Prelim Workshop

Summer 2018

Analysis Worksheet 6: Complex Analysis II

1. True or false: A function $f(z)$ analytic on $|z-a|<r$ and continuous on $|z-a| \leq r$ extends, for some $\delta>0$, to a function analytic on $|z-a|<r+\delta$? Give a proof or a counterexample.

SdS 5.6.2, Sp88. Types of singularities, branch points.
2. Let the function f be analytic in the region $|z|>1$ of the complex plane. Prove that if f is real valued on the interval $(1, \infty)$ of the real axis, then f is also real valued on the interval $(-\infty,-1)$.

SdS 5.6.20, Fa92. Laurent expansion/Schwarz reflection.
3. Prove or disprove: If the function f is analytic in the entire complex plane, and if f maps every unbounded sequence to an unbounded sequence, then f is a polynomial.

SdS 5.6.29, Sp87. Singularities at infinity.
4. For $0<a<b$, evaluate the integral

$$
I=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|a e^{i \theta}-b\right|^{4}} d \theta
$$

SdS 5.7.4, Fa99. Contour integrals.
5. Let f be an entire function such that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \leq A r^{2 k}, \quad(0<r<\infty)
$$

where k is a positive integer and A is a positive constant. Prove that f is a constant multiple of the function z^{k}.

SdS 5.7.9, Sp01. Taylor expansion.
6. Let f be continuous on \mathbb{C} and analytic on $\{z: \operatorname{Im}(z) \neq 0\}$. Prove that f must be analytic on \mathbb{C}.

SdS 5.7.6, Su77. Morera's Theorem.
7. Consider the polynomial

$$
p(z)=z^{5}+z^{3}+5 z^{2}+2 .
$$

How many zeros (counting multiplicities) does p have in the annular region $1<|z|<2$?
SdS 5.8.7, Fa83. Rouche's Theorem.

