Problem 1 1. Show that a real 2×2 matrix A satisfies $A^2 = -I$ if and only if

$$A = \begin{pmatrix} \pm \sqrt{pq-1} & -p \\ q & \mp \sqrt{pq - 1} \end{pmatrix}$$

where p and q are real numbers such that $pq \geq 1$ and both upper or both lower signs should be chosen in the double signs.

2. Show that there is no real 2×2 matrix A such that

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 - \varepsilon \end{pmatrix}$$

with $\varepsilon > 0$.

Problem 2 1. For $0 \leq \theta \leq \frac{\pi}{2}$, show that

$$\sin \theta \geq \frac{2}{\pi} \theta.$$

2. By using Part 1, or by any other method, show that if $\lambda < 1$, then

$$\lim_{R \to \infty} R^\lambda \int_0^{\frac{\pi}{2}} e^{-R \sin \theta} d\theta = 0.$$

Problem 3 Let A be a nonsingular real $n \times n$ matrix. Prove that there exists a unique orthogonal matrix Q and a unique positive definite symmetric matrix B such that $A = QB$.

Problem 4 Let G be a group of order 120, let H be a subgroup of order 24, and assume that there is at least one left coset of H (other than H itself) which is equal to some right coset of H. Prove that H is a normal subgroup of G.

Problem 5 By the Fundamental Theorem of Algebra, the polynomial $x^3 + 2x^2 + 7x + 1$ has three complex roots, α_1, α_2, and α_3. Compute $\alpha_1^3 + \alpha_2^3 + \alpha_3^3$.
Problem 6 Evaluate the integral
\[\int_0^\infty \frac{x^{a-1}}{x+1} \, dx \]
where \(a \) is a complex number. What restrictions must be put on \(a \)?

Problem 7 Let
\[f(x) = e^{x^2/2} \int_x^\infty e^{-t^2/2} \, dt \]
for \(x > 0 \).

1. Show that \(0 < f(x) < \frac{1}{x} \).
2. Show that \(f(x) \) is strictly decreasing for \(x > 0 \).

Problem 8 Let \(f \) be a real valued continuous function on a compact interval \([a, b]\). Given \(\varepsilon > 0 \), show that there is a polynomial \(p \) such that \(p(a) = f(a) \), \(p'(a) = 0 \), and \(|p(x) - f(x)| < \varepsilon \) for \(x \in [a, b] \).

Problem 9 Let \(u(x) \), \(0 \leq x \leq 1 \), be a real valued \(C^2 \) function which satisfies the differential equation
\[u''(x) = e^x u(x) \].

1. Show that if \(0 < x_0 < 1 \), then \(u \) cannot have a positive local maximum at \(x_0 \). Similarly, show that \(u \) cannot have a negative local minimum at \(x_0 \).
2. Now suppose that \(u(0) = u(1) = 0 \). Prove that \(u(x) \equiv 0 \), \(0 \leq x \leq 1 \).

Problem 10 Prove that for each \(\lambda > 1 \) the equation \(z = \lambda - e^{-z} \) in the half-plane \(\Re z \geq 0 \) has exactly one root, and that this root is real.

Problem 11 1. Let \(G \) be a cyclic group, and let \(a, b \in G \) be elements which are not squares. Prove that \(ab \) is a square.
2. Give an example to show that this result is false if the group is not cyclic.

Problem 12 Let \(A \) be an \(n \times n \) real matrix and \(A^t \) its transpose. Show that \(A^t A \) and \(A^t \) have the same range.
Problem 13 Let $P(z)$ be a polynomial of degree $< k$ with complex coefficients. Let $\omega_1, \ldots, \omega_k$ be the kth roots of unity in \mathbb{C}. Prove that

$$\frac{1}{k} \sum_{i=1}^{k} P(\omega_i) = P(0).$$

Problem 14 Let $M_n(F)$ denote the ring of $n \times n$ matrices over a field F. For $n \geq 1$, does there exist a ring homomorphism from $M_{n+1}(F)$ onto $M_n(F)$?

Problem 15 For each $k > 0$, let X_k be the set of analytic functions $f(z)$ on the open unit disc D such that

$$\sup_{z \in D} \left\{(1 - |z|)k |f(z)|\right\}$$

is finite. Show that $f \in X_k$ if and only if $f' \in X_{k+1}$.

Problem 16 A function $f : [0, 1] \to \mathbb{R}$ is said to be upper semicontinuous if given $x \in [0, 1]$ and $\varepsilon > 0$, there exists a $\delta > 0$ such that if $|y - x| < \delta$, then $f(y) < f(x) + \varepsilon$. Prove that an upper semicontinuous function f on $[0, 1]$ is bounded above and attains its maximum value at some point $p \in [0, 1]$.

Problem 17 Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

where all the a_n are nonnegative reals, and the series has radius of convergence 1. Prove that $f(z)$ cannot be analytically continued to a function analytic in a neighborhood of $z = 1$.

Problem 18 Solve the differential equations

$$\frac{dy_1}{dx} = -3y_1 + 10y_2,$$

$$\frac{dy_2}{dx} = -3y_1 + 8y_2.$$

Problem 19 Let $A_1 \geq A_2 \geq \cdots \geq A_k \geq 0$. Evaluate

$$\lim_{n \to \infty} (A_1^n + A_2^n + \cdots + A_k^n)^{1/n}.$$

Note: See also Problem ??.

Problem 20 Let F be a field of characteristic $p > 0$, $p \neq 3$. If α is a zero of the polynomial $f(x) = x^p - x + 3$ in an extension field of F, show that $f(x)$ has p distinct zeros in the field $F(\alpha)$.

3