Math 110

PROFESSOR KENNETH A. RIBET

Last Midterm Examination

April 3, 2014
9:40-11:00 AM, 105 Stanley Hall

Your NAME:

Your GSI:

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

Vector spaces are over \mathbf{F}, where $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$. They may be infinite-dimensional if there is no indication to the contrary. Eigenvectors are non-zero!

At the conclusion of the exam, hand your paper in to your GSI.

Problem	Your score	Possible points
1		6 points
2		6 points
3		6 points
4		6 points
5		6 points
Total:		30 points

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

1. Label each of the following assertions as TRUE or FALSE. Along with your answer provide a correct justification or counterexample.
a. If S and T are operators on a finite-dimensional \mathbf{F}-vector space V such that $S T=0$, then $T S=0$.
b. If S and T are operators on a finite-dimensional \mathbf{F}-vector space V such that $S T=I$, then $T S=I$.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
2. Label each of the following assertions as TRUE or FALSE. Along with your answer provide a correct justification or counterexample.
a. If T is an operator on an \mathbf{R}-vector space V such that $f(T)=0$ for some real polynomial $f(x)$ of odd degree, then T has at least one eigenvalue on V.
b. If v_{1}, v_{2} and v_{3} are eigenvectors of T such that $v_{3}=v_{1}+v_{2}$, then all three vectors have the same eigenvalue.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
3. Let U be a subspace of an \mathbf{F}-vector space V. Assume that $\left(v_{1}+U, \ldots, v_{t}+U\right)$ is a basis of V / U and that $\left(u_{1}, \ldots, u_{s}\right)$ is a basis of U. Prove that $\left(u_{1}, \ldots, u_{s} ; v_{1}, \ldots, v_{t}\right)$ is a basis of V.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
4. Let T be an operator on an \mathbf{F}-vector space V. Assume that $(T-a I)(T-b I)=0$, where a and b are scalars in \mathbf{F}. If T is not a scalar multiple of the identity operator, prove that a and b are eigenvalues of T.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
5. Suppose that $V \subset \mathbf{F}^{n}$ is a proper subspace (i.e., a subspace not equal to all of \mathbf{F}^{n}). Show that there are scalars c_{1}, \ldots, c_{n}, not all of which are zero, so that $c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}=0$ for all vectors $\left(a_{1}, \ldots, a_{n}\right)$ in V.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

