
Problem 1A. Score:

Let
. . . ⊂ X2 ⊂ X1

be a nested sequence of closed nonempty connected subsets of a compact metric space X.
Prove that

⋂∞
i=1Xi is nonempty and connected.

Solution:
Since Xi is closed in X, it is compact. The intersection of a nested sequence of nonempty

compact sets is nonempty. (Proof : If it is empty then there is an open cover of X by the
increasing sequence {X − Xi}∞i=1. This must have a finite subcover, so Xi = ∅ for some i,
which is a contradiction.)

Suppose that
⋂∞

i=1Xi is not connected. Let A and B be two disjoint nonempty closed
sets so that

⋂∞
i=1Xi = A ∪B. Find disjoint open sets U and V so that A ⊂ U and B ⊂ V .

Put Fi = Xi − (U ∪ V ). Then {Fi}∞i=1 is a nested sequence of compact sets, whose
intersection is empty. Thus Fi = ∅ for some i. That is, Xi ⊂ U ∪ V .

However, Xi intersects both U and V , since Xi∩A 6= ∅ and Xi∩B 6= ∅. This contradicts
the assumption that Xi is connected.

Problem 2A. Score:

Let R be a finite ring. Prove that there are positive integers m and n with m > n such that
all x ∈ R satisfy xm = xn.

Solution: There are only a finite number of functions from R to R as |R| is finite, so in
any infinite list of functions from R to R such as x → xn, two must be the same by the
pigeon-hole principle.

Problem 3A. Score:

Suppose that a function f is bounded and analytic on a deleted neighborhood 0 < |z| < ε
of the origin. Let

f(z) =
∞∑

j=−∞

cjz
j

be the Laurent expansion of f . Show that if j is negative then cj = 0.



Solution: We know that

cj =
1

2πi

∫
C

z−j−1 f(z) dz,

where C is a contour around the origin. Taking C of radius r, we can estimate |cj| above by

1

2π
r−j−1M2πr.

If j is negative then by taking r to zero, we get cj = 0.

Problem 4A. Score:

If the complex conjugate of a complex matrix is equal to its transpose, prove that all its
eigenvalues are real.

Solution: If (,) is the usual Hermitian inner product and x a norm 1 eigenvector of the

Hermitian matrix A with eigenvalue λ then λ = (λx, x) = (Ax, x) = (x,A
T
x) = (x,Ax) =

(x, λx) = λ so λ is real.

Problem 5A. Score:

Show that the series
∞∑

n=1

sin
x

n2

converges uniformly on any bounded interval in R.

Solution:
Let I be a bounded interval in R.
Since limx→0

sin x
x

exists, the function (sinx)/x extends to a continuous function on all of
R, so it is bounded on the bounded interval I. Therefore there is a C such that | sinx| ≤ C|x|
for all x ∈ I. (With a little extra work one can show that C = 1 works for all of R.)

Therefore if |x| ≤ B for all x ∈ I, then the summands are bounded in absolute value by
BC/n2, and therefore the sum converges uniformly on I by the Weierstrass M-test.

Problem 6A. Score:



For nonzero integers a, b, c, show that

gcd{a, lcm{b, c}} = lcm{gcd{a, b}, gcd{a, c}} .

Here gcd denotes greatest common divisor and lcm denotes least common multiple. Solution:

If we factor a = pm1
1 pm2

2 ... and b = pn1
1 p

n2
2 ... as products of prime powers, then the lcm is the

product of pmaxmi,ni

i and the gcd is the product of pmaxmi,ni

i . The result then follows from
min(x,max(y, z)) = max(min(x, y),min(x, z)), which in turn follows because both sides
are x unless x is largest, in which case both sides are max(y,z).

Problem 7A. Score:

Use residues to compute ∫ ∞
−∞

sin(x)

x2 + 4x+ 5
dx.

Solution:
It’s enough to compute the imaginary part of∫ ∞

−∞

eix

x2 + 4x+ 5
dx.

Put

f(z) =
eiz

z2 + 4z + 5
.

Using Jordan’s Lemma, we can apply the Cauchy residue theorem to a semicircle in the
upper half plane and just compute residues. The only singularity in the upper half plane is
at z = −2 + i. The residue there is

e−1−2i

2i
,

so the answer is
−π
e

sin(2).

Problem 8A. Score:

Suppose that f(x1, . . . , xn) =
∑

jk ajkxjxk for some real numbers ajk. If f is non-negative
for all real arguments, show that f can be written as a finite sum of squares of linear forms
in x1, . . . , xn.



Solution:
We can assume the matrix is symmetric. We use induction on n. If a11 = 0 then all other

entries in the first row or column must be 0 otherwise f would take negative values, so we
can assume that a11 > 0. Then by changing x1 to x1 minus a suitable linear combination
of the other variables, we can kill all the other entries in the first row and column of the
matrix. This writes f as the sum of the square of a linear form and a non-negative quatratic
form in n− 1 varaibles x2, ..., xn, so by induction f is a sum of squares.

Problem 9A. Score:

Show that there is more than one real-valued differentiable function y with domain the real
numbers such that dy

dx
= y2/3 and y(0) = 1.

Solution:
The obvious general solution of the differential equation is y = ((x − C)/3)3, which

satisfies the boundary condition for the unique value −3 of C, and the problem is to find
another solution. One example is given by taking this solution, and changing its values
for x < −3 (when y is negative) to be 0. This is still differentiable (though not infinitely
differentiable) at x = −3 and satisfies the differential equation. (There are infinitely many
other solutions satisfying the boundary condition: draw a picture of the solutions to see
what is going on.)

Problem 1B. Score:

Let f : R2 → R be a continuous map such that the inverse image of any bounded set is
bounded. Show that f achieves either a minimum value or a maximum value.

Solution: Choose n so that f−1([−n, n]) is nonempty. Since f−1([−n, n]) is compact, it lies
within some closed ball DR around the origin in R2.

Since R2−DR is connected, and f(R2−DR) ⊂ R− [−n, n], it follows that f(R2−DR) ⊂
(−∞,−n) or f(R2 −DR) ⊂ (n,∞).

If f(R2 −DR) ⊂ (−∞,−n) then sup f = sup f
∣∣
DR

is achieved.

If f(R2 −DR) ⊂ (n,∞) then inf f = inf f
∣∣
DR

is achieved.

Problem 2B. Score:



Show that the splitting field of x5− 10x+ 5 over the rational numbers has Galois group the
symmetric group S5 on 5 points. (You may assume that any subgroup of S5 containing a
5-cycle and a 2-cycle is the whole of S5.)

Solution: The polynomial is irreducible by Eisenstein’s criterion for p = 5, so the Galois
group has order divisible by 5. It has exactly 3 real roots (the derivative has just 2 real roots
so it has at most 3 real roots, and looking at the signs at −∞, 0, 1,∞ shows that it has at
least 3 real roots) so complex conjugation is a transposition in the Galois group. Since the
Galois group is a subgroup of S5 containing a 5-cycle and a transposition, it must be the
whole of S5.

Problem 3B. Score:

Give an example of a conformal map from the unit disk {z : |z| < 1} onto the sector
{z : 0 < arg(z) < π/4}.

Solution: z → z − i takes the unit disk to the unit disk with center −i. Applying z → 1/z
takes this to the halfplane with imaginary part greater than 1/2. Subtracting i/2 takes this
to the half plane with positive imaginary part. Taking 4th roots takes this to the desired
sector.

Problem 4B. Score:

Find the determinant of the 6 by 6 matrix with entries aj,k = jk for 1 ≤ j, k ≤ 6. (You may
give your answer in terms of a product of powers of primes.)

Solution: This is essentially a Vandermonde matrix for the values 1,2,3,4,5,6 (at least if the
rows are divided by these numbers) so the determinant is the product of all the differences
of 0, 1, 2, 3, 4, 5, 6 which is 162534435261 = 2123552.

Problem 5B. Score:

Let f : [0,∞)→ R be a function such that
• f is continuous,
• f(0) = 0,
• f is differentiable on (0,∞), and
• f ′ is increasing on (0,∞).



Define g : (0,∞)→ R by

g(x) =
f(x)

x
.

Show that g is an increasing function.
[Hint: Differentiate.]

Solution: Following the hint, we have

g′(x) =
xf ′(x)− f(x)

x2
,

and it will suffice to show that xf ′(x) > f(x) for all x ∈ (0,∞).
Fix x > 0. By the Mean Value Theorem applied to f on [0, x], there is a c ∈ (0, x) such

that

f ′(c) =
f(x)− f(0)

x− 0
=
f(x)

x
.

Since f ′ is increasing, it then follows that

xf ′(x) > xf ′(c) = f(x) ,

and therefore g′(x) > 0.

Problem 6B. Score:

Show that there are no simple groups of order 30. (Hint: show that if a non-cyclic simple
group has order divisible by a prime p, then it has at least p2 − 1 non-trivial elements of
order a power of p.)

Solution: Suppose there is a simple group of order 30. For p prime dividing the order of the
group the Sylow p-subgroups cannot be normal, so there is more than 1 of them, so there
are at least p+ 1 of them. Since any 2 have at most 1 element in common there are at least
p2 − 1 elements of order p. So there are at least 24 elements of order 5, and 8 of order 3.
But this is more than 30 elements which is impossible.

Problem 7B. Score:

If f is an analytic function from the unit disk into itself with f(0) = 0, prove that |f ′(0)| ≤ 1.

Solution: Put g(z) = f(z)/z. Then we have to show |g(0)| ≤ 1. But bythe maximum
modulus principle, for any positive ε, |g(0)| is at most the maximum of |g| on a circle of



radius 1 − ε, which is at most 1/(1 − ε) because |f(z)| is at most 1 and |1/z| is at most
1/(1− ε). Since ε can be anything positive this shows that |f ′(0)| = |g(0)| ≤ 1.

Since this problem is part of the proof of the Schwarz lemma, quoting this lemma will
not get full marks.

Problem 8B. Score:

Suppose that f is a positive continuous function on the interval [a, b]. Prove that there
are polynomials pn for n = 0, 1, 2, . . . such that pn has highest coefficient xn, and∫ b

a

pm(x)pn(x)f(x)dx = 0

if m 6= n.

Solution: Apply the Gram-Schmidt process to 1, x, x2, ... using the inner product (g, h) =∫ b

a
g(x)h(x)f(x)dx.

Problem 9B. Score:

(a) Prove that the series 0!/x− 1!/x2 + 2!/x3 − 3!/x4 · · · diverges for all nonzero x.
(b) If x > 0 and

G(x) =

∫ ∞
0

e−tx

1 + t
dt

show that the difference between G(x) and the sum of the first n terms of the series in (a)
has absolute value at most that of the first term omitted.
(c) If x = 100, prove that the sum of the first 10 terms of the divergent series in (a) gives
G(x) correctly to more than 10 decimal places.

Solution:
(a) The terms tend to infinity so the series cannot converge.
(b) Repeated integration by parts shows that the integral is the sum of the first few terms

of the series above up to an error term

(−1)n n!

xn

∫ ∞
0

e−tx

(1 + t)n+1
dt

whose sign is (−1)n, from which the result follows as the successive partial sums must be
alternately too big and too small.

(c) This follows from (b) as the error is less than the magnitude 10!/10011 of the first
term omitted which is less than 10−11.


