1A. Let \(x_1, x_2, \ldots \) be an infinite sequence of real numbers such that every subsequence contains a subsequence converging to 0. Must the original sequence converge?

2A. Find a matrix \(U \) such that \(U^{-1}AU = J \) is in Jordan canonical form, where
\[
A = \begin{pmatrix}
0 & -3 & 5 \\
-1 & -6 & 11 \\
0 & -4 & 7 \\
\end{pmatrix}.
\]

3A. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is real analytic and periodic with period \(2\pi \). Prove that \(f \) has an analytic continuation \(F \) defined on a strip
\[
S = \{ x + iy \in \mathbb{C} : |y| < \rho \}
\]
with \(\rho > 0 \), and that \(F(z + 2\pi) = F(z) \) for \(z \in S \).

4A. Define six fields as follows:
- Let \(A = \mathbb{Q}(\alpha) \) where \(\mathbb{Q} \) is the field of rational numbers and \(\alpha \) is the real cube root of 2.
- Let \(B \) be a splitting field of \(x^3 - 2 \) over \(\mathbb{Q} \).
- Let \(C \) be an algebraic closure of the field \(\mathbb{F}_2 \) of 2 elements.
- Let \(D \) be the subfield of \(C \) generated over \(\mathbb{F}_2 \) by the set of \(a \in C \) such that there exists \(n \geq 1 \) with \(a^n = 1 \).
- Let \(E \) be the field \(\mathbb{R} \) of real numbers.
- Let \(F \) be the field \(\mathbb{Q}[[T]][(T^{-1})] \) of formal Laurent series with rational coefficients.

For each pair of these, determine with proof whether or not they are isomorphic.

5A. Let \(a_0(x), a_1(x), \ldots, a_{r-1}(x) \) and \(b(x) \) be \(C^m \) functions on \(\mathbb{R} \). Prove that if \(y(x) \) is a solution of the differential equation
\[
y^{(r)} + a_{r-1}(x)y^{(r-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)
\]
(in particular, assuming that the derivatives \(y', y'', \ldots, y^{(r)} \) exist), then \(y(x) \) is \(C^{m+r} \).

6A. Let \(A = \alpha_1 \sigma_1 + \alpha_2 \sigma_2 + \alpha_3 \sigma_3 \) where \(\alpha_1, \alpha_2, \alpha_3 \in \mathbb{C} \) and
\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},
\]
\[
\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]
Let \(\beta \in \mathbb{C} \) be any square root of \(\alpha_1^2 + \alpha_2^2 + \alpha_3^2 \).

(a) Prove that \(\exp(A) = \cosh(\beta) + \frac{\sinh(\beta)}{\beta} A \), where \(\frac{\sinh(\beta)}{\beta} \) is interpreted as 1 if \(\beta = 0 \). (Hint: First show that \(A^2 \) is a scalar multiple of the identity.)

(b) Evaluate \(\exp(A) \) explicitly in the case \(\alpha_1 = i\pi, \alpha_2 = i\pi, \) and \(\alpha_3 = \pi \).
7A. Let a and b be complex numbers, and let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant entire function such that $f(az + b) = f(z)$ for all $z \in \mathbb{C}$. Prove that there is a positive integer n such that $a^n = 1$.

8A. Let $n \geq 3$, and let A_n be the alternating subgroup of the symmetric group on n letters. Prove that A_n is generated by (123) and $(12\cdots n)$ if n is odd, or by (123) and $(2\cdots n)$ if n is even.

9A. Suppose b and L are positive constants and $f : [0, b] \to \mathbb{R}$ is continuous and satisfies

$$f(x) \geq L \int_0^x f(t) \, dt, \quad (0 \leq x \leq b).$$

Show that $f(x) \geq 0$ for $0 \leq x \leq b$.

1B. If $c \in \mathbb{R}$, say that a real-valued function $f : \mathbb{R} \to \mathbb{R}$ is periodic with period c if it satisfies $f(x + c) = f(x)$ for all $x \in \mathbb{R}$.

(i) Let V be the set of continuous real-valued functions f having a positive integer as a period. Prove that V is a vector space.

(ii) Let $p_1 < p_2 < \ldots < p_n < \ldots$ be the sequence of prime numbers, and for each i, let f_i be a function whose minimal positive period is p_i. Prove that the functions f_1, f_2, \ldots are linearly independent in V.

2B. Given any real number a_0, define a_1, a_2, \ldots by the rule

$$a_{n+1} = \cos a_n$$

for all $n \geq 0$. Prove that the sequence (a_n) converges, and that the limit is the unique solution of the equation $\cos x = x$.

3B. Let k and l be positive integers. Let $\mathbb{Q}(x)(\sqrt[k]{1-x^l})$ be any extension field of $\mathbb{Q}(x)$ generated by a k-th root of $1-x^l$. Define $\mathbb{Q}(x)(\sqrt[l]{1-x^k})$ similarly. Prove that $\mathbb{Q}(x)(\sqrt[k]{1-x^l})$ and $\mathbb{Q}(x)(\sqrt[l]{1-x^k})$ are isomorphic.

4B. Let E be the \mathbb{C}-vector space of entire functions. Let V be a nonzero finite-dimensional \mathbb{C}-subspace of E with the property that $f \in V$ implies $f' \in V$. Prove that V contains a function that is everywhere nonzero.

5B. Let \mathbb{F}_q denote the finite field with q elements, where q is a power of a prime. Let $\text{SL}_n(\mathbb{F}_q)$ be the group of $n \times n$ matrices with entries in \mathbb{F}_q and determinant 1, under matrix multiplication. Determine (with proof) a simple necessary and sufficient condition on n and q for the center of $\text{SL}_n(\mathbb{F}_q)$ to be trivial.

6B. Let U be a non-empty open subset of \mathbb{R}^d and let $f : U \to \mathbb{R}^d$ be a continuous vector field defined on U. Let K be a compact subset of U and let $b > 0$. Suppose $\varphi : [0, b) \to K$ is a continuous function satisfying

$$\varphi(t) = \varphi(0) + \int_0^t f(\varphi(s)) \, ds, \quad (0 \leq t < b).$$

Prove that $\lim_{t \to b^-} \varphi(t)$ exists, where $t \to b^-$ means t approaches b from the left.
7B. Given any group G, define a binary operation \ast on the set $H = G \times G$ by $(g_1, h_1) \ast (g_2, h_2) = (g_1g_2, g_2^{-1}h_1g_2h_2)$.

(a) Show that (H, \ast) is group.

(b) In the case that G is the alternating group A_n on n letters with $n \geq 5$, prove that H has no subgroup of index 2.

8B. Let A be the set of $z \in \mathbb{C}$ such that $|z| \leq 1$, $\text{Im}(z) \geq 0$, and $z \notin \{1, -1\}$. Find an explicit continuous function $u : A \to \mathbb{R}$ such that

- u is harmonic on the interior of A,
- $u(z) = 3$ for $z \in A \cap \mathbb{R}$
- $u(z) = 7$ for z in the intersection of A with the unit circle.

9B. Let k and n be integers with $n \geq k \geq 0$. Let A and B be $n \times k$ matrices with real coefficients. Let A^t be the transpose of A. For each size-k subset $I \subseteq \{1, \ldots, n\}$, let A_I be the $k \times k$ matrix obtained by discarding all rows of A except those whose index belongs to I. Define B_I similarly. Prove that

$$
\det(A^t B) = \sum_I \det(A_I) \det(B_I),
$$

where the sum is over all size-k subsets $I \subseteq \{1, \ldots, n\}$. (Suggestion: use linearity to reduce to the case where the columns of A and B are particularly simple.)