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Abstract. In this survey paper we state and prove results about finite dimensional representations
of sln(C) and briefly discuss Schur-Weyl Duality and representation theory of the symmetric group
Sn. In particular, every finite-dimensional representation of sln(C) is a direct sum of irreducible, or
simple representations L(λ) parameterized by λ ∈ Λdom, and furthermore L(λ) contains a vector of
”highest weight” vλ.

1. Introduction

The Mathematics Directed Reading Program (or DRP) pairs a graduate student in the department
with an undergraduate to assist in learning a particular topic. In our case, the topic was chosen to
be finite dimensional semi-simple representations of Lie Algebras (specifically sln(C)), with a brief
digression on Schur-Weyl duality and representations of the symmetric group Sn.

Most of the results in this paper will follow from [3], and material will be presented in a format
very similar to how it is done in these lectures. An attempt will be made to summarize the DRP
meetings chronologically, with exception to the conversation on Schur-Weyl duality, which will be
relegated to the end of the paper. Additional materials used are [1, 2].

This material is being presented in a paper format as opposed to a presentation due to the
universality of the material taught. The intent of writing a paper in such a way is to synthesize the
material presented in a manner that is accessible and useful to look back upon if needed.

2. Preliminaries

Our goal is to study finite-dimensional representations of Lie Algebras. In order to do this, we
introduce the following definitions for the following discussion and to motivate how one obtains Lie
Algebras in general.

Definition 2.1. A Lie Group is a group G that is also a differentiable manifold. (In particular, we
can consider its tangent space at the identity TI(G))

Given a Lie Group G, a natural question to ask is: what structure does g = TI(G) have?

Definition 2.2. A Lie Algebra is a vector space g equipped with a bilinear map [−,−] : g× g → g
called the Lie Bracket satisfying the following properties:

(1) [−,−] is antisymmetric: ∀x, y ∈ g, [x, y] = −[y, x]
(2) [−,−] satisfies the Jacobi identity: ∀x, y, z ∈ g, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

Without delving into the rather tedious checks in general, it turns out that g = TI(G) is a Lie
Algebra. Instead, we give the following example:

Example 2.3. Let G = SL2(C), i.e. the special linear group (2× 2 matrices of determinant 1) over
the complex numbers. We claim that TI(SL2(C)) is a Lie Algebra:
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Proof. Consider any matrix X =

[
a b
c d

]
Then for some small ϵ > 0, we can take I+ϵX and consider

what restrictions must be placed on X in order for the determinant to still be 1.

But I + ϵX =

[
1 + ϵa ϵb
ϵc 1 + ϵd

]
And det{(I + ϵX)} = 1 + ϵa+ ϵd− ϵ2(ad− bc) = 1 + tr(X) +O(ϵ2).
Thus we see that in order for det{(I + ϵX)} to be 1 to first order, we must have tr(X) = 0. In

other words, TI(SL2(C)) = {2x2 matricesXwith trace 0} = sl2(C). It is easy to check that this is
a vector space, and that [X,Y ] = XY − Y X defines a Lie Bracket. □

It turns out that TI(GL2(C)) is Mat(2× 2), the vector space of all 2× 2 matrices. We will not
be focusing on this Lie Algebra, however, as sln(C) is more interesting.

We are now ready for our next definition:

Definition 2.4. Given a (finite dimensional) vector space V , a representation of a Lie Algebra g is
a linear map

g → End(V )

Where End(V ) denotes the endomorphism ring of V , such that ∀X,Y ∈ g,∀v ∈ V,

[X,Y ]v = XY v − Y Xv

Example 2.5. Let g = C. Then [1, 1] = −[1, 1] = 0. Then a representation C → End(V ) is
uniquely determined by linearity where it sends 1:

Since C is abelian, for any a, b ∈ C, [a, b]x = abx− bax = 0. This tells us that the representations
coincide with all endomorphisms of V.

3. Classifying Finite-Dimensional Representations of sl2

First, we will denote sl2(C) simply by sl2, where the complex numbers is implied.
Let us begin by stating the main theorem for this section, and we will build up toward the proof.

Theorem 3.1. Every finite-dimensional representation of sl2 is a direct sum of irreducible repre-
sentations (i.e. has no nontrivial submodule) denoted L(n).

Note that the property that every finite-dimensional representation is a direct sum of irreducibles
is called semisimplicity.

Before we begin with a proof, here is a very important nonexample:

Non-Example 3.2. The Lie Algebra g = C has a nontrivial 2-dimensional representation sending

1 to

[
0 1
0 0

]
∈ End(C2) This representation is not semisimple! Ce1 is a subrepresentation, but Ce2

is certainly not, since it is not closed under the operations of g.

To gain familiarity toward our general proof, we will choose a particular presentation as follows:
Define the following elements of sl2:

e =

[
0 1
0 0

]
f =

[
0 0
1 0

]
h =

[
1 0
0 −1

]
It is not hard to check that the following relations hold:

• [e, f ] = h
• [h, e] = 2e
• [h, f ] = −2f
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More generally, every finite-dimensional representation of sl2 has the elements e, f, h satisfying
the same relations, but they will have different presentations.

Additionally, we know lots of representations of sl2: Consider L(n), all degree n homogeneous
polynomials in X,Y where e = X ∂

∂Y , f = Y ∂
∂X , and h = X ∂

∂X − Y ∂
∂Y . One can easily check these

are representations, and they are certainly simple:
As shown in the figure below, applying e a finite number of times from Y n eventually gives some

multiple of Xn, and vice versa with f , so every element of L(n) is reached by an element of sl2. So
any submodule that contains Y n must contain all of L(n), and similarly any submodule containing
Xn must contain all of L(n). If a submodule contained some nontrivial subset excluding both Xn

and Y n, for any element x we can take fkx ̸= 0 such that fk+1x = 0. This necessarily gives us some
multiple of Y n, and applying e successively recovers L(n).

Y 3 XY 2 X2Y X3

−3

3 2

−11

1

12 33

Above is an pictoral depiction of L(3), a simple representation of sl2. The arrows pointing to the
right denote scaling after applying e = X ∂

∂Y , similarly the arrows pointing to the left denote scaling

after applying f = Y ∂
∂X , and the loops are h-eigenvalues.

We need three more quick definitions before we can begin proving the theorem:

Definition 3.3. A vector vλ in a representation is said to be of highest weight if it is an h-eigenvector
with the largest (positive) eigenvalue.

Definition 3.4. The universal enveloping algebra U(g) is the algebra consisting of all words of
elements in g modulo the commutator relations [X,Y ] = XY − Y X. More abstractly, for any
associative algebra A, U(g) is the unique algebra satisfying

HomAlg(U(g), A) = HomLie(g, A)

For example, in the case of sl2, e
2f is in the universal enveloping algebra, even if it is not itself

an element of sl2.

Definition 3.5. The Casimir Ω ∈ Z(U(g)) Is defined as Ω = 2fe+ h(h+2)
2 .

The Casimir is central in the universal enveloping algebra. This is not too hard to see, but
requires some computation that we will avoid.

Now let us prove Theorem 3.1.

Proof. Our task is two-fold: First, we must show that every irreducible sl2 representation L is
isomorphic to L(n) for some n. Then we must show that every finite-dimensional sl2 representation
can be decomposed as a direct sum of L(n)’s.

Let L be an irreducible sl2 representation, and let v ∈ L be an h-eigenvector.
Now consider the collection {v, ev, e2v, . . . }. By definition, hv = λv for some scalar λ.
Then

h(ev) =(eh+ [h, e])v

=λev + 2ev

=(λ+ 2)ev

Similarly, he2v = (λ + 4)e2v. Since {v, ev, e2v, . . . } are nonzero h-eigenvectors with different
eigenvalues, they are linearly independent, but we are assuming L is a finite-dimensional vector
space. So there must exist k : ekv ̸= 0, ek+1v = 0.

Set u = ekv to be our highest weight vector, so eu = 0, hu = nu for some n.
Claim: n ∈ N.
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Proof. To prove this, we need a quick lemma.

Lemma 3.6. For u ∈ L highest weight vector, we have

efku = k(n− k + 1)fk−1u

We omit the proof since it is direct computation. □

So then we see that {fnu, fn−1u, . . . , fu, u} is a set of linearly independent vectors in L. Since L
is finite dimensional, there exists r for which ef r+1 = 0 = (r + 1)(n− r)f r+1u or n = r, so n is a
positive integer.

This proves that every simple representation L is isomorphic to L(n) for some n.
Recall from before that the Casimir Ω is a central element. Hence the generalized eigenspaces

V λ = ker(Ω − λ)N ⊂ V are sl2 subrepresentations. This is because if (Ω − λ)Nv = 0, then
(Ω− λ)Nev = e(Ω− λ)Nv = 0 (as with f and h), showing that each generalized eigenspace is closed
under the sl2 operations.

Using Schur’s Lemma (which we will not prove), Ω acts on L(n) by a scalar given by x = n(n+2)
2

So ker(Ω− x) = L(n).
For any finite dimensional vector space V , using Jordan Canonical Form we can write V as a

direct sum of generalized eigenspaces. Write V =
⊕

V x =
⊕

V n(n+2)/2.

Claim: h acts by exactly n on ker e ⊂ V n(n+2)/2. Loosely speaking, this will tell us that h does
not map elements in one copy of L(n) into another, and thus our decomposition is actually a direct
sum of L(n)’s.

To prove this, another formula we will make use of is the following:

efn+1 = fn+1e+ (n+ 1)fn(h− n)

If v ∈ ker(e), then since v ∈ V n(n+2)/2, we have

0 = efn+1v = fn+1ev + (n+ 1)fn(h− n)v = 0 + (n+ 1)fn(h− n)v

Which tells us that h = n, precisely what we wanted.
Notably, we needed two properties of V n(n+2)/2: First, that fk+1v = 0, and second that fkv ̸= 0.

These results are proved in detail in [3].
This finishes.

□

4. Finite Dimensional Representations of sl(3) with a generalizing approach

For sl3, the approach is somewhat more complicated. First, observe that sl3 is again the Lie
Algebra of 3x3 matrices whose trace is 0. We begin by setting up the preliminaries to state the
main theorem, and then give key ideas regarding its proof.

Definition 4.1. The torus t is the maximal abelian subalgebra of sl3

In our case t is simply diagonal matrices of trace 0, hence they are spanned by matrices1 0 0
0 −1 0
0 0 0

 ,

0 0 0
0 1 0
0 0 −1

. Note that this requires a choice! However, every maximal semisimple

commutative subalgebra is some conjugate of t, although we will not prove this.
The sl3 analog of the h-eigenvalue n, which was a scalar in sl2, is now an element of the dual

torus. Let ϵi ∈ t∗ be given by ϵi(X) be the ith entry Xi of any diagonal matrix X. So then it is
immediately obvious that t∗ =< ϵ1, ϵ2, ϵ3 > /(ϵ1 + ϵ2 + ϵ3).

One can show that for the matrix Ei,j consisting of a 1 in the ith row, jth column, and 0
everywhere else, [X,Ei,j ] = (ϵi − ϵj)(X) ∗ Ei,j . So then the roots R = ϵi − ϵj for i ̸= j.
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The root space decomposition is then
sl3 =

⊕
α∈t∗ sl(3)α = t+

⊕
ϵi−ϵj∈R sl(3)ϵi−ϵj

where sl(3)α = {x ∈ sl3|∀t ∈ t, [t, x] = α(t)x}.
Next, we observe that t has an inner product: namely, for any matrices A,B ∈ t, ⟨a, b⟩ = tr(AB).

This induces an inner product on t∗, and we can normalize this in such a way that ⟨α, α⟩ = 2.

Definition 4.2. The weight lattice P is defined as

P = {λ ∈ t∗|∀α ∈ R, ⟨λ, α⟩ ∈ Z}

Definition 4.3. The dominant cone is defined as

Λdom = {λ ∈ t∗|for α = {ϵ1 − ϵ2, ϵ2 − ϵ3}, ⟨λ, α⟩ ∈ Z≥0}

We are now ready to state the big theorem, stated for sl3 but true without too much additional
work for sln:

Theorem 4.4. Every finite dimensional representation of sl3 can be decomposed as a direct sum of
simple representations, which correspond to unique λ ∈ Λdom, which are the weights of the highest
weight vectors vλ.

We will give a brief sketch our progress on the proof:
Like with sl2, we need to prove two things: first, that every finite dimensional irreducible

representation of sl3 contains a unique highest weight vector vλ. To prove this, we look at what are
called sl2-triples, which are sets of elements e, f, h ∈ sl3 which satisfy the sl2 commutation relations.
This will give us the result for basis elements of the torus, and it suffices to use linearity to get an
arbitrary h.

Then we need to show that for each dominant weight λ there exists a finite dimensional represen-
tation L(λ) with highest weight λ. To do this, we consider Verma modules, M(λ) = U(g)⊗U(b) Cvλ,
where we are taking the tensor product of the universal enveloping algebra with a one-dimensional
vector space spanned by the highest weight vector over U(b) where b consists of the torus and
positive roots. One can prove that M(λ) has a basis spanned by fn1

1 fn2
2 fn3

3 ⊗vλ for all n ∈ N, where
f1 = E2,1, f2 = E3,2, and f3 = E3,1. M(λ) is infinite dimensional, so we must quotient out by some

relation to obtain finite-dimensional representations. Construct L(λ) = M(λ)(
f
⟨λ,α1⟩+1
1 M(λ)+f

⟨λ,α2⟩+1
2 M(λ)

)
To show this is finite dimensional, we use sl2 triples once again to effectively project onto horizontal
lines in the weight lattice to get a direct sum of representation of sl2, and use the fact that finite
dimensional representations of sl2 are invariant under reflection to force the quotient to remain in
a finite region and conclude that our representation of sl3, L(λ) is finite dimensional. (our fi act
nilpotently). The character of the quotient is invariant under the simple reflections, which generate
what is known as the Weyl Group. See Figure ?? for a geometric picture.

There is still much left to prove; this establishes that the quotients L(λ) correspond to particular
points in the dominant cone Λdom, but we have not yet proven that these are unique, nor have we
shown that this free construction generates all possible finite dimensional representations. This
would be relegated to future work if our directed reading program continued, or it may be covered
in a course such as Math 261.
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vλ

s1

s2

The diagram above shows the hexagonal weight lattice that defines sl3. In the top right, the point
labeled vλ is the highest weight vector, and all points in the lattice in the bottom-left third of the
lattice separated by the dark extending lines constitute M(λ). To construct L(λ), the equivalence
relations result in reflectional symmetries s1 and s2 which force the resulting portion of the lattice
to be finite dimensional.

5. A Brief Digression on Schur-Weyl Duality

We conclude with some brief remarks in the interest of space and time.
Using the notation we have developed for sl2, consider L(1) = C2 = V . We want to consider

V ⊗ V . This tensor product is spanned by four basis elements: v1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v1, and
v−1 ⊗ v−1. Clearly, this is a finite dimensional representation, and hence it can be decomposed as a
direct sum of simple representations. Applying e, f , and h shows the correct basis to take is actually
v1 ⊗ v1, v1 ⊗ v−1 + v−1 ⊗ v1, v−1 ⊗ v−1, and v1 ⊗ v−1 − v−1 ⊗ v1. This decomposes as L(2)⊕ L(0).
sl2 has a nontrivial action on L(2) but has a trivial action on L(0), whereas the symmetric group S2

acts trivially on L(2) but acts by flipping the sign on L(0). Hence it can be expressed as S2V ⊕Λ2V ,
the direct sum of a symmetric and antisymmetric component.

More generally, using the formula h(v ⊗ w) = hv ⊗ w + v ⊗ hw, we find that the symmetric and
antisymmetric components of the direct sum alternate. For instance, L(3)⊗L(3) = (L(6)⊕L(2))⊕
(L(4)⊕ L(0)) = S2L(3) + Λ2L(3).
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