## Analysis Worksheet 3: Real Analysis I

1. 2) Prove that there is no continuous map from the closed interval $[0,1]$ onto the open interval $(0,1)$.
2) Find a continuous surjective map from the open interval $(0,1)$ onto the closed interval $[0,1]$.
3) Prove that no map in Part 2 can be bijective.

SdS 1.1.10, Fa82. Compactness properties, Intermediate Value Theorem.
2. Let $f$ be a $C^{2}$ function on the real line. Assume $f$ is bounded with bounded second derivative. Let

$$
A=\sup _{x \in \mathbb{R}}|f(x)|, \quad B=\sup _{x \in \mid R}\left|f^{\prime \prime}(x)\right| .
$$

Prove that

$$
\sup _{x \in \mathbb{R}}\left|f^{\prime}(x)\right| \leq 2 \sqrt{A B}
$$

SdS 1.1.17, Fa84, Fa97. Taylor expansion.
3. Let $x_{n}$ be a sequence of real numbers so that $\lim _{n \rightarrow \infty} 2 x_{n+1}-x_{n}=x$. Show that $\lim _{n \rightarrow \infty} x_{n}=x$.

SdS 1.3.8, Sp03. Limsup, liminf.
4. Let $a$ and $x_{0}$ be positive numbers, and define the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ recursively by

$$
x_{n}=\frac{1}{2}\left(x_{n-1}+\frac{a}{x_{n-1}}\right) .
$$

Prove that this sequence converges, and find its limit.
SdS 1.3.9, Sp00. Recurrence relations.
5. Suppose $f$ is a continuous real valued function. Show that

$$
\int_{0}^{1} f(x) x^{2} d x=\frac{1}{3} f(\xi)
$$

for some $\xi \in[0,1]$.
SdS 1.5.3, Fa90. Intermediate Value Theorem.
6 . Let $0 \leq a \leq 1$ be given. Determine all nonnegative continuous functions $f$ on $[0,1]$ which satisfy the following three conditions:

$$
\int_{0}^{1} f(x) d x=1, \quad \int_{0}^{1} x f(x) d x=a, \quad \int_{0}^{1} x^{2} f(x) d x=a^{2}
$$

SdS 1.5.9, Fa85. Cauchy-Schwarz or Jensen's Inequalities.

