This exam consisted of five problems, each worth 7 points.

1. If p, q and r are propositions, show that

$$
((p \rightarrow q) \wedge(q \rightarrow r)) \longrightarrow(p \rightarrow r)
$$

is a tautology.
2. Suppose that a and b are positive integers with $\operatorname{gcd}(a, b)=1$. Let r be a real number for which both r^{a} and r^{b} are rational numbers. Prove that r is rational.
3. Let S be a set and let $f: S \rightarrow \mathcal{P}(S)$ be a function from S to the power set of S. Prove that

$$
\{s \in S \mid s \notin f(s)\}
$$

is not in the image of f.
4. Let a be an integer that is congruent to $1(\bmod 3)$. Show that a is congruent $(\bmod 9)$ to one of the three numbers $1,4,7$. Show also that a^{3} is congruent to $1(\bmod 9)$.
5. Prove that there is an irrational number between every two distinct rational numbers.

