Math 55: Discrete Mathematics
Williams, Spring 2018
GSI: Ai

Week 3: Cardinality and Numbers

Warm up questions:

- Group the following into finite, countably infinite, uncountable: $\{0,1,2\}$, the positive integers, the odd integers, the integers, the rational numbers, the real numbers, the complex numbers, the interval $[0,1]$, the set of function from a given finite domain to a given finite codomain.
- What about the set of functions from a given countably infinite domain to a given finite codomain? (Hint: there are two possibilities, depending on the given objects. Also, one of the below exercises is relevant.) What about the set of functions from a given finite domain to a given countably infinite domain?

1. (Ribet Spr15) Let $\left\{a_{n}\right\}$ be the sequence of positive odd numbers defined by: $a_{0}=3$ and $a_{n}=a_{0} a_{1} \ldots a_{n-1}+2$ for $n \geq 1$. The sequence begins $3,5,17,257,65537, \ldots$ If n and m are natural numbers with $m<n$, show that 1 is the only positive integer that divides both a_{m} and a_{n}.
2. (Ribet Spr13) Consider the set of all sequences $\left\{a_{n}\right\}$ whose terms a_{n} are binary digits (in other words, each a_{n} is 0 or 1). Show that this set is uncountable.
3. (Ribet Spr13) Suppose that p is a prime number and that x and y are integers. Show that if $x y$ and $x+y$ are both divisible by p, then each of x and y is divisible by p.
4. (Sturmfels Spr12) Which amounts of postage can be formed using only 5-cent and 6 -cent stamps? Formualte a conjecture and prove it.
5. (Sturmfels Spr12) Compute the following remainders:

- $19^{145} \bmod 13$
- $(-12)^{36} \cdot 50^{19} \bmod 7$.

6. (Sturmfels Spr12) Give an example of two uncountable sets A and B such that the intersection $A \cap B$ is (a) finite, (b) countable infinite, or (c) uncountable.
