

Math 110

PROFESSOR KENNETH A. RIBET

Last Examination

May 14, 2014
11:30AM-2:30PM, 230 Hearst Gym
Your NAME:
Your GSI:

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in complete sentences. (There is lots of time!) Your explanations are your only representative when your work is being graded.

Vector spaces are over \mathbf{F}, where $\mathbf{F}=\mathbf{R}$ or $\mathbf{F}=\mathbf{C}$. They may be infinite-dimensional if there is no indication to the contrary. A "real" vector space is a vector space over \mathbf{R}.

At the conclusion of the exam, hand your paper in to your GSI.

Problem	Your score	Possible points
1		8 points
2		8 points
3		8 points
4		8 points
5		7 points
6		7 points
Total:		46 points

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

1. Label each of the following assertions as TRUE or FALSE. Along with your answer provide a proof or counterexample.
a. Suppose that $T \in \mathcal{L}(V)$ with V of finite dimension n. If $V=\operatorname{range}(T) \oplus \operatorname{null}(T)$, then $\operatorname{null} T=\operatorname{null} T^{2}=\operatorname{null} T^{3}=\cdots=\operatorname{null} T^{n}$.
b. If V is a finite-dimensional complex vector space, and if T is an operator on V, then T^{k} is diagonalizable for some positive integer k.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
2. Label each of the following assertions as TRUE or FALSE. Along with your answer provide a proof or counterexample.
a. If $V=U \oplus X$ and $V=U \oplus Y$, then $X=Y$.
b. If V is a finite-dimensional vector space and U is a subspace of V, then every linear functional on U can be extended to a linear funtional on V.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
3. Label each of the following assertions as TRUE or FALSE. Along with your answer provide a proof or counterexample.
a. If an operator on a real finite-dimensional inner product space V has a symmetric matrix with respect to one orthonormal basis of V, then it has a symmetric matrix with respect to all orthonormal bases of V.
b. A normal operator on a complex finite-dimensional inner-product space is self-adjoint if and only if all of its eigenvalues are real.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
4. Label each of the following assertions as TRUE or FALSE. Along with your answer provide a proof or counterexample.
a. If v is a non-zero vector in a finite-dimensional vector space V, there is a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V such that

$$
v=v_{1}+v_{2}+\cdots+v_{n} .
$$

b. If U is a finite-dimensional subspace of an inner-product space V (possibly infinitedimensional), then $V=U \oplus U^{\perp}$.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
5. Suppose that T is an operator on a finite-dimensional real vector space V and that T satisfies $T^{2}+4 T+5 I=0$.
a. If V is non-zero, show that there is a T-invariant subspace of V whose dimension is 2 .
b. Show that $\operatorname{dim} V$ is even.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.
6. Suppose that V and W are finite-dimensional vector spaces and that T_{1} and T_{2} are linear maps from V to W. If the range of T_{1} is contained in the range of T_{2}, show that there is an operator $S \in \mathcal{L}(V)$ such that $T_{1}=T_{2} S$.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

