Problem 1A. Suppose that f is a continuous real function on $[0, 1]$. Prove that

$$
\lim_{\alpha \to 0^+} \alpha \int_0^1 x^{\alpha-1} f(x) \, dx = f(0).
$$

Solution: This is obvious for f a constant, so by subtracting $f(0)$ from both sides we can assume $f(0) = 0$. Choose any $\epsilon > 0$ and choose δ so that $|f(x)| < \epsilon$ whenever $x \leq \delta$ and choose M so that $f(x) < M$ for all x. Then

$$
\alpha \int_0^\delta x^{\alpha-1} f(x) \, dx \leq \alpha \int_0^1 x^{\alpha-1} \epsilon \, dx = \epsilon,
$$

while

$$
\alpha \int_\delta^1 x^{\alpha-1} f(x) \, dx \leq \alpha \int_\delta^1 x^{\alpha-1} M \, dx = M(1 - \delta^\alpha)
$$

which tends to 0 as α tends to 0. So for any $\epsilon > 0$ the limit is less than ϵ in absolute value, so the limit is 0.

(Assuming that f is differentiable allows an easier solution by integrating by parts.)

Problem 2A. Prove that if an $n \times n$ matrix X over \mathbb{R} satisfies $X^2 = -I$, then n is even.

Solution: Method 1: Since $X^2 + 1 = (X + i)(X - i) = 0$, the Jordan form A of X over \mathbb{C} is diagonal with eigenvalues $\pm i$. Since X is real, the eigenvalues come in conjugate pairs, hence n is even.

Method 2: The identity $X^2 = -I$ implies that $a + bi \mapsto aI + bX$ is a ring homomorphism from \mathbb{C} to $M_n(\mathbb{R}) = \text{End}(\mathbb{R}^n)$. Using this to define complex scalar multiplication, \mathbb{R}^n becomes a vector space over \mathbb{C} such that restriction of scalars to \mathbb{R} recovers its original real vector space structure. Since a complex vector space has even real dimension, n is even.

Method 3: $\det X^2 = (\det X)^2 = \det(-I) = (-1)^n$. Therefore n is even. Problem 3A. Show that if $f : \mathbb{C} \to \mathbb{C}$ is a meromorphic function in the plane, such that there exists $R, C > 0$ so that for $|z| > R$, $|f(z)| \leq C|z|^m$, then f is a rational function.

Solution: Since f is meromorphic, and $|f(z)| < \infty$ for $|z| > R$, f must have only finitely many poles a_1, \ldots, a_m (with multiplicity) in the disk $|z| \leq R$. Let $g(z) = (z - a_1) \cdots (z - a_m) f(z)$, then $g(z)$ is entire, and $|g(z)| \leq C'|z|^{m+n}$ for $|z|$ large enough, and therefore $g(z)$ is a polynomial of degree a most $m + n$, using Cauchy’s estimate $|f^{N}(0)| \leq C' r^{m+n} N! r^{-N} \to 0$ as $r \to \infty$ if $N > m + n$. Thus, $f(z) = g(z)/((z - a_1) \cdots (z - a_n))$ must be a rational function.

Problem 4A. Let G be a finite group, and for each positive integer n, let

$$
X_n = \{(g_1, \ldots, g_n) : g_i g_j = g_j g_i \ \forall i, j\}.
$$

Show that the formula

$$
h \cdot (g_1, \ldots, g_n) = (hg_1 h^{-1}, \ldots, hg_n h^{-1}),
$$

is well defined.
defines an action of G on X_n, and that $|X_{n+1}| = |G| \cdot |X_n/G|$ for all n, where X_n/G denotes the set of G-orbits in X_n.

Solution:

The given formula defines the action of G on G^n by coordinatewise conjugation, so one only has to verify that if $(g_1, \ldots, g_n) \in X_n$, then $h \cdot (g_1, \ldots, g_n) \in X_n$. Since g_i commutes with g_j implies hg_ih^{-1} commutes with hg_hh^{-1}, this is clear.

For the counting assertion, we have $|X_n/G| = \frac{1}{|G|} \sum_{h \in G} f_n(h)$, by Burnside’s Lemma, where $f_n(h)$ is the number of elements of X_n fixed by h. Now (g_1, \ldots, g_n) is fixed by h if and only if h commutes with each g_i, that is, if and only if (g_1, \ldots, g_n, h) belongs to X_{n+1}. Thus $|X_{n+1}| = \sum_{h \in G} f_n(h) = |G| \cdot |X_n/G|$.

Problem 5A. There is a “folk theorem” that a four-footed table can always be rotated into a stable position on an uneven floor. Prove the following mathematical formulation of this theorem.

Define four points in \mathbb{R}^2, depending on an angle θ, by $P_1(\theta) = (\cos \theta, \sin \theta)$, $P_2(\theta) = (\sin \theta, \cos \theta)$, $P_3(\theta) = (\sin \theta, -\sin \theta)$, $P_4(\theta) = (\sin \theta, -\cos \theta)$. Show that given any continuous function $h : \mathbb{R}^2 \to \mathbb{R}$, there exists a value of θ such that the four points $Q_i(\theta) = (P_i(\theta), h(P_i(\theta)))$ on the graph of h are co-planar in \mathbb{R}^3.

Solution: Let $\tilde{h}(\theta) = h(\cos \theta, \sin \theta)$ and $g(\theta) = \tilde{h}(\theta) - \tilde{h}(\theta + \pi/2) + \tilde{h}(\theta + \pi) - \tilde{h}(\theta + 3\pi/2)$. Then g is continuous and satisfies $g(\theta + \pi/2) = -g(\theta)$. In particular, for any real number x that is a value of g, we see that $-x$ is also a value of g, hence by the Intermediate Value Theorem, there exists θ such that $g(\theta) = 0$. For this θ we have $(\tilde{h}(\theta) + \tilde{h}(\theta + \pi))/2 = (\tilde{h}(\theta + \pi/2) + \tilde{h}(\theta + 3\pi/2))/2$. Call the quantity on both sides of this equality z. Then the point $(0, 0, z) \in \mathbb{R}^3$ lies on both the lines $Q_1(\theta)Q_3(\theta)$ and $Q_2(\theta)Q_4(\theta)$, showing that the four points $Q_i(\theta)$ are co-planar.

Problem 6A. Let $M_2(\mathbb{C})$ be the set of 2×2 matrices over the complex numbers. Given $A \in M_2(\mathbb{C})$, define $C(A) = \{B \in M_2(\mathbb{C}) : AB = BA\}$.

(a) Prove that $C(A)$ is a linear subspace of $M_2(\mathbb{C})$, for every A.

(b) Determine, with proof, all possible values of the dimension $\dim C(A)$.

(c) Formulate a simple and explicit rule to find $\dim C(A)$, given A. “Simple” means the rule should yield the answer with hardly any computational effort.

Solution:

(a) Either check directly that $C(A)$ is closed under matrix addition and scalar multiplication, or just note that for fixed A, the matrix equation $AB = BA$ is a system of linear equations in the entries of B.

(b) If $A' = SAS^{-1}$ is similar to A, then it is easy to verify that $B \mapsto SBS^{-1}$ is a linear isomorphism of $C(A)$ on $C(A')$. Hence we may assume w.o.l.o.g. that A is in Jordan canonical form. This leads to three cases:
Case I.

\[A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, \quad \text{where } a \neq b. \]

Then \(C(A) \) consists of the diagonal matrices, \(\dim C(A) = 2. \)

Case II.

\[A = \begin{bmatrix} a & 1 \\ 0 & a \end{bmatrix}. \]

Then \(C(A) \) is the set of matrices \(B \) of the form

\[B = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix}, \]

so again \(\dim C(A) = 2. \)

Case III. \(A \) is a scalar multiple of \(I \). Then \(C(A) = M_2(\mathbb{C}), \dim C(A) = 4. \)

(c) The result of part (b) can be reformulated as follows: if \(A \) is a scalar multiple of \(I \), then \(\dim C(A) = 4, \) otherwise \(\dim C(A) = 2. \)

Problem 7A. Compute

\[\int_0^\pi \frac{d\theta}{a + \cos \theta} \]

for \(a > 1 \) using the method of residues.

Solution: Using \(z = e^{i\theta}, \ dz = ie^{i\theta}d\theta, \ \cos \theta = (z + 1/z)/2, \) we may rewrite the integral as a line integral

\[-2i \int_{|z|=1} \frac{dz}{z^2 + 2az + 1}. \]

Factor the denominator as \((z - \alpha)(z - \beta), \) where \(\alpha = -a + \sqrt{a^2 - 1}, \ \beta = -a - \sqrt{a^2 - 1}, \) and \(|\alpha| < 1, |\beta| > 1. \) Then

\[Res_{z=\alpha} = \frac{1}{z^2 + 2az + 1} = \frac{1}{\alpha - \beta}; \]

and we see that the integral is equal to \(-2i \cdot 2\pi i \cdot \frac{1}{\alpha - \beta} = 2\pi / \sqrt{a^2 - 1}. \)

Problem 8A. Let \(\mathbb{Q}(x) \) be the field of rational functions of one variable over \(\mathbb{Q}. \) Let \(i: \mathbb{Q}(x) \to \mathbb{Q}(x) \) be the unique field automorphism such that \(i(x) = x^{-1}. \) Prove that the subfield of elements fixed by \(i \) is equal to \(\mathbb{Q}(x + x^{-1}). \)

Solution: Let \(F \) denote the fixed subfield, and set \(y = x + x^{-1} \in F. \) Clearly \(\mathbb{Q}(y) \subseteq F \neq \mathbb{Q}(x). \) The equation \(x^2 - yx + 1 = 0 \) shows that \(\mathbb{Q}(x) \) is an algebraic extension of degree 2 over \(\mathbb{Q}(y). \) Hence the only extension of \(\mathbb{Q}(y) \) properly contained in \(\mathbb{Q}(x) \) is \(\mathbb{Q}(y) \) itself, so \(F = \mathbb{Q}(y). \)

Problem 9A. Let \(d_k := \text{LCM}\{1, 2, \ldots, k\} \) (the least common multiple) and \(I_m = \int_0^1 x^m(1-x)^m dx. \) Show \(d_{2m+1}I_m \) is an integer, and use this to show that \(d_{2m+1} \geq 2^{2m}. \)
Solution:

\[I_m = \sum_{n=0}^{2m} \frac{a_n}{n+1} \]

for some integers \(a_n \) so \(d_{2m+1}I_m \in \mathbb{Z} \). Also if \(f(x) = x(1 - x) \), \(f(0) = f'(1/2) = f(1) = 0 \), \(f(1/2) = 1/4 \) and \(1/2 \) is the only critical point of \(f \) on \((0, 1)\) so \(0 < I_m \leq (1/4)^m \) and so \(d_mI_m \geq 1 \) and the statement follows.

Problem 1B. Let \(I \subseteq \mathbb{R} \) be an open interval, and let \(f : I \to \mathbb{R} \) have continuous \(k \)-th derivatives \(f^{[k]} \) on \(I \) for \(k \leq n - 1 \). Let \(a \in I \) be a point such that \(f^{[k]}(a) = 0 \) for all \(1 \leq k \leq n - 1 \), \(f^{[n]}(a) \) exists and \(f^{[n]}(a) > 0 \). Prove that \(f \) has a local minimum at \(a \) if \(n \) is even, and has no local extremum at \(a \) if \(n \) is odd.

Solution: Since \(f^{[n-1]}(a) = 0 \), the definition of derivative gives

\[
\lim_{x \to a} \frac{f^{[n-1]}(x)}{x - a} = f^{[n]}(a) > 0,
\]

and hence there exists \(\epsilon > 0 \) such that \(f^{[n-1]}(x)/(x - a) > 0 \) for all \(x \in (a - \epsilon, a + \epsilon) \setminus \{a\} \). Taylor’s Theorem with remainder yields

\[
f(x) = f(a) + f^{[n-1]}(c)(x - a)^{n-1}/(n-1)!
\]

for some \(c \in [a, x] \) if \(x \geq a \), or \(c \in [x, a] \) if \(x \leq a \). For \(x \in (a - \epsilon, a) \) we have \(f^{[n-1]}(c) \leq 0 \), whence \(f(x) \geq f(a) \) if \(n \) is even, \(f(x) \leq f(a) \) if \(n \) is odd. Similarly, we find for \(x \in (a, a + \epsilon) \) that \(f(x) \geq f(a) \) for any \(n \). For \(n \) even, this implies that \(f \) has a local minimum at \(a \). For \(n \) odd, it implies that either \(f \) has no local extremum at \(a \), or else \(f \) is constant on \((a - \epsilon, a + \epsilon)\). But the hypothesis \(f^{[n]}(a) > 0 \) rules out the latter possibility.

Problem 2B. Let \(A \) and \(B \) be \(n \times n \) matrices over a field of characteristic zero. Prove that the condition \(BA - AB = A \) implies that \(A \) is nilpotent. (Hint: what does \(A \) do to eigenvectors of \(B \)?)

Solution: Without loss of generality we can enlarge the field, say \(k \), to be algebraically closed, since this does not change the hypothesis or the conclusion. Let \(v \) be an eigenvector of \(B \), say \(Bv = \lambda v \). Then \(BAv = A(B + I)v = (\lambda + 1)Av \), in other words, if \(Av \neq 0 \) then \(Av \) is also an eigenvector of \(B \) with eigenvalue \(\lambda + 1 \). Since \(B \) has finitely many eigenvalues, we must have \(A^kv = 0 \) for some \(k \), so \(A \) is singular. Since \(AB = BA - A \) we also see that \(B \) preserves the nullspace \(W \) of \(A \). Then \(A \) and \(B \) induce linear transformations \(A', B' \) of \(k^n/W \) which again satisfy \(B'A' - A'B' = A' \). It follows by induction on \(n \) that \(A' \) is nilpotent, hence so is \(A \).

Problem 3B. How many roots of the equation \(z^4 - 5z^3 + z - 2 = 0 \) lie in the disk \(|z| < 1 \)?

Solution: By Rouche’s theorem, since \(|z^4 - 5z^3 + z - 2 - (-5z^3)| = |z^4 + z - 2| \leq 4 < 5 = | -5z^3| \) for \(|z| = 1 \), then \(z^4 - 5z^3 + z - 2 \) has the same number of zeroes for \(|z| < 1 \) as \(-5z^3\), which has three zeroes (counted with multiplicity).
Problem 4B. Consider a polynomial expression $H(\alpha) = A + B\alpha + C\alpha^2 + \cdots + D\alpha^N$ with rational coefficients A, B, C, \ldots, D, where α is an algebraic number, in other words a root of some polynomial with rational coefficients. Prove that if $H(\alpha) \neq 0$, then the reciprocal $1/H(\alpha)$ can be expressed as a polynomial in α with rational coefficients.

Solution: Let $P(x)$ be a polynomial of minimal degree such that $P(\alpha) = 0$. Then P must be irreducible in $\mathbb{Q}[x]$ (since otherwise α would be a root of a polynomial of a smaller degree). By the Euclidean algorithm in $\mathbb{Q}[x]$, there exist polynomials $F(x)$ and $G(x)$ with rational coefficients such that the greatest monic common divisor D of P and H is written as $D(x) = F(x)P(x) + G(x)H(x)$. Then D cannot be a scalar multiple of P (since otherwise we would have $H(\alpha) = 0$), and cannot be a proper divisor of P (since P is irreducible), and so $D = 1$. Thus $1/H(\alpha) = G(\alpha)$.

Problem 5B. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a continuous function of compact support. Show that $u(x) = \int_{\mathbb{R}^3} \frac{f(y)}{|x-y|} dy$ is well defined and that $\lim_{|x| \to \infty} u(x)|x| = \int_{\mathbb{R}^3} f(y)dy$.

Solution: Choose R so that $f(y) = 0$ if $|y| \geq R$. Then for $a = R + |x|$, and using polar coordinates,
\[\int \left| \frac{f(y)}{|x-y|} \right| dy \leq (\max |f|)4\pi \int_0^a \frac{1}{r^2} r^2 dr < \infty, \]
shows that the integral exists. On the other hand, for $|x| \geq L \geq R$ and y satisfying $f(y) \neq 0$, we have
\[\left| \frac{|x|}{|x-y|} - 1 \right| \leq \frac{R}{L-R}, \]
which implies
\[\left| u(x)|x| - \int f(y)dy \right| \leq \frac{R}{L-R} \int |f(y)|dy. \]
The result follows by sending $L \to \infty$.

Problem 6B. Let $\lambda_1 \geq \cdots \geq \lambda_n$ be eigenvalues of a symmetric real $n \times n$-matrix A. Prove that
\[\lambda_k = \max_{V^k} \min_{x \in (V^k-0)} \frac{(Ax,x)}{(x,x)}, \]
where the maximum is taken over all k-dimensional linear subspaces V^k, the minimum over all non-zero vectors in the subspace, and (x,y) denotes the Euclidean dot-product. (Hint: any k-dimensional subspace intersects the space spanned by the eigenvectors of the $n+1-k$ smallest eigenvalues in a space of dimension at least 1.)

Solution: In the orthonormal basis of eigenvectors of A (provided by the orthogonal diagonalization theorem) we have:
\[(Ax,x) = \lambda_1 x_1^2 + \cdots + \lambda_n x_n^2. \]
Let W denotes the subspace of codimension $k-1$ given by the equations $x_1 = \cdots = x_{k-1} = 0$. On W, we have:

$$(Ax, x) = \lambda_k x_k^2 + \cdots + \lambda_n x_n^2 \leq \lambda_k (x_k^2 + \cdots + x_n^2) = \lambda_k (x, x),$$

i.e. the ratio $(Ax, x)/(x, x) \leq \lambda_k$. Since every k-dimensional subspace V^k has a non-trivial intersection with W, we conclude that $\min(Ax, x)/(x, x)$ on every V^k does exceed λ_k. On the other hand, in the k-dimensional subspace V_0^k given by the equations $x_{k+1} = \cdots = x_n = 0$, we have:

$$(Ax, x) = \lambda_1 x_1^2 + \cdots + \lambda_k x_k^2 \geq \lambda_k (x_1^2 + \cdots + x_k^2) = \lambda_k (x, x),$$

the ratio $(Ax, x)/(x, x) \geq \lambda_k$.

Problem 7B. If is a univalent (1-1 analytic) function with domain the unit disc such that $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then prove that

$$g(z) = \sqrt{f(z^2)}$$

is an odd analytic univalent function on the unit disc.

Solution: The function $f(z^2) = z^2 \phi(z)$, where $\phi(0) = 1$. Since f is univalent, $\phi(z) \neq 0$ for $z \neq 0$. Then we may define a well-defined branch $h(z) = \sqrt{\phi(z)}$, since $B_1(0)$ is simply-connected. Since $f(z^2)$ is even, and z^2 is even, we must have $\phi(z)$ is even. Since $\phi(z) = \phi(-z)$ for z near zero, we must have $\sqrt{\phi(z)} = \sqrt{\phi(-z)}$ for z near zero, and therefore everywhere. Thus $\sqrt{\phi(z)}$ is an even function too. Thus, $g(z) = 1/\sqrt{f(z^2)} = 1/z \sqrt{\phi(z)}$ is an odd function defined for $z \in B_1(0) - \{0\}$.

Suppose that $g(z_1) = g(z_2)$. Then $f(z_1^2) = f(z_2^2)$, which means that $z_1^2 = z_2^2$, since f is univalent. If $z_1 = -z_2$, then $g(z_1) = -g(z_2)$, which may hold only if $z_1 = z_2 = 0$. Otherwise, $z_1 = z_2$, so in either case g is univalent.

Problem 8B.

1. Let G be a non-abelian finite group. Show that $G/Z(G)$ is not cyclic, where $Z(G)$ is the center of G.

2. If $|G| = p^n$, with p prime and $n > 0$, show that $Z(G)$ is not trivial.

3. If $|G| = p^2$, show that G is abelian.

Solution:

1. If g is an element of G whose image generates the cyclic group G/Z, then G is generated by the commuting set g and Z, so is abelian.

2. All conjugacy classes have order a power of p (as their order is the index of a centralizer of one of their elements) so the number of conjugacy classes with just one element is a multiple of p. These conjugacy classes form the center, so the center has order a multiple of p so is non-trivial.
3. By part 2 the center has order at least \(p \), so \(G/Z \) has order at most \(p \) and is therefore cyclic. By part 1 the group must be abelian.

Problem 9B. Prove that the sequence of functions \(f_n(x) = \sin nx \) has no pointwise convergent subsequence. (Hint: show that given any subsequence and any interval of positive length there is a subinterval such that some element of the subsequence is at least \(1/2 \) on this subinterval, and another element is at most \(-1/2\).)

Remark. This is an example from Ch. 7 of W. Rudin’s *Principles of Mathematical Analysis*, which is treated by the author using a result from the more advanced chapter on Lebesgue measure, namely the bounded convergence theorem. According to it, if a sequence of bounded continuous functions \(g_k (= (\sin n_k x - \sin n_{k+1} x)^2 \) in this example) tends to 0 pointwise, then \(\int g_k(t)dt \) tend to 0 too. (In the example, the integral over the period \([0, 2\pi]\) is equal to \(2\pi\) regardless of \(k \).) Below, an elementary proof is given; it is due to Evan O’Dorney (a high-school student taking Givental’s H104 class).

Solution: Given a subsequence \(\sin n_k x \), we find a subsequence \(\sin n_{k_l} \) in it and a point \(x_0 \) where \(\lim_{l \to \infty} \sin n_{k_l}x_0 \) does not exist. Start with picking an interval \([a_1, b_1]\) where \(\sin n_1 x \geq 1/2 \). Passing to a term \(\sin n_k x \) which oscillates sufficiently many times on the interval \([a_1, b_1]\), find in it an interval \([a_2, b_2]\) where \(\sin n_k x \leq -1/2 \). Passing to a term \(\sin n_m x \) which oscillates sufficiently many times on \([a_2, b_2]\), find in it an interval \([a_3, b_3]\) where \(\sin n_m x \geq 1/2 \), and so on. Call the selected functions \(\sin n_{k_1} x \), \(\sin n_{k_2} x \), \(\sin n_{k_3} x \), etc., and let \(x_0 \) be a common point of the nested sequence of intervals \([a_1, b_1] \supset [a_2, b_2] \supset \ldots \). Since \(\sin n_{k_l}x_0 \geq 1/2 \) for odd \(l \) and \(\leq -1/2 \) for even \(l \), the limit at \(x_0 \) does not exist.