A Characterization of the Supercuspidal Local Langlands Correspondence

Alexander Bertoloni Meli (Joint with Alex Youcis)

June 12, 2020
Introduction and Motivation

Study of Known Cases

Scholze–Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case
Notation

- Fix F/\mathbb{Q}_p finite.
- Fix G/F connected reductive (e.g. $G = GL_n, Sp_{2n}, U_n(E/F)$).
- Let \hat{G} denote the dual group of G over \mathbb{C}
 \[\hat{GL}_n = GL_n(\mathbb{C}), \hat{Sp}_{2n} = SO_{2n+1}(\mathbb{C}) \].
- Let W_F be the Weil group of F.
- Define the “L-group” of G to be $^LG := \hat{G} \rtimes W_F$.
The Local Langlands Correspondence (LLC)

- Idea: Relates “nice” irreducible representations of $G(F)$ and “nice” finite dimensional representations of W_F valued in \hat{G}.
- Simplest Case: LCFT = LLC for \mathbb{G}_m! The local Artin map

$$\text{Art} : W_F^{ab} \cong F^\times$$

induces a bijection

$$\begin{align*}
\left\{ \text{Continuous characters of } \mathbb{G}_m(F) \right\} & \quad \leftrightarrow \quad \left\{ \text{Continuous homs } W_F \to \mathbb{G}_m(\mathbb{C}) = \hat{\mathbb{G}}_m \right\}
\end{align*}$$
General Case

- Exists finite to one map
 \[R : \mathcal{A}_F(G) \rightarrow \mathcal{G}_F(G) \]
- \(\mathcal{A}_F(G) \) the set of equivalence classes of irreducible smooth \(G(F) \)-representations
- \(\mathcal{G}_F(G) \) equivalence classes of “\(L \)-parameters”:
 \[\phi : W_F \times SL_2(\mathbb{C}) \rightarrow L G. \]
- Fibers \(\Pi(\phi) := R^{-1}(\phi) \) called “\(L \)-packets”.

Key Question of Talk: How to characterize \(R \)?
Our goal: Describe new characterization generalizing work of Scholze (2013).
Introduction and Motivation

Study of Known Cases

Scholze–Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case
The GL_n Case

- GL_n case is special: The local Langlands map $R : \mathcal{A}_F(G) \rightarrow \mathcal{G}_F(G)$ is a bijection.
- R constructed by Harris–Taylor, Henniart.
- Characterized by Henniart using L, ϵ factors.
- In 2013, Scholze gave a new characterization coming from geometry.
Beyond GL_n Case

- GSp_4 Gan–Takeda.
- $Sp_{2n}, SO_{2n+1},$ and SO_{2n} (almost) due to Arthur.
- Quasisplit $U_n(E/F)$ Mok.
- Inner forms of $U_n(E/F)$ Kaletha–Minguez–Shin–White.
- Inner forms of SL_n Hiraga–Saito.
- Supercuspidal case for “almost all” groups Kaletha.
- Characterization typically by compatibility with GL_n.
Introduction and Motivation

Study of Known Cases

Scholze–Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case
Scholze’s Construction

- Given $\tau \in W_F^+$ and $h \in C^\infty(GL_n(O_F))$ constructs $f_{\tau,h} \in C^\infty_c(GL_n(F))$.
- Constructs (via Shimura varieties) R for supercuspidals satisfying Key Equation
 \[\text{tr}(\pi | f_{\tau,h}) = \text{tr}(R(\pi)) \cdot \left| \frac{1-n}{2} \right| \tau \text{tr}(\pi | h). \]
- Extends to all of $\mathcal{A}_F(G)$ by proving compatibility with parabolic induction.
Scholze’s Characterization in the Supercuspidal Case

- Suppose $R_1, R_2 : A_F(G) \to G_F(G)$ satisfy Key Equation:

$$\text{tr}(\pi | f_{\tau,h}) = \text{tr}(R_i(\pi) | \frac{1-n}{2} | \tau) \text{tr}(\pi | h).$$

- Pick $\pi \in A_F(GL_n)$ and $h \in C^\infty(GL_n(O_F))$ such that $\text{tr}(\pi | h) \neq 0$.

- We have

$$\text{tr}(R_1(\pi) | \frac{1-n}{2} | \tau) = \frac{\text{tr}(\pi | f_{\tau,h})}{\text{tr}(\pi | h)} = \text{tr}(R_2(\pi) | \frac{1-n}{2} | \tau).$$

- Implies $R_1(\pi) \sim R_2(\pi)$.

Work of Scholze–Shin

- Scholze–Shin (2011) extend construction of \(f_{\tau,h} \) to unramified “PEL type” and get a function \(f_{\tau,h}^{\mu} \in C_c^\infty(G(F)) \) for each:
 - \(\tau \in W_F^+ \)
 - \(h \in C_c^\infty(G(\mathcal{O}_F)), \) (where \(G(\mathcal{O}_F) \) is hyperspecial)
 - \(\mu \in X^*(\hat{G}) \) minuscule

- Youcis (thesis) defines \(f_{\tau,h}^{\mu} \) in “Abelian type” cases.

- \(f_{\tau,h}^{\mu} \) described by cohomology of tubular neighborhoods inside of Rapoport–Zink spaces.
Scholze–Shin Conjecture (No Endoscopy Case)

- Let $\phi : W_F \to ^L G$ be a supercuspidal L-parameter, G unramified.
- Let $S\Theta_{\phi} \approx \sum_{\pi \in \Pi(\phi)} \Theta_{\pi}$ be the “stable distribution of ϕ”

 $$(\Theta_{\pi}(f) := \text{tr}(\pi | f))$$

- Conjecture (Scholze–Shin Equation)

 We have the following trace identity:

 $$S\Theta_{\phi}(f_{\tau,h}^\mu) = \text{tr}(r_\mu \circ \phi) \cdot |^{-\langle \mu, \rho \rangle} | \tau S\Theta_{\phi}(h).$$

- Known cases

 - EL, some PEL cases (Scholze, Scholze–Shin)
 - $G = D^\times$ appropriately interpreted (Shen)
 - Unramified $U_n(E/F)$ (BM, Youcis)
Hint of Proof

- Fix global group G/F such that $G_p = G$ and exists nice Shimura datum (G, X).
- Langlands–Kottwitz–Scholze method: for $K \subset G(F)$ compact

$$ \text{tr}(\tau \times f^P h \mid H^*(Sh_K)) = \sum SO(f^P f_\infty f^\mu_{\tau, h}) $$

- Study of cohomology of Shimura varieties (Kottwitz and others) gives:

$$ \sum \text{tr}(\pi \mid f^P h) \text{tr}(r_{-\mu} \circ \phi_\pi \mid \tau) \approx \text{tr}(\tau \times f^P h \mid H^*(Sh_K)) $$

- Stable trace formula gives:

$$ \sum SO(f^P f_\infty f^\mu_{\tau, h}) \approx \sum \text{tr}(\pi \mid f^P f_\infty f^\mu_{\tau, h}) $$

- “Localize at p” to get result.
Introduction and Motivation

Study of Known Cases

Scholze–Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case
Supercuspidal Parameters

- From now on, assume G quasisplit (for simplicity)
- L-parameter $\phi : W_F \times SL_2(\mathbb{C}) \rightarrow {}^L G$ supercuspidal if trivial on SL_2 part and doesn’t factor through a Levi subgroup of ${}^L G$.
- Reasons for supercuspidal parameters:
 - Easy to work with (behaves well with elliptic endoscopy)
 - Can prove Scholze–Shin equations
 - Considered in literature (Kaletha, Scholze)
- Need “Backwards LLC”

\[\Pi : \left\{ \begin{array}{c}
\text{Supercuspidal} \\
\text{L-Parameters}
\end{array} \right\} \rightarrow \left\{ \begin{array}{c}
\text{Finite Subsets of} \\
\text{supercuspidal } G(F) \text{ reps}
\end{array} \right\} \]

\[\phi \rightarrow \Pi(\phi)\]
Desired Properties

- **Dis**: $\Pi(\phi) \cap \Pi(\phi') \neq \emptyset$ implies $\phi \sim \phi'$.
- **Bij**: Each Whittaker datum \mathfrak{w} gives a bijection
 \[i_{\mathfrak{w}} : \Pi(\phi) \cong \text{Irr}(\overline{C_\phi}), \]
 where $\overline{C_\phi} = Z_{\hat{G}}(\text{im}\phi)/Z(\hat{G})\Gamma_F$.
- **Stab**: $S\Theta_\phi := \sum_{\pi \in \Pi(\phi)} \text{dim}(i_{\mathfrak{w}}(\pi))\Theta_\pi$ is stable.
- **SS**: Each ϕ satisfies the Scholze–Shin equations.
 \[S\Theta_\phi(f_{\tau,h}^\mu) = \text{tr}(r_{-\mu} \circ \phi) \cdot \langle -\langle \mu,\rho \rangle | \tau \rangle S\Theta_\phi(h). \]
- We will need to assume G is “good”: If
 \[\text{tr}(r_\mu \circ \phi | \tau) = \text{tr}(r_\mu \circ \phi' | \tau) \]
 for all μ, τ then $\phi \sim \phi'$.

Main Theorem (Imprecise Version)

Theorem (BM-Youcis)

For G a “good” reductive group, a supercuspidal LLC is characterized by Dis, Bij, Stab, SS, + compatibility with endoscopy.

- **Dis**: Packets are disjoint.
- **Bij**: $i_w : \Pi(\phi) \cong \text{Irr}(\overline{C_\phi})$
- **Stab**: $S\Theta_\phi$ is stable.
- **SS**: $S\Theta_\phi(f^\mu_{\tau,h}) = \text{tr}(r_{-\mu} \circ \phi) \cdot \langle \mu, \rho \rangle \mid \tau \rangle S\Theta_\phi(h)$
Proof in the Singleton Packet Case

- Suppose Π_1, Π_2 are supercuspidal LLCs.
- Pick ϕ and suppose $\Pi_1(\phi) = \{\pi\}$ is a singleton.
- If we knew $\Pi_2(\phi') = \{\pi\}$ for some ϕ' then we could compare ϕ, ϕ' using SS.
- Need Atomic Stability: If $\Theta = \sum_i a_i \Theta_{\pi_i}$ is stable then Θ is a linear combination of $S\Theta_{\phi}$s.
- Do NOT need AtomicStab axiom (Thanks to Prof. Hiraga!)
Proof Assuming Atomic Stability

- Suppose $\Pi_1(\phi) = \{\pi\}$.
- By \textbf{Stab}, we have Θ_π is stable.
- By $\textbf{AtomicStab}$ for Π_2 we have $\Pi_2(\phi') = \{\pi\}$ for some ϕ'.
- By \textbf{SS}:

$$
\text{tr}(r_\mu \circ \phi \cdot |\langle \mu,\rho \rangle \rangle | \tau) = \frac{\text{tr}(\pi | f^\mu_{\tau,h})}{\text{tr}(\pi | h)} = \text{tr}(r_{-\mu} \circ \phi' \cdot |\langle \mu,\rho \rangle \rangle | \tau).
$$

- Implies $\phi \sim \phi'$ since G is good.
Introduction and Motivation

Study of Known Cases

Scholze–Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case
Introduction to Endoscopy

- Elliptic endoscopic groups of G are auxiliary groups H with a map $\eta : L^1 H \to L^1 G$ and $s \in Z(\hat{H})\Gamma_F$.
- GL_n only elliptic endoscopic group of GL_n.
- Elliptic endoscopy of $U_n(E/F)$ of the form $U_{n_1}(E/F) \times U_{n_2}(E/F)$ with $n_1 + n_2 = n$.
A Useful Lemma

Lemma
If $\phi : W_F \rightarrow L G$ is supercuspidal then there is a bijection:

$$\left\{(H, \phi^H) \text{ with } \eta \circ \phi^H = \phi \right\} \leftrightarrow \left\{ \text{conjugacy classes in } \overline{C_\phi} := Z(\hat{G}(\text{im}\phi)/Z(\hat{G})\Gamma_F} \right\}$$

- In particular, ϕ factors through an elliptic endoscopic $\eta : L H \rightarrow L G$ iff $\overline{C_\phi} \neq 1$.
- By Bij, we have $\Pi(\phi)$ a singleton iff ϕ does not factor through non trivial $L H$.
- Want to induct on dim G using endoscopy.
An elliptic hyperendoscopic datum is a sequence
$$(LH_1, s_1, \eta_1), \ldots, (LH_n, s_n, \eta_n)$$ so that
$$(LH_1, s_1, \eta_1)$$ is an elliptic endoscopic datum for G and
$$(LH_i, s_i, \eta_i)$$ an elliptic endoscopic datum for H_{i-1}.

ECI: Let
$$(H, s, \eta)$$ an elliptic endoscopic datum for G and
$f \in C_c^\infty(G(F)), f^H \in C_c^\infty(H(F))$ a pair of match of matching functions. Then

$$S \Theta_{\phi^H}(f^H) = \sum_{\pi \in \Pi(\phi)} \text{tr}(i_{w}(\pi) \mid s) \Theta_{\pi}(f)$$
Supercuspidal LLC

- **Definition**
 A supercuspidal LLC for G is a map for each elliptic hyperendoscopic H:
 \[\Pi_H : \begin{cases}
 \text{Supercuspidal} \\
 \text{L-parameters of } H
\end{cases} \rightarrow \begin{cases}
 \text{Finite subsets of} \\
 \text{supercuspidal } H(F) \text{ reps}
\end{cases} \]

- **Theorem (BM – Youcis)**
 Let G be such that each elliptic hyperendoscopic H is good. Suppose Π_1, Π_2 are supercuspidal LLCs such that $\bigcup_{\phi} \Pi_{1,H}(\phi) \subset \bigcup_{\phi} \Pi_{2,H}(\phi)$ for all H and $\Pi_{i,H}$ satisfy Dis, Bij, Stab, SS, and ECI. Then $\Pi_{1,H} = \Pi_{2,H}$ for all H.
Groups with “good” elliptic hyperendoscopy: $PGL_n, GL_n, U_n, GU_n, SO_{2n+1}, G_2$.

Groups with “bad” elliptic hyperendoscopy: Sp_{2n}, SO_{2n}, E_8.

Corollary (BM – Youcis)

LLC for $U_n(E/F)$ as in Mok is characterized by the above.
Sketch of inductive step

- Suppose we have proven that $\Pi_{1,H} = \Pi_{2,H}$ for all elliptic endoscopic H of G.
- Let ϕ be an L-parameter of G. If $C_\phi = 1$, done by singleton packet case.
- Otherwise pick $\pi \in \Pi_{1,G}(\phi)$ and $1 \neq s \in C_\phi$ such that $\text{tr}(i_{\phi}(\pi) \mid s) \neq 0$ and get (H, ϕ^H) from lemma.
- By ECI

$$\sum_{\pi' \in \Pi_{1,G}(\phi)} \text{tr}(i_{\phi}(\pi') \mid s) \Theta_{\pi'}(f) = S \Theta_{\phi^H}(f^H)$$

$$= \sum_{\pi' \in \Pi_{2,G}(\phi)} \text{tr}(i_{\phi}(\pi') \mid s) \Theta_{\pi'}(f)$$

- Hence $\pi \in \Pi_{2,G}(\phi)$ by independence of characters.
Some Questions

- Can one show in a direct way that Kaletha’s construction of LLC for supercuspidals satisfies SS?

- For GL_n we know this indirectly since Kaletha is compatible with Harris–Taylor (by Oi–Tokimoto) and Harris–Taylor is known to agree with Scholze.

- Can one define a useful version of SS that avoids the “good group” assumption? Perhaps this would look like Genestier-Lafforgue’s characterization in terms of Bernstein center elements: \(\{ \delta I, f, (\gamma_i)_{i \in I} \} \).