Problem 1 Suppose f is a differentiable function from the reals into the reals. Suppose $f'(x) > f(x)$ for all $x \in \mathbb{R}$, and $f(x_0) = 0$. Prove that $f(x) > 0$ for all $x > x_0$.

Problem 2 Suppose that f is a real valued function of one real variable such that

$$\lim_{x \to c} f(x)$$

exists for all $c \in [a, b]$. Show that f is Riemann integrable on $[a, b]$.

Problem 3 1. Evaluate $P_{n-1}(1)$, where $P_{n-1}(x)$ is the polynomial

$$P_{n-1}(x) = \frac{x^n - 1}{x - 1}.$$

2. Consider a circle of radius 1, and let Q_1, Q_2, \ldots, Q_n be the vertices of a regular n-gon inscribed in the circle. Join Q_1 to Q_2, Q_3, \ldots, Q_n by segments of a straight line. You obtain $(n - 1)$ segments of lengths $\lambda_2, \lambda_3, \ldots, \lambda_n$. Show that

$$\prod_{i=2}^{n} \lambda_i = n.$$
2. Find the center Z of G; that is, the set of all elements z of G such that $az = za$ for all $a \in G$.

3. Show that the set O of real orthogonal matrices is a subgroup of G (a matrix is orthogonal if $AA^t = I$, where A^t denotes the transpose of A). Show by example that O is not a normal subgroup.

4. Find a nontrivial homomorphism from G onto an abelian group.

Problem 7 A matrix of the form
\[
\begin{pmatrix}
1 & a_0 & a_0^2 & \ldots & a_0^n \\
1 & a_1 & a_1^2 & \ldots & a_1^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_n & a_n^2 & \ldots & a_n^n
\end{pmatrix}
\]
where the a_i are complex numbers, is called a Vandermonde matrix.

1. Prove that the Vandermonde matrix is invertible if a_0, a_1, \ldots, a_n are all different.

2. If a_0, a_1, \ldots, a_n are all different, and b_0, b_1, \ldots, b_n are complex numbers, prove that there is a unique polynomial f of degree n with complex coefficients such that $f(a_0) = b_0$, $f(a_1) = b_1, \ldots, f(a_n) = b_n$.

Problem 8 Find a list of real matrices, as long as possible, such that

- the characteristic polynomial of each matrix is $(x - 1)^5(x + 1)$,
- the minimal polynomial of each matrix is $(x - 1)^2(x + 1)$,
- no two matrices in the list are similar to each other.

Problem 9 Find the solution of the differential equation
\[y'' - 2y' + y = 0,\]
subject to the conditions
\[y(0) = 1, \quad y'(0) = 1.\]
Problem 10 In \mathbb{R}^2, consider the region A defined by $x^2 + y^2 > 1$. Find differentiable real valued functions f and g on A such that $\partial f/\partial x = \partial g/\partial y$ but there is no real valued function h on A such that $f = \partial h/\partial y$ and $g = \partial h/\partial x$.

Problem 11 Let the sequence a_0, a_1, \ldots be defined by the equation

$$1 - x^2 + x^4 - x^6 + \cdots = \sum_{n=0}^{\infty} a_n(x - 3)^n \quad (0 < x < 1).$$

Find

$$\lim_{n \to \infty} \left(|a_n|^{\frac{1}{n}} \right).$$

Problem 12 Let p be an odd prime. Let $Q(p)$ be the set of integers a, $0 \leq a \leq p - 1$, for which the congruence

$$x^2 \equiv a \pmod{p}$$

has a solution. Show that $Q(p)$ has cardinality $(p + 1)/2$.

Problem 13 Consider the family of square matrices $A(\theta)$ defined by the solution of the matrix differential equation

$$\frac{dA(\theta)}{d\theta} = BA(\theta)$$

with the initial condition $A(0) = I$, where B is a constant square matrix.

1. Find a property of B which is necessary and sufficient for $A(\theta)$ to be orthogonal for all θ; that is, $A(\theta)^t = A(\theta)^{-1}$, where $A(\theta)^t$ denotes the transpose of $A(\theta)$.

2. Find the matrices $A(\theta)$ corresponding to

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

and give a geometric interpretation.

Problem 14 A square matrix A is nilpotent if $A^k = 0$ for some positive integer k.

3
1. If A and B are nilpotent, is $A + B$ nilpotent?

2. Prove: If A and B are nilpotent matrices and $AB = BA$, then $A + B$ is nilpotent.

3. Prove: If A is nilpotent then $I + A$ and $I - A$ are invertible.

Problem 15 Let $f(z)$ be a nonconstant meromorphic function. A complex number w is called a period of f if $f(z + w) = f(z)$ for all z.

1. Show that if w_1 and w_2 are periods, so are $n_1 w_1 + n_2 w_2$ for all integers n_1 and n_2.

2. Show that there are, at most, a finite number of periods of f in any bounded region of the complex plane.

Problem 16 Evaluate

$$\int_{-\infty}^{\infty} \frac{\cos nx}{x^4 + 1} \, dx.$$

Problem 17 Let \mathbb{Q}_+ be the multiplicative group of positive rational numbers.

1. Is \mathbb{Q}_+ torsion free?

2. Is \mathbb{Q}_+ free?

Problem 18 1. In $\mathbb{R}[x]$, consider the set of polynomials $f(x)$ for which $f(2) = f'(2) = f''(2) = 0$. Prove that this set forms an ideal and find its monic generator.

2. Do the polynomials such that $f(2) = 0$ and $f'(3) = 0$ form an ideal?

Problem 19 Suppose that $u(x, t)$ is a continuous function of the real variables x and t with continuous second partial derivatives. Suppose that u and its first partial derivatives are periodic in x with period 1, and that

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}.$$

Prove that

$$E(t) = \frac{1}{2} \int_0^1 \left(\left(\frac{\partial u}{\partial t} \right)^2 + \left(\frac{\partial u}{\partial x} \right)^2 \right) \, dx$$

is a constant independent of t.

Problem 20 Let \(h : [0, 1) \to \mathbb{R} \) be a function defined on the half-open interval \([0, 1)\). Prove that if \(h \) is uniformly continuous, there exists a unique continuous function \(g : [0, 1] \to \mathbb{R} \) such that \(g(x) = h(x) \) for all \(x \in [0, 1) \).