Problem 1 For each of the following either give an example or else prove that no such example is possible.

1. A nonabelian group.
2. A finite abelian group that is not cyclic.
3. An infinite group with a subgroup of index 5.
4. Two finite groups that have the same order but are not isomorphic.
5. A group G with a subgroup H that is not normal.
6. A nonabelian group with no normal subgroups except the whole group and the unit element.
7. A group G with a normal subgroup H such that the factor group G/H is not isomorphic to any subgroup of G.
8. A group G with a subgroup H which has index 2 but is not normal.

Problem 2 Let R be the set of 2×2 matrices of the form

\[
\begin{pmatrix}
a & -b \\
b & a
\end{pmatrix}
\]

where a, b are elements of a given field F. Show that with the usual matrix operations, R is a commutative ring with identity. For which of the following fields F is R a field: $F = \mathbb{Q}$, \mathbb{C}, \mathbb{Z}_5, \mathbb{Z}_7?

Problem 3 Let A be a $n \times n$ real matrix.

1. If the sum of each column element of A is 1 prove that there is a nonzero column vector x such that $Ax = x$.

2. Suppose that $n = 2$ and all entries in A are positive. Prove there is a nonzero column vector y and a number $\lambda > 0$ such that $Ay = \lambda y$.
Problem 4
1. Using only the axioms for a field F, prove that a system of m homogeneous linear equations in n unknowns with $m < n$ and coefficients in F has a nonzero solution.

2. Use (1) to show that if V is a vector space over F which is spanned by a finite number of elements, then every maximal linearly independent subset of V has the same number of elements.

Problem 5
Evaluate
\[\int_0^{2\pi} e^{(e^{i\theta} - i\theta)} d\theta. \]

Problem 6
Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function and let $a > 0$ and $b > 0$ be constants.

1. If $|f(z)| \leq a\sqrt{|z|} + b$ for all z, prove that f is a constant.

2. What can one prove about f if

\[|f(z)| \leq a|z|^{5/2} + b \]

for all z?

Problem 7
1. Solve the differential equation $g' = 2g$, $g(0) = a$ where a is a real constant.

2. Suppose $f : [0,1] \to \mathbb{R}$ is continuous with $f(0) = 0$, and for $0 < x < 1$ f is differentiable and $0 \leq f'(x) \leq 2f(x)$. Prove that f is identically 0.

Problem 8
Let $\{S_\alpha\}$ be a family of connected subsets of \mathbb{R}^2 all containing the origin. Prove that $\bigcup_\alpha S_\alpha$ is connected.

Problem 9
Let X and Y be nonempty subsets of a metric space M. Define
\[d(X, Y) = \inf\{d(x, y) \mid x \in X, y \in Y\}. \]

1. Suppose X contains only one point x, and Y is closed. Prove
\[d(X, Y) = d(x, y) \]

for some $y \in Y$.
2

2. Suppose X is compact and Y is closed. Prove
\[d(X, Y) = d(x, y) \]
for some $x \in X$, $y \in Y$.

3. Show by example that the conclusion of Part 2 can be false if X and Y are closed but not compact.

Problem 10 Let $U \subset \mathbb{R}^n$ be a convex open set and $f : U \to \mathbb{R}^n$ a differentiable function whose partial derivatives are uniformly bounded but not necessarily continuous. Prove that f has a unique continuous extension to the closure of U.

Problem 11 Suppose the power series
\[\sum_{n=0}^{\infty} a_n z^n \]
converges for $|z| < R$ where z and the a_n are complex numbers. If $b_n \in \mathbb{C}$ are such that $|b_n| < n^2|a_n|$ for all n, prove that
\[\sum_{n=0}^{\infty} b_n z^n \]
converges for $|z| < R$.

Problem 12
1. Suppose f is analytic on a connected open set $U \subset \mathbb{C}$ and f takes only real values. Prove that f is constant.

2. Suppose $W \subset \mathbb{C}$ is open, g is analytic on W, and $g'(z) \neq 0$ for all $z \in W$. Show that
\[\{ \mathfrak{R}g(z) + \mathfrak{I}g(z) \mid z \in W \} \subset \mathbb{R} \]
is an open subset of \mathbb{R}.

Problem 13 Let R denote the ring of polynomials over a field \mathbf{F}. Let p_1, \ldots, p_n be elements of R. Prove that the greatest common divisor of p_1, \ldots, p_n is 1 if and only if there is an $n \times n$ matrix over R of determinant 1 whose first row is (p_1, \ldots, p_n).
Problem 14 Let G be a finite multiplicative group of 2×2 integer matrices.

1. Let $A \in G$. What can one prove about

 (i) $\det A$?
 (ii) the (real or complex) eigenvalues of A?
 (iii) the Jordan or Rational Canonical Form of A?
 (iv) the order of A?

2. Find all such groups up to isomorphism.

Note: See also Problem ??.

Problem 15 Let V be a finite-dimensional vector space over an algebraically closed field. A linear operator $T : V \to V$ is called completely reducible if whenever a linear subspace $E \subset V$ is invariant under T, that is $T(E) \subset E$, there is a linear subspace $F \subset V$ which is invariant under T and such that $V = E \oplus F$. Prove that T is completely reducible if and only if V has a basis of eigenvectors.

Problem 16

1. Prove that a linear operator $T : \mathbb{C}^n \to \mathbb{C}^n$ is diagonalizable if for all $\lambda \in \mathbb{C}$, $\ker(T - \lambda I)^n = \ker(T - \lambda I)$, where I is the $n \times n$ identity matrix.

2. Show that T is diagonalizable if T commutes with its conjugate transpose T^* (i.e., $(T^*)_{jk} = \overline{T_{kj}}$).

Problem 17 Let E be the set of functions $f : \mathbb{R} \to \mathbb{R}$ which are solutions to the differential equation $f''' + f'' - 2f = 0$.

1. Prove that E is a vector space and find its dimension.

2. Let $E_0 \subset E$ be the subspace of solutions g such that $\lim_{t \to \infty} g(t) = 0$. Find $g \in E_0$ such that $g(0) = 0$ and $g'(0) = 2$.

Problem 18 Let N be a norm on the vector space \mathbb{R}^n; that is, $N : \mathbb{R}^n \to \mathbb{R}$ satisfies

\[
N(x) \geq 0 \text{ and } N(x) = 0 \text{ only if } x = 0, \\
N(x + y) \leq N(x) + N(y), \\
N(\lambda x) = |\lambda|N(x)
\]

for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
1. Prove that N is bounded on the unit sphere.

2. Prove that N is continuous.

3. Prove that there exist constants $A > 0$ and $B > 0$, such that for all $x \in \mathbb{R}^n$, $A\|x\| \leq N(x) \leq B\|x\|$.

Problem 19 Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose that \mathbb{R} contains a countably infinite subset S such that

$$\int_p^q f(x) \, dx = 0$$

if p and q are not in S. Prove that f is identically 0.

Problem 20 Let $M_{n\times n}$ denote the vector space of real $n \times n$ matrices. Define a map $f : M_{n\times n} \to M_{n\times n}$ by $f(X) = X^2$. Find the derivative of f.