Prelim Workshop Summer 2018

Algebra Worksheet 6: Linear Algebra III

Symmetric/Hermitian matrices

- Positive (semi-)definiteness
 - 1. Characterization by eigenvalues (7.9.6)
 - 2. Characterization by factorization (7.5.34)
 - 3. Submatrix criterion ("Sylvester's Criterion") (*)
- Sylvester's law of interia, signature of a quadratic form
- Eigenvalues of a hermitian/symmetric/orthogonal/unitary matrix

Inner product spaces

- Working with orthonormal bases, Gram-Schmidt (7.8.5)
- Polarization identity (7.8.1)
- Rayleigh's theorem (7.5.33)

The matrix exponential (7.4.31)

- Proving convergence
- Trick: Jordan form/triangularization (7.9.24)

7.4.31 • Let V be the vector space of all polynomials of degree ≤ 10 and let D be the differentiation operator on V (i.e. Dp(x) = p'(x)). Show that tr D = 0 and find all eigenvectors of D and e^{D} .

7.5.33 • Let k be real, n an integer ≥ 2 , and let $A = (a_{ij})$ be the $n \times n$ matrix such that all the diagonal entries $a_{ii} = k$, all entries $a_{i,i\pm 1}$ immediately above or below the diagonal equal 1, and all other entires equal 0. For example, if n = 5,

$$A = \begin{pmatrix} k & 1 & 0 & 0 & 0 \\ 1 & k & 1 & 0 & 0 \\ 0 & 1 & k & 1 & 0 \\ 0 & 0 & 1 & k & 1 \\ 0 & 0 & 0 & 1 & k \end{pmatrix}$$

Let λ_{\min} and λ_{\max} denote the smallest and largest eigenvalues of A, respectively. Show that $\lambda_{\min} \leq k - 1$ and $\lambda_{\max} \geq k + 1$.

7.5.34 • Let A and B be real $n \times n$ symmetric matrices with B positive definite. Conider the function defined for $x \neq 0$ by $G(x) = \frac{\langle Ax, x \rangle}{\langle Bx, x \rangle}$.

- 1. Show that G attains its maximum value.
- 2. Show that any maximum point U for G is an eigenvector for a certain matrix related to A and B and show which matrix.

7.8.1 • Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function such that

- 1. the function g defined by g(x, y) = f(x + y) f(x) f(y) is bilinear and
- 2. for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$, $f(tx) = t^2 f(x)$.

Show that there is a linear transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ such that $f(x) = \langle x, Ax \rangle$, where $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n (in other words, f is a quadratic form).

7.8.5 • Let w be a positive continuous function on [0, 1], n a positive integer, and P_n the vector space of real polynomials whose degrees are at most n, equipped with the inner product

$$\langle p,q \rangle = \int_0^1 p(t)q(t)w(t)\,dt$$

- 1. Prove that P_n has an orthnormal basis $p_0, p_1, ..., p_n$ such that deg $p_k = k$ for each k.
- 2. Prove that $\langle p_k, p'_k \rangle = 0$ for each k.

7.9.6 • A real symmetric $n \times n$ matrix is called *positive semi-definite* if $x^t Ax \ge 0$ for all $x \in \mathbb{R}^n$. Prove that A is positive semi-definite if and only if tr $AB \ge 0$ for every real symmetric positive semi-definite $n \times n$ matrix B.

7.9.24 • Show that

$$\det(\exp(M)) = e^{\operatorname{tr}(M)}$$

for any complex $n \times n$ matrix M.

(*) • "Sylvester's Criterion": Given a symmetric matrix $A = (a_{ij})_{1 \le i,j \le n} \in M_n(\mathbb{R})$, let A_k denote the upper left submatrix $A_k = (a_{ij})_{1 \le i,j \le k}$.

- 1. Prove by induction on n that A is positive definite if and only if $Det(A_k) > 0$ for k = 1, ..., n.
- 2. Prove that the analogous statement fails for positive semi-definite matrices. That is, find n and $A \in M_n(\mathbb{R})$ symmetric such that $\text{Det}(A_k) \ge 0$ for all $1 \le k \le n$, but $v^t A v < 0$ for some $v \in \mathbb{R}^n$.