1. Suppose that

$$
v_{1}, \ldots, v_{n} ; x_{1}, \ldots, x_{n}
$$

is a linearly independent list of $2 n$ vectors of the vector space V. Is it true that

$$
v_{1}+x_{1}, v_{2}+x_{2}, \ldots, v_{n}+x_{n}
$$

is linearly independent? (Prove that your answer is correct.)
2. Suppose that U is a subspace of a finite-dimensional vector space V. If $S: U \rightarrow W$ is a linear map, prove that there is a linear map $T: V \rightarrow W$ whose restriction to U is S.
3. Let $T: V \rightarrow W$ be a linear map between finite-dimensional vector spaces. Let w_{1}, \ldots, w_{n} be a basis of W. Prove that there is a basis v_{1}, \ldots, v_{m} of V such that the matrix of T with respect to the two bases has its first row either entirely 0 or else of the form $(1,0,0, \ldots, 0)$.
4. Suppose that V and W are 2-dimensional \mathbf{F}-vector spaces. Show that $\{T \in \mathcal{L}(V, W) \mid T$ is not surjective $\}$ is not a subspace of $\mathcal{L}(V, W)$.

5a. Let $T: V \rightarrow V$ be a linear operator such that $T \circ T$ is the identity map I on V. Show that the range of $T+I$ is contained in the null space of $T-I$ and that the range of $T-I$ is contained in the null space of $T+I$.
b. Show that V is the direct sum of the null space of $T-I$ and the null space of $T+I$.

6a. Let T be the operator on $\mathcal{P}(\mathbf{R})$ defined by the formula

$$
T p=\text { the sum of the second and first derivatives of } p
$$

Find a basis for null T.
b. Prove that T is surjective (onto).

As a member of the UC Berkeley community, I acted with honesty, integrity, and respect for others.

