1A. Show that the differential equation
\[f''(z) = zf(z), \quad f(0) = 1, \quad f'(0) = 1 \]
has an unique entire solution in the complex plane.

Solution. Let
\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]
be the Taylor series of \(f \) at 0. Then the equation gives
\[a_0 = 1, \quad a_1 = 1, \quad a_2 = 0 \]
\[k(k - 1)a_k = a_{k-3}. \]
Hence for \(k \geq 1 \) we obtain
\[a_{3k} = \prod_{j=1}^{k} \frac{1}{3j(3j - 1)} \]
\[a_{3k+1} = \prod_{j=1}^{k} \frac{1}{3j(3j + 1)} \]
\[a_{3k+2} = 0. \]
We need to show that the convergence radius of the series for \(f \) is infinite. Indeed we have
\[\lim_{k \to \infty} \frac{a_{3k+3}}{a_{3k}} = 0 \]
which shows that the series
\[\sum_{k=0}^{\infty} a_{3k} z^{3k} \]
has an infinite radius of convergence. Similarly we argue for the “3k + 1” series.

2A. List eight groups of order 36 and prove that they are not isomorphic.

Solution. Let \(C_n \) be a cyclic group of order \(n \), let \(D_{2n} \) be a dihedral group of order \(2n \), let \(S_n \) be the symmetric group on \(n \) letters, and let \(A_n \) be its alternating subgroup. Consider the following eight groups of order 36:

\[C_2^2 \times C_3^2, \quad C_2^2 \times C_9, \quad C_4 \times C_3^2, \quad C_4 \times C_9, \quad C_6 \times S_3, \quad S_3 \times S_3, \quad C_2 \times D_{2,9}, \quad C_3 \times A_4. \]

The first four are abelian and pairwise nonisomorphic because each pair has either distinct 2-Sylow subgroups or distinct 3-Sylow subgroups. They are not isomorphic to the last four because the latter are nonabelian.

Of the last four, only \(C_2 \times D_{2,9} \) has a cyclic 3-Sylow subgroup, only \(C_3 \times A_4 \) has a normal 2-Sylow subgroup, and only \(S_3 \times S_3 \) has a trivial center. Thus the last four also are pairwise nonisomorphic.

(Remark: in fact, there are 14 groups of order 36.)
3A. Let A be a 2×2 matrix with complex entries. Prove that the series $I + A + A^2 + \ldots$ converges if and only if every eigenvalue of A has absolute value less than 1.

Solution. Conjugating A changes neither the convergence nor the eigenvalues, so we may assume that A is in Jordan canonical form, i.e., $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ or $A = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$.

In the first case, $A^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$ and $\sum A^n$ converges if and only if the eigenvalues a and b have absolute value less than 1, because the entries of the sum are geometric series.

In the second case, write $A = aI + N$, so $N^2 = 0$, and $A^n = a^nI + na^{n-1}N$. If $I + A + A^2 + \ldots$ converges, then the diagonal entries a^n of the terms A^n must converge to 0, so $|a| < 1$. Conversely if $|a| < 1$, then $\sum a^n$ and $\sum na^{n-1}$ converge by the Ratio Test, so $\sum A^n$ converges.

4A. Give an example, with proof, of a nonconstant irreducible polynomial $f(x)$ over \mathbb{Q} with the property that $f(x)$ does not factor into linear factors over the field $K = \mathbb{Q}[x]/(f(x))$.

Solution. The simplest example is $f(x) = x^3 - 2$. Let $\sqrt[3]{2}$ denote the real cube root of 2. Then $\mathbb{Q}(\sqrt[3]{2})$ is an algebraic extension of \mathbb{Q} generated by a root of $x^3 - 2$, hence isomorphic to $K = \mathbb{Q}[x]/(x^3 - 2)$. Since $\mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{R}$, and $x^3 - 2$ has only one real root, $x^3 - 2$ does not factor completely over K. The same proof works with $f(x) = x^3 - a$ for any rational a that is not a cube of a rational number. Other examples are also possible, of course.

5A. Let C denote the space of continuous functions on $[0, 1]$. Define

$$d(f, g) = \int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx.$$

(a) Show that d is a metric on C.

(b) Show that (C, d) is not a complete metric space.

Solution. The function $a \mapsto a/(1 + a) = 1 - 1/(1 + a)$ is increasing on $[0, \infty)$. Hence, for $a = |f - g|$, $b = |g - h|$, $c = |f - h|$, we have $c \leq a + b$ and

$$\frac{c}{1 + c} \leq \frac{a + b}{1 + a + b} = \frac{a}{1 + a + b} + \frac{b}{1 + a + b} \leq \frac{a}{1 + a} + \frac{b}{1 + b}.$$

This implies the triangle inequality.

Define

$$f_n(x) = \begin{cases} n^2x, & 0 \leq x \leq 1/n \\ 1/x, & 1/n \leq x \leq 1. \end{cases}$$

The f_n form a Cauchy sequence, since

$$d(f_m, f_n) = \int_0^{\max\{1/m, 1/n\}} \frac{|f_m(x) - f_n(x)|}{1 + |f_m(x) - f_n(x)|} \, dx$$

$$\leq \int_0^{\max\{1/m, 1/n\}} \frac{1}{1 + x} \, dx$$

$$= \max\{1/m, 1/n\}.$$
Suppose that (C, d) is a complete metric space. Then the f_n would converge to some $f \in C$. If $f(a) \neq 1/a$ for some $a \in (0, 1]$, then by continuity there exists $\epsilon > 0$ such that $|1/x - f(x)| \geq \epsilon$ for $x \in (a - \epsilon, a]$. Then

$$d(f_n, f) \geq \int_{a-\epsilon}^{a} \frac{\epsilon}{1+\epsilon} \, dx$$

for sufficiently large n. But the right hand side is a positive constant independent of n, so then f_n could not converge to f. Thus $f(a) = 1/a$ for all $a \in (0, 1]$. This contradicts the fact that f is continuous on $[0, 1]$.

6A. Let $A(m, n)$ be the $m \times n$ matrix with entries

$$a_{ij} = j^i \quad (0 \leq i \leq m - 1, \ 0 \leq j \leq n - 1),$$

where $0^0 = 1$ by definition. Regarding the entries of $A(m, n)$ as representing congruence classes (mod p), determine the rank of $A(m, n)$ over the finite field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ for all $m, n \geq 1$ and all primes p.

Solution. The upper-left $k \times k$ square minor $A(k, k)$ of $A(m, n)$ is the Vandermonde matrix, with determinant $\prod_{0 \leq i < j < k} (j - i)$. If $k \leq p$, this determinant is non-zero (mod p), which shows that $\text{rk} A(m, n) \geq \min(m, n, p)$. Conversely, $A(m, n)$ has at most p distinct columns (mod p), so $\text{rk} A(m, n) \leq p$. Since $\text{rk} A(n, n) \leq \min(m, n)$, we have $\text{rk} A(m, n) = \min(m, n, p)$.

7A. Let $D = \{z \in \mathbb{C} : |z| \leq 1\} - \{1, -1\}$. Find an explicit continuous function $f : D \to \mathbb{R}$ satisfying all the following conditions:

- f is harmonic on the interior of D (the open unit disk),
- $f(z) = 1$ when $|z| = 1$ and $\text{Im}(z) > 0$, and
- $f(z) = -1$ when $|z| = 1$ and $\text{Im}(z) < 0$.

Solution. The linear fractional transformation $w = (1+z)/(1-z)$ maps $|z| < 1$ to the half-plane $\text{Re}(w) > 0$, with the upper and lower boundary semicircles mapping to the half-lines $i\mathbb{R}_{>0}$ and $i\mathbb{R}_{<0}$, respectively. A branch of $\log w$ defined on $\mathbb{C} - \mathbb{R}_{\leq 0}$ has

$$\text{Im}(\log w) = \begin{cases} \pi/2, & w \in i\mathbb{R}_{>0} \\ -\pi/2, & w \in i\mathbb{R}_{<0}, \end{cases}$$

so $f(z) = \frac{2}{\pi} \text{Im}((1+z)/(1-z))$ is a solution.

8A. Let p be a prime, and let G be the group $\mathbb{Z}/p^2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. How many automorphisms does G have?

Solution. An automorphism of G is determined by where it sends the generators $(1,0)$ and $(0,1)$. We claim that for $(a,b), (c,d) \in G$, there exists an automorphism mapping $(1,0)$ to (a,b) and $(0,1)$ to (c,d) if and only if

$$a \notin p\mathbb{Z}/p^2\mathbb{Z}, \quad c \in p\mathbb{Z}/p^2\mathbb{Z}, \quad \text{and} \quad d \neq 0 \in \mathbb{Z}/p\mathbb{Z}.$$
If α is an automorphism mapping $(1, 0)$ to (a, b) and $(0, 1)$ to (c, d), then (a, b) must not be killed by p, so $a \not\in p\mathbb{Z}/p^2\mathbb{Z}$ and (c, d) must be killed by p, so $c \in p\mathbb{Z}/p^2\mathbb{Z}$. Moreover (c, d) should not be a multiple of $p(a, b) = (pa, 0)$, so $d \neq 0$.

Conversely, given (a, b) and (c, d) satisfying the conditions, there exists a homomorphism $\alpha : G \to G$ mapping $(1, 0)$ to (a, b) and $(0, 1)$ to (c, d), since (a, b) is killed by p^2 and (c, d) is killed by p. The condition on α implies that (a, b) has order p^2. If (c, d) were a multiple of (a, b), then since $c \in p\mathbb{Z}/p^2\mathbb{Z}$, the element (c, d) would be a multiple of $p(a, b) = (pa, 0)$, which is impossible, since $d \neq 0 \in \mathbb{Z}/p\mathbb{Z}$. Thus $\#\alpha(G) > p^2$. So by Lagrange’s theorem $\#\alpha(G) = p^3$. Thus α is surjective, but G is finite, so α is also injective, so α is an automorphism.

It remains to count (a, b, c, d) satisfying the conditions. There are $p^2 - p$ possibilities for a, p possibilities for b, p possibilities for c, and $p - 1$ possibilities for d, and these may be chosen independently, so in total there are $(p^2 - p)p^2(p - 1) = p^5 - 2p^4 + p^3$ automorphisms of G.

9A. Let $f : [0, 1] \to [0, 1]$ be an increasing (not strictly increasing) function such that

$$f\left(\sum_{j=1}^{\infty} a_j 3^{-j}\right) = \sum_{j=1}^{\infty} \frac{a_j}{2} 2^{-j}$$

whenever the a_j are 0 or 2. Prove that there is a constant C_0 such that

$$|f(x) - f(y)| \leq C_0 |x - y|^{(\log 2)/(\log 3)}$$

for all $x, y \in [0, 1]$.

Solution. Let $x = 0.a_1a_2\ldots$ in base 3. If $a_j = 1$ for some j, choose the smallest such j, and define

$$x_- = 0.a_1a_2\ldots a_{j-1}022222\ldots$$
$$x_+ = 0.a_1a_2\ldots a_{j-1}200000\ldots$$

(These are the nearest numbers in C on either side of x, where C is the Cantor set consisting of numbers in $[0, 1]$ representable by base-3 expansions with only 0’s and 2’s.) Then $f(x_-) = f(x_+)$, so f is constant on $[x_-, x_+]$.

Thus it suffices to prove the inequality with $x = \sum a_j 3^{-j} \geq y = \sum b_j 3^{-j}$ with $a_j, b_j \in \{0, 2\}$. Let \hat{j} be the smallest j with $a_j \neq b_j$. Then $|x - y| \geq 3^{-\hat{j}}$. On the other hand,

$$|f(x) - f(y)| = \left|\sum_{j \geq \hat{j}} \frac{a_j - b_j}{2} 2^{-j}\right| \leq \sum_{j \geq \hat{j}} 2^{-j} = 2 \cdot 2^{-\hat{j}}.$$

Combining, we obtain

$$|f(x) - f(y)| \leq 2 \cdot 2^{-\hat{j}} \leq 2(3^{-\hat{j}})^{(\log 2)/(\log 3)} \leq 2|x - y|^{(\log 2)/(\log 3)}.$$
1B. Evaluate \(\int_{-\infty}^{\infty} \frac{x^2}{x^n + 1} \, dx \), where \(n \geq 4 \) is an even integer.

Solution. Let \(f(x) \) be the integrand. The answer is \(2I \), where \(I := \int_{0}^{\infty} f(x) \, dx \). For \(R > 1 \), let \(\gamma_R \) be the straight line path from 0 to \(R \), followed by the arc \(Re^{it} \) for \(t \in [0, 2\pi/n] \), followed by the straight line path from \(Re^{2\pi i/n} \) back to 0.

Let \(\zeta = e^{\pi i/n} \). The poles of \(f(z) \) are at \(\zeta^{m+1} \) for \(m \in \mathbb{Z} \), so the only pole inside \(\gamma_R \) is \(\zeta \). The numerator is nonzero at \(\zeta \), while the denominator has nonzero derivative at \(\zeta \), so \(\zeta \) is a simple pole with residue

\[
\frac{\zeta^2}{n\zeta^{n-1}} = \frac{1}{n\zeta^{3-n}}.
\]

By the residue theorem,

\[
\int_{\gamma_R} f(z) \, dz = \frac{2\pi i}{n} \zeta^{3-n} = -\frac{2\pi i}{n} \zeta^3.
\]

On the other hand, the first straight part of the integral tends to \(I \) as \(R \to \infty \), the curved part of the integral tends to 0 as \(R \to \infty \) since the integrand is \(O(1/R^{n-2}) \leq O(1/R^2) \) while the length of the arc is \(O(R) \), and the last straight part of the integral tends to \(-\zeta^6 I \) as \(R \to \infty \), as the substitution \(z = \zeta^2 t \) shows. Thus

\[
I - \zeta^6 I = -\frac{2\pi i}{n} \zeta^3.
\]

Now

\[
\sin(3\pi/n) = \frac{\zeta^3 - \zeta^{-3}}{2i} = \frac{\zeta^6 - 1}{2i\zeta^3},
\]

so

\[
2I = \frac{4\pi i}{n} \cdot \frac{\zeta^3}{\zeta^6 - 1}
\]

\[
= \frac{4\pi i}{n} \cdot \frac{1}{2i \sin(3\pi/n)}
\]

\[
= \frac{2\pi}{n \sin(3\pi/n)}.
\]

2B. Let \(u_{m,n} \) be an array of numbers for \(1 \leq m \leq N \) and \(1 \leq n \leq N \). Suppose that \(u_{m,n} = 0 \) when \(m \) is 1 or \(N \), or when \(n \) is 1 or \(N \). Suppose also that

\[
u_{m,n} = \frac{1}{4} (u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1})
\]

whenever \(1 < m < N \) and \(1 < n < N \). Show that all the \(u_{m,n} \) are zero.

Solution. If not, then by changing signs, we may assume that \(M := \max u_{m,n} \) is positive. Let

\(R = \{(m, n) : u_{m,n} = M\} \subseteq \{2, 3, \ldots, N-1\} \times \{2, 3, \ldots, N-1\} \).

Choose \((m, n) \in R \) with \(m \) minimal. Since \((m-1, n) \notin R \),

\[
\frac{1}{4} (u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1}) < \frac{1}{4} (M + M + M + M) = M = u_{m,n}.
\]

This contradicts the given relation.
3B. Let A and B be $n \times n$ complex unitary matrices. Prove that $|\det(A + B)| \leq 2^n$.

Solution. Let $C = A^{-1}B$, which also is unitary. Then

$$A + B = A(I + C)$$

Since A is unitary, its eigenvalues have absolute value 1. Multiplying them together shows that $|\det A| = 1$. If ζ_1, \ldots, ζ_n are the eigenvalues of C with multiplicity, so $|\zeta_i| = 1$, then the eigenvalues of $I + C$ are $1 + \zeta_1, \ldots, 1 + \zeta_n$, so

$$|\det(I + C)| = |1 + \zeta_1| \ldots |1 + \zeta_n| \leq 2 \cdot 2 \ldots 2 = 2^n$$

Thus

$$|\det(A + B)| = |\det(A)||\det(I + C)| \leq 2^n.$$

4B. Let L be a line in \mathbb{C}, and let f be an entire function such that $f(\mathbb{C}) \cap L = \emptyset$. Prove that f is constant. (Do not use the theorem of Picard that the image of a nonconstant entire function omits at most one complex number.)

Solution. Replacing f by $f + c$ for some $c \in \mathbb{C}$, we may assume that $0 \in L$. Replacing f by αf for some $\alpha \in \mathbb{C}^*$, we may assume that L is the imaginary axis. Since $f(\mathbb{C})$ is connected, it is contained in either the right half plane or the left half plane. Replace f by $-f$ if necessary, to assume that $f(\mathbb{C})$ is contained in the left half plane. Then $g(z) = e^{f(z)}$ is entire and bounded, hence it is a constant c by Liouville’s theorem. Then $f(\mathbb{C})$ is contained in the set of solutions to $e^z = c$, which is discrete, but $f(\mathbb{C})$ is connected, so $f(\mathbb{C})$ must be a point. Thus f is constant.

5B. Let n be a positive integer. Let $\phi(n)$ be the Euler phi function, so $\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^*$. Prove that if $\gcd(n, \phi(n)) > 1$, then there exists a noncyclic group of order n.

Solution. Let p be a prime dividing both n and $\phi(n)$. The formula for $\phi(n)$ shows that either $p^2|n$ or there is a different prime $q|n$ such that $p|(q - 1)$.

If $p^2|n$, then $C_p \times C_p \times C_{n/p^2}$ is a noncyclic group of order n (where C_m denotes a cyclic group of order m).

In the other case, let G be the subgroup of $\text{GL}_2(\mathbb{F}_q)$ consisting of matrices of the form

$$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$$

where $a^p = 1$. Since \mathbb{F}_q^* is cyclic of order $q - 1$, there are p solutions to $a^p = 1$ in \mathbb{F}_q. Thus $\#G = pq$. If $a^p = 1$ and $a \neq 1$, then

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$

so G is not abelian. Then $G \times C_{n/pq}$ has order n and is not cyclic (since it is not abelian).

6B. Let $f(z)$ be a meromorphic function on the complex plane. Suppose that for every polynomial $p(z) \in \mathbb{C}[z]$ and every closed contour Γ avoiding the poles of f, we have

$$\int_{\Gamma} p(z)^2 f(z) \, dz = 0.$$

Prove that $f(z)$ is entire.
Solution. Comparing the condition with \(p(z) \) replaced by \(p(z) + 1 \) and subtracting, we find that
\[
\int_\Gamma (2p(z) + 1)f(z)\,dz = 0.
\]
Every polynomial can be written as \(2p(z) + 1 \), so we have that
\[
\int_\Gamma p(z)f(z)\,dz = 0
\]
for every polynomial \(p(z) \).

Suppose that \(f(z) \) has a pole of order \(n \) at \(a \in \mathbb{C} \). Then \((z - a)^{n-1}f(z) \) has a nonzero residue at \(a \), so
\[
\int_\Gamma (z - a)^{n-1}f(z)\,dz \neq 0
\]
for a sufficiently small loop \(\Gamma \) around \(a \). Thus \(f(z) \) cannot have any poles. Hence \(f(z) \) is entire.

7B. (a) Let \(G \) be a finite group and let \(X \) be the set of pairs of commuting elements of \(G \):
\[
X = \{(g, h) \in G \times G : gh = hg\}.
\]
Prove that \(|X| = c|G|\) where \(c \) is the number of conjugacy classes in \(G \).

(b) Compute the number of pairs of commuting permutations on five letters.

Solution. (a) Let \(C_g \) denote the conjugacy class of \(g \) and \(Z_g \) the centralizer of \(g \). By the orbit-stabilizer theorem, we have \(|Z_g| \cdot |C_g| = |G|\) for every \(g \). Hence \(\sum_{g \in C} |Z_g| = |G| \) for every conjugacy class \(C \), and \(|X| = \sum_{g \in G} |Z_g| = c|G|\).

(b) Take \(G = S_5 \), with \(|G| = 5! = 120\). The number of conjugacy classes \(c \) is the number of partitions of 5, namely 7. So there are \(7 \cdot 120 = 840 \) pairs of commuting permutations.

8B. The set of \(5 \times 5 \) complex matrices \(A \) satisfying \(A^3 = A^2 \) is a union of conjugacy classes. How many conjugacy classes?

Solution. A matrix \(A \) is a solution to \(x^3 = x^2 \) (or equivalently, \(x^2(x - 1) = 0 \)) if and only if all its Jordan blocks are. In particular, each Jordan block must have eigenvalues 0 and 1, and the possible Jordan blocks are
\[
(0), \quad (1), \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

The conjugacy type of a matrix is determined by the multiplicities of the Jordan blocks. Let \(a, b, c \) be the multiplicities of the blocks above, respectively. Then the answer is the number of nonnegative integer solutions to
\[
a + b + 2c = 5.
\]
For fixed \(c \in \{0, 1, 2\} \), there are \(6 - 2c \) solutions to \(a + b = 5 - 2c \). Thus the answer is
\[
(6 - 2 \cdot 0) + (6 - 2 \cdot 1) + (6 - 2 \cdot 2) = 12.
\]
9B. Let \(\lambda, a \in \mathbb{R} \), with \(a > 0 \). Let \(u(x, y) \) be an infinitely differentiable function defined on an open neighborhood of \(x^2 + y^2 \leq 1 \) such that

\[
\Delta u + \lambda u = 0 \quad \text{in } x^2 + y^2 < 1 \\
u_n = -au \quad \text{on } x^2 + y^2 = 1.
\]

Here \(\Delta \) is the Laplacian \(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \), and \(u_n \) denotes the directional derivative of \(u \) in the direction of the outward unit normal (pointing away from the origin). Prove that if \(u \) is not identically zero in \(x^2 + y^2 < 1 \), then \(\lambda > 0 \).

Solution. Let \(D \) be the closed unit disk. Then

\[
\int_D u(\Delta u + \lambda u) = \int_D 0 = 0.
\]

If we substitute

\[
u \Delta u = \nabla \cdot (u \nabla u) - |\nabla u|^2,
\]

this becomes

\[
\int_D \nabla \cdot (u \nabla u) - \int_D |\nabla u|^2 + \int_D \lambda u^2 = 0.
\]

Applying the Divergence Theorem (in the form

\[
\int_D \nabla \cdot f = \int_{\partial D} f \cdot n
\]

where \(n \) is the outward unit normal) to the first term, we get

\[
\int_{\partial D} uu_n - \int_D |\nabla u|^2 + \int_D \lambda u^2 = 0.
\]

Since \(u_n = -au \) on \(\partial D \), we get

\[
-a \int_{\partial D} u^2 - \int_D |\nabla u|^2 + \lambda \int_D u^2 = 0.
\]

Since \(u \) is not identically zero on \(D \), we have \(\int_D u^2 > 0 \). If \(u \) were constant on \(D \), the equation \(u_n = -au \) on \(\partial D \) would force \(u = 0 \). Thus \(\nabla u \) is not identically zero on \(D \), so \(\int_D |\nabla u|^2 > 0 \).

Finally, \(a \int_{\partial D} u^2 \geq 0 \). Thus solving for \(\lambda \) shows that \(\lambda > 0 \).