Problem 1A.

Show that
\[\int_0^1 x^{-x} \, dx = \sum_{n=1}^{\infty} n^{-n} \]

Solution:
Write \(x^{-x} = e^{-x \log x} \), Taylor expand the exponential, and integrate term by term.

Problem 2A.

Suppose \(f : \mathbb{R} \to \mathbb{R} \) is differentiable and satisfies \(f'(x) > f(x) \) for all real \(x \). Show that if \(f(0) = 0 \) then \(f(x) > 0 \) for all \(x > 0 \).

Solution:
Since \(f'(0) > 0 \) we have \(f(x) = x \cdot f'(0) + o(|x|) \) in a neighborhood of zero, so there is a \(t > 0 \) such that \(f \) is positive on \((0, t)\). Assume for contradiction that \(f(x) \leq 0 \) for some \(x > 0 \) and let \(x_0 \) be the first such \(x \). Then \(f(x) > 0 \) on \((0, x_0)\), which means that \(f'(x) > 0 \) on \((0, x_0)\), so \(f(x_0) > f(0) = 0 \), a contradiction.

Problem 3A.

Let \(X \) be a metric space.
(a) If \(U \) is a subset of \(X \) show that there is a unique open set \(\neg U \) disjoint from \(U \) and containing all open sets disjoint from \(U \).
(b) Give an example of an open set \(U \) with \(U \neq \neg \neg U \)
(c) Prove that for all open sets \(U \), \(\neg U = \neg \neg \neg U \). (Hint: if \(A \subseteq B \) and \(B \subseteq A \) then \(A = B \).)

Solution:
(a) Take \(\neg U \) to be the union of all open sets disjoint from \(U \), which is open as the union of any collection of open sets is open.
(b) Take \(X \) to be the real line and \(U \) to be the nonzero reals. Then \(\neg U \) is empty so \(\neg \neg U \) is the real line.
(c) We have \(A \subseteq \neg \neg A \) and applying this to \(A = \neg U \) we get \(\neg U \subseteq \neg \neg U \). On the other hand, if \(A \subseteq B \) then \(\neg B \subseteq \neg A \), and applying this to \(A = U, B = \neg U \) we get \(\neg \neg U \subseteq \neg U \).
Combining these gives \(-\neg U = -U\).

Problem 4A.

Let \(a\) be a real number with \(|a| < 1\). Prove that

\[
\sum_{k=1}^{\infty} a^k \cos(k\theta) = \frac{-a^2 + a \cos \theta}{1 + a^2 - 2a \cos \theta}
\]

Solution: We use the fact that for any complex number \(z = e^{i\theta} = \cos \theta + i \sin \theta \in \mathbb{C}\)

\[
\frac{1}{1 - az} = \sum_{k=0}^{\infty} a^k z^k = \sum_{k=0}^{\infty} a^k e^{ik\theta} = 1 + \sum_{k=1}^{\infty} a^k (\cos(k\theta) + i \sin(k\theta)).
\]

Therefore

\[
\sum_{k=1}^{\infty} a^k \cos(k\theta) = \Re \left(\frac{1}{1 - az} - 1 \right) = \Re \left(\frac{az}{1 - az} \right) = \Re \left(\frac{az(1 - \overline{a} z)}{|1 - az|^2} \right) = \Re \left(\frac{az - a^2}{(1 - a \cos \theta)^2 + (a \sin \theta)^2} \right) = \frac{a \cos \theta - a^2}{1 + a^2 - 2a \cos \theta}
\]

Problem 5A.

Describe a conformal map from the set \(\{|z - 4i| < 4\} \cap \{|z - i| > 1\}\) onto the open unit disk.

Solution: Compose

\[
f_1 : z \to 1/z \\
f_2 : z \to 8\pi(z + i/2)/3 \\
f_3 : z \to \exp(z) \\
f_4 : z \to (z - i)/(z + i)
\]
Problem 6A.

Let A be an $n \times n$ matrix with real entries such that $(A - I)^m = 0$ for some $m \geq 1$. Prove that there exists an $n \times n$ matrix B with real entries such that $B^2 = A$.

Solution: Write $A = I + N$, so $N^m = 0$. Let $P(x)$ be the m-th Taylor polynomial of the function $\sqrt{1 + x}$, so $P(x)^2 \equiv 1 + x \pmod{x^m}$. In other words

$$P(x)^2 = 1 + x + x^m Q(x)$$

for some $Q(x) \in \mathbb{R}[x]$. Then

$$P(N)^2 = I + N + N^m Q(N) = I + N = A,$$

so $B := P(N)$ satisfies $B^2 = A$. S

Problem 7A.

Suppose $A = (a_{ij})$ is a real symmetric $n \times n$ matrix with nonnegative eigenvalues. Show that

$$|a_{ij}| \leq \sqrt{a_{ii}a_{jj}}$$

for all distinct $i, j \leq n$.

Solution:

Since A is symmetric with nonnegative eigenvalues, we may diagonalize A as $A = UDU^T$ with positive D, so $A = B^TB$ for $B^T = UD^{1/2}$. Thus, A is a Gram matrix, i.e., $a_{ij} = \langle v_i, v_j \rangle$ where v_i are the columns of B, so by Cauchy Schwartz $a_{ij} \leq \|v_i\|\|v_j\| \leq \sqrt{a_{ii}a_{jj}}$, as desired.

Problem 8A.

For three non-zero integers a, b and c show that

$$\text{gcd}(a, \text{lcm}(b, c)) = \text{lcm}(\text{gcd}(a, b), \text{gcd}(a, c)).$$

where gcd and lcm stand for the greatest common divisor and the least common multiple of two integers, respectively.
Solution: Given a prime p, let $\alpha, \beta,$ and γ be the exponents of p in the prime factorization of $a, b,$ and c, respectively. Then it will suffice to show that

$$\min\{\alpha, \max\{\beta, \gamma\}\} = \max\{\min\{\alpha, \beta\}, \min\{\alpha, \gamma\}\}.$$

Without loss of generality, we may assume that $\beta \leq \gamma$; in that case $\max\{\beta, \gamma\} = \gamma$ and $\min\{\alpha, \beta\} \leq \min\{\alpha, \gamma\}$. Therefore the above equation is true because both sides are equal to $\min\{\alpha, \gamma\}$.

Problem 9A.

Suppose a prime number p divides the order of a finite group G. Prove the existence of an element $g \in G$ of order p.

Solution: Consider the set $X = \{(g_1, \ldots, g_p) \in G^p \mid g_1 \cdots g_p = e\}$. It is acted upon by the cyclic group $\mathbb{Z}/p\mathbb{Z}$ with $1 \in \mathbb{Z}/p\mathbb{Z}$ acting as the cyclic shift

$$(g_1, \ldots, g_p) \mapsto (g_p, g_1, \ldots, g_{p-1}).$$

A fixed point of this action is a constant p-tuple (g, \ldots, g) such that $g^p = e$. The number of fixed points is not zero, since (e, \ldots, e) is a fixed point, and is congruent modulo p to

$$|X| = |G|^{p-1},$$

i.e., it is divisible by p, since $p > 1$. It follows that there is an element $g \neq e$ with $g^p = e$.

Problem 1B.

A mathematician (stupidly) tries to estimate $\pi^2/6 = \sum_{n=1}^{\infty} 1/n^2$ by taking the sum of the first N terms of the series. What is the smallest value of N such that the error of this approximation is at most 10^{-6}? Hint: integral test.

Solution: The integral test shows that $1/(N + 1) < \sum_{n=N+1}^{\infty} 1/n^2 < 1/N$, so $N = 10^6$.

Problem 2B.

Suppose $p(z)$ is a nonconstant real polynomial such that for some real number a, $p(a) \neq 0$ and $p'(a) = p''(a) = 0$. Prove that p must have at least one nonreal zero.

Solution: Observe that if $q(z)$ is a real-rooted polynomial with distinct roots, then by Rolle’s theorem $q'(z)$ is also real-rooted (since it has degree one less than the degree of q) and has the property that between every two roots of q' there is a root of q. Since polynomials with distinct roots are dense in the set of real-rooted polynomials, this implies that if q is any real-rooted polynomial and $q'(z)$ has a double root at z then $q(z) = 0$.

For the given polynomial $p'(z)$ has a double root at a, but $p(a) \neq 0$, so p cannot be real-rooted.

Problem 3B.

Prove that a continuous function from \mathbb{R} to \mathbb{R} which maps open sets to open sets must be monotone.

Solution: We prove the contrapositive. Assume f is not monotone, i.e., there exist $a < b < c$ with $f(a) < f(b)$ and $f(b) > f(c)$ or with $f(a) > f(b)$ and $f(b) < f(c)$. In the first case, let m be the point at which $f(x)$ is maximized in $[a, c]$; such a point exists since f is continuous. Moreover we must have $m \neq a, c$ by the hypothesis. But now the image of (a, c) under f contains m, but does not contain a neighborhood of m, so f cannot map open sets to open sets.

The second case is completely analogous.

Problem 4B.

Evaluate

$$\int_{-\infty}^{\infty} \frac{x - \sin x}{x^3} \, dx.$$

Solution:

Integrate by parts twice to reduce to $(1/6) \int_{-\infty}^{\infty} \frac{\sin(x)}{x} \, dx$, which is a standard example in complex analysis.

Problem 5B.

Score:
Suppose $h(z)$ is entire, $h(0) = 3 + 4i$, and $|h(z)| \leq 5$ whenever $|z| < 1$. What is $h'(0)$?

Solution: We have $|h(0)| = \sqrt{9 + 16} = 5$, so $|h(0)| \geq |h(z)|$ for $z \in D = \{|z| < 1\}$. By the maximum modulus principle this is only possible if $h(z)$ is constant on D, which implies that $h'(0) = 0$.

Problem 6B.

Score:

Show that if A is an $n \times n$ complex matrix satisfying

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

for all $i \in \{1, \ldots, n\}$, then A must be invertible.

Solution:

Assume $Ax = 0$ and choose i such that $|x_i| = \max_j |x_j|$. Then

$$|a_{ii}| |x_i| \leq \sum_{j \neq i} |a_{ij}| |x_j| \leq \sum_{j \neq i} |a_{ij}| |x_i|$$

so that

$$\left(|a_{ii}| - \sum_{j \neq i} |a_{ij}|\right) |x_i| \leq 0.$$

Since the first factor is positive by assumption and the second is nonnegative, we must have $x_i = 0$. By choice of i we must have $x = 0$ so A is invertible.

Problem 7B.

Score:

For a real symmetric positive definite matrix A and a vector $v \in \mathbb{R}^n$, show that

$$\int_{\mathbb{R}^n} \exp(-x^T A x + 2v^T x) \, dx = \frac{\pi^{n/2}}{\sqrt{\det A}} \exp(v^T A^{-1} v)$$

You may assume that $\int_{-\infty}^\infty e^{-x^2} \, dx = \sqrt{\pi}$.

Solution:

Complete the square, orthogonally diagonalize A, change variables, and integrate.
Problem 8B.

Show that there are no natural numbers $x, y \geq 1$ such that

$$x^2 + y^2 = 7xy.$$

Solution: Assume that there was such a solution. Taking remainders modulo 7 gives us

$$x^2 + y^2 \equiv 0 \mod 7.$$

The quadratic remainders modulo 7 are 0, 1, 2, 4. The only two quadratic remainders whose sum is $\equiv 0$ are 0 and 0. So

$$x^2 \equiv y^2 \equiv 0 \mod 7.$$

It follows that x, y are both divisible by 7, i.e. $x = 7x_1$, $y = 7y_1$, for some natural numbers x_1, y_1. It follows that

$$x_1^2 + y_1^2 = 7x_1y_1.$$

Repeating this process would produce an infinite sequence of pairs $(x, y), (x_1, y_1), (x_2, y_2), \ldots$ such that x_i and y_i are strictly decreasing sequences of integers. Contradiction.

Problem 9B.

Find the smallest n for which the permutation group S_n contains a cyclic subgroup of order 111.

Solution: Let the partition $n = n_1 + n_2 + \ldots + n_k$ represent the cycle structure of an element $g \in S_n$, i.e. g is a products of commuting cycles of the lengths $n_1 \leq n_2 \leq \ldots \leq n_k$. The order of the cyclic subgroup generated by g is obviously equal to the least common multiple of n_1, \ldots, n_k. We want this least common multiple to be 111 = 3 · 37. One of the possibilities is $(n_1, n_2, \ldots, n_k) = (3, 37)$ in which case $n = 3 + 37 = 40$. We claim that this value of n is the minimal possible. Indeed, if 111 is the least common multiple of n_1, \ldots, n_k then each of the prime factors 3, 37 divides at least one of the numbers n_i and moreover, the sum of such factors dividing n_i does not exceed their product and thus does not exceed n_i. This implies $n = n_1 + \ldots + n_k \geq 3 + 37 = 40$.

Score: