Prelim Workshop

Summer 2018

Analysis Worksheet 1: Differential Equations

1. Suppose f is a differentiable function from the reals into the reals. Suppose $f^{\prime}(x)>$ $f(x)$ for all $x \in \mathbb{R}$, and $f\left(x_{0}\right)=0$. Prove that $f(x)>0$ for all $x>x_{0}$.

SdS 1.4.8, Sp77, Su82. Gronwall inequality.
2. Let n be an integer larger than 1 . Is there a differentiable function on $[0, \infty)$ whose derivative equals its nth power and whose value at the origin is positive?

SdS 3.1.3, Fa77, Fa93. ODE ill-posedness.
3. Prove that the initial value problem

$$
\frac{d x}{d t}=3 x+85 \cos x, \quad x(0)=77,
$$

has a solution $x(t)$ defined for all $t \in \mathbb{R}$.
SdS 3.1.9, Su77, Su80, Sp82, Sp83. Picard's Theorem (ODE well-posedness).
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous nowhere vanishing function, and consider the differential equation

$$
\frac{d y}{d x}=f(y)
$$

1. For each real number c, show that this equation has a unique continuously differentiable solution $y=y(x)$ on a neighborhood of 0 which satisfies the initial condition $y(0)=c$.
2. Deduce the conditions on f under which the solution y exists for all $x \in \mathbb{R}$, for every initial value c.

SdS 3.1.10, Fa82. Implicit/Inverse Function Theorem. (Previous incorrect suggestion: Fixed Point Theorem.)
5. Consider the equation

$$
\frac{d y}{d x}=y-\sin y
$$

Show that there is an $\epsilon>0$ such that if $\left|y_{0}\right|<\epsilon$, then the solution $y=f(x)$ with $f(0)=y_{0}$ satisfies

$$
\lim _{x \rightarrow-\infty} f(x)=0
$$

SdS 3.1.14, Sp84.

