Problem 1 A standard theorem states that a continuous real valued function on a compact set is bounded. Prove the converse: If K is a subset of \mathbb{R}^n and if every continuous real valued function on K is bounded, then K is compact.

Problem 2 Let the transformation T from the subset $U = \{(u, v) \mid u > v\}$ of \mathbb{R}^2 into \mathbb{R}^2 be defined by $T(u, v) = (u + v, u^2 + v^2)$.

1. Prove that T is locally one-to-one.

2. Determine the range of T, and show that T is globally one-to-one.

Problem 3 Let f be a complex valued function in the open unit disc, \mathbb{D}, of the complex plane such that the functions $g = f^2$ and $h = f^3$ are both analytic. Prove that f is analytic in \mathbb{D}.

Problem 4 Let F be a finite field with q elements and let x be an indeterminate. For f a polynomial in $F[x]$, let φ_f denote the corresponding function of F into F, defined by $\varphi_f(a) = f(a)$, $(a \in F)$. Prove that if φ is any function of F into F, then there is an f in $F[x]$ such that $\varphi = \varphi_f$. Prove that f is uniquely determined by φ to within addition of a multiple of $x^q - x$.

Problem 5 Let f be a continuous real valued function on \mathbb{R} satisfying

$$|f(x)| \leq \frac{C}{1 + x^2},$$

where C is a positive constant. Define the function F on \mathbb{R} by

$$F(x) = \sum_{n=-\infty}^{\infty} f(x + n).$$

1. Prove that F is continuous and periodic with period 1.

2. Prove that if G is continuous and periodic with period 1, then

$$\int_{0}^{1} F(x)G(x) \, dx = \int_{-\infty}^{\infty} f(x)G(x) \, dx.$$
Problem 6 Let \(f \) be an analytic function in the open unit disc of the complex plane such that \(|f(z)| \leq C/(1-|z|)\) for all \(z \) in the disc, where \(C \) is a positive constant. Prove that \(|f'(z)| \leq 4C/(1-|z|)^2\).

Problem 7 Let \(p, q \) and \(r \) be continuous real valued functions on \(\mathbb{R} \), with \(p > 0 \). Prove that the differential equation
\[
p(t)x''(t) + q(t)x'(t) + r(t)x(t) = 0
\]
is equivalent to (i.e., has exactly the same solutions as) a differential equation of the form
\[
(a(t)x'(t))' + b(t)x(t) = 0,
\]
where \(a \) is continuously differentiable and \(b \) is continuous.

Problem 8 Prove that if the nonconstant polynomial \(p(z) \), with complex coefficients, has all of its roots in the half-plane \(\Re z > 0 \), then all of the roots of its derivative are in the same half-plane.

Problem 9 Let \(A \) be an \(m \times n \) matrix with rational entries and \(b \) an \(m \)-dimensional column vector with rational entries. Prove or disprove: If the equation \(Ax = b \) has a solution \(x \) in \(\mathbb{C}^n \), then it has a solution with \(x \) in \(\mathbb{Q}^n \).

Problem 10 Prove that any finite group of order \(n \) is isomorphic to a subgroup of \(\text{O}(n) \), the group of \(n \times n \) orthogonal real matrices.

Problem 11 Show that the equation \(ae^{x} = 1+x+x^2/2 \), where \(a \) is a positive constant, has exactly one real root.

Problem 12 Evaluate the integral
\[
I = \int_0^{1/2} \frac{\sin x}{x} \, dx
\]
to an accuracy of two decimal places; that is, find a number \(I^* \) such that \(|I - I^*| < 0.005\).

Problem 13 Let \(f \) be a real valued \(C^1 \) function defined in the punctured plane \(\mathbb{R}^2 \setminus \{(0,0)\} \). Assume that the partial derivatives \(\partial f/\partial x \) and \(\partial f/\partial y \) are uniformly bounded; that is, there exists a positive constant \(M \) such that \(|\partial f/\partial x| \leq M \) and \(|\partial f/\partial y| \leq M \) for all points \((x, y) \neq (0, 0)\). Prove that
\[
\lim_{(x,y) \to (0,0)} f(x, y)
\]
exists.
Problem 14 1. Show that, to within isomorphism, there is just one non-cyclic group G of order 4.

2. Show that the group of automorphisms of G is isomorphic to the permutation group S_3.

Problem 15 Prove or disprove: If the function f is analytic in the entire complex plane, and if f maps every unbounded sequence to an unbounded sequence, then f is a polynomial.

Problem 16 Let F be a uniformly bounded, equicontinuous family of real valued functions on the metric space (X, d). Prove that the function

$$g(x) = \sup\{f(x) \mid f \in F\}$$

is continuous.

Problem 17 Let V be a finite-dimensional linear subspace of $C^\infty(\mathbb{R})$ (the space of complex valued, infinitely differentiable functions). Assume that V is closed under D, the operator of differentiation (i.e., $f \in V \Rightarrow Df \in V$). Prove that there is a constant coefficient differential operator

$$L = \sum_{k=0}^{n} a_k D^k$$

such that V consists of all solutions of the differential equation $Lf = 0$.

Problem 18 Let A and B be two diagonalizable $n \times n$ complex matrices such that $AB = BA$. Prove that there is a basis for \mathbb{C}^n that simultaneously diagonalizes A and B.

Problem 19 Let F be a field. Prove that every finite subgroup of the multiplicative group of nonzero elements of F is cyclic.

Problem 20 Evaluate

$$I = \int_{0}^{\pi} \frac{\cos 4\theta}{1 + \cos^2 \theta} \, d\theta.$$