Augmentations are sheaves (with Lenhard Ng, Dan Rutherford, Vivek Shende, and Eric Zaslow)

Steven Sivek

Princeton University

April 19, 2015

Steven Sivek (Princeton University) Augmentations are sheaves (with Lenhard

Singular support

A sheaf \mathcal{F} on M is constructible if M is a finite union of locally closed sets U_i such that $\mathcal{F}|_{U_i}$ is locally constant.

Definition (Kashiwara-Schapira)

To define the microlocal stalk of \mathcal{F}^{\bullet} at $(x,\xi) \in T_x^*M$:

• Let $f: U_x \to \mathbb{R}$ be Morse near x with f(x) = 0, $df_X = \xi$.

Then

$$\mu_{x,\xi}\mathcal{F}^{\bullet} = \mathcal{H}^*_{\mathrm{Morse}}(\mathcal{U}^{(-\infty,\epsilon]}_x, \mathcal{U}^{(-\infty,-\epsilon]}_x; \mathcal{F}^{\bullet}).$$

• The singular support $ss(\mathcal{F}^{\bullet}) \subset \mathcal{T}^*M$ is defined as

$$ss(\mathcal{F}^{\bullet}) = \{(x,\xi) \in T^*M \mid \mu_{x,\xi}\mathcal{F}^{\bullet} \neq 0\}.$$

• This is a closed, conic Lagrangian.

Theorem (Nadler-Zaslow, Nadler '06)

There is an equivalence of categories

$$\mu: D_c(M) \xrightarrow{\sim} DFuk(T^*M)$$

where $D_c(M)$ is the derived category of constructible sheaves on M.

- What about a relative version?
- $T^{\infty}M$ is naturally a contact manifold. Given a Legendrian Λ , we have:
 - sheaves with microlocal support along Λ at infinity;
 - Lagrangians in T^*M which are asymptotic to Λ at infinity.

Sheaves and Legendrian knots [STZ]

Fix $M = \mathbb{R}^2$ and embed $(\mathbb{R}^3, \xi_{std}) \hookrightarrow T^{\infty} \mathbb{R}^2$ as the bottom half of the cotangent fibers.

Definition (Shende-Treumann-Zaslow)

Given Legendrian $\Lambda \subset \mathbb{R}^3$, let $Sh^{\bullet}_{\mathbb{R}^2}(\Lambda; r)$ be the dg-category of complexes of constructible sheaves of *r*-modules on \mathbb{R}^2 with singular support at infinity contained in $\Lambda \subset T^{\infty,-}\mathbb{R}^2$.

Theorem (STZ): $Sh_{\mathbb{R}^2}^{\bullet}(\Lambda; r)$ is an invariant of Λ up to Legendrian isotopy.

Sheaves on \mathbb{R}^2 [STZ]

What does the definition of $Sh_{\mathbb{R}^2}^{\bullet}(\Lambda; r)$ mean?

- The front projection of A stratifies \mathbb{R}^2_{xz} into {cusps and crossings}, {strands}, {everything else}.
- A sheaf ${\mathcal F}$ should be locally constant on each stratum.
- Sections $\mathcal{F}(U)$ are determined by the smallest stratum intersecting U:

• Restriction maps point from a component of a stratum into the higher-dimensional strata:

April 19, 2015

5 / 21

The singular support condition [STZ]

The fact that $ss(\mathcal{F}) \subset T^{\infty,-}\mathbb{R}^2$ means that all *downward*-pointing restriction maps are isomorphisms.

- \bullet Sections of ${\mathcal F}$ on each stratum are determined by sections on open regions.
- Restriction maps are determined by the *upward* restriction maps.
- At cusps and crossings:

• $U \rightarrow V \rightarrow U$ is the identity; • $A \rightarrow B \oplus C \rightarrow D$ is acyclic.

Note: $\operatorname{Cone}(U \to V) \cong \operatorname{Cone}(V \to U)$ up to a degree shift, and $\operatorname{Cone}(A \to B) \cong \operatorname{Cone}(C \to D)$.

The cones of the upward restriction maps are quasi-isomorphic all along the front projection.

- They determine a local system of complexes on Λ , the microlocal monodromy $\mu mon(\mathcal{F})$.
- If $\mu mon(\mathcal{F})$ is supported in degree zero, its rank is the microlocal rank of \mathcal{F} .

Definition

 $C_1(\Lambda; r) \subset Sh^{\bullet}_{\mathbb{R}^2}(\Lambda; r)$ is the full subcategory of sheaves with microlocal rank 1 whose stalks vanish for $z \ll 0$.

• $C_1(\Lambda; r)$ is a dg-category and a Legendrian isotopy invariant of Λ up to equivalence.

Example: the trefoil

- Images of f, g, h, i and ker $(j) \leftrightarrow$ points $f, g, h, i, j \in \mathbb{CP}^1$.
- Cusp conditions: $f \neq j$, $i \neq j$.
- Crossing conditions: $f \neq g$, $g \neq h$, $h \neq i$.

So $Ob(\mathcal{C}_1(\Lambda; \mathbb{C})) \cong \{(a_0, \ldots, a_4) \in (\mathbb{CP}^1)^5 \mid a_i \neq a_{i+1 \pmod{5}}\}.$ For $\mathcal{C}_1(\Lambda; \mathbb{F}_2)$: exactly five objects, up to equivalence.

Conjecture (STZ)

 $\mathcal{C}_1(\Lambda; k) \cong Aug(\Lambda; k).$

The augmentation category

Motivation (or hindsight?) for conjecturing $C_1(\Lambda; k) \cong Aug(\Lambda; k)$: $Aug(\Lambda; k)$ is an algebraic version of relative Fukaya category.

- $Ob(Fuk(T^*\mathbb{R}^2, \Lambda))$: Lagrangians L asymptotic to Λ at infinity
- $Ob(Aug(\Lambda; k))$: augmentations $\epsilon : \mathcal{A}(\Lambda) \to k$.
 - Thm (Ekholm-Honda-Kálmán): L induces an augmentation ϵ_L .
- $\operatorname{Hom}_{Fuk}(L_1, L_2)$: Lagrangian Floer chain complex
- Hom_{Aug}(ϵ_1, ϵ_2): bilinearized contact chain complex of Λ .
 - Thm: $H^*\operatorname{Hom}_{Aug}(\epsilon_L, \epsilon_L) \cong H^*(L) \cong HF^*(L, L).$

Theorem (Ng-Rutherford-Shende-S-Zaslow) $C_1(\Lambda; k) \cong Aug(\Lambda; k).$

April 19, 2015

9 / 21

- $C_1(\Lambda; k)$ consists of sheaves, which satisfy a gluing axiom.
- We can define C_1 over arbitrary open sets in \mathbb{R}^2 , and they glue together tautologically to produce the full C_1 .
- In other words: $C_1(\Lambda; k)$ is itself a sheaf! (of dg-categories on \mathbb{R}^2)
- We'll restrict C₁ to vertical strips U × ℝ ⊂ ℝ_{xz}, so C₁(Λ; k) is a sheaf of dg-categories over ℝ_x.

Proposition

 $Aug(\Lambda; k)$ is also a sheaf of A_{∞} -categories over \mathbb{R}_{x} .

Then we can break \mathbb{R} into pieces where Λ is very simple, compare C_1 to *Aug* for each of them, and glue back together.

Since $Aug(\Lambda)$ is determined by the (fully non-commutative) DGA $\mathcal{A}(\Lambda)$, it will suffice to prove that $\mathcal{A}(\Lambda)$ is a cosheaf of DGAs over \mathbb{R}_{\times} . This means:

- To each open $U \subset \mathbb{R}_{\times}$ we assign a DGA $\mathcal{A}(\Lambda|_U)$.
- For $U \subset V$ we have inclusions $\iota_{UV} : \mathcal{A}(\Lambda|_U) \to \mathcal{A}(\Lambda|_V)$.
- If $W = U \cup_X V$ then we have a pushout square

$$\begin{array}{c} \mathcal{A}(\Lambda|_X) \longrightarrow \mathcal{A}(\Lambda|_V) \\ \downarrow \\ \mathcal{A}(\Lambda|_U) \longrightarrow \mathcal{A}(\Lambda|_W). \end{array}$$

Dualizing this will produce the (pre-)sheaf of categories $Aug(\Lambda)$.

$\mathcal{A}(\Lambda)$ is a cosheaf

We associate algebras to "bordered" tangles as follows:

- Generators: crossings, right cusps, plus a_{ij} for $1 \le i < j \le n_L$.
 - The *a_{ij}* represent chords from the *i*th endpoint on the left to the *j*th.
- ∂c and the inclusion map from the right count properly embedded disks whose *x*-coordinate has a unique local maximum at *c*.

•
$$\partial a_{ij} = \sum_{i < k < j} (-1)^{\sigma} a_{ik} a_{kj}.$$

$\mathcal{A}(\Lambda)$ is a cosheaf, continued

We prove that $\partial^2=0$ and that inclusion maps are DGA morphisms by staring at:

Pushouts: maps send crossings/cusps to themselves, uniquely specifying

$$\mathcal{A}(\Lambda|_U) o \mathcal{A}(\Lambda|_{U\cup_{\boldsymbol{X}}V}) \leftarrow \mathcal{A}(\Lambda|_V).$$

Simple pieces of a front

After putting a knot in plat position, we can break it into:

So we'll only have to study C_1 and Aug for "strands", a crossing, "left cusps", and "right cusps".

Steven Sivek (Princeton University) Augmentations are sheaves (with Lenhard

Simplest piece: *n* strands

The DGA $\mathcal{A}(\equiv_n; \mu)$ has generators a_{ij} , $1 \leq i < j \leq n$, and (over \mathbb{F}_2)

$$\partial \mathsf{a}_{ij} = \sum_{i < k < j} \mathsf{a}_{ik} \mathsf{a}_{kj}.$$

- Ob(Aug(≡)): augmentations ε : A → F₂. Packaging generators into an upper triangular A = (a_{ij}), we have ∂ ∘ ε = 0 iff ε(A)² = 0.
- $\operatorname{Hom}_{\operatorname{Aug}}(\epsilon, \epsilon')$: generated over \mathbb{F}_2 by a_{ij}^+ , $1 \leq i \leq j \leq n$.
- Multiplication: $m_2(a_{kj}^+, a_{ik}^+) = a_{ij}^+$ up to sign.
- Define the Morse complex category $MC(\equiv; \mu)$:
 - Let V be the free graded r-module with deg $|i
 angle=-\mu(i)$, filtration

$$^{k}V = \operatorname{Span}(|n\rangle, \ldots, |k+1\rangle).$$

- Ob(MC): filtered, degree-1 differentials $d: V \rightarrow V$.
- Hom_{MC}(d, d') = Hom_{filt}(V, V) with differential $D\phi = d' \circ \phi + \phi \circ d$.

Define a dg functor ${\it Aug}(\equiv)
ightarrow {\it MC}(\equiv)$ on objects by

$$(\epsilon: \mathcal{A}(\equiv) \to \mathbb{F}_2) \mapsto \epsilon(\mathcal{A})^T$$

We view $\epsilon(A)^T$ as a graded, filtered differential $V \to V$. On morphisms:

$$a_{ij}^+ \mapsto |j\rangle\langle i|.$$

This (with appropriate signs) identifies $Aug(\equiv) = MC(\equiv)$:

Proposition

 $Aug(\equiv, \mu)$ is the dg-category of filtered, degree-1 differentials on the vector space V with grading deg $|i\rangle = -\mu(i)$.

Sheaves on *n* strands

An object of $C_1(\equiv)$ associates a complex of sheaves to each region, and upward morphisms between them: it's a representation in chain complexes of the A_{n+1} quiver

 $\bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet.$

In fact: $Sh(\equiv)$ is equivalent to $Rep_{ch}(A_{n+1})$.

Define a functor $MC(\equiv, \mu) \rightarrow Rep_{ch}(A_{n+1})$ by $(V, d) \mapsto ({}^{n}V \hookrightarrow {}^{n-1}V \hookrightarrow \ldots \hookrightarrow {}^{0}V).$

(Recall: each ${}^{k}V = \operatorname{span}(|n\rangle, \ldots, |k+1\rangle)$ is a dg-vector space.)

Proposition

If r = k is a field, this is an equivalence onto the part of $\operatorname{Rep}_{ch}(A_{n+1})$ where $\operatorname{Cone}(R_i \to R_{i-1}) = k[-\mu(i)]$, which is equivalent to $C_1(\equiv, \mu)$.

The proof uses Gabriel's theorem classifying indecomposable A_{n+1} quiver reps, so k must be a field.

April 19, 2015

17 / 21

- We place a base point (hence a t^{±1}_i) at each right cusp.
- Augmentations: $\partial c_i = t_i^{\pm 1} + a_{2i-1,2i}$, so $\epsilon(a_{2i-1,2i})$ must be invertible.
- Generators of $\operatorname{Hom}_{Aug}(\epsilon_1, \epsilon_2)$ are $2 \to 1$ Reeb chords: $a_{ij}^+ = (a_{ij}^{12})^{\vee}$, $i \leq j$.

So $\operatorname{Hom}_{\operatorname{Aug}(\succ)}(\epsilon_1, \epsilon_2) = \operatorname{Hom}_{\operatorname{Aug}(\equiv)}(\epsilon_1|_{\equiv}, \epsilon_2|_{\equiv}).$

Conclusion 1: $Aug(\succ)$ is a full subcategory of $Aug(\equiv)$. Conclusion 2: All objects in $Aug(\succ)$ are isomorphic!

From this it is not hard to show that $Aug(\succ) \cong C_1(\succ)$.

A(≺) = k - there are no Reeb chord generators!

• So
$$Ob(Aug(\prec)) = \{\epsilon\}.$$

• $\operatorname{Hom}_{Aug}(\epsilon, \epsilon)$ is generated by y_1, \ldots, y_n .

So Hom
$$(\epsilon, \epsilon) = \bigoplus_{i=1}^{n} \mathbb{F} y_{i}^{+}$$
, with $m_{2}(y_{i}^{+}, y_{j}^{+}) = \delta_{ij}$.

Restriction map $Aug(\prec) \rightarrow Aug(\equiv)$: $y_i^+ \mapsto a_{2i-1,2i-1}^+ + a_{2i,2i}^+$.

Again, we have $Aug(\prec) \cong C_1(\prec)$.

Crossings

• Augmentations: determined by $\epsilon(c)$ and $\epsilon|_{\equiv_{\text{left}}}$ with $\epsilon(a_{k,k+1}) = 0$.

- Differential on Aug(×): complicated but explicit.
- Multiplication: $m_2(a_{kj}^+, a_{ik}^+) = \pm a_{ij}^+$, $m_2(c^+, a_{kk}^+) = m_2(a_{k+1,k+1}^+, c^+) = -c^+$.

Note: $Aug(\times)$ is a dg-category, but the restriction

$$\rho_R : Aug(\times) \to Aug(\equiv_{\mathrm{right}})$$

is an A_{∞} functor – it has higher maps!

In any case: $Aug(\times)$ is equivalent to $C_1(\times)$. Steven Sivek (Princeton University) Augmentations are sheaves (with Lenhard April 19, 2015 20 / 21 Since $Aug \cong C^1$ for each of the basic pieces

 $\equiv,\prec,\times,\succ$

compatibly with restriction maps, we glue these all together to get:

Theorem (Ng-Rutherford-Shende-S.-Zaslow) $Aug(\Lambda; k) \cong C_1(\Lambda; k).$

Thank you!