Eigenvalues for highly disordered potentials

Alexis Drouot, UC Berkeley

AMS meeting on Spectral theory and Microlocal analysis,
April 23 2017
Waves and resonances

Waves scattered by a potential \(V \in C^\infty_0(\mathbb{R}^3, \mathbb{R}) \) are the solutions \(u \) of

\[
(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).
\]

(1)
Waves and resonances

Waves scattered by a potential \(V \in C_0^\infty(\mathbb{R}^3, \mathbb{R}) \) are the solutions \(u \) of

\[
(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).
\]

Suppose that \(u_0 \in L^2(\mathbb{R}^3) \) is an eigenvector of \(-\Delta_{\mathbb{R}^3} + V\), for an eigenvalue \(\lambda^2 \):

\[
(-\lambda^2 - \Delta_{\mathbb{R}^3} + V)u_0 = 0.
\]
Waves and resonances

Waves scattered by a potential \(V \in \mathcal{C}_0^\infty(\mathbb{R}^3, \mathbb{R}) \) are the solutions \(u \) of

\[
(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).
\]

Suppose that \(u_0 \in L^2(\mathbb{R}^3) \) is an eigenvector of \(-\Delta_{\mathbb{R}^3} + V\), for an eigenvalue \(\lambda^2 \):

\[
(-\lambda^2 - \Delta_{\mathbb{R}^3} + V)u_0 = 0.
\]

Then we can construct a solution \(u(x, t) = e^{i\lambda t}u_0(x) \) to (1).
Waves and resonances

Waves scattered by a potential $V \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \quad (1)$$

Suppose that $u_0 \in L^2(\mathbb{R}^3)$ is an eigenvector of $-\Delta_{\mathbb{R}^3} + V$, for an eigenvalue λ^2:

$$(-\lambda^2 - \Delta_{\mathbb{R}^3} + V)u_0 = 0.$$

Then we can construct a solution $u(x, t) = e^{i\lambda t} u_0(x)$ to (1).

Problem: since the domain is unbounded, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.
Waves and resonances

Waves scattered by a potential $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$\left(\partial_t^2 - \Delta_{\mathbb{R}^3} + V\right)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$

(1)

Suppose that $u_0 \in L^2(\mathbb{R}^3)$ is an eigenvector of $-\Delta_{\mathbb{R}^3} + V$, for an eigenvalue λ^2:

$$(-\lambda^2 - \Delta_{\mathbb{R}^3} + V)u_0 = 0.$$

Then we can construct a solution $u(x, t) = e^{i\lambda t}u_0(x)$ to (1).

Problem: since the domain is unbounded, we cannot obtain expansions for all solutions of (1) as linear combinations of functions of the above form.

This is reflected in the spectrum of $-\Delta_{\mathbb{R}^3} + V$ on $L^2(\mathbb{R}^3)$: it is the union of a discrete set (eigenvalues) with the continuous spectrum $[0, \infty)$.
Waves and resonances

Waves scattered by a potential $V \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$

(1)

To overcome this difficulty, we use resonances, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves:
Waves and resonances

Waves scattered by a potential $V \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V) u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \quad (1)$$

To overcome this difficulty, we use resonances, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \ \forall A, L, \sup_{|x| \leq L} \left| u(x, t) - \sum_{\text{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}). \quad (2)$$
Waves and resonances

Waves scattered by a potential \(V \in C_0^\infty(\mathbb{R}^3, \mathbb{R}) \) are the solutions \(u \) of

\[
\left(\partial^2_t - \Delta_{\mathbb{R}^3} + V \right) u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).
\]

(1)

To overcome this difficulty, we use resonances, complex numbers \(\{\lambda_j\} \) depending only on \(V \), that quantize local decay of waves: if \(u \) solves (1),

\[
\exists u_j, \forall A, L, \sup_{|x| \leq L} \left| u(x, t) - \sum_{\text{Im} \lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).
\]

(2)

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded.
Waves and resonances

Waves scattered by a potential \(V \in C^\infty_0(\mathbb{R}^3, \mathbb{R}) \) are the solutions \(u \) of

\[
(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).
\]

(1)

To overcome this difficulty, we use resonances, complex numbers \(\{\lambda_j\} \) depending only on \(V \), that quantize local decay of waves: if \(u \) solves (1),

\[
\exists u_j, \forall A, L, \sup_{|x| \leq L} \left| u(x, t) - \sum_{\text{Im} \lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}).
\]

(2)

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the poles of the meromorphic continuation of

\[
R_V(\lambda) = (\Delta_{\mathbb{R}^3} + V - \lambda^2)^{-1} : C^\infty_0(\mathbb{R}^3) \to \mathcal{D}'(\mathbb{R}^3).
\]
Waves and resonances

Waves scattered by a potential $V \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1).$$

(1)

To overcome this difficulty, we use resonances, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, \sup_{|x| \leq L} \left| u(x, t) - \sum_{\text{Im}\lambda_j > -A} u_j(x)e^{-i\lambda_j t} \right| = O(e^{-At}).$$

(2)

In particular, when using resonances instead of eigenvalues, every solution of (1) can be locally expanded. Resonances are realized as the poles of the meromorphic continuation of

$$R_V(\lambda) = (-\Delta_{\mathbb{R}^3} + V - \lambda^2)^{-1} : C_0^{\infty}(\mathbb{R}^3) \rightarrow \mathcal{D}'(\mathbb{R}^3).$$

Eigenvalues μ are poles of $(-\Delta_{\mathbb{R}^3} + V - \mu)^{-1}$, hence (squares of) resonances. Conversely, resonances inducing eigenvalues are the one lying on the complex half-line $i[0, \infty)$.
Waves and resonances

Waves scattered by a potential $V \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \quad (1)$$

To overcome this difficulty, we use resonances, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \ \forall A, L, \sup_{|x| \leq L} u(x, t) - \sum_{\text{Im} \lambda_j > -A} u_j(x) e^{-i\lambda_j t} = O(e^{-At}). \quad (2)$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$u = \int_{\mathbb{R}} e^{-i t \lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_1 d\lambda - \int_{\mathbb{R}} \lambda e^{-i t \lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_0 d\lambda.$$
Waves and resonances

Waves scattered by a potential $V \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \quad (1)$$

To overcome this difficulty, we use resonances, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, \sup_{|x| \leq L} \left| u(x, t) - \sum_{\text{Im}\lambda_j > -A} u_j(x) e^{-i\lambda_j t} \right| = O(e^{-At}). \quad (2)$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$u = \int_{\mathbb{R}} e^{-it\lambda} \frac{RV(\lambda) - RV(-\lambda)}{2\pi} f_1 d\lambda - \int_{\mathbb{R}} \lambda e^{-it\lambda} \frac{RV(\lambda) - RV(-\lambda)}{2\pi} f_0 d\lambda.$$

The poles λ_j of $RV(\lambda)$ generate residues $u_j(x) e^{-i\lambda_j t}$ in (2).
Waves and resonances

Waves scattered by a potential $V \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$ are the solutions u of

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V)u = 0, \quad (u|_{t=0}, \partial_t u|_{t=0}) = (f_0, f_1). \quad (1)$$

To overcome this difficulty, we use resonances, complex numbers $\{\lambda_j\}$ depending only on V, that quantize local decay of waves: if u solves (1),

$$\exists u_j, \forall A, L, , \sup_{|x| \leq L} |u(x, t) - \sum_{\text{Im} \lambda_j > -A} u_j(x) e^{-i\lambda_j t}| = O(e^{-At}). \quad (2)$$

The expansion (2) comes from a contour deformation in the representation of u given by the spectral theorem:

$$u = \int_{\mathbb{R}} e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_1 d\lambda - \int_{\mathbb{R}} \lambda e^{-it\lambda} \frac{R_V(\lambda) - R_V(-\lambda)}{2\pi} f_0 d\lambda.$$

The poles λ_j of $R_V(\lambda)$ generate residues $u_j(x) e^{-i\lambda_j t}$ in (2). In particular, if $R_V(\lambda)$ has no poles above $\text{Im} \lambda \geq -A$ – resonance-free strip – waves scattered by V decay locally like e^{-At}.
Resonances as poles of $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$
Resonances as poles of $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$

$R_V(\lambda)$ holomorphic

\mathbb{C}

Reλ

Imλ

resonances of V
Resonances as poles of $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$

$R_V(\lambda)$ meromorphic
(spectral theorem)

\star^2 eigenvalues of $-\Delta_{\mathbb{R}^d} + V$
Resonances as poles of $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$

$R_V(\lambda)$ meromorphic (spectral theorem)

* 2 eigenvalues of $-\Delta_{\mathbb{R}^d} + V$
Resonances as poles of $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$

$R_V(\lambda)$ meromorphic (analytic Fredholm theory)

* resonances of V
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where
Waves in heterogeneous media

Waves scattered by **disordered media** with scale of **heterogeneity** \(N^{-1} \ll 1 \) are modeled by \((\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0\), where

\[
V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega)q(Nx - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})
\]

\(u_j\) i.i.d, \(\mathbb{E}(u_j) = 0\), \(\mathbb{E}(u_j^2) = 1\), \(u_j \in L^\infty\).
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega)q(Nx - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$$

u_j i.i.d, $\mathbb{E}(u_j) = 0$, $\mathbb{E}(u_j^2) = 1$, $u_j \in L^\infty$.

Model for disordered crystals plunged in a field q_0, whose sites j/N come with a random charge u_j and the potential $u_j q(Nx - j)$. V_N is a typical function that varies randomly on a scale N^{-1}.
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $(\partial^2_t - \Delta_{\mathbb{R}^3} + V_N) u = 0$, where

$$V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega) q(Nx - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$$

$$u_j \text{ i.i.d}, \quad \mathbb{E}(u_j) = 0, \quad \mathbb{E}(u_j^2) = 1, \quad u_j \in L^\infty.$$

Model for disordered crystals plunged in a field q_0, whose sites j/N come with a random charge u_j and the potential $u_j q(Nx - j)$. V_N is a typical function that varies randomly on a scale N^{-1}.

Example of potential V_N with $N = 20$ in blue, with q_0 in red.
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega)q(Nx - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$$

u_j i.i.d, $\mathbb{E}(u_j) = 0$, $\mathbb{E}(u_j^2) = 1$, $u_j \in L^\infty$.

Note that V_N is in average equal to q_0. In addition, $V_N \rightharpoonup q_0$, \mathbb{P}-a.s.
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by $(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0$, where

$$V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega)q(Nx - j), \quad q, \quad q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$$

u_j i.i.d, $\mathbb{E}(u_j) = 0$, $\mathbb{E}(u_j^2) = 1$, $u_j \in L^\infty$.

Note that V_N is in average equal to q_0. In addition, $V_N \rightarrow q_0$, \mathbb{P}-a.s.: $\forall \varphi \in C_0^\infty, \langle V_N - q_0, \varphi \rangle =$

$$\sum_{|j|_\infty \leq N} u_j \int q(Nx - j)\varphi(x)dx = \varepsilon^d \sum_{|j|_\infty \leq N} u_j \int q(x)\varphi(N(x + j))dx$$
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by

\[(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0, \quad \text{where}
\]

\[V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega)q(Nx - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})
\]

\[u_j \text{ i.i.d, } \mathbb{E}(u_j) = 0, \ \mathbb{E}(u_j^2) = 1, \ u_j \in L^\infty.
\]

Note that V_N is in average equal to q_0. In addition, $V_N \rightarrow q_0$, \mathbb{P}-a.s.: $\forall \varphi \in C_0^\infty$, $\langle V_N - q_0, \varphi \rangle =$

\[\sum_{|j|_\infty \leq N} u_j \int q(Nx - j)\varphi(x)dx = \varepsilon^d \sum_{|j|_\infty \leq N} u_j \int q(x)\varphi(N(x + j))dx
\]

\[= N^{-3} \sum_{|j|_\infty \leq N} u_j \varphi(N^{-1}j) \cdot \int q(x)dx + O(N^{-4}) \sum_{|j|_\infty \leq N} |u_j| \xrightarrow{\mathbb{P}\text{-a.s.}} 0 \ (\text{K.S.L.L.N}).
\]
Waves in heterogeneous media

Waves scattered by disordered media with scale of heterogeneity $N^{-1} \ll 1$ are modeled by

$$(\partial_t^2 - \Delta_{\mathbb{R}^3} + V_N)u = 0,$$

where

$$V_N(x) = q_0(x) + \sum_{j \in [-N,N]^3} u_j(\omega)q(Nx - j), \quad q, \ q_0 \in C_0^\infty(\mathbb{R}^3, \mathbb{R})$$

u_j i.i.d, $\mathbb{E}(u_j) = 0$, $\mathbb{E}(u_j^2) = 1$, $u_j \in L^\infty$.

Note that V_N is in average equal to q_0. In addition, $V_N \rightharpoonup q_0$, \mathbb{P}-a.s.

$$\forall \varphi \in C_0^\infty, \langle V_N - q_0, \varphi \rangle =$$

$$\sum_{|j|_\infty \leq N} u_j \int q(Nx - j)\varphi(x)dx = \varepsilon^d \sum_{|j|_\infty \leq N} u_j \int q(x)\varphi(N(x + j))dx$$

$$= N^{-3} \sum_{|j|_\infty \leq N} u_j \varphi(N^{-1}j) \cdot \int q(x)dx + O(N^{-4}) \sum_{|j|_\infty \leq N} |u_j| \xrightarrow{\mathbb{P}-a.s.} 0 \quad (K.S.L.L.N.).$$

We observe a weak averaging effect on V_N.

Does this transfer to resonances of V_N, i.e. are resonances of V_N well approximated by resonances of q_0?
Result 1: convergence of resonances

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let $\text{Res}(V)$ denote the set of resonances of V.
Result I: convergence of resonances

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let $\text{Res}(V)$ denote the set of resonances of V.

Theorem [Dr’17]

\mathbb{P}-almost surely, the set of accumulation points of $\text{Res}(V_N)$ is equal to $\text{Res}(q_0)$.
Result I: convergence of resonances

Recall that \(V_N(x) = q_0(x) + \sum_j u_j q(Nx - j) \). Let \(\text{Res}(V) \) denote the set of resonances of \(V \).

Theorem [Dr’17]

\(\mathbb{P} \)-almost surely, the set of accumulation points of \(\text{Res}(V_N) \) is equal to \(\text{Res}(q_0) \).

In other words, \(\mathbb{P} \)-a.s., *resonances of \(V_N \) converge to resonances of \(q_0 \); and there exists a sequence of resonances of \(V_N \) converging to each resonance of \(q_0 \).*
Result 1: convergence of resonances

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let $\text{Res}(V)$ denote the set of resonances of V.

Theorem [Dr’17]

\mathbb{P}-almost surely, the set of accumulation points of $\text{Res}(V_N)$ is equal to $\text{Res}(q_0)$.

In other words, \mathbb{P}-a.s., resonances of V_N converge to resonances of q_0; and there exists a sequence of resonances of V_N converging to each resonance of q_0.

Remark: If $q_0 \equiv 0$, then q_0 has no resonances. This implies that \mathbb{P}-a.s., V_N has no resonances in any arbitrary large set, provided that N is sufficiently large.
Result I: convergence of resonances

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$. Let Res($V$) denote the set of resonances of V.

Theorem [Dr’17]

\mathbb{P}-almost surely, the set of accumulation points of Res(V_N) is equal to Res(q_0).

In other words, \mathbb{P}-a.s., resonances of V_N converge to resonances of q_0; and there exists a sequence of resonances of V_N converging to each resonance of q_0.

Remark: If $q_0 \equiv 0$, then q_0 has no resonances. This implies that \mathbb{P}-a.s., V_N has no resonances in any arbitrary large set, provided that N is sufficiently large. “Pure” high disorder has generally little impact on the propagation of waves.
Result 1: convergence of resonances

Recall that \(V_N(x) = q_0(x) + \sum_j u_j q(Nx - j) \). Let \(\text{Res}(V) \) denote the set of resonances of \(V \).

Theorem [Dr’17]

\(\mathbb{P} \)-almost surely, the set of accumulation points of \(\text{Res}(V_N) \) is equal to \(\text{Res}(q_0) \).

In other words, \(\mathbb{P} \)-a.s., resonances of \(V_N \) converge to resonances of \(q_0 \); and there exists a sequence of resonances of \(V_N \) converging to each resonance of \(q_0 \).

Remark: If \(q_0 \equiv 0 \), then \(q_0 \) has no resonances. This implies that \(\mathbb{P} \)-a.s., \(V_N \) has no resonances in any arbitrary large set, provided that \(N \) is sufficiently large. “Pure” high disorder has generally little impact on the propagation of waves.

In fact, after removing a set of probability \(O(e^{-cN^{3/2}}) \), for \(q_0 \equiv 0 \) resonances of \(V_N \) lie below the logarithmic line \(\Im \lambda = -A \ln(N) \); and waves scattered by \(V_N \) decay like \(N^{-At} \).
Convergence of resonances

* resonances of q_0
Convergence of resonances

* resonances of q_0
Convergence of resonances

* resonances of q_0
* resonances of V_N
Result II: remainder estimate for eigenvalues
Result II: remainder estimate for eigenvalues

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr’17]
If $-\lambda_2 < 0$ is a simple eigenvalue of $-\Delta R + q_0$, with normalized eigenvector f, then there exists a random variable such that

$$P(-\lambda_2 N \text{ is an eigenvalue of } V_N) \geq 1 - C e^{-cN^{1/4}},$$

and

$$\int_R q_0(x) dx \neq 0,$$

$$N_{d/2}(\lambda_N - \lambda_0) \int_R q_0(x) dx \xrightarrow{\text{law}} N(0, \sigma^2), \quad \sigma^2 \text{ def } = \int_{[-1,1]} |f(x)|^4 dx.$$

Remark: a similar, more complicated result holds for resonances. The convergence is faster when $\int_R q_0(x) dx = 0$, because V_N is systematically highly oscillatory.
Result II: remainder estimate for eigenvalues

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr’17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

$P(-\lambda_0^2 N \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}}$.

Remark: a similar, more complicated result holds for resonances. The convergence is faster when $\int_{\mathbb{R}^3} q(x) \, dx = 0$, because V_N is systematically highly oscillatory.
Result II: remainder estimate for eigenvalues

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr’17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

$$\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}},$$
Result II: remainder estimate for eigenvalues

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr’17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

$$\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}} \quad \text{and}$$

- If $\int_{\mathbb{R}^3} q(x)dx \neq 0$,

$$\frac{N^{d/2} (\lambda_N - \lambda_0)}{\int_{\mathbb{R}^3} q(x)dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^2), \quad \sigma^2 \overset{\text{def}}{=} \int_{[-1,1]^3} |f(x)|^4 dx.$$
Result II: remainder estimate for eigenvalues

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr’17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

$$\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}}$$

and

- If $\int_{\mathbb{R}^3} q(x)dx \neq 0$,

 $$\frac{N^{d/2}(\lambda_N - \lambda_0)}{\int_{\mathbb{R}^3} q(x)dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^2), \quad \sigma^2 \overset{\text{def}}{=} \int_{[-1,1]^3} |f(x)|^4 dx.$$

- If $\int_{\mathbb{R}^3} q(x)dx = 0$,

 $$N^2(\lambda_N - \lambda_0) \xrightarrow{\text{p-a.s.}} \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{|\hat{q}(\xi)|^2}{|\xi|^2} d\xi \cdot \int_{[-1,1]^3} |f(x)|^2 dx.$$

Remark: a similar, more complicated result holds for resonances. The convergence is faster when $\int_{\mathbb{R}^3} q(x)dx = 0$, because V_N is systematically highly oscillatory.
Result II: remainder estimate for eigenvalues

Recall that $V_N(x) = q_0(x) + \sum_j u_j q(Nx - j)$.

Theorem [Dr’17]

If $-\lambda_0^2 < 0$ is a simple eigenvalue of $-\Delta_{\mathbb{R}^3} + q_0$, with normalized eigenvector f, then there exists λ_N a random variable such that

$$\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}},$$

and

- If $\int_{\mathbb{R}^3} q(x) dx \neq 0$,
 $$\frac{N^{d/2}(\lambda_N - \lambda_0)}{\int_{\mathbb{R}^3} q(x) dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^2), \quad \sigma^2 \overset{\text{def}}{=} \int_{[-1,1]^3} |f(x)|^4 dx.$$

- If $\int_{\mathbb{R}^3} q(x) dx = 0$,
 $$N^2(\lambda_N - \lambda_0) \xrightarrow{\text{p-a.s.}} \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{|\hat{q}(\xi)|^2}{|\xi|^2} d\xi \cdot \int_{[-1,1]^3} |f(x)|^2 dx.$$

Remark: a similar, more complicated result holds for resonances.
Result II: remainder estimate for eigenvalues

Recall that \(V_N(x) = q_0(x) + \sum_j u_j q(Nx - j). \)

Theorem [Dr’17]

If \(-\lambda_0^2 < 0\) is a simple eigenvalue of \(-\Delta_{\mathbb{R}^3} + q_0\), with normalized eigenvector \(f \), then there exists \(\lambda_N \) a random variable such that

\[
\mathbb{P}(-\lambda_N^2 \text{ is an eigenvalue of } V_N) \geq 1 - Ce^{-cN^{1/4}}, \quad \text{and}
\]

- If \(\int_{\mathbb{R}^3} q(x) dx \neq 0 \),

\[
\frac{N^{d/2}(\lambda_N - \lambda_0)}{\int_{\mathbb{R}^3} q(x) dx} \xrightarrow{\text{law}} \mathcal{N}(0, \sigma^2), \quad \sigma^2 \overset{\text{def}}{=} \int_{[-1,1]^3} |f(x)|^4 dx.
\]

- If \(\int_{\mathbb{R}^3} q(x) dx = 0 \),

\[
N^2(\lambda_N - \lambda_0) \overset{\text{p.a.s.}}{\longrightarrow} \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \frac{|\hat{q}(\xi)|^2}{|\xi|^2} d\xi \cdot \int_{[-1,1]^3} |f(x)|^2 dx.
\]

Remark: a similar, more complicated result holds for resonances. The convergence is faster when \(\int_{\mathbb{R}^3} q(x) dx = 0 \), because \(V_N \) is systematically highly oscillatory.
Principle of proof

▶ Put the problem in a general framework due to [Golowich–Weinstein '05]. This allows to treat $V^# = V_N - q_0$ as a small perturbation of q_0, in the sense that $|V_N - q_0|_{H^{-2}} \to 0$ as $N \to \infty$.

▶ Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form $\lambda - \lambda_0 = \infty \sum_{k=1}^{\infty} a_k(V^#, \lambda)$. The coefficients $a_k(V^#, \lambda)$ depend k-multilinearly on $V^#$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_0. Resonances/eigenvalues are thus the zeroes of a random holomorphic function.

▶ Estimate the $a_k(V^#, \lambda)$.
Principle of proof

- Put the problem in a general framework due to [Golowich–Weinstein ’05].
Principle of proof

- Put the problem in a general framework due to [Golowich–Weinstein ’05]. This allows to treat $V_\# = V_N - q_0$ as a small perturbation of q_0, in the sense that

$$|V_N - q_0|_{H^{-2}} \to 0 \text{ as } N \to \infty.$$
Principle of proof

- Put the problem in a **general framework due to [Golowich–Weinstein ’05]**. This allows to treat $V_\# = V_N - q_0$ as a **small perturbation** of q_0, in the sense that

$$|V_N - q_0|_{H^{-2}} \to 0 \text{ as } N \to \infty.$$

- **Show a local characteristic equation for resonances of V_N** near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_\#, \lambda).$$
Principle of proof

- Put the problem in a general framework due to [Golowich–Weinstein ’05]. This allows to treat $V_\# = V_N - q_0$ as a small perturbation of q_0, in the sense that

$$|V_N - q_0|_{H^{-2}} \to 0 \text{ as } N \to \infty.$$

- Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_\#, \lambda).$$

The coefficients $a_k(V_\#, \lambda)$ depend k-multilinearly on $V_\#$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_0.
Principle of proof

- Put the problem in a **general framework** due to [Golowich–Weinstein ’05]. This allows to treat $V_\# = V_N - q_0$ as a **small perturbation** of q_0, in the sense that

$$|V_N - q_0|_{H^2} \to 0 \text{ as } N \to \infty.$$

- Show a **local characteristic equation** for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_\#, \lambda).$$

The coefficients $a_k(V_\#, \lambda)$ depend k-**multilinearly** on $V_\#$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_0. Resonances/eigenvalues are thus the **zeroes of a random holomorphic function**.
Principle of proof

- Put the problem in a general framework due to [Golowich–Weinstein ’05]. This allows to treat $V_\# = V_N - q_0$ as a small perturbation of q_0, in the sense that

$$|V_N - q_0|_{H^{-2}} \to 0 \text{ as } N \to \infty.$$

- Show a local characteristic equation for resonances of V_N near $\lambda_0 \in \text{Res}(q_0)$, of the form

$$\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_\#, \lambda).$$

The coefficients $a_k(V_\#, \lambda)$ depend k-multilinearly on $V_\#$, are holomorphic in λ; and the sum converges for N sufficiently large and λ near λ_0. Resonances/eigenvalues are thus the zeroes of a random holomorphic function.

- Estimate the $a_k(V_\#, \lambda)$.
Estimates on the $a_k(V\# , \lambda)$
Estimates on the \(a_k(\mathcal{V}_\#, \lambda) \)

Recall \(\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(\mathcal{V}_\#, \lambda) \), where \(a_k \) is \(k \)-linear in \(\mathcal{V}_\# \).
Estimates on the $a_k(V\# , \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V\# , \lambda)$, where a_k is k-linear in $V\#$.

- $a_1(V\# , \lambda)$ depends **linearly** on $V\#$, hence on the u_j.

- When $\int_{\mathbb{R}^3} q(x) \, dx \neq 0$, $a_1(V\# , \lambda)$ dominates, and $N\frac{3}{2}(\lambda N - \lambda_0)$ converges in distribution to a Gaussian.

- When $\int_{\mathbb{R}^3} q(x) \, dx = 0$, $a_2(V\# , \lambda)$ dominates, and $N\frac{2}{2}(\lambda N - \lambda_0)$ converges almost surely to a term resulting from constructive interference.
Estimates on the $a_k(V_#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_#, \lambda)$, where a_k is k-linear in $V_#$.

- $a_1(V_#, \lambda)$ depends \textbf{linearly on} $V_#$, \textbf{hence on the} u_j. An application of the CLT shows that $N^{3/2}a_1(V_#, \lambda)$ converges to a \textbf{Gaussian}.

- When $\int_{\mathbb{R}^3} q(x) \, dx \neq 0$, $a_1(V_#, \lambda)$ dominates, and $N^{3/2}(\lambda N - \lambda_0)$ converges in distribution to a Gaussian.

- When $\int_{\mathbb{R}^3} q(x) \, dx = 0$, $a_2(V_#, \lambda)$ dominates, and $N^2(\lambda N - \lambda_0)$ converges almost surely to a term resulting from constructive interference.
Estimates on the $a_k(V#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^\infty a_k(V#, \lambda)$, where a_k is k-linear in $V#$.

- $a_1(V#, \lambda)$ depends **linearly** on $V#$, hence on the u_j. An application of the CLT shows that $N^{3/2}a_1(V#, \lambda)$ converges to a **Gaussian**.
- $a_2(V#, \lambda)$ depends bilinearly on $V#$.

\[\int_R^3 q(x) \, dx \neq 0, \quad a_1(V#, \lambda) \text{ dominates, and } N^2(\lambda N - \lambda_0) \text{ converges in distribution to a Gaussian.} \]

\[\int_R^3 q(x) \, dx = 0, \quad a_2(V#, \lambda) \text{ dominates, and } N^2(\lambda N - \lambda_0) \text{ converges almost surely to a term resulting from constructive interference.} \]
Estimates on the $a_k(V_\#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_\#, \lambda)$, where a_k is k-linear in $V_\#$.

- $a_1(V_\#, \lambda)$ depends **linearly** on $V_\#$, hence on the u_j. An application of the CLT shows that $N^{3/2} a_1(V_\#, \lambda)$ converges to a **Gaussian**.

- $a_2(V_\#, \lambda)$ depends bilinearly on $V_\#$. Since $V_\#$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_2(V_\#, \lambda) \sim N^{-2}$.
Estimates on the $a_k(V\#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V\#, \lambda)$, where a_k is k-linear in $V\#$.

- $a_1(V\#, \lambda)$ depends **linearly** on $V\#$, hence on the u_j. An application of the CLT shows that $N^{3/2}a_1(V\#, \lambda)$ converges to a **Gaussian**.
- $a_2(V\#, \lambda)$ depends bilinearly on $V\#$. Since $V\#$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_2(V\#, \lambda) \sim N^{-2}$.
- When $k \geq 3$, $a_k(V\#, \lambda)$ is **negligible** w.r.t. $a_1(V\#, \lambda) + a_2(V\#, \lambda)$.
Estimates on the $a_k(V_#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_#, \lambda)$, where a_k is k-linear in $V_#$.

- $a_1(V_#, \lambda)$ depends **linearly on** $V_#$, hence on the u_j. An application of the CLT shows that $N^{3/2}a_1(V_#, \lambda)$ converges to a **Gaussian**.

- $a_2(V_#, \lambda)$ depends bilinearly on $V_#$. Since $V_#$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_2(V_#, \lambda) \sim N^{-2}$.

- When $k \geq 3$, $a_k(V_#, \lambda)$ is **negligible** w.r.t. $a_1(V_#, \lambda) + a_2(V_#, \lambda)$.

To conclude we compare $a_1(V_#, \lambda)$ and $a_2(V_#, \lambda)$:
Estimates on the $a_k(V_\#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_\#, \lambda)$, where a_k is k-linear in $V_\#$.

- $a_1(V_\#, \lambda)$ depends **linearly on** $V_\#$, hence on the u_j. An application of the CLT shows that $N^{3/2}a_1(V_\#, \lambda)$ converges to a **Gaussian**.

- $a_2(V_\#, \lambda)$ depends bilinearly on $V_\#$. Since $V_\#$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_2(V_\#, \lambda) \sim N^{-2}$.

- When $k \geq 3$, $a_k(V_\#, \lambda)$ is negligible w.r.t. $a_1(V_\#, \lambda) + a_2(V_\#, \lambda)$.

To conclude we compare $a_1(V_\#, \lambda)$ and $a_2(V_\#, \lambda)$:

- **When** $\int_{\mathbb{R}^3} q(x)dx \neq 0$, $a_1(V_\#, \lambda)$ **dominates**, and $N^{3/2}(\lambda_N - \lambda_0)$ converges in distribution to a **Gaussian**.
Estimates on the $a_k(V_#, \lambda)$

Recall $\lambda - \lambda_0 = \sum_{k=1}^{\infty} a_k(V_#, \lambda)$, where a_k is k-linear in $V_#$.

- $a_1(V_#, \lambda)$ depends **linearly** on $V_#$, hence on the u_j. An application of the CLT shows that $N^{3/2}a_1(V_#, \lambda)$ converges to a **Gaussian**.

- $a_2(V_#, \lambda)$ depends bilinearly on $V_#$. Since $V_#$ is highly oscillatory, this yields deterministic contributions (constructive interference): $a_2(V_#, \lambda) \sim N^{-2}$.

- When $k \geq 3$, $a_k(V_#, \lambda)$ is negligible w.r.t. $a_1(V_#, \lambda) + a_2(V_#, \lambda)$.

To conclude we compare $a_1(V_#, \lambda)$ and $a_2(V_#, \lambda)$:

- **When** $\int_{\mathbb{R}^3} q(x)dx \neq 0$, $a_1(V_#, \lambda)$ dominates, and $N^{3/2}(\lambda_N - \lambda_0)$ converges in distribution to a **Gaussian**.

- **When** $\int_{\mathbb{R}^3} q(x)dx = 0$, $a_2(V_#, \lambda)$ dominates, and $N^2(\lambda_N - \lambda_0)$ converges **almost surely** to a term resulting from constructive interference.
Conclusions

We show stability of resonances under highly oscillatory stochastic perturbations; we identify a stochastic and a deterministic regime for the speed of convergence of resonances, depending on the value of \[\int_{\mathbb{R}^3} q(x) \, dx. \] Thanks for your attention!
Conclusions

- We show stability of resonances under highly oscillatory stochastic perturbations;
Conclusions

- We show **stability** of resonances under **highly oscillatory stochastic perturbations**;
- We identify a **stochastic and a deterministic regime** for the speed of convergence of resonances, **depending on the value of** \(\int_{\mathbb{R}^3} q(x) dx \).
Conclusions

- We show stability of resonances under highly oscillatory stochastic perturbations;
- We identify a stochastic and a deterministic regime for the speed of convergence of resonances, depending on the value of $\int_{\mathbb{R}^3} q(x) dx$.

Thanks for your attention!