This exam consisted of five problems, each worth 7 points. The maximum possible score on the exam was thus 35 .

A comment on the cover sheet: It is OK to leave factorials and expressions like $C(n, r)$ or $P(n, r)$ in your answers.

1. At least 500 of 600 graduating seniors came to a commencement. When these students were divided into groups of 6,8 and 11 , three students were left over in each case. How many students came to the commencement? [For all problems, explain your reasoning in complete English sentences.]
2. Let p be a prime number other than 2,3 or 5 . Show that p divides the sum

$$
10^{p-2}+10^{p-3}+\cdots 10^{2}+10+1 ;
$$

for example, 13 divides the 12 -digit number 111111111111.
[It might be helpful to use the identity $x^{n}-1=(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}\right)$.]
3. Consider 3 -digit strings of distinct letters (e.g., BER, KLY, STN, FRD, SFO). How many such strings contain at least one vowel (A, E, I, O, U)?
4. The inequality

$$
\begin{equation*}
x+y+z+w \leq 55 \tag{*}
\end{equation*}
$$

states that the difference $55-(x+y+z+w)$ is nonnegative. Find the number of solutions to $(*)$ with x, y, z and w nonnegative integers.
5. Computing the gcd of 21 and 8 creates these equations:

$$
\begin{aligned}
21 & =2 \cdot 8+5, \\
8 & =1 \cdot 5+3, \\
5 & =1 \cdot 3+2, \\
3 & =1 \cdot 2+1, \\
2 & =2 \cdot 1+0 .
\end{aligned}
$$

Let a and b be positive integers for which the computation of $\operatorname{gcd}(a, b)$ also produces five equations. Explain in detail why b is at least 8 .

Because Berkeley, we all acted with honesty, integrity, and respect for others.

