Prelim Workshop

Summer 2018

Algebra Worksheet 4: Linear Algebra I

Bases and dimension

- Any independent set can be completed to a basis, any spanning set contains a basis
- Recognizing linear constraints. Recognizing dimension questions. (7.1.1, *)

Rank-nullity theorem
Tricks for computing rank

- Find nonsingular submatrix (7.2.7)

Tricks for computing determinants

- Induction (7.2.11, **)
- Vandermonde matrix (7.2.12)
- Add a multiple of a row/column to another row/column
- Find eigenvalues instead $(* * *)$

Characteristic and minimal polynomial

- Cayley-Hamilton theorem
- Minimal polynomial divides characteristic polynomial. Characteristic polynomial divides power of minimal polynomial. (What is the smallest power that must work?) Implications for eigenvalues.
- Use minimal polynomial of $A \in M_{n}(F)$ to reduce polynomials in A with coefficients in F. What is the dimension as an F vector space of this ring? (7.6.5)
- Read off trace and determinant from characterstic polynomial
7.1.1 - Let p, q, r and s be polynomials of degree at most 3 . Which, if any, of the following two conditions is sufficient for the conclusion that the polynomials are linearly dependent?

1. At 1 each of the polynomials has value 0 .
2. At 0 each of the polynomials has the value 1 .
7.2.7 - Let T be a real, symmetric, $n \times n$ tridiagonal matrix:

$$
T=\left(\begin{array}{cccccc}
a_{1} & b_{1} & 0 & \cdots & 0 & 0 \\
b_{1} & a_{2} & b_{2} & \cdots & 0 & 0 \\
0 & b_{2} & a_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n-1} & b_{n-1} \\
0 & 0 & 0 & 0 & b_{n-1} & a_{n}
\end{array}\right)
$$

Assume $b_{j} \neq 0$ for all j. Prove

1. that rank $T \geq n-1$ and
2. that T has n distinct eigenvalues.
7.2.11 \bullet Let $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over the real field \mathbb{R} in the n variables x_{1}, \ldots, x_{n}. Let the matrix A be the $n \times n$ matrix whose i th row is $\left(1, x_{i}, x_{i}^{2}, \ldots, x_{i}^{n-1}\right), i=1, \ldots, n$. Show that

$$
\text { Det } \mathrm{A}=\prod_{i>j}\left(x_{i}-x_{j}\right)
$$

7.2.12 • A matrix of the form

$$
T=\left(\begin{array}{ccccc}
1 & a_{0} & a_{0}^{2} & \cdots & a_{0}^{n} \\
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n}
\end{array}\right)
$$

where the a_{i} are complex numbers, is called a Vandermonde matrix.

1. Prove that the Vandermonde matrix is invertible if the a_{i} are all different. (Do not use 7.2.11.)
2. In this case, prove that for any n complex numbers b_{0}, \ldots, b_{n}, there exists a unique complex polynomial f of degree n such that $f\left(a_{i}\right)=b_{i}$ for $i=0, \ldots, n$.

For applications of the Vandermonde matrix, see 7.2 .5 and 7.2.14.
7.5.3 - Let F be a field, n and m positive integers, and A an $n \times n$ matrix with entries in F such that $A^{m}=0$. Prove that $A^{n}=0$.
7.6.5 • Compute A^{10} for the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 1 \\
2 & 4 & 2 \\
-1 & -1 & 1
\end{array}\right)
$$

(*) • (/L] 15.4.6) Prove that every polynomial $f \in \mathbb{R}[x]$ has a nonzero multiple such that every exponent is prime. That is, $0 \neq g=f \cdot h$,

$$
g=\sum_{\mathrm{p} \text { prime }} a_{p} x^{p}
$$

for some coefficients a_{p}.
$(* *) \bullet$ Assume that $a^{2}-4 b c \neq 0$. Compute the determinant of the tridiagonal matrix that has a on the main diagonal, b on the first above-diagonal, and c on the first below-diagonal:

$$
T=\left(\begin{array}{cccccc}
a & b & 0 & \cdots & 0 & 0 \\
c & a & b & \cdots & 0 & 0 \\
0 & c & a & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a & b \\
0 & 0 & 0 & 0 & c & a
\end{array}\right)
$$

$(* * *) \bullet([L]$ 6.3.4(a)) Compute the determinant of the following matrix.

$$
\left(\begin{array}{cccccc}
\beta & \alpha & \alpha & \cdots & \alpha & \alpha \\
\alpha & \beta & \alpha & \cdots & \alpha & \alpha \\
\alpha & \alpha & \beta & \cdots & \alpha & \alpha \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\alpha & \alpha & \alpha & \alpha & \beta & \alpha \\
\alpha & \alpha & \alpha & \alpha & \alpha & \beta
\end{array}\right)
$$

[L] Discover Linear Algebra (draft) by Laszlo Babai. http://people.cs.uchicago.edu/ laci/linalgbook.dir/book.pdf

