1. Prove that a real valued C^{3} function f on \mathbb{R}^{2} whose Laplacian,

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}
$$

is everywhere positive, cannot have a local maximum.
SdS 2.2.12, Fa88. Taylor expansion.
2. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, 0)=0$ and

$$
f(x, y)=\left(1-\cos \frac{x^{2}}{y}\right) \sqrt{x^{2}+y^{2}}
$$

for $y \neq 0$.

1) Show that f is continuous at $(0,0)$.
2) Calculate all the directional derivatives of f at $(0,0)$.
3) Show that f is not differentiable at $(0,0)$.

SdS 2.2.3, Sp03. Definition of continuity, differentiability.
3. Let $M_{2 \times 2}$ be the space of 2×2 matrices over \mathbb{R}, identified in the usual way with \mathbb{R}^{4}. Let the function F from $M_{2 \times 2}$ into $M_{2 \times 2}$ be defined by

$$
F(X)=X+X^{2}
$$

Prove that the range of F contains a neighborhood of the origin.
SdS 2.2.43, Sp96. Inverse Function Theorem.
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable. Assume the Jacobian matrix $\left(\partial f_{i} / \partial x_{j}\right)$ has rank n everywhere. Suppose f is proper; that is, $f^{-1}(K)$ is compact whenever K is compact. Prove $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.

SdS 2.2.8, Sp80, Fa92. Closed and open. Also see Hadamard Global Inverse Thm.
5. Let f be a continuous real valued function on \mathbb{R} such that

$$
f(x)=f(x+1)=f(x+\sqrt{2})
$$

for all x. Prove that f is constant.
SdS 1.7.4, Sp86. Fourier series.
6. Prove or supply a counterexample: If f and g are C^{1} real valued functions on $(0,1)$, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0, g, g^{\prime} \neq 0$, and $\lim _{x \rightarrow 0} f(x) / g(x)=c$, then

$$
\lim _{x \rightarrow 0} f^{\prime}(x) / g^{\prime}(x)=c .
$$

SdS 1.4.14, Fa83, Fa84. L'Hopital's Rule.

