

Матн 110

PROFESSOR KENNETH A. RIBET

Last Examination

May 14, 2014

11:30 AM–2:30
PM, 230 Hearst Gym $\,$

Your NAME:

Your GSI:

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. (There is lots of time!) Your explanations are your only representative when your work is being graded.

Vector spaces are over \mathbf{F} , where $\mathbf{F} = \mathbf{R}$ or $\mathbf{F} = \mathbf{C}$. They may be infinite-dimensional if there is no indication to the contrary. A "real" vector space is a vector space over \mathbf{R} .

At the conclusion of the exam, hand your paper in to your GSI.

Problem	Your score	Possible points
1		8 points
2		8 points
3		8 points
4		8 points
5		7 points
6		7 points
Total:		46 points

a. Suppose that $T \in \mathcal{L}(V)$ with V of finite dimension n. If $V = \operatorname{range}(T) \oplus \operatorname{null}(T)$, then $\operatorname{null} T = \operatorname{null} T^2 = \operatorname{null} T^3 = \cdots = \operatorname{null} T^n$.

b. If V is a finite-dimensional complex vector space, and if T is an operator on V, then T^k is diagonalizable for some positive integer k.

a. If $V = U \oplus X$ and $V = U \oplus Y$, then X = Y.

b. If V is a finite-dimensional vector space and U is a subspace of V, then every linear functional on U can be extended to a linear functional on V.

a. If an operator on a real finite-dimensional inner product space V has a symmetric matrix with respect to one orthonormal basis of V, then it has a symmetric matrix with respect to all orthonormal bases of V.

b. A normal operator on a complex finite-dimensional inner-product space is self-adjoint if and only if all of its eigenvalues are real.

a. If v is a non-zero vector in a finite-dimensional vector space V, there is a basis (v_1, \ldots, v_n) of V such that

 $v = v_1 + v_2 + \dots + v_n.$

b. If U is a finite-dimensional subspace of an inner-product space V (possibly infinite-dimensional), then $V = U \oplus U^{\perp}$.

5. Suppose that T is an operator on a finite-dimensional real vector space V and that T satisfies $T^2 + 4T + 5I = 0$.

a. If V is non-zero, show that there is a T-invariant subspace of V whose dimension is 2.

b. Show that $\dim V$ is even.

6. Suppose that V and W are finite-dimensional vector spaces and that T_1 and T_2 are linear maps from V to W. If the range of T_1 is contained in the range of T_2 , show that there is an operator $S \in \mathcal{L}(V)$ such that $T_1 = T_2S$.