Problem 1. Diagonalize the matrix

\[A = \begin{bmatrix} -3 & -2 & -6 \\ 0 & 1 & 0 \\ 2 & 1 & 4 \end{bmatrix}. \]

We first look for the eigenvalues. For that it suffices to solve the characteristic equation \(\det(A - \lambda \text{Id}) = 0 \). It yields

\[\det \begin{bmatrix} -3 - \lambda & -2 & -6 \\ 0 & 1 - \lambda & 0 \\ 2 & 1 & 4 - \lambda \end{bmatrix} \]

Expand this with respect to the second row to obtain

\[(1 - \lambda) \det \begin{bmatrix} -3 - \lambda & -6 \\ 2 & 4 - \lambda \end{bmatrix} = 0, \quad (1 - \lambda)((-3 - \lambda)(4 - \lambda) + 12) = 0\]

which is equivalent to \(\lambda(\lambda - 1)^2 = 0 \). There are two eigenvalues, 0 and 1. We first look for the eigenspace corresponding to the 0 eigenvalue. For that it suffices to solve the augmented matrix system \([A, 0]\\):

\[
\begin{bmatrix} -3 & -2 & -6 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 1 & 4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

The corresponding system is

\[
\begin{cases}
x + 2z = 0 \\ y = 0
\end{cases}, \quad \text{an eigenvector is } \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}.
\]

Next we look for the eigenspace corresponding to the 1-eigenvalue. Since 1 has multiplicity 2 we need to find two linearly independent eigenvectors if we want to diagonalize \(A \) (if we cannot, then \(A \) is not diagonalizable). We solve the augmented matrix system \([A - \text{Id}, 0]\\):

\[
\begin{bmatrix} -4 & -2 & -6 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & 3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\]

There are two free variables so we will be able to find these two linearly independent eigenvectors. The corresponding system is \(2x + y + 3z = 0 \), two linearly independent eigenvectors are for instance given by

\[
\begin{pmatrix} -5 \\ 1 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}.
\]
Now we can conclude: we can write \(A = PDP^{-1} \) where \(P \) is the matrix of the eigenvectors in the order we found them and \(D \) is the diagonal matrix of eigenvalue:

\[
P = \begin{bmatrix}
2 & -5 & -3 \\
0 & 1 & 0 \\
-1 & 3 & 2
\end{bmatrix}, \quad D = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

If we want to push the calculation further we can compute \(P^{-1} \) and we will obtain:

\[
A = \begin{bmatrix}
2 & -5 & -3 \\
0 & 1 & 0 \\
-1 & 3 & 2
\end{bmatrix} \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
2 & 1 & 3 \\
0 & 1 & 0 \\
1 & -1 & 2
\end{bmatrix}.
\]

Problem 2. Let \(T \) be the transformation from \(\mathbb{P}_2 \) to \(\mathbb{P}_2 \) be defined by

\[T(p(t)) = tp'(t) + p(t). \]

Show that \(T \) is linear. Find the matrix of \(T \) in the basis \(\{1, t, t^2\} \). Find the kernel and the range of \(T \).

We start by showing that \(T \) is linear. For that it suffices to show that \(T \) behaves well under addition and multiplication by a scalar. We have

\[
T(p(t) + q(t)) = t(p(t) + q(t))' + (p(t) + q(t)) = tp'(t) + p(t) + tq'(t) + q(t) = T(p(t)) + T(q(t)),
\]

\[
T(a \cdot p(t)) = t(a \cdot p(t))' + a \cdot p(t) = a(tp'(t) + p(t)) = aT(p(t)).
\]

Hence \(T \) is linear. To find the matrix of \(T \) in the basis \(\{1, t, t^2\} \) we take an arbitrary polynomial in \(\mathbb{P}_2 \), with coordinates \((a, b, c) \) in the basis \(\{1, t, t^2\} \): \(p(t) = a + bt + ct^2 \).

Then we compute \(T(p(t)) \):

\[
T(p(t)) = T(a + bt + ct^2) = t(a + bt + ct^2)' + (a + bt + ct^2) = 3ct^2 + 2bt + a.
\]

Therefore the coordinates of \(T(p(t)) \) in the basis \(\{1, t, t^2\} \) are \((a, 2b, 3c) \). It follows that \(T \) is represented by the matrix

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix}.
\]

This matrix has determinant 6, thus it is invertible. It follows that \(\text{null}(A) = \{0\} \) and \(\text{col}(A) = \mathbb{R}^3 \). Therefore the kernel of \(T \) is \(\{0\} \) and its range is \(\mathbb{P}_2 \).

Problem 3 Find a basis of the null space and the column space of \(A \), where \(A \) is given by

\[
A = \begin{bmatrix}
1 & 1 & 1 & 1 \\
-2 & 0 & -2 & -1 \\
-1 & 1 & -1 & 0
\end{bmatrix}.
\]
We first find the rank of A by row reducing it. For that we note that $R_3 = R_1 + R_2$, thus
\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
-2 & 0 & -2 & -1 \\
-1 & 1 & -1 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 \\
-2 & 0 & -2 & -1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\] (0.1)
Hence A has rank 2. To find a basis of $\text{col}(A)$, it suffices to pick two linearly independent columns of A. For instance,
\[
\begin{pmatrix}
1 \\
-2 \\
-1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}
\] forms a basis of $\text{col}(A)$. By the rank theorem, $\text{null}(A)$ has dimension $4 - 2 = 2$. To find a basis of $\text{null}(A)$, it suffices to find two linearly independent vectors in $\text{null}(A)$. By (0.1), the augmented matrix system $[A, 0]$ is equivalent to
\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\quad \begin{cases}
x + y + z + t = 0 \\
2y + t = 0
\end{cases}
\quad \begin{cases}
x = y - z \\
t = -2y.
\end{cases}
\]
For instance, the vectors
\[
\begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
-1 \\
0 \\
1
\end{pmatrix}
\] form a basis of $\text{null}(A)$.

Problem 4. Find A^n, where
\[
A = \begin{bmatrix}
-1 & -3 \\
2 & 4
\end{bmatrix}.
\]
(Hint: first diagonalize A.)

We first diagonalize the matrix A. Step 1: we solve the characteristic equation. We have
\[
\det \begin{bmatrix}
-1 - \lambda & -3 \\
2 & 4 - \lambda
\end{bmatrix} = \lambda^2 - 3\lambda + 2.
\]
The roots of this polynomial are 1, 2. Next we find the eigenspaces. For the eigenvalue 1, the augmented matrix system to solve is
\[
\begin{bmatrix}
-2 & -3 & 0 \\
2 & 3 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
2 & 3 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]
Therefore \(\begin{pmatrix} 3 \\ -2 \end{pmatrix} \) is an eigenvector. For the eigenvalue 2, the augmented matrix system to solve is
\[
\begin{bmatrix}
-3 & -3 & 0 \\
2 & 2 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]
Therefore \(
\begin{pmatrix}
1 \\
-1
\end{pmatrix}
\) is an eigenvector. It follows that \(A = PDP^{-1}\) where
\[
P = \begin{bmatrix}
3 & 1 \\
-2 & -1
\end{bmatrix}, \quad P^{-1} = \begin{bmatrix}
-1 & -1 \\
2 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
-2 & -3
\end{bmatrix}, \quad D = \begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}.
\]

To find \(A^n\), it suffices to note that since \(A = PDP^{-1}\),
\[
A^n = (PDP^{-1}) \cdot (PDP^{-1}) \cdot \ldots \cdot (PDP^{-1}) = PD^nP^{-1}.
\]

Now, \(D\) is diagonal so \(D^n\) is just the \(n\)-th power of the diagonal elements. It follows
that
\[
A^n = PD^nP^{-1} = \begin{bmatrix}
3 & 1 \\
-2 & -1
\end{bmatrix} \begin{bmatrix}
1^n & 0 \\
0 & 2^n
\end{bmatrix} \begin{bmatrix}
1 & 1 \\
-2 & -3
\end{bmatrix} = \begin{bmatrix}
3 - 2^{n+1} & 3 - 3 \cdot 2^n \\
-2 + 2^{n+1} & -2 + 3 \cdot 2^n
\end{bmatrix}.
\]
We can double check with the cases \(n = 0, n = 1\): \(A^0 = \text{Id}\) which is correct and
\(A^1 = A\), which is correct too.

Problem 9 Show that the matrix
\[
U = \frac{1}{3} \begin{bmatrix}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{bmatrix}
\]

is orthogonal.

Find \(U^{-1}\). Then find the coordinates of the vector
\[
\begin{pmatrix}
5 \\
1
\end{pmatrix}
\]
in the basis \{\(\begin{pmatrix}
2 \\
1
\end{pmatrix}, \begin{pmatrix}
-2 \\
2
\end{pmatrix}, \begin{pmatrix}
1 \\
-2
\end{pmatrix}\}\}.

To show that \(U\) is orthogonal we check that \(U^T U = \text{Id}\) and indeed,
\[
\frac{1}{3} \begin{bmatrix}
2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2
\end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{bmatrix} = \text{Id}.
\]

Since \(U^T U = \text{Id}\), the inverse of \(U\) is \(U^T\), thus
\[
U^{-1} = U^T = \frac{1}{3} \begin{bmatrix}
2 & 1 & 2 \\
-2 & 2 & 1 \\
1 & 2 & -2
\end{bmatrix}
\]

To find the coordinates of that vector in the basis given by the columns of \(U\), it suffices to find coefficients \((a, b, c)\) such that
\[
\begin{pmatrix}
5 \\
1
\end{pmatrix} = a\begin{pmatrix}
2 \\
1
\end{pmatrix} + b\begin{pmatrix}
-2 \\
2
\end{pmatrix} + c\begin{pmatrix}
1 \\
-2
\end{pmatrix},
\]
that is, to find \((a, b, c)\) such that
\[
\begin{pmatrix}
5 \\
1
\end{pmatrix} = U \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}, \text{ or equivalently } U^{-1} \begin{pmatrix}
5 \\
1
\end{pmatrix} = \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}.
\]
Since we know the formula for U^{-1} this is only a matrix-vector multiplication, hence
\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = U^{-1} \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 2 \\ -2 & 2 & 1 \\ 1 & 2 & -2 \end{bmatrix} \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 13/3 \\ -7/3 \\ 5/3 \end{pmatrix}.
\]
The coordinates of this vector in this basis are then $(13/3, -7/3, 5/3)$.