Math 110

PROFESSOR KENNETH A. RIBET

First Midterm Examination

February 20, 2014
9:40-11:00 AM, 105 Stanley Hall

Please write your NAME clearly:

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. Your explanations are your only representative when your work is being graded.

Unless otherwise noted, vector spaces are vector spaces over \mathbf{F}, where $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$.
At the conclusion of the exam, hand your paper in to your GSI.

Problem	Your score	Possible points
1		5 points
2		6 points
3		6 points
4		6 points
5		7 points
Total:		30 points

1. Consider the basis $\left(1, x, x^{2}, x^{3}\right)$ of the \mathbf{R}-vector space $V=\mathcal{P}_{3}(\mathbf{R})$. Let $\left(\varphi_{1}, \ldots, \varphi_{4}\right)$ be the basis of V^{\prime} that is dual to $\left(1, x, x^{2}, x^{3}\right)$. Let $\varphi: V \rightarrow \mathbf{R}$ be the linear functional

$$
f(x) \mapsto f(6)+\int_{0}^{1} f(x) d x
$$

Find numbers a, b, c, d for which $\varphi=a \varphi_{1}+b \varphi_{2}+c \varphi_{3}+d \varphi_{4}$.
2. Label each of the following assertions as TRUE or FALSE. Along with your answer, provide an informal proof, counterexample or other explanation.
a. If $T: V \rightarrow W$ is a linear map and $v_{1}, v_{2}, \ldots, v_{r}$ are vectors of V such that $\left(T v_{1}, \ldots, T v_{r}\right)$ is linearly independent, then $\left(v_{1}, \ldots, v_{r}\right)$ is linearly independent.
b. If $T: V \rightarrow W$ is a linear map and $v_{1}, v_{2}, \ldots, v_{r}$ are vectors of V such that $\left(T v_{1}, \ldots, T v_{r}\right)$ spans W, then $\left(v_{1}, \ldots, v_{r}\right)$ spans V.
3. Label each of the following assertions as TRUE or FALSE. Along with your answer, provide an informal proof, counterexample or other explanation.
a. If X is a 5 -dimensional subspace of a 8 -dimensional vector space V, there is a 2 dimensional subspace Y of V such that $X \cap Y=\{0\}$.
b. If $\left(v_{1}, \ldots, v_{m}\right)$ and $\left(w_{1}, \ldots, w_{m}\right)$ are linearly independent lists of vectors in V, then $\left(v_{1}+w_{1}, \ldots, v_{m}+w_{m}\right)$ is linearly independent.
4. Suppose that $p_{0}, p_{1}, \ldots, p_{m}$ are polynomials in $\mathcal{P}_{m}(\mathbf{F})$ such that $p_{j}(-1)=0$ for all j. Prove that $\left(p_{0}, p_{1}, \ldots, p_{m}\right)$ is not linearly independent in $\mathcal{P}_{m}(\mathbf{F})$.
5. Let U be a subspace of V and let $T: U \rightarrow W$ be a non-zero linear map. Suppose that the function

$$
S(v):= \begin{cases}T(v) & \text { if } v \in U \\ 0 & \text { if } v \notin U\end{cases}
$$

is a linear map $V \rightarrow W$. Show that $U=V$.

