Math 55: Discrete Mathematics
Williams, Spring 2018
GSI: Ai

Week 5: More Number Theory, RSA, Induction

Remarks:

- Note much of this worksheet comes from Week 4 (right before the midterm).
- 6887 is the product of two primes. My coprime "public key" is 11 . Use message blocks of 4 digits and the usual conversion, $A=00, B=01, \ldots$. Using these parameters, encrypt the message READ. Next pretend you are an attacker. How would you decrypt the code? (You can use a computer for this entire exercise, but exactly one step is supposed to be challenging even for the computer. Which step?)

1. (Ribet Spr13) Numbers a_{n} are defined as follows: $a_{0}=0, a_{1}=1, a_{n+2}=5 a_{n+1}-6 a_{n}$ for $n \geq 0$. Prove that $a_{n}=3^{n}-2^{n}$ for $n \geq 0$.
2. (Sturmfels Spr09) Solve the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}$ with the initial conditions $a_{0}=1$ and $a_{1}=9$.
3. (Ribet Spr15) Using the identity $1=54 \cdot 129-35 \cdot 199$, write down an integer that is congruent to $35(\bmod 129)$ and to $54(\bmod 199)$. You can leave your answer as an arithmetic expression (i.e. one involving products, sums, differences).
4. (Sturmfels Spr12) What amount of postage can be formed using only 5-cent and 6cent stamps? Formulate a conjecture and prove it. (GSI commentary: Professor did something like this in lecture. Try it.)
5. (Sturmfels Spr12) Determine an integer n such that

$$
n \equiv 1(\bmod 7), \quad n \equiv 3(\bmod 8), \quad n \equiv 2(\bmod 9) .
$$

6. (Sturmfels Spr09) Find an inverse of 81 modulo 250.
