Prelim Workshop
Summer 2018

Algebra Worksheet 6: Linear Algebra III

Symmetric/Hermitian matrices

- Positive (semi-)definiteness

1. Characterization by eigenvalues (7.9.6)
2. Characterization by factorization (7.5.34)
3. Submatrix criterion ("Sylvester's Criterion") (*)

- Sylvester's law of interia, signature of a quadratic form
- Eigenvalues of a hermitian/symmetric/orthogonal/unitary matrix

Inner product spaces

- Working with orthonormal bases, Gram-Schmidt (7.8.5)
- Polarization identity (7.8.1)
- Rayleigh's theorem (7.5.33)

The matrix exponential (7.4.31)

- Proving convergence
- Trick: Jordan form/triangularization (7.9.24)
7.4.31 • Let V be the vector space of all polynomials of degree ≤ 10 and let D be the differentiation operator on V (i.e. $\left.D p(x)=p^{\prime}(x)\right)$. Show that $\operatorname{tr} D=0$ and find all eigenvectors of D and e^{D}.
7.5.33 - Let k be real, n an integer ≥ 2, and let $A=\left(a_{i j}\right)$ be the $n \times n$ matrix such that all the diagonal entries $a_{i i}=k$, all entries $a_{i, i \pm 1}$ immediately above or below the diagonal equal 1 , and all other entires equal 0 . For example, if $n=5$,

$$
A=\left(\begin{array}{ccccc}
k & 1 & 0 & 0 & 0 \\
1 & k & 1 & 0 & 0 \\
0 & 1 & k & 1 & 0 \\
0 & 0 & 1 & k & 1 \\
0 & 0 & 0 & 1 & k
\end{array}\right)
$$

Let $\lambda_{\min }$ and $\lambda_{\max }$ denote the smallest and largest eigenvalues of A, respectively. Show that $\lambda_{\min } \leq k-1$ and $\lambda_{\max } \geq k+1$.
7.5.34 - Let A and B be real $n \times n$ symmetric matrices with B positive definite. Conider the function defined for $x \neq 0$ by $G(x)=\frac{\langle A x, x\rangle}{\langle B x, x\rangle}$.

1. Show that G attains its maximum value.
2. Show that any maximum point U for G is an eigenvector for a certain matrix related to A and B and show which matrix.
7.8.1 - Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that
3. the function g defined by $g(x, y)=f(x+y)-f(x)-f(y)$ is bilinear and
4. for all $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}, f(t x)=t^{2} f(x)$.

Show that there is a linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $f(x)=\langle x, A x\rangle$, where $\langle\cdot, \cdot\rangle$ is the usual inner product on \mathbb{R}^{n} (in other words, f is a quadratic form).
7.8.5 - Let w be a positive continuous function on $[0,1], n$ a positive integer, and P_{n} the vector space of real polynomials whose degrees are at most n, equipped with the inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(t) q(t) w(t) d t
$$

1. Prove that P_{n} has an orthnormal basis $p_{0}, p_{1}, \ldots, p_{n}$ such that $\operatorname{deg} p_{k}=k$ for each k.
2. Prove that $\left\langle p_{k}, p_{k}^{\prime}\right\rangle=0$ for each k.
7.9.6 • A real symmetric $n \times n$ matrix is called positive semi-definite if $x^{t} A x \geq 0$ for all $x \in \mathbb{R}^{n}$. Prove that A is positive semi-definite if and only if $\operatorname{tr} A B \geq 0$ for every real symmetric positive semi-definite $n \times n$ matrix B.
7.9.24 • Show that

$$
\operatorname{det}(\exp (M))=e^{\operatorname{tr}(M)}
$$

for any complex $n \times n$ matrix M.
$(*) \bullet$ "Sylvester's Criterion": Given a symmetric matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in M_{n}(\mathbb{R})$, let A_{k} denote the upper left submatrix $A_{k}=\left(a_{i j}\right)_{1 \leq i, j \leq k}$.

1. Prove by induction on n that A is positive definite if and only if $\operatorname{Det}\left(A_{k}\right)>0$ for $k=1, \ldots, n$.
2. Prove that the analogous statement fails for positive semi-definite matrices. That is, find n and $A \in M_{n}(\mathbb{R})$ symmetric such that $\operatorname{Det}\left(A_{k}\right) \geq 0$ for all $1 \leq k \leq n$, but $v^{t} A v<0$ for some $v \in \mathbb{R}^{n}$.
