_{j-1}) |x_j - x_{j-1}|^{\epsilon_j} W_{k_j}(x_j) e^{ik_j x_j / \epsilon} dx_j \right) dx_1$$

where by convention $x_0 = x_m$. Now make the change of variable

$$x_j = y_1 + \ldots + y_j, \quad j \in [1, m]. \quad (4.54)$$
Then
\[
\begin{align*}
\text{Tr} \left(\prod_{j=1}^{m} E_{W_{k_{j}}, \epsilon_{j} e^{ik_{j} \cdot \epsilon}} \right) \\
= \lambda^{-n} \int_{\mathbb{R}^{m}} f_{0}(z + y_{m}) W_{k_{1}}(y_{1}) e^{ik_{1} y_{1} / \epsilon} \left(\prod_{j=2}^{m} f_{\epsilon_{j}}(y_{j}) |y_{j}|^{\epsilon_{j}} W_{k_{j}}(y_{1} + \ldots + y_{j}) e^{ik_{j}(y_{1} + \ldots + y_{j}) / \epsilon} \right) dy_{1} \\
= \lambda^{-n} \int_{\mathbb{R}} e^{i\sigma_{1} y_{1} / \epsilon} I(y_{1}) dy_{1}
\end{align*}
\]
where \(\sigma_{j} = k_{j} + \ldots + k_{m} \), \(z = y_{2} + \ldots + y_{m-1} \) and
\[
I(y_{1}) = W_{k_{1}}(y_{1}) \int_{\mathbb{R}^{m-1}} f_{0}(z + y_{m}) \prod_{j=2}^{m} f_{\epsilon_{j}}(y_{j}) |y_{j}|^{\epsilon_{j}} W_{k_{j}}(y_{1} + \ldots + y_{j}) e^{i\sigma_{j} y_{j} / \epsilon} dy_{j}.
\]
The function \(y_{1} \mapsto I(y_{1}) \) is smooth and compactly supported. Since \(\sigma_{1} \neq 0 \) \(N \) integrations by parts give the estimate
\[
\left| \int_{\mathbb{R}} e^{i\sigma_{1} y_{1} / \epsilon} I(y_{1}) dx_{1} \right| \leq C_{\epsilon}^{N} \| I \|_{N} \leq C_{\epsilon}^{N} \prod_{j=1}^{N} \| W_{k_{j}} \|_{N}.
\]
Therefore
\[
\left| \sum_{k_{1} + \ldots + k_{m} \neq 0} \sum_{\epsilon_{1}, \ldots, \epsilon_{m} \in \{0,1\}^{m}} \text{Tr} \left(\prod_{j=1}^{m} E_{W_{k_{j}}, \epsilon_{j} e^{ik_{j} \cdot \epsilon}} \right) \right| \leq C_{\epsilon}^{N} \sum_{k_{1}, \ldots, k_{m}} \prod_{j=1}^{N} \| W_{k_{j}} \|_{N} \leq C_{\epsilon}^{N} \| W \|_{Z^{N}}^{m}.
\]
This proves (4.53).

We now show that the function
\[
\sum_{k_{1} + \ldots + k_{m} = 0} \sum_{\epsilon_{1}, \ldots, \epsilon_{m} \in \{0,1\}^{m}} \text{Tr} \left(\prod_{j=1}^{m} E_{W_{k_{j}}, \epsilon_{j} e^{ik_{j} \cdot \epsilon}} \right)
\]
admits an expansion in powers of \(\epsilon \). Since this is a sum over all sequences \(\{\epsilon_{j}\} \) with at least one vanishing term, it suffices to prove that for any fixed sequence \(\{\epsilon_{j}\} \) with \(\epsilon_{1} = 0 \) the function
\[
\sum_{k_{1} + \ldots + k_{m} = 0} \text{Tr} \left(\prod_{j=1}^{m} E_{W_{k_{j}}, \epsilon_{j} e^{ik_{j} \cdot \epsilon}} \right)
\]
(admits an expansion in powers of \(\epsilon \). Fix \(k_{1}, \ldots, k_{m} \) with \(k_{1} + \ldots + k_{m} = 0 \). Let \(s \geq 1 \). For \(y_{1}, \ldots, y_{m}[1, m-1] \) we define
\[
F_{s}(y_{1}, \ldots, y_{s}) = \int_{\mathbb{R}^{m-s}} f_{0}(z + y_{m}) \prod_{j=s+1}^{m} f_{\epsilon_{j}}(y_{j}) W_{k_{j}}(y_{1} + \ldots + y_{j}) e^{i\sigma_{j} y_{j} / \epsilon} |y_{j}|^{\epsilon_{j}} dy_{j}
\]
where \(z = y_2 + \ldots + y_{m-1} \). For \(s \geq 2 \) we have the recursion formula

\[
F_{s-1}(\lambda, y_1, \ldots, y_{s-1}) = \int_\mathbb{R} f_{\epsilon_s}(y_s) W_k(y_1 + \ldots + y_s) F_s(y_1, \ldots, y_s) e^{i\sigma y_s/\epsilon} |y_s|^{\epsilon} dy_s. \tag{4.56}
\]

\(F_{m-1} \) admit an expansion in powers of \(\epsilon \) by Lemma 4.17. The coefficients in this expansion are smooth functions of \(y_1, \ldots, y_{m-1} \). Using this expansion and the recursion formula (4.56) the function \(F_{m-2} \) also admits an expansion in powers of \(\epsilon \) whose coefficients are smooth functions of \(y_1, \ldots, y_{m-2} \). This recursion schemes proves that \(F_1 \) admits an expansion whose coefficients are smooth functions of \(\epsilon \). Consequently the function \(F_0 \) defined by

\[
F_0(\lambda) = \text{Tr} \left(\prod_{j=1}^{m} E_{W_{k_j, \epsilon_j}} e^{ik_j/\epsilon} \right) = \lambda^{-n} \int_\mathbb{R} W_k(y_1) F_1(y_1) dy_1
\]

admits an expansion in powers of \(\epsilon \). The sum over \(k_1, \ldots, k_m \) with \(k_1 + \ldots + k_m = 0 \) of the coefficients converge (we skip the details) and we conclude that (4.55) admits an expansion in powers of \(\epsilon \). Finally we sum over all sequences \(\{\epsilon_j\} \) with at least one vanishing term and we use (4.53) to deduce that

\[
t_m(\lambda) = \text{Tr}(K_Y^n) + \text{Tr}(E_{W_{0,1}}^n) - \text{Tr}(E_{W_{1,1}}^n) + \delta_{m \neq 2} m \text{Tr}(E_{W_{0,1},E_{\Lambda,1}}^{m-2}) + \delta_{m \neq 2} m \text{Tr}(E_{W_{0,1},E_{\Lambda,1}}^{m-2}) + \text{Tr}(E_{W_{0,1}}^m)
\]

admits an expansion in powers of \(\epsilon \).

We now compute a few terms in the expansion of the function \(t_m \). We fix \(N = 4 \) and work modulo \(O(\epsilon^4) \). The only sequence \(\{k_j\} \) that can generate non-negligible terms is \((0, \ldots, 0, -k, k) \) up to cyclic permutation. We fix \(\{\epsilon_j\} \) and we estimate

\[
\sum_{k \neq 0} \text{Tr} \left(\prod_{j=1}^{m-2} E_{W_{k_j, \epsilon_j}} e^{-ik_j/\epsilon} E_{W_{-k_j, \epsilon_{m-1}}} e^{ik_j/\epsilon} E_{W_{k_j, \epsilon_m}} e^{ik_j/\epsilon} \right).
\]

Assume that \(m \geq 3 \) and define \(G \) by

\[
G(\lambda, y_1, \ldots, y_{m-1}) = \sum_{k \neq 0} W_k(y_1 + z) \int_\mathbb{R} f_0(z + y_m) f_{\epsilon_m}(y_m) W_k(y_1 + z + y_m) e^{ikym/\epsilon} |y_m|^{\epsilon_m} dy_m
\]

where we recall that \(z = y_2 + \ldots + y_{m-1} \). If \(\epsilon_m \) vanishes then integrating by parts yields \(G(\lambda, y_1, \ldots, y_{m-1}) = O(\epsilon^4) \). We next deal with the case \(\epsilon_m = 1 \). This implies
$f_{\epsilon_m}(0) = -1/2$. Apply Lemma 4.17 to obtain the asymptotic

$$G(\lambda, y_1, \ldots, y_{m-1}) = \sum_{k \neq 0} \left(\frac{\epsilon}{k} \right)^2 f_0(z) W_{-k}(y_1 + z) W_k(y_1 + z)$$

$$- 2 \sum_{k \neq 0} \left(\frac{\epsilon}{k} \right)^3 f_0(z) W_{-k}(y_1 + z)(D W_k)(y_1 + z)$$

$$- 2 \sum_{k \neq 0} \left(\frac{\epsilon}{k} \right)^3 (D f_0)(z) W_{-k}(y_1 + z) W_k(y_1 + z) + O(\epsilon^4).$$

Since $\sum_{k \neq 0} W_{-k} W_k / k^3 = 0$ we can remove the last term that appears in the expansion of G and write $G(\lambda, y_1, \ldots, y_{m-1}) = f_0(z) \lambda(y_1 + z) + O(\epsilon^4)$. This estimate combined with the relation (4.54) between the x and y variables yields

$$\sum_{k \neq 0} \text{Tr} \left(\left(\prod_{j=1}^{m-2} E_{W_0, \epsilon_j} \right) E_{W_{-k, \epsilon_{m-1}}} e^{-ik \cdot / \epsilon} E_{W_{k, \epsilon_m}} e^{ik \cdot / \epsilon} \right) + O(\epsilon^4)$$

$$= \delta_{1, \epsilon_m} \sum_{k \neq 0} \lambda^{-n} \int_{\mathbb{R}^{m-1}} f_0(z) W_0(y_1) \left(\prod_{j=2}^{m-2} f_{\epsilon_j}(y_j) |y_j|^\epsilon W_0(y_1 + \ldots + y_j) dy_j \right) f_{\epsilon_{m-1}}(y_{m-1}) \lambda(z) dy_1 dy_{m-1}$$

$$= \delta_{1, \epsilon_m} \sum_{k \neq 0} \lambda^{-n} \int_{\mathbb{R}^{m-1}} \left(\prod_{j=1}^{m-2} f_{\epsilon_j}(y_j - y_{j-1}) |x_j - x_{j-1}|^\epsilon W_0(x_j) dx_j \right) f_{\epsilon_{m-1}}(x_{m-1} - x_{m-2}) \lambda(x_{m-1}) dx_1 dx_{m-1}$$

$$= \delta_{1, \epsilon_m} \text{Tr} \left(\left(\prod_{j=1}^{m-2} E_{W_0, \epsilon_j} \right) E_{\lambda, \epsilon_{m-1}} \right).$$

Sum this identity over $\epsilon_1, \ldots, \epsilon_m$ and use the cyclicity of the trace to obtain

$$\sum_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}^m} \text{Tr} \left(\prod_{j=1}^m E_{V, \epsilon_j} \right)$$

$$= \sum_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}^m} \sum_{k \in \mathbb{Z}} \sum_{j_0=1}^m \text{Tr} \left(\left(\prod_{j=1}^{j_0-1} E_{W_0, \epsilon_j} \right) E_{W_{-k, \epsilon_{j_0}}} e^{-ik \cdot / \epsilon} E_{W_{k, \epsilon_{j_0}+1}} e^{ik \cdot / \epsilon} \left(\prod_{j=j_0+2}^m E_{W_0, \epsilon_j} \right) \right) + O(\epsilon^4)$$

$$= \sum_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}^m} \text{Tr} \left(\prod_{j=1}^m E_{W_0, \epsilon_j} \right)$$

$$+ \sum_{j_0=1}^m \sum_{\epsilon_1, \ldots, \epsilon_m \in \{0,1\}^m} \delta_{1, \epsilon_{j_0+1}} \text{Tr} \left(\left(\prod_{j=1}^{j_0-1} E_{W_0, \epsilon_j} \right) E_{\lambda, \epsilon_{j_0}} \left(\prod_{j=j_0+2}^m E_{W_0, \epsilon_j} \right) \right) + O(\epsilon^4).$$
Add to both sides $\text{Tr}(E_{W,0,1}^m) + m\text{Tr}(E_{W,0,1}^{m-2}E_{\Lambda,1}) = \sum_{j_0=1}^m \text{Tr}(E_{W,0,1}^{j_0-1}E_{\Lambda,1}E_{W,0,1}^{m-j_0-1})$ to conclude that

$$t_m(\lambda) = \sum_{\epsilon_1,\ldots,\epsilon_m \in \{0,1\}^m} \text{Tr} \left(\prod_{j=1}^m E_{W,0,\epsilon_j} \right) + \text{Tr}(E_{W,0,1}^m) + \sum_{\epsilon_1,\ldots,\epsilon_m \in \{0,1\}^m} \text{Tr} \left(\prod_{j=1}^m E_{W,\epsilon_j} \right) + m\text{Tr}(E_{W,0,1}^{m-2}E_{\Lambda,1})$$

$$= \text{Tr}(K_{W,0}^m) + \sum_{j_0=1}^m \sum_{\epsilon_1,\ldots,\epsilon_{j_0-1} \in \{0,1\}^m} \delta_{1,\epsilon_{j_0+1}} \text{Tr} \left(\prod_{j=1}^{j_0-1} E_{W,\epsilon_j} \right) E_{\Lambda,\epsilon_{j_0}} \left(\prod_{j=j_0+2}^m E_{W,\epsilon_j} \right) + O(\varepsilon^4)$$

$$= \text{Tr}(K_{W,0}^m) + \sum_{j_0=1}^m \text{Tr} \left(K_{W,0}^{j_0} K_{W,0}^{m-j_0-1} \right) + O(\varepsilon^4)$$

$$= \text{Tr}(K_{W,0}^m) + m\text{Tr} \left(K_{W,0}^{m-2} K_{\Lambda} \right) + O(\varepsilon^4).$$

We now deal with the case $m = 2$. If $\epsilon_1, \epsilon_2 \in \{0,1\}$ then

$$\text{Tr}(E_{W,0,1}^{m-1}e^{-ik\cdot/\varepsilon} E_{W,0,1}^{m}e^{i\cdot/\varepsilon})$$

$$= \lambda^{1+\epsilon_1+\epsilon_2-2} \int_{\mathbb{R}} f_{\epsilon_1}(y_2) f_{\epsilon_2}(y_2) W_{-k}(y_1) W_k(y_1 + y_2) |y_2|^{\epsilon_1+\epsilon_2} e^{iky_2/\varepsilon} dy_1 dy_2.$$

If $\epsilon_1 + \epsilon_2$ is even then one can integrate by parts many times in y_2 and obtain $O(\varepsilon^4)$. Otherwise $\epsilon_1 + \epsilon_2 = 1$ and $f_{\epsilon_1} f_{\epsilon_2} = f_0 f_1$. In particular $f_0 f_1(0) = 1/(4i)$ and $(f_0 f_1)'(0) = 0$. This yields

$$\sum_{\epsilon_1, \epsilon_2, \epsilon_1 \epsilon_2 = 0 \neq k \neq 0} \text{Tr}(E_{W,0,1}^{m-1}e^{-ik\cdot/\varepsilon} E_{W,0,1}^{m}e^{i\cdot/\varepsilon})$$

$$= 2\lambda^{-1} \int_{\mathbb{R}} W_{-k}(y_1) \int_{\mathbb{R}} f_0(y_2) f_1(y_2) W_k(y_1 + y_2) |y_2| e^{iky_2/\varepsilon} dy_2 dy_1$$

$$= 2 \int_{\mathbb{R}} W_{-k}(y_1) \left(\left(\frac{\varepsilon}{k} \right)^2 W_k(y_1) - 2 \left(\frac{\varepsilon}{k} \right)^3 D W_k(y_1) \right) dy_1 + O(\varepsilon^4)$$

$$= 2\text{Tr}(K_{\Lambda}) + O(\varepsilon^4).$$

Together with (4.53) this gives $t_2(\lambda) = \text{Tr}(K_{W,0}^2) + 2\text{Tr}(K_{\Lambda}) + O(\varepsilon^4)$. This completes the proof of the lemma.

\[
5. \text{ Appendices}
\]

5.1. **Analytic continuation of some Fredholm operators.** Let $T(\lambda)$ be a holomorphic family of trace-class operators on a Hilbert space. In finite dimension, the operator $\det(\text{Id} + T(\lambda))(\text{Id} + T(\lambda))^{-1}$, defined away the poles of $(\text{Id} + T(\lambda))^{-1}$, extends to an entire family of operators known as the comatrix of $\text{Id} + T(\lambda)$. In infinite dimension a similar statement holds:
Lemma 5.1. Consider \mathcal{H} a Hilbert space, \mathcal{U} an open connected subset of \mathbb{C} and $T(\lambda)$ a holomorphic family of trace class operators for $\lambda \in \mathcal{U}$. Assume that $\text{Id} + T(\lambda_0)$ is invertible for some $\lambda_0 \in \mathcal{U}$. Then the family of operators

$$\mathcal{T}(\lambda) = \text{Det}(\text{Id} + T(\lambda))(\text{Id} + T(\lambda))^{-1}$$

initially defined for λ away from the poles of $(\text{Id} + T(\lambda))^{-1}$ extends to a holomorphic family of operators on \mathcal{U}. Moreover,

$$|\mathcal{T}(\lambda)|_{\mathcal{X}(\mathcal{U})} \leq \text{Det}\left(\text{Id} + (T(\lambda)^*T(\lambda))^{1/2}\right) \leq e^{2|T(\lambda)|_\mathcal{X}}. \tag{5.1}$$

Proof. The proof uses the Gohberg-Sigal theory of residues – see [DyZw15, Appendix C.4]. By analytic Fredholm theory, $(\text{Id} + T(\lambda))^{-1}$ defines a meromorphic family of operators with poles of finite rank. Fix $\mu \in \mathcal{U}$ a pole of $(\text{Id} + T(\lambda))^{-1}$ and λ in a punctured neighborhood of μ. We can write

$$\text{Id} + T(\lambda) = U_1(\lambda) \left(P_0 + \sum_{m=1}^N (\lambda - \mu)^{\kappa_m} P_m \right) U_2(\lambda)$$

where $U_1(\lambda), U_2(\lambda)$ are holomorphic families of invertible operators, $\kappa_m \geq 1$, P_m has rank 1 for $m > 0$, $P_m P_m^* = \delta_{mm'} P_m$, rank$(\text{Id} - P_0) < \infty$. Therefore

$$(\text{Id} + T(\lambda))^{-1} = U_2(\lambda)^{-1} \left(P_0 + \sum_{m=1}^N (\lambda - \mu)^{-\kappa_m} P_m \right) U_1(\lambda)^{-1}.$$

The holomorphic function $\lambda \mapsto \text{Det}(\text{Id} + T(\lambda))$ has a zero at μ, of multiplicity $\sum_{m=1}^N \kappa_m$ – see [DyZw15, equation (C.4.7)]. It follows that the operator $\mathcal{T}(\lambda)$ can indeed be analytically continued at $\lambda = \mu$ with

$$\mathcal{T}(\mu) = \begin{cases} \text{Det}(\text{Id} + T(\lambda)) \bigg|_{\lambda=\mu} & \text{if } N > 1 \\ U_2(\mu)^{-1} P_1 U_1(\mu)^{-1} & \text{if } N = 1. \end{cases}$$

The first bound in (5.1) follows from [DyZw15], (B.4.7). For the second one, note first that

$$\text{Det}\left(\text{Id} + (T(\lambda)^*T(\lambda))^{1/2}\right) \leq \exp\left(\left\| (T(\lambda)^*T(\lambda))^{1/2} \right\|_\mathcal{X}\right).$$

Moreover, since $T(\lambda)^*T(\lambda)$ is selfadjoint,

$$s_{2j} \left((T(\lambda)^*T(\lambda))^{1/2} \right) = \lambda_{2j} \left((T(\lambda)^*T(\lambda))^{1/2} \right) = \lambda_{2j} \left(T(\lambda)^*T(\lambda) \right)^{1/2} = s_{2j} \left(T(\lambda)^*T(\lambda) \right)^{1/2}.$$

Consequently,

$$s_{2j} \left((T(\lambda)^*T(\lambda))^{1/2} \right) \leq s_j \left(T(\lambda)^*T(\lambda) \right)^{1/2} s_j \left(T(\lambda) \right)^{1/2} \leq s_j \left(T(\lambda) \right)$$

and

$$\left\| (T(\lambda)^*T(\lambda))^{1/2} \right\|_\mathcal{X} \leq 2 \sum_{j=0}^\infty s_{2j} \left((T(\lambda)^*T(\lambda))^{1/2} \right) \leq 2 \sum_{j=0}^\infty s_j \left(T(\lambda) \right) \leq 2|T(\lambda)|_\mathcal{X}.$$
This concludes the proof. □

5.2. Expansion of $R(\lambda, \xi + k/\varepsilon)$. We study here the Taylor development of rational functions of the form $F(\varepsilon) = (1 + a\varepsilon + b\varepsilon^2)^{-1}$. Such functions are analytic for small values of ε and therefore there exists $u_k \in \mathbb{C}$ with $F(\varepsilon) = \sum_{j=0}^{\infty} u_j \varepsilon^j$. Since $F(\varepsilon)(1 + a\varepsilon + b\varepsilon^2) = 1$, the u_k must satisfy the recursion relation

$$
\begin{cases}
 u_0 = 1, \\
 u_1 = -a, \\
 u_j = -au_{j-1} - bu_{j-2}.
\end{cases}
$$

For ε small enough the Taylor development of F takes the form

$$
F(\varepsilon) = \sum_{j=0}^{J-1} u_j \varepsilon^j + r_J(\varepsilon), \quad r_J(\varepsilon) = \sum_{j=J}^{\infty} u_j \varepsilon^j.
$$

We have moreover

$$
(1 + a\varepsilon + b\varepsilon^2) r_J(\varepsilon) = (1 + a\varepsilon + b\varepsilon^2) \sum_{j=J}^{\infty} u_j \varepsilon^j
$$

$$
= u_J \varepsilon^J + u_{J+1} \varepsilon^{J+1} + au_J \varepsilon^{J+1} + \sum_{j=J+2}^{\infty} (u_j + au_{j-1} + bu_{j-2}) \varepsilon^j
$$

$$
= u_J \varepsilon^J + u_{J+1} \varepsilon^{J+1} + au_J \varepsilon^{J+1}.
$$

Consequently for small values of ε,

$$
F(\varepsilon) = \left(\sum_{j=0}^{J-1} u_j \varepsilon^j \right) + \frac{u_J + u_{J+1} \varepsilon + au_J \varepsilon^{J+1}}{1 + a\varepsilon + b\varepsilon^2} \varepsilon^J
$$

and this identity extends meromorphically to all of \mathbb{C}. If a and b are polynomial of respective degree 1 and 2 in a parameter ξ then by an immediate recursion u_j is a polynomial of degree at most j in ξ. In particular, (4.36) holds:

$$
R(\xi + k/\varepsilon) = \frac{\varepsilon^2}{|k|^2} \left(1 + \varepsilon k \cdot \xi / |k|^2 + \varepsilon^2 (\xi^2 - \lambda^2) / |k|^2 \right)
$$

$$
= \frac{\varepsilon^2}{|k|^2} \left(\sum_{j=0}^{J-1} u_j \varepsilon^j \right) + \frac{u_J + u_{J+1} \varepsilon + au_J \varepsilon^{J+1}}{1 - 2\varepsilon k \cdot \xi / |k|^2 + \varepsilon^2 (\xi^2 - \lambda^2) / |k|^2} \varepsilon^J
$$

$$
= \left(\sum_{j=2}^{J-1} \frac{u_j-2}{|k|^2} \varepsilon^j \right) + \frac{u_{J-1}}{|k|^2} \varepsilon^J + \frac{u_{J-1}}{|k|^2} \varepsilon^{J+1} + \frac{u_J + u_{J+1} \varepsilon + au_J \varepsilon^{J+1}}{(\xi - k/\varepsilon)^2 - \lambda^2} \varepsilon^J.
$$

The first terms in this expansion are given by

$$
R(\xi + k/\varepsilon) = \frac{\varepsilon^2}{|k|^2} - 2\varepsilon^3 \frac{k \cdot \xi}{|k|^4} - \varepsilon^4 \frac{\xi^2 - \lambda^2}{|k|^4} + 4\varepsilon^4 \frac{(k \cdot \xi)^2}{|k|^6} + O(\varepsilon^5).
$$
5.3. **Trace estimate modulo \(O(\varepsilon^5) \).** We derive here the expansion of \(\text{Tr}(K^m_V) \) modulo \(O(\varepsilon^5) \) for \(m \) large enough. Equation (4.47) adapts to this case and gives

\[
\text{Tr}(K^m_V) = \sum_{k_1, \ldots, k_m, k_1 + \ldots + k_m = 0} \text{Tr}\left(\prod_{\ell=1}^m K_{W_{k_\ell}} e^{ik_\ell i/\varepsilon} \right) + O(\varepsilon^5)
\]

\[
= \sum_{k_1, \ldots, k_m, k_1 + \ldots + k_m = 0} \text{Tr}\left(\prod_{j=1}^m \rho R(D + \sigma_j/\varepsilon)W_{k_j} \right).
\]

We now identify the constructive sequences \((k_1, \ldots, k_m)\) so that \(\text{Tr}(\prod_{j=1}^m \rho R(D + \sigma_j/\varepsilon)W_{k_j}) \) is not negligible (i.e. of order at least \(\varepsilon^4 \)). At most 2 of the \(\sigma_j \) can be non-zero. Thus modulo cyclic permutations such sequences satisfy one of the following:

(i) \(k_1 = \ldots = k_{m-2} = 0 \).

(ii) There exists \(j_0 \in [2, m - 2] \) with \(k_{j_0} = 0 \) for every \(j \in [1, m - 3] \setminus \{ j_0 - 1, j_0 \} \); all the other \(k_j \) are non-zero; and \(k_0 + k_{j_0} = 0, k_{m-1} + k_m = 0 \).

(iii) \(k_1 = \ldots = k_{m-3} = 0 \); and \(k_{m-2} \neq 0, k_m \neq 0 \).

Consider \((k_1, \ldots, k_m)\) satisfying (i) and write \(k_m = k \). In this case we have

\[
\text{Tr}\left(\prod_{j=1}^m \rho R(D + \sigma_j/\varepsilon)W_{k_j} \right) = \text{Tr}\left(K_{W_0}^{m-2} K_{W_{-k}} \rho R(D + k/\varepsilon)W_k \right)
\]

\[
= \text{Tr}\left(K_{W_0}^{m-2} K_{W_{-k}} \left(\varepsilon^2 \frac{D^2 - \lambda^2}{|k|^2} - 2\varepsilon^3 \frac{D^2 - \lambda^2}{|k|^4} - \varepsilon^4 \frac{k \cdot D}{|k|^4} + 4\varepsilon^4 \frac{(k \cdot D)^2}{|k|^6} \right) W_k \right) + O(\varepsilon^5).
\]

Summing over \((k_1, \ldots, k_m)\) satisfying (i) and including the combinatorial factor due to cyclic permutations we obtain

\[
\sum_{k_1, \ldots, k_m \text{ satisfying (i)}} \text{Tr}\left(\prod_{\ell=1}^m K_{W_{k_\ell}} e^{ik_\ell i/\varepsilon} \right)
\]

\[
= m\varepsilon^2 \text{Tr}\left(K_{W_0}^{m-2} K_{\Lambda_0} \right) + m\varepsilon^3 \text{Tr}\left(K_{W_0}^{m-2} K_{\Lambda_1} \right)
\]

\[
+ m\varepsilon^4 \sum_{k \neq 0} \text{Tr}\left(K_{W_0}^{m-2} K_{W_{-k}} \left(4\frac{(k \cdot D)^2}{|k|^6} - \frac{D^2 - \lambda^2}{|k|^4} \right) W_k \right) + O(\varepsilon^5).
\]

We know consider the case of a sequence \((k_1, \ldots, k_m)\) satisfying (ii) above. In this case write \(k_m = k, k_{j_0} = \ell \). Including the combinatorial factor we have

\[
\sum_{k_1, \ldots, k_m \text{ satisfying (ii)}} \text{Tr}\left(\prod_{\ell=1}^m K_{W_{k_\ell}} e^{ik_\ell i/\varepsilon} \right) = m\varepsilon^4 \sum_{j_0=2}^{m-2} \text{Tr}\left(K_{W_0}^{j_0-2} K_{\Lambda_0} K_{W_0}^{m-4-j_0} K_{\Lambda_0} \right) + O(\varepsilon^5).
\]
Finally we consider the case a sequence \((k_1, ..., k_m)\) satisfying (ii) above. Write \(k = k_m\), \(\ell = k_{m-2}\) so that \(k_{m-2} = -k - \ell\). In this case,

\[
\sum_{k_1, ..., k_m \text{ satisfying (iii)}} \frac{1}{|k|^2 |k + \ell|^2} \text{Tr} \left(\prod_{\ell=1}^{m} K_{W_{k\ell}} e^{ik\ell/\varepsilon} \right)
\]

\[
= m \varepsilon^4 \sum_{k \neq 0, k + \ell \neq 0} \frac{1}{|k|^2 |k + \ell|^2} \text{Tr} \left(K_{W_0}^{m-3} K_{W_{-k-\ell}} W_{k} W_{\ell} \right) + O(\varepsilon^5)
\]

\[
= m \varepsilon^4 \text{Tr} \left(K_{W_0}^{m-3} K_{A_2} \right) + O(\varepsilon^5)
\]

where

\[
A_2 = \sum_{k \neq 0, k + \ell \neq 0} \frac{W_{-k-\ell} W_k W_{\ell}}{|k|^2 |k + \ell|^2}.
\]

Grouping these estimates together leads to an expansion of \(\text{Tr}(K_{V}^{m})\) at order \(O(\varepsilon^5)\).

REFERENCES

E-mail address: alexis.drouot@gmail.com