Instructions:

• Closed book: No notes, no books, no calculators.
• The exam time is 80 minutes. Do all 8 problems.
• You must justify your answers for full credit.
• Write your answers in the space below each problem.
• Answers in complete sentences are encouraged.
• If you need more space, use reverse side or scratch pages. Indicate clearly where to find your answers.
1. (5 points) You are a pollster for the 2016 presidential elections. You ask 1000 random people whether they would vote for the Republican candidate or the Democratic candidate. 560 people say that they will vote for the Democrat.

(a) Find a 95% confidence interval for the percentage of votes \(p \) that the Democrat will get. (You do not need to simplify your answer).

(b) Based on the information you have, if you wanted to be 99% confident instead of 95%, will you have to increase the size of your confidence interval from part (a) or decrease it? Explain briefly in your own words.
2. (5 points) Find an explicit formula for the sequence \(\{a_n\}_{n \geq 0} \) which satisfies \(a_0 = 1 \), \(a_1 = 4 \), \(a_2 = 4 \), and

\[
a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3} \quad \text{for } n \geq 3.
\]
3. (5 points) Is the function

\[f(x) = \sin x \]

a solution to the differential equation:

\[f'''(x) = f''(x) + f(x) \text{ for all } -\infty < x < \infty \]

Why or why not? Give an explanation in complete sentences.
4. (5 points) Is the sequence defined by

\[a_n = \frac{1}{2}n(n + 1) \quad \text{for } n = 0, 1, 2, 3, \ldots \]

a solution to the recurrence relation:

\[a_n = 2a_{n-1} - a_{n-2} + 1 \quad \text{for all } n = 2, 3, 4, \ldots \]?

Why or why not? Give an explanation in complete sentences.
5. (5 points) Find the general solution to the ordinary differential equation

\[(t^3 - t)y' = (t + 2).\]
6. (5 points) This table records the observed frequencies of joint outcomes for a random variable X with values x_1, x_2 and a random variable Y with values y_1, y_2.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>y_2</td>
<td>11</td>
<td>8</td>
</tr>
</tbody>
</table>

(a) Compute the table of expected frequencies under the null hypothesis H_0 that X and Y are independent. (You do not need to simply the numbers in your answer).

(b) Explain how to use the tables of observed and expected frequencies to carry out a χ^2 test. Under what circumstances will we reject the null hypothesis?
7. (5 points) Determine all functions $y(t)$ that satisfy
\[y'' + 4y' + 5y = 0 \quad \text{and} \quad y(0) = 3 \quad \text{and} \quad y(\pi/2) = 0 \]
(Your final answer should not involve the complex number $i = \sqrt{-1}$.)
8. (5 points) Find all solutions to the differential equation

\[y' + y^2 \cdot \cos(t) = 0. \]