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Singular support

A sheaf F on M is constructible if M is a finite union of locally closed sets
Ui such that F|Ui is locally constant.

Definition (Kashiwara-Schapira)
To define the microlocal stalk of F• at (x , ξ) ∈ T ∗x M:

Let f : Ux → R be Morse near x with f (x) = 0, dfX = ξ.
Then

µx ,ξF• = H∗Morse(U(−∞,ε]
x ,U(−∞,−ε]

x ;F•).

The singular support ss(F•) ⊂ T ∗M is defined as

ss(F•) = {(x , ξ) ∈ T ∗M | µx ,ξF• 6= 0}.

This is a closed, conic Lagrangian.
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Microlocalization

Theorem (Nadler-Zaslow, Nadler ’06)
There is an equivalence of categories

µ : Dc(M)
∼−→ DFuk(T ∗M)

where Dc(M) is the derived category of constructible sheaves on M.

What about a relative version?
T∞M is naturally a contact manifold. Given a Legendrian Λ, we have:

sheaves with microlocal support along Λ at infinity;
Lagrangians in T ∗M which are asymptotic to Λ at infinity.
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Sheaves and Legendrian knots [STZ]

Fix M = R2 and embed (R3, ξstd) ↪→ T∞R2 as the bottom half of the
cotangent fibers.

Definition (Shende-Treumann-Zaslow)

Given Legendrian Λ ⊂ R3, let Sh•R2(Λ; r) be the dg-category of complexes
of constructible sheaves of r -modules on R2 with singular support at
infinity contained in Λ ⊂ T∞,−R2.

Theorem (STZ): Sh•R2(Λ; r) is an invariant of Λ up to Legendrian isotopy.
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Sheaves on R2 [STZ]

What does the definition of Sh•R2(Λ; r) mean?
The front projection of Λ stratifies R2

xz into {cusps and crossings},
{strands}, {everything else}.
A sheaf F should be locally constant on each stratum.
Sections F(U) are determined by the smallest stratum intersecting U:

Restriction maps point from a component of a stratum into the
higher-dimensional strata:
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The singular support condition [STZ]

The fact that ss(F) ⊂ T∞,−R2 means that all downward-pointing
restriction maps are isomorphisms.

Sections of F on each stratum are determined by sections on open
regions.
Restriction maps are determined by the upward restriction maps.
At cusps and crossings:

U

V

U

A

D

B C

1 U → V → U is the identity;
2 A→ B ⊕ C → D is acyclic.

Note: Cone(U → V ) ∼= Cone(V → U) up to a degree shift, and
Cone(A→ B) ∼= Cone(C → D).
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Microlocal rank [STZ]

The cones of the upward restriction maps are quasi-isomorphic all along the
front projection.

They determine a local system of complexes on Λ, the microlocal
monodromy µmon(F).
If µmon(F) is supported in degree zero, its rank is the microlocal rank
of F .

Definition
C1(Λ; r) ⊂ Sh•R2(Λ; r) is the full subcategory of sheaves with microlocal
rank 1 whose stalks vanish for z � 0.

C1(Λ; r) is a dg-category and a Legendrian isotopy invariant of Λ up to
equivalence.
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Example: the trefoil

f g
h i

j

C C C C

C
2

Images of f , g , h, i and ker(j) ↔ points f , g , h, i , j ∈ CP1.
Cusp conditions: f 6= j , i 6= j .
Crossing conditions: f 6= g , g 6= h, h 6= i .

So Ob(C1(Λ;C)) ∼= {(a0, . . . , a4) ∈ (CP1)5 | ai 6= ai+1 (mod 5)}.
For C1(Λ;F2): exactly five objects, up to equivalence.

Conjecture (STZ)
C1(Λ; k) ∼= Aug(Λ; k).
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The augmentation category

Motivation (or hindsight?) for conjecturing C1(Λ; k) ∼= Aug(Λ; k):
Aug(Λ; k) is an algebraic version of relative Fukaya category.

Ob(Fuk(T ∗R2,Λ)): Lagrangians L asymptotic to Λ at infinity
Ob(Aug(Λ; k)): augmentations ε : A(Λ)→ k .

Thm (Ekholm-Honda-Kálmán): L induces an augmentation εL.

HomFuk(L1, L2): Lagrangian Floer chain complex
HomAug (ε1, ε2): bilinearized contact chain complex of Λ.

Thm: H∗HomAug (εL, εL) ∼= H∗(L) ∼= HF ∗(L, L).

Theorem (Ng-Rutherford-Shende-S-Zaslow)
C1(Λ; k) ∼= Aug(Λ; k).
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Aug=Sh: basic strategy

C1(Λ; k) consists of sheaves, which satisfy a gluing axiom.
We can define C1 over arbitrary open sets in R2, and they glue
together tautologically to produce the full C1.
In other words: C1(Λ; k) is itself a sheaf! (of dg-categories on R2)
We’ll restrict C1 to vertical strips U × R ⊂ Rxz , so C1(Λ; k) is a sheaf
of dg-categories over Rx .

Proposition
Aug(Λ; k) is also a sheaf of A∞-categories over Rx .

Then we can break R into pieces where Λ is very simple, compare C1 to
Aug for each of them, and glue back together.
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Aug is a sheaf

Since Aug(Λ) is determined by the (fully non-commutative) DGA A(Λ), it
will suffice to prove that A(Λ) is a cosheaf of DGAs over Rx . This means:

To each open U ⊂ Rx we assign a DGA A(Λ|U).
For U ⊂ V we have inclusions ιUV : A(Λ|U)→ A(Λ|V ).
If W = U ∪X V then we have a pushout square

A(Λ|X ) //

��

A(Λ|V )

��
A(Λ|U) // A(Λ|W ).

Dualizing this will produce the (pre-)sheaf of categories Aug(Λ).
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A(Λ) is a cosheaf

We associate algebras to “bordered” tangles as follows:

Generators: crossings, right cusps, plus aij for 1 ≤ i < j ≤ nL.
The aij represent chords from the ith endpoint on the left to the jth.

∂c and the inclusion map from the right count properly embedded
disks whose x-coordinate has a unique local maximum at c .

∂aij =
∑

i<k<j(−1)σaikakj .
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A(Λ) is a cosheaf, continued

We prove that ∂2 = 0 and that inclusion maps are DGA morphisms by
staring at:

Pushouts: maps send crossings/cusps to themselves, uniquely specifying

A(Λ|U)→ A(Λ|U∪XV )← A(Λ|V ).
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Simple pieces of a front

After putting a knot in plat position, we can break it into:

So we’ll only have to study C1 and Aug for “strands”, a crossing, “left
cusps”, and “right cusps”.
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Simplest piece: n strands

The DGA A(≡n;µ) has generators aij , 1 ≤ i < j ≤ n, and (over F2)

∂aij =
∑

i<k<j

aikakj .

Ob(Aug(≡)): augmentations ε : A → F2. Packaging generators into
an upper triangular A = (aij), we have ∂ ◦ ε = 0 iff ε(A)2 = 0.
HomAug (ε, ε′): generated over F2 by a+ij , 1 ≤ i ≤ j ≤ n.

Multiplication: m2(a+kj , a
+
ik) = a+ij up to sign.

Define the Morse complex category MC (≡;µ):

Let V be the free graded r -module with deg |i〉 = −µ(i), filtration

kV = Span(|n〉, . . . , |k + 1〉).

Ob(MC ): filtered, degree-1 differentials d : V → V .
HomMC (d , d ′) = Homfilt(V ,V ) with differential Dφ = d ′ ◦ φ+ φ ◦ d .
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Simplest piece: n strands

Define a dg functor Aug(≡)→ MC (≡) on objects by(
ε : A(≡)→ F2

)
7→ ε(A)T

We view ε(A)T as a graded, filtered differential V → V . On morphisms:

a+ij 7→ |j〉〈i |.

This (with appropriate signs) identifies Aug(≡) = MC (≡):

Proposition
Aug(≡, µ) is the dg-category of filtered, degree-1 differentials on the vector
space V with grading deg |i〉 = −µ(i).
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Sheaves on n strands

An object of C1(≡) associates a complex of sheaves to each region, and
upward morphisms between them: it’s a representation in chain complexes
of the An+1 quiver

• → • → · · · → •.
In fact: Sh(≡) is equivalent to Repch(An+1).

Define a functor MC (≡, µ)→ Repch(An+1) by

(V , d) 7→
(nV ↪→n−1V ↪→ . . . ↪→0V ).

(Recall: each kV = span(|n〉, . . . , |k + 1〉) is a dg-vector space.)

Proposition
If r = k is a field, this is an equivalence onto the part of Repch(An+1)
where Cone(Ri → Ri−1) = k[−µ(i)], which is equivalent to C1(≡, µ).

The proof uses Gabriel’s theorem classifying indecomposable An+1 quiver
reps, so k must be a field.
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Right cusps

We place a base point (hence a t±1
i ) at

each right cusp.
Augmentations: ∂ci = t±1

i + a2i−1,2i , so
ε(a2i−1,2i ) must be invertible.
Generators of HomAug (ε1, ε2) are 2→ 1
Reeb chords: a+ij = (a12

ij )∨, i ≤ j .

1

2

3

4

5

6

c1

c2

c3

So HomAug(�)(ε1, ε2) = HomAug(≡)(ε1|≡, ε2|≡).

Conclusion 1: Aug(�) is a full subcategory of Aug(≡).
Conclusion 2: All objects in Aug(�) are isomorphic!

From this it is not hard to show that Aug(�) ∼= C1(�).
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Left cusps

A(≺) = k – there are no Reeb chord
generators!
So Ob(Aug(≺)) = {ε}.
HomAug (ε, ε) is generated by y1, . . . , yn.

1

2

3

4

5

6

y1

y2

y3

So Hom(ε, ε) =
⊕n

i=1 Fy
+
i , with m2(y+i , y

+
j ) = δij .

Restriction map Aug(≺)→ Aug(≡): y+i 7→ a+2i−1,2i−1 + a+2i ,2i .

Again, we have Aug(≺) ∼= C1(≺).
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Crossings

c

k

k+1

Augmentations: determined by ε(c) and ε|≡left with ε(ak,k+1) = 0.
Differential on Aug(×): complicated but explicit.
Multiplication: m2(a+kj , a

+
ik) = ±a+ij ,

m2(c+, a+kk) = m2(a+k+1,k+1, c
+) = −c+.

Note: Aug(×) is a dg-category, but the restriction

ρR : Aug(×)→ Aug(≡right)

is an A∞ functor – it has higher maps!

In any case: Aug(×) is equivalent to C1(×).
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Conclusion

Since Aug ∼= C1 for each of the basic pieces

≡,≺,×,�

compatibly with restriction maps, we glue these all together to get:

Theorem (Ng-Rutherford-Shende-S.-Zaslow)
Aug(Λ; k) ∼= C1(Λ; k).

Thank you!
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