Problem 1 Are the 4×4 matrices
\[
A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
-1 & 1 & 1 & -1 \\
-1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0
\end{pmatrix}
\]
similar?

Problem 2 Let \(\{f_n\}_{n=1}^{\infty} \) be a uniformly bounded equicontinuous sequence of real-valued functions on the compact metric space \((X, d)\). Define the functions \(g_n : X \to \mathbb{R} \), for \(n \in \mathbb{N} \) by
\[
g_n(x) = \max\{f_1(x), \ldots, f_n(x)\}.
\]
Prove that the sequence \(\{g_n\}_{n=1}^{\infty} \) converges uniformly.

Problem 3 Prove that the group \(G = \mathbb{Q}/\mathbb{Z} \) has no proper subgroup of finite index.

Problem 4 Let \(f \) and \(g \) be entire functions such that \(\lim_{z \to \infty} f(g(z)) = \infty \).
Prove that \(f \) and \(g \) are polynomials.

Problem 5 Let \(a \) and \(x_0 \) be positive numbers, and define the sequence \((x_n)_{n=1}^{\infty} \) recursively by
\[
x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right).
\]
Prove that this sequence converges, and find its limit.

Problem 6 Let \(A \) be an \(n \times n \) matrix over \(\mathbb{C} \) whose minimal polynomial \(\mu \) has degree \(k \).

1. Prove that, if the point \(\lambda \) of \(\mathbb{C} \) is not an eigenvalue of \(A \), then there is a polynomial \(p_\lambda \) of degree \(k - 1 \) such that \(p_\lambda(A) = (A - \lambda I)^{-1} \).
2. Let $\lambda_1, \ldots, \lambda_k$ be distinct points of \mathbb{C} that are not eigenvalues of A. Prove that there are complex numbers c_1, \ldots, c_k such that
$$\sum_{j=1}^{k} c_j (A - \lambda_j I)^{-1} = I.$$

Problem 7 Let f be a positive function of class C^2 on $(0, \infty)$ such that $f' \leq 0$ and f'' is bounded. Prove that $\lim_{t \to \infty} f'(t) = 0$.

Problem 8 Find the cardinality of the set of all subrings of \mathbb{Q}, the field of rational numbers.

Problem 9 Evaluate
$$I = \int_{|z|=1} \frac{\cos^3 z}{z^3} \, dz,$$
where the direction of integration is counterclockwise.

Problem 10 Let S be an uncountable subset of \mathbb{R}. Prove that there exists a real number t such that both sets $S \cap (-\infty, t)$ and $S \cap (t, \infty)$ are uncountable.

Problem 11 Let A_n be the $n \times n$ matrix whose entries a_{jk} are given by
$$a_{jk} = \begin{cases} 1 & \text{if } |j - k| = 1 \\ 0 & \text{otherwise} \end{cases}.$$
Prove that the eigenvalues of A are symmetric with respect to the origin.

Problem 12 Suppose that H_1 and H_2 are distinct subgroups of a group G such that $[G : H_1] = [G : H_2] = 3$. What are the possible values of $[G : H_1 \cap H_2]$?

Problem 13 Let f be a nonconstant entire function whose values on the real axis are real and nonnegative. Prove that all real zeros of f have even order.

Problem 14 Let I_1, \ldots, I_n be disjoint closed nonempty subintervals of \mathbb{R}.

2
1. Prove that if \(p \) is a real polynomial of degree less than \(n \) such that
\[
\int_{I_j} p(x)dx = 0, \quad \text{for } j = 1, \ldots, n
\]
then \(p = 0 \).

2. Prove that there is a nonzero real polynomial \(p \) of degree \(n \) that satisfies all the above equations.

Problem 15 Let \(F \), with components \(F_1, \ldots, F_n \), be a differentiable map of \(\mathbb{R}^n \) into \(\mathbb{R}^n \) such that \(F(0) = 0 \). Assume that
\[
\sum_{j,k=1}^n \left| \frac{\partial F_j(0)}{\partial x_k} \right|^2 = c < 1 .
\]
Prove that there is a ball \(B \) in \(\mathbb{R}^n \) with center 0 such that \(F(B) \subset B \).

Problem 16 Let \(A \) be a complex \(n \times n \) matrix such that the sequence \((A^n)_{n=1}^\infty \) converges to a matrix \(B \). Prove that \(B \) is similar to a diagonal matrix with zeros and ones along the main diagonal.

Problem 17 Evaluate the integrals
\[
I(t) = \int_{-\infty}^{\infty} \frac{e^{itx}}{(x+i)^2} \, dx , \quad -\infty < t < \infty .
\]

Problem 18 Let \(G \) be a finite group and \(p \) a prime number. Suppose \(a \) and \(b \) are elements of \(G \) of order \(p \) such that \(b \) is not in the subgroup generated by \(a \). Prove that \(G \) contains at least \(p^2 - 1 \) elements of order \(p \).