Problem 1 Compute
\[L = \lim_{n \to \infty} \left(\frac{n^n}{n!} \right)^{1/n} . \]

Problem 2 Let \(K \subset \mathbb{R}^n \) be compact and \(\{B_j\}_{j=1}^{\infty} \) be a sequence of open balls which covers \(K \). Prove that there is \(\varepsilon > 0 \) such that every \(\varepsilon \)-ball centered at a point of \(K \) is contained in one of the balls \(B_j \).

Problem 3 Compute
\[I = \int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} . \]

Problem 4 Let \(r < 1 < R \). Show that for all sufficiently small \(\varepsilon > 0 \), the polynomial
\[p(z) = \varepsilon z^7 + z^2 + 1 \]
has exactly five roots (counted with their multiplicities) inside the annulus
\[r\varepsilon^{-1/5} < |z| < R\varepsilon^{-1/5} . \]

Problem 5 Prove or disprove: For any \(2 \times 2 \) matrix \(A \) over \(\mathbb{C} \), there is a \(2 \times 2 \) matrix \(B \) such that \(A = B^2 \).

Problem 6 If a finite homogeneous system of linear equations with rational coefficients has a nonzero complex solution, need it have a nonzero rational solution? Prove or give a counterexample.

Problem 7 Prove that \(f(x) = x^4 + x^3 + x^2 + 6x + 1 \) is irreducible over \(\mathbb{Q} \).

Problem 8 Determine the rightmost decimal digit of
\[A = 17^{17^{17}} . \]

Problem 9 Exhibit infinitely many pairwise nonisomorphic quadratic extensions of \(\mathbb{Q} \) and show they are pairwise nonisomorphic.
Problem 10 Show that a positive constant t can satisfy
\[e^x > x^t \quad \text{for all} \quad x > 0 \]
if and only if $t < e$.

Problem 11 Suppose φ is a C^1 function on \mathbb{R} such that
\[\varphi(x) \to a \quad \text{and} \quad \varphi'(x) \to b \quad \text{as} \quad x \to \infty. \]
Prove or give a counterexample: b must be zero.

Problem 12 Let $M_{2 \times 2}$ be the space of 2×2 matrices over \mathbb{R}, identified in the usual way with \mathbb{R}^4. Let the function F from $M_{2 \times 2}$ into $M_{2 \times 2}$ be defined by
\[F(X) = X + X^2. \]
Prove that the range of F contains a neighborhood of the origin.

Problem 13 Let $f = u + iv$ be analytic in a connected open set D, where u and v are real valued. Suppose there are real constants a, b and c such that
\[a^2 + b^2 \neq 0 \]
and
\[au + bv = c \]
in D. Show that f is constant in D.

Problem 14 Suppose $f: [0, 1] \to \mathbb{C}$ is continuous. Show that
\[g(z) = \int_0^1 f(t)e^{tz^2} dt \]
defines a function g that is analytic everywhere in the complex plane.

Problem 15 Suppose that A and B are real matrices such that $A^t = A$,
\[v^tAv \geq 0 \]
for all $v \in \mathbb{R}^n$ and
\[AB + BA = 0. \]
Show that $AB = BA = 0$ and give an example where neither A nor B is zero.
Problem 16 Let A be the $n \times n$ matrix which has zeros on the main diagonal and ones everywhere else. Find the eigenvalues and eigenspaces of A and compute $\det(A)$.

Problem 17 Let G be the group of 2×2 matrices with determinant 1 over the four-element field F. Let S be the set of lines through the origin in F^2. Show that G acts faithfully on S. (The action is faithful if the only element of G which fixes every element of S is the identity.)

Problem 18 Let G and H be finite groups of relatively prime orders. Show that the automorphism group $\text{Aut}(G \times H)$ is isomorphic to the direct product of $\text{Aut}(G)$ and $\text{Aut}(H)$.