Math 55: Discrete Mathematics
Williams, Spring 2018
GSI: Ai

Week 1 Debrief: Propositional Logic

Modified: January 24, 2018

Here are some thoughts, misconceptions, or errors I encountered a lot during my two sections:

1. Worksheet Problem 2 (the one with the parents):

- Some operations don't make sense with just any variable. A lot of people tried to translate the "two parents" aspect of the problem into something about " $2 x$." This expression doesn't have a natural interpretation because in this problem, x represents an object (a person), not a number. (For comparison, $x+y$ also doesn't make sense; what does it mean to add two people? In contrast, something like $x \neq y$ does make sense; it means that x is not the same person as y.)
- Different order of quantifiers mean different things. Some people started their answer with

$$
\exists y \exists z \forall x \ldots
$$

This ends up saying that there exists two "supreme beings" y and z who are the parents of everyone. The correct answer would start

$$
\forall x \exists y \exists z \ldots
$$

which will end up saying that every person x has parents y and z, and so on, as desired.

- An answer which is just not right. Here's a wrong answer:

$$
\forall x(\exists!y P(y, x)) \wedge(\exists!z P(z, x))
$$

Here's one way to see that this is not right: Note that the expressions \exists ! y $P(y, x)$ and $\exists!z P(z, x)$ are identical. (If you don't understand why, here's an analogy: Note that

$$
\sum_{i=1}^{2} i=\sum_{j=1}^{2} j=3
$$

The choice of i or j for my "dummy variable" doesn't matter. Similarly, the choice of y or z for the dummy variable above doesn't matter.) Since blah \wedge blah is equivalent with just blah, the above answer is simply

$$
\forall x(\exists!y P(y, x))
$$

which is the sentence "Everyone has exactly one parent." From the English side, this is clearly not the same as the given problem.
2. Worksheet Problem 3 (the one with the truth table):

- Do as little work as logically possible. This problem was asking whether something is a tautology. For something to be a tautology, the "last column" should all be T. So as soon as you see an F in the last column, you can stop working and conclude, "not a tautology." Saves you a few seconds.

